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1. Introduction

In empirical tests of asset pricing models, macroeconomic variables are often proposed as

candidates for systematic factors. The macroeconomic variables are typically motivated by

theory or economic intuition, but many have statistically insignificant correlations with the

returns on financial assets. Taking a skeptic’s point of view, some of these macroeconomic

variables might be useless “factors,” in the sense that they are independent of all the asset

returns. Recently, Kan and Zhang (1999) show that the t-test in the Fama-MacBeth (1973)

two-pass methodology overrejects the hypothesis that the risk premium associated with a

useless factor is zero, implying that a useless factor tends to be mistaken as an important

factor. In this paper, we focus on the stochastic discount factor representation of beta pricing

models, and investigate the performance of Hansen’s (1982) Generalized Method of Moments

(GMM) when the model includes a useless factor.

There are two main reasons that further investigation of the useless factor problem is

warranted. To illustrate the first reason, consider the following stochastic discount factor

model,

E[rt − rtgtγ] = 0N , (1)

where rt is the N -vector of returns in excess of the risk-free rate, gt is a marketwide variable

with zero mean, and γ is the risk premium associated with gt. To exclude the uninteresting

case, suppose E[rt] is not a zero vector. If gt is useless, which implies E[rtgt] = 0N , then

Eq.(1) cannot hold and, theoretically, γ is undefined. Of course, the sample version of E[rtgt],

1
T

∑T
t=1 rtgt, will not be exactly zero, so γ can still be estimated. The easiest way to see the

property of such an estimate is when N = 1. The estimate of γ is 1
T

∑T
t=1 rt/

1
T

∑T
t=1 rtgt,

which tends to infinity in absolute value as the sample size T increases. This is basically the

problem caused by a useless factor. Now consider the model

E[rt − rtf
′
tλ − rtgtγ] = 0N , (2)

where ft is the k-vector of all the true factors, λ is the vector of risk premiums associated

with ft, and gt and γ are defined the same as above. What will happen to the estimate of

γ now? Although γ is still undefined, we will show that the useless factor is unlikely to be

accepted as an important factor and is less harmful than in Eq.(1). The key difference is

that Eq.(2) is a valid equation despite the presence of a useless factor. We establish in this
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paper that, in a sense, the seriousness of the problem caused by a useless factor is related to

the degree of model misspecification.

The second issue is whether the over-identifying restriction (OIR) test in GMM can

reliably detect misspecified models that contain useless factors. As we remarked in the last

paragraph, a useless factor causes serious problems primarily when the model is misspecified,

which is exactly what the OIR test is designed to detect. It is natural to conjecture that

the OIR test will effectively reject a misspecified model with a useless factor. But can we

really count on the OIR test to detect a misspecified model that contains a useless factor?

Surprisingly, the answer is “no.” By definition, the presence of a useless factor does not

make a misspecified first-moment condition more, or less, incorrect. However, it blows

up the estimated second-moment function whose inverse is used as a weighting matrix in

estimation and testing. As a result, the OIR test becomes less powerful and a misspecified

model with a useless factor may pass as a correct one.

We emphasize that our results do not imply a flaw in the GMM itself. The validity of

the GMM requires some regularity conditions that are sometimes overlooked by empirical

researchers and sometimes difficult to verify. Many macroeconomic variables used in em-

pirical asset pricing studies have low sample correlations with asset returns. Although the

hypothesis that a macroeconomic variable has zero correlations with the returns on a set

of assets cannot be rejected, researchers often find themselves reluctant to throw away the

variable because of the concern about statistical power. On the other hand, a useless factor

could pass the test for zero correlations due to a few outliers, or violations of other joint

hypotheses in forming the test of zero correlations. These possibilities complicate direct tests

of useless factors. It is important, therefore, to understand the statistical properties of asset

pricing tests in the presence of a useless factor. It is important also because a pure useless

factor serves as the limiting case of a true factor observed with noise when the amount of

noise increases.

Empirical models are unlikely to include all true factors, and the findings in our paper

illustrate the dangers of blindly interpreting empirical results without a rigorous diagnosis of

the model. In a common situation, a researcher estimates a misspecified asset pricing model

that does not include all the true factors and the OIR test rejects the model. Consequently,
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another variable is added as a factor. The new variable appears to be priced, the p-value

of the OIR test of the new model increases, so the research does not reject the new model.

Our analysis indicates a potential problem with the interpretations that the added variable

is a priced factor, and that the new model is the correctly specified model.

The rest of the paper is organized as follows. Section 2 discusses the asymptotic dis-

tributions of GMM parametric tests of risk premiums and OIR tests for models containing

a useless factor. Section 3 presents simulation results that illustrate the magnitude of the

problem in finite sample. The last section concludes and the Appendix contains proofs of all

propositions.

2. Asymptotic distribution of GMM tests with useless factors

Suppose rt is the vector of returns in excess of the risk-free rate at time t on N risky

assets, generated by a factor structure with factors ft:

rt = ν + Bft + εt, (3)

where E[ft] = 0k, E[εt|ft] = 0N , ν ≡ E[rt] �= 0N , and Var[ft] = Ik. Standardizing macroe-

conomic factors is a nontrivial issue. In practice, the conditional distribution of the factors

should be modeled and estimated as part of the moment conditions. We ignore this compli-

cations because it would distract from the main issue regarding useless factors, which does

not depend on the standardization assumption. We assume ft and rt are both stationary

and ergodic with finite fourth moments. In addition, since only unexpected shocks matter

for unexpected returns, ft can be modeled as a martingale difference sequence.

If the multibeta asset pricing model holds, the model can be written as a stochastic

discount factor model

E[rt(1 − f ′
tλ

∗)] = 0N , (4)

where each component of the k-vector of the true risk premiums λ∗ is nonzero. For simplicity,

we assume the model is estimated and tested without conditioning on information variables

at time t − 1. Cochrane (1996) define this simple form of the test as “unconditional test of

the unconditional model.” Let ut = rt(1− f ′
tλ

∗) and ūT = 1
T

∑T
t=1 ut, where T is the number

of time-series observations. We assume that
√

T ūT
A∼ N(0N , S) (5)
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for some positive-definite matrix S, where
A∼ denotes an asymptotic distribution.

Suppose an econometrician builds a stochastic discount factor model using a subvector

f1t of ft, and a useless factor gt,

E[rt(1 − f ′
1tλ1 − gtγ)] = 0N . (6)

A variable is defined as useless if it is independent of fs and εs for all t and s (at all leads

and lags). Without loss of generality, gt is assumed to be stationary and ergodic martingale

difference sequence with E[gt] = 0 and Var[gt] = 1. The vector f1t has dimension k1, with

0 ≤ k1 ≤ k. For k1 = 0, all the true factors drop out of Eq.(6) and only the useless factor gt

is used in the model. For k1 = k, f1t = ft, so the model includes the full set of true factors.

When a useless factor is included in the model, its risk premium is not identifiable because

all values of γ give the same moment condition. Consequently, the moment conditions violate

the identifiability condition required by GMM (Hansen 1982, Assumption 3.4), implying that

the standard asymptotic theory for GMM is not applicable. A model represented by Eq.(6)

is said to be misspecified if the moment condition does not hold for any set of parameter

values. In the context here, the model is misspecified when k1 < k, while the model is

correctly specified when k1 = k. Although γ is nonidentifiable in both cases, we will show

that nonidentifiability causes serious problems only in misspecified models.2

Without knowing whether the model is misspecified or a factor is useless, the econome-

trician estimates the model with the usual GMM procedure, by minimizing a quadratic form

of the moment function in Eq.(6). Let

m̄T (λ1, γ) =
1

T

T∑
t=1

rt(1 − f ′
1tλ1 − gtγ), (7)

where λ1 and γ are treated as parameters. In the GMM methodology, the parameters are

estimated by

argminλ1,γ m̄T (λ1, γ)′WT m̄T (λ1, γ), (8)

where WT is a (possibly stochastic) positive-definite weighting matrix. Standard GMM

chooses the statistically optimal weighting matrix, equal to the inverse of the second moment

2Staiger and Stock (1997) and Stock and Wright (1997) discuss a related problem known as weak identifi-
cation. The weak identification problem occurs when poor instruments are used in conditional tests of asset
pricing models. This problem does not affect the unconditional tests we discuss here. In contrast, model
misspecification with useless factors affects both conditional and unconditional tests of asset pricing models.
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matrix of m̄T (λ1, γ), and typically requires iterations. Nonstandard GMM selects some

predetermined weighting matrix. We discuss the two GMM approaches in turn.

2.1. The standard GMM parametric tests

When the optimal weighting matrix depends on unknown parameters, an iterative method

is required. In the first round, a positive-definite matrix, such as the identity matrix, is used

as the weighting matrix to estimate the parameters. In the second round, the model is

re-estimated using the optimal weighting matrix based on the parameter estimates from the

first round. When the model is correctly specified and T is large, two rounds of iteration

are sufficient because the GMM parameter estimator in the first round is consistent for any

positive-definite weighting matrix under regularity conditions given by Hansen (1982). In

practice, however, the iterative procedure can be repeated for many rounds to give better

estimates, as Ferson and Foerster (1994) suggest.

Let r̄T = 1
T

∑T
t=1 rt, B̄1T = 1

T

∑T
t=1 rtf

′
1t, D̄T = 1

T

∑T
t=1 rtgt, and let (Ŝ

(0)
T )−1 be the initial

weighting matrix. In the lth round for l ≥ 1, the parameter estimates and the estimate of

the second moment matrix of
√

Tm̄T (λ1, γ) are
 λ̂

(l)
1T

γ̂
(l)
T


 =

[
(B̄1T , D̄T )′

(
Ŝ

(l−1)
T

)−1
(B̄1T , D̄T )

]−1 [
(B̄1T , D̄T )′

(
Ŝ

(l−1)
T

)−1
r̄T

]
, (9)

Ŝ
(l)
T =

1

T

T∑
t=1

[
rt(1 − f ′

1tλ̂
(l)
1T − gtγ̂

(l)
T )
] [

rt(1 − f ′
1tλ̂

(l)
1T − gtγ̂

(l)
T )
]′

. (10)

In this paper, we are interested in the performance of the Wald test statistic (i.e., the square

of the asymptotic z-ratio) of the hypothesis that γ equals 0. Let H = (0′k1
, 1) and consider

the Wald test based on the weighting matrix obtained after the minimization,

ξ
(l)
Pa

=
T (γ̂

(l)
T )2

H
[
(B̄1T , D̄T )′

(
Ŝ

(l)
T

)−1
(B̄1T , D̄T )

]−1

H ′
, l = 2, 3, · · · , (11)

and the Wald test based on the weighting matrix before the minimization,

ξ
(l)
Pb

=
T (γ̂

(l)
T )2

H
[
(B̄1T , D̄T )′

(
Ŝ

(l−1)
T

)−1
(B̄1T , D̄T )

]−1

H ′
, l = 2, 3, · · · . (12)

If the model is correctly specified and gt is a nonpriced factor (γ = 0) with E[rtgt] �= 0N ,

the Wald test statistic is asymptotically distributed as χ2
1. However, standard asymptotic
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results of GMM do not apply if the model contains a useless factor. The following proposition

provides the large sample properties of the GMM Wald tests in this case.

Proposition 1. (A) Suppose the model in Eq.(6) is misspecified with k1 < k. The Wald tests

ξ
(l)
Pa

for l ≥ 2, and ξ
(l)
Pb

for l ≥ 3 of the hypothesis γ = 0 are asymptotically distributed as

χ2
N−k1

. (B) Suppose the model in Eq.(6) is correctly specified with k1 = k. The limiting

distributions of the Wald tests ξ
(l)
Pa

for l ≥ 2, and ξ
(l)
Pb

for l ≥ 2 of the hypothesis γ = 0 are

stochastically dominated by the χ2
1 distribution.

The proposition indicates that there is a major difference between misspecified and cor-

rectly specified models with useless factors. Consider the misspecified model first. Since

the Wald tests are compared to the χ2
1 distribution for statistical inference, the fact that

the tests are asymptotically χ2
N−k1

means that the null hypothesis will be overrejected when

the model is misspecified.3 The magnitude of overrejection is especially severe when N is

large. We can compare the results for the misspecified model to those of Kan and Zhang

(1999), who analyze the Fama and MacBeth (1973) two-pass methodology when the model

contains only the useless factor. Kan and Zhang show that for the hypothesis of a zero risk

premium, the t-test unadjusted for errors-in-variables (EIV) bias diverges to infinity as T

goes to infinity, while the t-test adjusted for EIV bias converges to a finite random variable,

both over-rejecting the hypothesis. The limit of the GMM Wald tests in the stochastic dis-

count factor model behave more like the EIV adjusted t-tests because the standard errors in

GMM account for estimation errors in the betas. The overrejection rates are reduced when

the model contains a partial set of true factors, compared to the case of a useless factor

alone. But since N is typically much greater than k1, the reduction is very limited for the

asymptotic distributions.

Part (B) of the proposition shows that a useless factor is less harmful when the model

includes all the true factors. The risk premium estimates for the true factors are not affected

in the limit, but the standard errors of the estimates are still incorrect due to the useless

factor. The risk premium estimate for the useless factor does not explode to infinity, but it

also does not converge to zero, or any constant. The limiting distribution is unbounded and

3We slightly abuse the expression “overrejection” here. The standard use of the term refers to the case
in which the hypothesis γ = 0 is true, but the risk premium of a useless factor is simply undefined.

6



centered at zero. The Wald test statistic has a distribution dominated by the χ2
1 distribution,

so asymptotically there is no over-rejection problem at all. Typically, a useless factor will be

excluded as a nonpriced factor and, therefore, correctly specified models do not suffer greatly

from the presence of useless factors. It is model misspecification that causes the problem.

2.2. The nonstandard GMM parametric tests

Nonstandard GMM employs a weighting matrix, WT , that is not statistically optimal

because it does not minimize the variance matrix of the parameter estimator. Nonstandard

GMM is preferable in some situations. For example, Zhou (1994) suggests that analytical

GMM tests are possible for some choice of the weighting matrix, and Hansen and Jagan-

nathan (1997) suggest that the sample version of the inverse of the second moment matrix

of gross returns can be used as the weighting matrix for the purpose of comparing models

that are potentially misspecified.

In nonstandard GMM, the Wald test for γ = 0 is given by

ξW
P = T (γ̂W

T )2
(
H
[
(B̄1T , D̄T )′WT (B̄1T , D̄T )

]−1 [
(B̄1T , D̄T )′WT ŜW

T WT (B̄1T , D̄T )
]

·
[
(B̄1T , D̄T )′WT (B̄1T , D̄T )

]−1
H ′
)−1

, (13)

where (
λ̂W

1T

γ̂W
T

)
=

[
(B̄1T , D̄T )′WT (B̄1T , D̄T )

]−1 [
(B̄1T , D̄T )′WT r̄T

]
, (14)

and ŜW
T is estimated as in Eq.(10) using λ̂W

1T and γ̂W
T . When the stochastic discount factor

model is estimated and tested with nonstandard GMM, useless factors still cause an overre-

jection problem, but to a lesser extent. We present the results in the following proposition.

Proposition 2. (A) Suppose the model in Eq.(6) is misspecified with k1 < k and the param-

eters are estimated using a weighting matrix WT with positive-definite nonstochastic limit

W . Then the limit of the nonstandard Wald test ξW
P for the hypothesis γ = 0 as T tends

to infinity is bounded in distribution by ξ1

A≤ ξW
P

A≤ ξN−k1 , where ξ1 is distributed as χ2
1

and ξN−k1 is distributed as χ2
N−k1

.4 (B) Suppose the model in Eq.(6) is correctly specified

4For a sequence of random variables xT and a random variable y, xT

A≤ y means the limit of xT is
dominated by y, which in turn implies that the limit of xT is stochastically dominated by y. A similar

definition applies to y
A≤ xT .

7



with k1 = k. Then the limit of the nonstandard Wald test ξW
P for the hypothesis γ = 0 is

stochastically dominated by the χ2
1 distribution.

The proposition says that ξW
P dominates a χ2

1 variable when the model is misspecified,

which indicates that the nonstandard Wald test still overrejects the hypothesis that γ = 0.

The upper bound given in part (A), however, suggests that the overrejection problem of the

nonstandard Wald test is not as serious as the problem in standard GMM. The overrejec-

tion rate depends on the fixed weighting matrix. If W is proportional to (E[rtr
′
t])

−1, the

overrejection problem for the nonstandard Wald test is just as serious as that of standard

GMM. In the proof of Proposition 1, it is shown that 1
T
Ŝ

(l)
T is asymptotically equivalent to a

matrix proportional to E[rtr
′
t]. Therefore, when W is proportional to (E[rtr

′
t])

−1, the non-

standard GMM is asymptotically equivalent to standard GMM. When W becomes more and

more different from (E[rtr
′
t])

−1, the rejection rate of the nonstandard Wald test potentially

declines. Nevertheless, we do not advocate the use of a weighting matrix that is different

from the optimal weighting matrix because doing so also causes the variance matrix of the

parameter estimates to be large. Reducing the accuracy of estimates cannot be an effective

way of eliminating the problem caused by useless factors.

2.3. The standard GMM over-identifying restriction tests

The GMM over-identifying restriction (OIR) test is designed to detect misspecified mod-

els. In the previous subsections, we show that misspecification causes the over-rejection

problem of the Wald tests. If the OIR test is effective in detecting misspecified models when

a useless factor is present, then we do not need to be concerned with the problem of the

Wald tests. In this and the next subsection, however, we show that the OIR tests for both

standard and nonstandard GMM cannot reliably detect a misspecified model that contains

a useless factor, even asymptotically. Worse yet, in some cases, a misspecified model that

contains a useless factor can pass the OIR test even more likely than the true model, making

the OIR test completely unreliable in detecting such misspecified models.

In standard GMM, the OIR test statistic can be computed from the estimated parameters

after the first round. More specifically, the OIR test statistic of the model in Eq.(6) in the
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lth round is given by

ξ
(l)
O = Tm̄T (λ̂

(l)
1T , γ̂

(l)
T )′

(
Ŝ

(l−1)
T

)−1
m̄T (λ̂

(l)
1T , γ̂

(l)
T ), l = 2, 3, . . . . (15)

If the model in Eq.(6) is correctly specified and the factors are not useless, ξ
(l)
O is asymptot-

ically distributed as χ2
N−k1−1. An unusually high value of ξ

(l)
O compared with the χ2

N−k1−1

distribution is taken as evidence that the model in Eq.(6) is misspecified. For a misspecified

model that does not contain a useless factor, it is easy to show that ξ
(l)
O goes to infinity as

T goes to infinity. Therefore, misspecified models that do not contain useless factors can be

detected by the OIR test almost surely when T is large.

However, adding a useless factor to a misspecified model complicates the situation. The

addition of a useless factor by itself does not make the misspecified moment condition more

or less incorrect, but it always increases Ŝ
(l−1)
T because the useless factor adds noise to the

estimated risk premium. As a result, the OIR test statistic becomes smaller when a useless

factor is added to the model, and the power of the OIR test in detecting the misspecified

model declines. In fact, from the proof of Proposition 1, we know that (Ŝ
(l−1)
T )−1 actually

tends to zero when the model is misspecified. Therefore, even though
√

Tm̄T (λ̂
(l)
1T , γ̂

(l)
T ) tends

to infinity, ξ
(l)
O does not. Instead, ξ

(l)
O converges to a finite random variable and the misspeci-

fication of the model cannot be reliably detected. The following proposition summarizes the

asymptotic properties of ξ
(l)
O for models that contain a useless factor.

Proposition 3. (A) Suppose the model in Eq.(6) is misspecified with k1 < k. Then for all

l ≥ 2, ξ
(l)
O converges to a finite random variable and the asymptotic probability of rejecting

Eq.(6) is less than one. For l ≥ 3, ξ
(l)
O

A∼
(
1 +

ξN−k1−1

ξ1

)
ξN−k1−1 > ξN−k1−1, where ξ1 is

distributed as χ2
1, ξN−k1−1 is distributed as χ2

N−k1−1, and ξ1 and ξN−k1−1 are independent.

(B) Suppose the model in Eq.(6) is correctly specified with k1 = k. Then the limits of

standard OIR tests ξ
(l)
O for l ≥ 2 are stochastically dominated by the χ2

N−k−1 distribution.

Proposition 3 suggests that adding a useless factor will always increase the chance for a

model to pass the OIR test, whether or not the model is correctly specified. For a misspecified

model, adding a useless factor drives the asymptotic rejection rates to less than one, so

the misspecification cannot be reliably detected. The asymptotic probability of rejection

depends on whether we use the OIR test from the second round or from a subsequent round.
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Proposition 3 advocates the use of the OIR test from the third or a subsequent round, instead

of the more popular test from the second round. The asymptotic rejection rates of ξ
(l)
O for

l ≥ 3 are guaranteed to be higher than the size of the test, whereas ξ
(2)
O does not always

satisfy this modest requirement of a good test. Note that in part (A), we do not present the

limiting distribution of ξ
(2)
O because it depends on the initial weighting matrix. In general,

there is no guarantee that ξ
(2)
O asymptotically dominates the χ2

N−k1−1 distribution, so it is

possible that the test ξ
(2)
O accepts the misspecified model more likely than the true model.

In the proof of Proposition 3, we give such an example.

In part (B) the model is correctly specified but includes a useless factor. The fact that

the OIR test statistic is stochastically dominated by χ2
N−k−1 is not a serious problem because

it only makes the correctly specified model more likely to be accepted. This result parallels

the case of the Wald test about risk premiums in Subsection 2.1.

2.4. The nonstandard GMM over-identifying restriction tests

For nonstandard GMM, Jagannathan and Wang (1996) give one version of the OIR test

and Zhou (1994) discusses another version. For the sake of brevity, we present the analysis

only for the first version here. If the model in Eq.(6) is correctly specified and the factors

are not useless, we have

ξW
O = T m̄T (λ̂W

1T , γ̂W
T )′WT m̄T (λ̂W

1T , γ̂W
T )

A∼
N−k1−1∑

i=1

ρiz
2
i , (16)

where zi’s are independent standard normal variates and ρis are the nonzero eigenvalues of

the limit of

ŜW
T

[
WT − WT (B̄1T , D̄T )

[
(B̄1T , D̄T )′WT (B̄1T , D̄T )

]−1
(B̄1T , D̄T )′WT

]
, (17)

which must be estimated. One of the advantages of using a fixed weighting matrix WT that

does not depend on parameter estimates is robustness of the OIR test. When a model is mis-

specified, large residuals cause a large Ŝ
(l−1)
T , and hence a small (Ŝ

(l−1)
T )−1 where (Ŝ

(l−1)
T )−1 is

the weighting matrix in Eq.(15). As a result, the “optimal” weighting matrix in fact rewards

misspecification. A fixed weighting matrix does not depend on residuals, and therefore,

avoids this undesired result. In the last subsection, we show that the standard GMM OIR

test does not reliably reject a misspecified model with a useless factor because the estimated
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variance matrix of the sample moment conditions, Ŝ
(l−1)
T , goes to infinity. The nonstandard

GMM OIR test avoids using (Ŝ
(l)−1
T )−1, and the test goes to infinity as T increases for a

misspecified model. Thus, one may think that a misspecified model with a useless factor

should be detected reliably by nonstandard GMM OIR tests. The following proposition,

however, shows that this intuition is false.

Proposition 4. (A) Suppose the model in Eq.(6) is misspecified with k1 < k. Then the

asymptotic probability of rejection remains less than one for the OIR test ξW
O , compared

to the distribution of
∑N−k1−1

i=1 ρiz
2
i , where ρis are the nonzero eigenvalues of the matrix in

Eq.(17). (B) Suppose the model in Eq.(6) is correctly specified with k1 = k. Then the

asymptotic probability of rejection is less than the size of the test for the OIR test ξW
O ,

compared to the distribution of
∑N−k−1

i=1 ρiz
2
i , where ρis are the nonzero eigenvalues of the

matrix in Eq.(17).

To understand why the predetermined weighting matrix does not help detect a misspeci-

fied model in part (A), note that ŜW
T is used to calculate the matrix in Eq.(17), even though

it is not used as the weighting matrix in Eq.(15). The OIR test ξW
O goes to infinity, but the

estimated ρis, and hence the distribution that ξW
O is compared with in making the accep-

tance/rejection decision, also tend to infinity at the same rate. Therefore, the nonstandard

GMM OIR test does not escape the curse of a useless factor. Unlike the usual cases of

misspecification without a useless factor, the adoption of a fixed weighting matrix does not

solve the problem. In comparing a misspecified model without a useless factor and the same

model with an added useless factor, one will still be allured to conclude that the added

useless factor saves the model. Note that in part (A), we do not specify the asymptotic

probability of rejection because it depends on the weighting matrix WT . In general, there

is no guarantee that the asymptotic probability of rejection is higher than the size of the

test. Similar to the standard GMM OIR test based on the second round, it is possible that

the nonstandard OIR test accepts a misspecified model which contains a useless factor more

likely than the true model. Part (B) says that the nonstandard OIR test, like the standard

OIR test, tends to accept a correctly specified model more likely when a useless factor is

added to the model.
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3. Simulation Results

In this section, we present simulation evidence to evaluate the magnitude of the prob-

lems in finite sample. In our simulation experiment, we generate returns on ten assets,

corresponding to the popular use of NYSE/AMEX size decile portfolios. The returns are

generated from a 2-factor model

rt = ν + β1f1t + β2f2t + εt, (18)

where f1t ∼ N(0, σ2
m), f2t ∼ N(0, 1), εt ∼ N(0N , Σε), and f1t, f2t and εt are independent

of each other and over t. The parameter ν is chosen as the sample mean of actual excess

returns on size decile portfolios during the period July 1963 through December 1991. β1 is

set equal to the sample beta of actual returns with respect to the actual market portfolios

(the value-weighted NYSE/AMEX portfolio) and σ2
m is set equal to the sample variance of

the market returns. We set β2 = ν − β1λ
∗
1, where λ∗

1 = argminλ1
(ν − β1λ1)

′(ν − β1λ1), and

Σε = V −β1β
′
1σ

2
m−β2β

′
2, where V is the sample variance matrix of actual excess returns. As

long as β2 is not a zero vector, f1t is a partial set of true factors in the simulation. By design,

(f1t, f2t) will be the full set of priced true factors. The choice of Σε makes the theoretical

variance of the simulated returns equal to the sample variance of the actual returns. We

verify numerically that Σε is positive-definite. A useless factor gt is generated as an N(0, 1)

variable independent of f1t, f2t and εt.

In the first panel of Table 1, we report the rejection rate of the hypothesis γ = 0 for

the useless factor using the standard GMM Wald test. We test three different models.

The first model contains only the useless factor. The table shows that for finite samples, the

overrejection rate is not overwhelming for small T , but it is still not negligible. As T increases,

the rejection rate increases steadily. The fact that the overrejection problem exacerbates as

T increases places GMM in an awkward position, because GMM relies on a large sample

size for inferences. The second model contains one of the two true factors together with

the useless factor. Compared with the rejection rates of the first model, we can see that

the rejection rates become lower when one of the true factors is included. Nevertheless, the

rejection rates are still much higher than the level of significance even though only one true

factor is missing. In the third model, we include all the true factors as well as the useless

factor. The Wald tests on the useless factor actually underreject. In addition, the rejection

12



rate does not increase with T as in the two misspecified models.

Table 1 here

In the second panel of Table 1, we present the corresponding results using nonstandard

GMM. In general, the seriousness of the over-rejection problem depends on the choice of the

weighting matrix and the degree of misspecification. Our simulation results are based on

the weighting matrix suggested by Hansen and Jagannathan (1997).5 The results show that

overrejection still occurs in nonstandard GMM, but the rates are reduced compared with

those in standard GMM.

Our asymptotic results suggest that a useless factor also causes problems with the OIR

test. Table 2 reports the finite sample simulation results of the OIR tests. In the first panel

of Table 2, we report simulation results of the standard GMM OIR test from the second

round, using the identity matrix as the initial weighting matrix. The first model includes

only the useless factor, the second model includes only one of the two true factors, and the

third model includes one of the two true factors and an added useless factor. Since all three

models are misspecified, a higher rejection rate implies a more powerful OIR test.

Table 2 here

It is very surprising that the rejection rates are lowest for the model with the useless

factor alone. While this model is the most unreasonable one, it is the one that is most likely

to pass the second-round OIR test. In some cases (for example, α = 0.1), the asymptotic

probability of rejecting the model with the useless factor alone is even lower than the size of

the test, which means that the useless factor could pass the OIR test more likely than the

true model! The second model, while it contains one of the two true factors, is rejected with

the highest probability. Consistent with Proposition 3, the rejection rates are reduced for

this misspecified model when we add a useless factor, and the degree of reduction is often

quite substantial.

5This is simply a convenient choice of a fixed weighting matrix, not an exercise in calculating the Hansen-
Jagannathan distance, because the moment conditions in Eq.(6) are for excess returns rather than gross
returns.
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The results in Table 2 highlight three common situations in which OIR test results may

be misinterpreted. In the first situation, suppose a researcher estimates the incumbent model

E[rt(1− f ′
1tλ1)] = 0N and rejects the model based on ξ

(l)
O . Then the researcher adds another

factor, finds that it is priced, and finds that the p-value of the OIR test becomes much larger.

The common interpretation is that the newly added factor “salvages” the model. However,

the analytical results in Propositions 3 and 4, coupled with the simulation results in Table 2,

indicate the dangers of concluding that the added factor is a true factor and the augmented

model is a true model. It could well be the case that the added factor is a useless factor and

the model with the added factor is still misspecified. The GMM OIR test cannot rule out this

possibility. In the second situation, suppose a researcher proposes a factor, which happens

to be a useless factor gt, as an alternative to an imperfect model E[rt(1 − f ′
1tλ1)] = 0N . By

comparing the OIR test p-values of the two models, the model with a useless factor is more

likely to win the contest. Finally, consider a situation in which the researcher likes to reduce,

for the sake of parsimony, the number of factors from the model E[rt(1− f ′
1tλ1 − gtγ)] = 0N .

More often than not, some of the true factors will be dropped rather than the useless factor

gt, and the final model might end up having gt alone.

On a positive note, Proposition 3 advocates using the standard OIR test statistics from

the third or subsequent rounds, instead of the popular one from the second round. The finite-

sample simulation results in the second panel of Table 2 convey the same message. The third

round OIR test has the same power as the second round test in rejecting misspecified models

that do not contain a useless factor (i.e., the second model). However, the third round OIR

test is much more powerful than the second round OIR test in rejecting misspecified models

that do contain a useless factor (i.e., the first and third models). In addition, unlike the

second round OIR test, misspecified models do not pass the third round OIR test more often

than the true model. In view of these results, we suggest that researchers should perform

the OIR test using parameters estimated from the third or subsequent rounds.

The third panel of Table 2 presents the rejection rates of the nonstandard GMM OIR

tests for the three misspecified models. For the Wald tests in the second panel of Table 1, the

power of tests is reduced because of the predetermined weighting matrix. In contrast, the

rejection rates for the nonstandard OIR test are higher in some cases than the rates for the

“optimal” weighting matrix. Similar to our findings for standard GMM, the model with just

14



one useless factor passes the nonstandard GMM OIR test much more likely than the model

with a partial set of true factors. In addition, adding a useless factor to a misspecified model

can substantially reduce the power of the nonstandard OIR test in rejecting a misspecified

model, especially when T is small.

4. Conclusion

Like the two-pass methodology, the GMM methodology of estimating stochastic discount

factor models suffers in the presence of useless factors. Specifically, the Wald tests tend to

overreject the hypothesis of a zero factor premium for the useless factor when the model

is misspecified. Increasing the sample size or the number of assets in the model increases

the severity of the overrejection problem. The degree of misspecification of the asset pricing

model also affects the Wald test of the risk premiums. The higher the degree of misspecifi-

cation, in terms of the number of true factors missing from the set of true factors, the more

likely a useless factor will be mistaken as a priced factor. For a correctly specified model,

adding a useless factor does not cause serious problems. The problems created by useless

factors are a combination of nonidentifiability and misspecification of the asset pricing model.

A unique contribution of the paper is that we provide an analysis of the asymptotic

properties of the GMM OIR tests for models with useless factors. Unlike usual misspecified

models, which can be detected with an asymptotic probability of one, we show that OIR

tests do not reject a misspecified model that contains a useless factor with an asymptotic

probability of one. More surprisingly, the standard GMM OIR test from the second round

can actually reject a misspecified model with a useless factor less likely than the size of

the test, which renders the specification test completely incapable of detecting misspecified

models with useless factors. These findings are not easily anticipated from the results of Kan

and Zhang (1999). In short, a useless factor can be mistaken as a priced factor, and it can

also cause wrong inferences about the model.

While GMM has many advantages in terms of the robustness of its distributional assump-

tions, it remains vulnerable to the presence of useless factors when the model is misspecified.

Kan and Zhang (1999) suggest several diagnostic procedures for the two-pass methodology

in detecting useless factors, including the use of subsample joint tests and goodness-of-fit

measures. These procedures can be similarly applied to the stochastic discount factor model
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with GMM methodology.
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Appendix. Proof of propositions

Proof of Proposition 1: (A) Let Dt = rtgt. Since rt and gt are independent, Dt is also a

stationary and ergodic martingale difference sequence with finite variance. A central limit

theorem (see, for example, Davidson, 1994 p.385) implies that

√
TD̄T =

1√
T

T∑
t=1

Dt
D→ N(0N , U), (A.1)

where U = E[DtD
′
t] = E[g2

t ]E[rtr
′
t] = E[rtr

′
t]. Eq.(A.1) shows that D̄T is Op(T

− 1
2 ), or

has a stochastic order of T− 1
2 (see Davidson, 1994 p.187). Let B̃1 = (Ŝ

(l−1)
T )−

1
2 B̄1T , D̃ =

(Ŝ
(l−1)
T )−

1
2 D̄T , r̃ = (Ŝ

(l−1)
T )−

1
2 r̄T , and MB1 = IN − B̃1(B̃

′
1B̃1)

−1B̃′
1. Using the partitioned

matrix inverse formula, it can be shown that the GMM estimate of γ is

γ̂
(l)
T = (D̃′MB1D̃)−1(D̃′MB1 r̃). (A.2)

By assumption there does not exist a λ1 such that ν = B1λ1, where B1 = E[rtf
′
1t], so MB1 r̃

converges to a nonzero vector. As a result, γ̂
(l)
T = Op(T

1
2 ). The variance matrix of

√
Tm̄T

calculated from the estimates λ̂
(l)
1T and γ̂

(l)
T is

Ŝ
(l)
T =

1

T

T∑
t=1

rtr
′
t(1 − f ′

1tλ̂
(l)
1T − gtγ̂

(l)
T )2

=
1

T

T∑
t=1

rtr
′
t

[
(1 − f ′

1tλ̂
(l)
1T )2 − 2(1 − f ′

1tλ̂
(l)
1T )gtγ̂

(l)
T + (gtγ̂

(l)
T )2

]
. (A.3)

All the terms are Op(1), except for the last term which is Op(T ). From the Cramer-Slutsky

theorem,

1

T
Ŝ

(l)
T

LD
=

(γ̂
(l)
T )2

T
E[rtr

′
tg

2
t ] =

(γ̂
(l)
T )2

T
U, (A.4)

where
LD
= means equal in limiting distribution. Therefore, the Wald test, ξ

(l)
Pa

for l ≥ 2, is

ξ
(l)
Pa

=
T (γ̂

(l)
T )2

H [(B̄1T , D̄T )′(Ŝ(l)
T )−1(B̄1T , D̄T )]−1H ′

LD
= T

[
H [(B1, D̄T )′U−1(B1, D̄T )]−1H ′]−1

, (A.5)

where H = [0′k1
, 1]. Using the partitioned matrix inverse formula, it can be shown that

ξ
(l)
Pa

LD
=

√
TD̄′

T [U−1 − U−1B1(B
′
1U

−1B1)
−1B′

1U
−1]

√
TD̄T

= (
√

TU− 1
2 D̄T )′[IN − U− 1

2 B1(B
′
1U

−1B1)
−1B′

1U
− 1

2 ](
√

TU− 1
2 D̄T )

A∼ χ2
N−k1

, (A.6)
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because
√

TU− 1
2 D̄T

A∼ N(0N , IN) and IN − U− 1
2 B1(B

′
1U

−1B1)
−1B′

1U
− 1

2 is symmetric and

idempotent with trace N − k1. The case for ξ
(l)
Pb

, l ≥ 3 is similar. From Eq.(A.4), it is clear

that the limit of 1
T
Ŝ

(l)
T for all l can be different by, at most, a scalar due to different (γ̂

(l)
T )2.

On the other hand, from Eq.(A.2) and the definition of MB1 , γ̂
(l)
T is not affected by a scalar

multiplier of Ŝ
(l−1)
T . It follows that the limiting distributions of 1√

T
γ̂

(l)
T and 1

T
Ŝ

(l)
T for all l ≥ 2

are the same. Therefore, although ξ
(l)
Pb

uses Ŝ
(l−1)
T instead of Ŝ

(l)
T , it still has the same limiting

distribution as ξ
(l)
Pa

when l ≥ 3.

(B) Following the proof of part (A), let B̃ = (Ŝ
(l−1)
T )−

1
2 B̄T , D̃ = (Ŝ

(l−1)
T )−

1
2 D̄T , r̃ =

(Ŝ
(l−1)
T )−

1
2 r̄T , ũ = (Ŝ

(l−1)
T )−

1
2 ūT , and MB = IN − B̃(B̃′B̃)−1B̃′. Then,

γ̂
(l)
T = (D̃′MBD̃)−1(D̃′MB r̃). (A.7)

MB r̃ = MBũ is Op(T
− 1

2 ) with zero mean and the order of Ŝ
(l−1)
T cancels out, so it follows

that γ̂
(l)
T is Op(1).6 The calculated variance matrix of

√
Tm̄T is

Ŝ
(l)
T =

1

T

T∑
t=1

rtr
′
t

[
(1 − f ′

tλ̂
(l)
T )2 − 2(1 − f ′

tλ̂
(l)
T )gtγ̂

(l)
T + (gtγ̂

(l)
T )2

]
. (A.8)

The first term of Ŝ
(l)
T converges to S because λ̂

(l)
T converges to λ∗. The middle term converges

to a zero matrix because gt is independent of ft and rt with E[gt] = 0. The last term is

asymptotically equivalent to (γ̂
(l)
T )2U , as we show in the proof of part (A). It can be shown

that the second moment matrix S for the true model can be expressed as

S = (1 + λ∗′λ∗)V + BCB′, (A.9)

for some k × k matrix C. Therefore, for l ≥ 2,

Ŝ
(l−1)
T

LD
= S + (γ̂

(l−1)
T )2U = (1 + λ∗′λ∗)V + BCB′ + (γ̂

(l−1)
T )2(V + νν ′)

= (1 + λ∗′λ∗ + (γ̂
(l−1)
T )2)V + B[C + (γ̂

(l−1)
T )2λ∗λ∗′]B′

≡ τV + BC1B
′, (A.10)

where τ = 1 + λ∗′λ∗ + (γ̂
(l−1)
T )2 and C1 = C + (γ̂

(l−1)
T )2λ∗λ∗′. Algebra manipulation yields

(Ŝ
(l−1)
T )−

1
2 MB(Ŝ

(l−1)
T )−

1
2

LD
= (Ŝ

(l−1)
T )−1 − (Ŝ

(l−1)
T )−1B[B′(Ŝ(l−1)

T )−1B]−1B′(Ŝ(l−1)
T )−1

6It can be proved that the limiting distribution of γ̂
(l)
T for l ≥ 2 is tN−k/(N−k)

1
2 where tN−k is a central-t

distribution with N − k degrees of freedom. The proof is available upon request.
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=
1

τ
[V −1 − V −1B(B′V −1B)−1B′V −1]

≡ 1

τ
V − 1

2 MV − 1
2 , (A.11)

where M = IN − V − 1
2 B(B′V −1B)−1B′V − 1

2 . From the partitioned matrix inverse formula,

the Wald test ξ
(l)
Pb

for l ≥ 2 is

ξ
(l)
Pb

= T (γ̂
(l)
T )2(D̃′MBD̃) =

T (D̃′MB r̃)2

D̃′MBD̃
. (A.12)

Using Eq.(A.11) and noting τ = 1 + λ∗′λ∗ + (γ̂
(l−1)
T )2 > 1, we have

ξ
(l)
Pb

LD
=

T (D̄′V − 1
2 MV − 1

2 r̄T )2

τ(D̄′V − 1
2 MV − 1

2 D̄)
<

T (D̄′V − 1
2 MV − 1

2 r̄T )2

D̄′V − 1
2 MV − 1

2 D̄
≡ (x′y)2, (A.13)

where x = P ′V − 1
2 D̄/(D̄′V − 1

2 MV − 1
2 D̄)

1
2 , y =

√
TP ′V − 1

2 r̄T , and P is an N × (N − k)

orthonormal matrix such that PP ′ = M . It is easy to verify that P ′B = ON−k,k and

hence y
A∼ N(0N−k, IN−k). Since y is asymptotically independent of x, x′y is asymptot-

ically conditional normal with conditional mean x′E[y|x] = x′E[y] = 0 and conditional

variance x′Var[y|x]x = x′Var[y]x = x′x = 1, independent of x. Therefore, unconditionally,

x′y A∼ N(0, 1), and (x′y)2 A∼ χ2
1. The proof for ξ

(l)
Pa

, l ≥ 2 is similar. Q.E.D.

Proof of Proposition 2: (A) Let X ≡ (B̃1, D̃) ≡ W
1
2 (B1, D̄T ) and Ũ ≡ W

1
2 UW

1
2 . Since

1
T
ŜW

T
LD
= 1

T
(γ̂W

T )2U , which can be shown as in the proof of Proposition 1, the nonstandard

Wald test of γ = 0 can be written as

ξW
P

LD
= T

[
H
(
(X ′X)(X ′ŨX)−1(X ′X)

)−1
H ′
]−1

. (A.14)

From the partitioned matrix inverse formula, it can be shown that

ξW
P

LD
=

T (D̃′MB1D̃)2

D̃′MB1ŨMB1D̃
, (A.15)

where MB1 = IN − B̃1(B̃
′
1B̃1)

−1B̃′
1. Let MB1ŨMB1 = PΘP ′ be the spectral decomposition of

MB1ŨMB1 , where Θ = Diag(θ1, · · · , θN−k1) is the matrix of eigenvalues listed in descending

order, and let y =
√

TP ′D̃ A∼ N(0N−k1, Θ). Since MB1 = PP ′ and

y′Θy =
N−k1∑
i=1

θiy
2
i ≤ θ1

N−k1∑
i=1

y2
i = θ1(y

′y), (A.16)
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it follows that,

ξW
P =

T (D̃′MB1D̃)2

D̃′MB1ŨMB1D̃
=

(y′y)2

y′Θy
>

y2
1

θ1

≡ ξ1
A∼ χ2

1. (A.17)

Using the Cauchy-Schwarz inequality, we can establish the upper bound of ξW
P as

ξW
P = (y′y)2(y′Θy)−1 ≤ y′Θ−1y ≡ ξN−k1

A∼ χ2
N−k1

. (A.18)

(B) Let X ≡ (B̃, D̃) ≡ W
1
2 (B, D̄T ), r̃ = W

1
2 r̄T , and MB = IN − B̃(B̃′B̃)−1B̃′. The

estimate of γ is γ̂W
T

LD
= (D̃′MB r̃)/(D̃′MBD̃). Following the proof in Proposition 1 part (B),

we can show that γ̂W
T converges in distribution to a random variable with zero mean. Let ŜW

T

be the estimate of S with ŜW
T

LD
= S + (γ̂W

T )2U . Using Eq.(A.9), we have ŜW
T

LD
= τV + BC1B

′

where τ = 1 +λ∗′λ∗ +(γ̂W
T )2 and C1 = C +(γ̂W

T )2λ∗λ∗′. From the partitioned matrix inverse

formula, the nonstandard Wald test is

ξW
P

LD
= T (γ̂W

T )2
[
H
(
(X ′X)(X ′W

1
2 ŜW

T W
1
2 X)−1(X ′X)

)−1
H ′
]−1

= T (γ̂W
T )2 (D̃′MBD̃)2

D̃′MBW
1
2 ŜW

T W
1
2 MBD̃

LD
=

T (D̃′MB r̃)2

τ(D̃′MBW
1
2 V W

1
2 MBD̃)

(A.19)

because MBW
1
2 BC1B

′W
1
2 MB = ON,N as MBW

1
2 B = MBB̃ = ON,k. Since τ > 1, we have

ξW
P

LD
<

T (D̃′MB r̃)2

D̃′MBW
1
2 V W

1
2 MBD̃

≡ (x′y)2, (A.20)

where y =
√

TΘ− 1
2 P ′r̃ and x = Θ

1
2 P ′D̃/(D̃′MBW

1
2 V W

1
2 MBD̃)

1
2 , with PΘP ′ being the

spectral decomposition of MBW
1
2 V W

1
2 MB and Θ = Diag(θ1, · · · , θN−k) being the matrix

of nonzero eigenvalues listed in descending order. It is easy to verify that PP ′ = MB and

P ′B̃ = ON−k,k. Therefore, using the same argument as in the proof of Proposition 1 part

(B), (x′y)2 is asymptotically a χ2
1 variable. This completes the proof. Q.E.D.

Proof of Proposition 3: (A) D̄T is Op(T
− 1

2 ) and we prove in Proposition 1 part (A) that

γ̂
(l)
T = Op(T

1
2 ). Therefore, r̄T − B̄1T λ̂

(l)
1T − D̄T γ̂

(l)
T is Op(1) and Ŝ

(l−1)
T is Op(T ). It follows that

for l ≥ 2,

ξ
(l)
O = T

[
r̄T − B̄1T λ̂

(l)
1T − D̄T γ̂

(l)
T

]′ (
Ŝ

(l−1)
T

)−1 [
r̄T − B̄1T λ̂

(l)
1T − D̄T γ̂

(l)
T

]
= Op(1). (A.21)

Substituting from Eq.(9) into Eq.(A.21) and rearranging gives

ξ
(l)
O

LD
= T r̃′

[
MB1 − MB1D̃(D̃′MB1D̃)−1D̃′MB1

]
r̃. (A.22)
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Eq.(A.22) implies that, conditioned on Ŝ
(l−1)
T /T , ξ

(l)
O is a noncentral quadratic form of the

returns whose support is (0,∞). So is the support of the unconditional distribution of ξ
(l)
O .

Therefore, for any percentile value, c, of the χ2
N−k1−1 distribution, P [ξ

(l)
O > c] remains less

than one.

To derive the asymptotic distribution of ξ
(l)
O for l ≥ 3, we define Z =

√
TP ′U− 1

2 D̄T
A∼

N(0N−k1, IN−k1), η = P ′U− 1
2 ν where PP ′ is the spectral decomposition of M1 = IN −

U− 1
2 B1(B

′
1U

−1B1)
−1B′

1U
− 1

2 . Using Eq.(A.4), we have for l ≥ 2,

γ̂
(l)
T√
T

=
D̄′

T (Ŝ
(l−1)
T )−

1
2 MB1(Ŝ

(l−1)
T )−

1
2 r̄T√

T (D̄′
T (Ŝ

(l−1)
T )−

1
2 MB1(Ŝ

(l−1)
T )−

1
2 D̄T )

LD
=

D̄′
T U− 1

2 M1U
− 1

2 r̄T√
T (D̄′

T U− 1
2 M1U

− 1
2 D̄T )

LD
=

Z ′η
Z ′Z

. (A.23)

For l ≥ 3,

ξ
(l)
O = T

[
r̄T − D̄T γ̂

(l)
T

]′
(Ŝ

(l−1)
T )−

1
2 MB1(Ŝ

(l−1)
T )−

1
2

[
r̄T − D̄T γ̂

(l)
T

]
LD
=

T

(γ̂
(l−1)
T )2

[
r̄T − D̄T γ̂

(l)
T

]′
U− 1

2 M1U
− 1

2

[
r̄T − D̄T γ̂

(l)
T

]

LD
=

(Z ′Z)2

(Z ′η)2

[
η′η − (η′Z)2

Z ′Z

]

=
(Z ′Z)(η′η)

(Z ′η)2
Z ′
[
IN−k1 −

ηη′

η′η

]
Z =

(
ξ1 + ξN−k1−1

ξ1

)
ξN−k1−1, (A.24)

by writing ξ1 = Z′ηη′Z
η′η

A∼ χ2
1 and ξN−k1−1 = Z ′

[
IN−k1 − ηη′

η′η

]
Z

A∼ χ2
N−k1−1. It is easy to verify

that ξ1 and ξN−k1−1 are independent of each other, and ξ1 + ξN−k1−1 = Z ′Z.

Using a similar proof, the asymptotic distribution of ξ
(2)
O is given by

ξ
(2)
O

LD
=

(Z ′ΘZ)2

(Z ′Θη)2

[
η′η − (η′Z)2

Z ′Z

]
, (A.25)

where Θ is defined in the proof of Proposition 2 (A) with W being the limit of the initial

weighting matrix. Note that there is no guarantee that ξ
(2)
O stochastically dominates χ2

N−k1−1.

To give a counterexample, take N − k1 = 2, η = [1, 0]′ and Θ = Diag(θ1, 1). We have

ξ
(2)
O

LD
=

(Z ′ΘZ)2

(Z ′Θη)2

[
η′η − (η′Z)2

Z ′Z

]
=

(θ1Z
2
1 + Z2

2)
2

θ2
1Z

2
1

(
Z2

2

Z2
1 + Z2

2

)
. (A.26)

When θ1 → ∞,

ξ
(2)
O

LD
= Z2

1

(
Z2

2

Z2
1 + Z2

2

)
< Z2

1
A∼ χ2

1. (A.27)
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Therefore, when θ1 is large enough, it is possible that ξ
(2)
O will accept the misspecified model

with a useless factor more often than the true model.

(B) Let X =
√

TP ′V − 1
2 D̄T

A∼ N(0N−k, IN−k) and Y =
√

TP ′V − 1
2 r̄T

A∼ N(0N−k, IN−k),

where PP ′ is the spectral decomposition of M = IN − V − 1
2 B(B′V −1B)−1B′V − 1

2 . For l ≥ 2,

using Eq.(A.7) and Eq.(A.11), we have

γ̂
(l)
T

LD
=

D̄′
T V − 1

2 MV − 1
2 r̄T

D̄′
T V − 1

2 MV − 1
2 D̄T

=
X ′Y
X ′X

. (A.28)

For l ≥ 2, using Eq.(A.11),

ξ
(l)
O = T

[
r̄T − D̄T γ̂

(l)
T

]′
(Ŝ

(l−1)
T )−

1
2 MB(Ŝ

(l−1)
T )−

1
2

[
r̄T − D̄T γ̂

(l)
T

]
LD
= T

[
r̄T − D̄T γ̂

(l)
T

]′ V − 1
2 MV − 1

2

τ

[
r̄T − D̄T γ̂

(l)
T

]

< (Y − Xγ̂
(l)
T )′(Y − Xγ̂

(l)
T ) = Y ′

[
IN−k − XX ′

X ′X

]
Y

A∼ χ2
N−k−1, (A.29)

where τ = 1 + λ∗′λ∗ + (γ̂
(l−1)
T )2 > 1. The χ2

N−k−1 distribution is obtained by noting that

X and Y are independent, so conditioned on any X, the distribution is χ2
N−k−1, which is

independent of X. This completes the proof. Q.E.D.

Proof of Proposition 4: (A) The result that ξW
O tends to infinity is obvious. To show that

ρi → ∞ as T → ∞, let ηi(P ) be the ith largest eigenvalue of a matrix P . It is well known that

for two symmetric N × N matrices, P and Q, ηi(PQ) ≥ ηi(P )ηN(Q). Similar to the proof

of Proposition 1, it can be shown that γ̂W
T is Op(T

1
2 ) and ŜW

T /T
LD
= (γ̂W

T )2U/T . Therefore,

for i = 1, · · · , N − k1 − 1,

ρi

T
=

1

T
ηi

(
(W

1
2

T ŜW
T W

1
2

T )
[
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1
2

T (B̄1T , D̄T )[(B̄1T , D̄T )′WT (B̄1T , D̄T )]−1(B̄1T , D̄T )′W
1
2

T
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≥ 1

T
ηN (W

1
2

T ŜW
T W

1
2

T )
LD
=

(γ̂W
T )2

T
ηN (W

1
2

T UW
1
2

T ) = Op(1). (A.30)

The inequality follows from the fact that the first N − k1 − 1 nonzero eigenvalues of a

symmetric and idempotent matrix are one. The last equality follows because (γ̂W
T )2/T is

Op(1) and ηN(W
1
2

T UW
1
2

T ) → ηN(W
1
2 UW

1
2 ) = ηN (WU) which is a positive constant.

Since the rejection decision is based on the percentile value of
∑N−k1−1

i=1 ρiz
2
i where zis are
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independently drawn N(0, 1), the p-value of rejection is

P


ξW

O >
N−k1−1∑

i=1

ρiz
2
i


 ≤ P


 ξW

O

ρN−k1−1
>

N−k1−1∑
i=1

z2
i


 . (A.31)

Let x =
∑N−k1−1

i=1 z2
i be the χ2

N−k1−1 variable. It suffices to show that the probability on the

right hand side is less than one, or P [ξW
O /ρN−k1−1 < x] > 0. This is guaranteed because x

has a support on (0,∞) and is independent of ξW
O /ρN−k1−1 = Op(1).

(B) Denote MB = IN − W
1
2 B(B′WB)−1B′W

1
2 , Z =

√
TP ′W

1
2 D̄T

A∼ N(0N−k, Θ), Y1 =√
TP ′W

1
2 r̄T

A∼ N(0N−k, Θ) where P and Θ are defined in the proof of Proposition 2 part

(B). We have

γ̂W
T

LD
=

D̄′
T W

1
2 MBW

1
2 r̄T

D̄′
T W

1
2 MBW

1
2 D̄T

LD
=

Z ′Y1

Z ′Z
. (A.32)

Define M = IN−k − Z(Z ′Z)−1Z ′. The nonstandard OIR test statistic can be written as

ξW
O

LD
= T (r̄T − D̄T γ̂W

T )′W
1
2 MBW

1
2 (r̄T − D̄T γ̂W

T )
LD
= Y ′

1MY1. (A.33)

Define X = W
1
2 (B, D̄T ). The OIR test, ξW

O , is compared with the distribution of

ξC = y′(ŜW
T )
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where y ∼ N(0N , IN). Let Y2 ≡ P ′W
1
2 (ŜW

T )
1
2 y

A∼ N(0N−k, τΘ), where τ = 1+λ∗′λ∗+(γ̂W
T )2 >

1. Then,

ξC
LD
= Y ′

2MY2
LD
= τY ′

1MY1 > Y ′
1MY1 = ξW

O . (A.35)

Therefore, the asymptotic probability of rejection of the nonstandard OIR test is less than

the size of the test. This completes the proof. Q.E.D.
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Table 1
Rejection Rates of the Standard and Nonstandard GMM Parametric Tests of γ = 0

This table presents the probability of rejecting the hypothesis γ = 0 in three different models where γ
is the risk premium of a useless factor. A finite T is the number of time-series observations, and the
rejection rates for a finite T are based on simulation. For T = ∞, the rejection rates are obtained from
theoretical asymptotic distributions. In the simulation, the excess returns on the N assets, rt, are generated
by rt = ν + β1f1t + β2f2t + εt, where f1t ∼ N(0, σ2

m), f2t ∼ N(0, 1), εt ∼ N(0N , Σε), and f1t, f2t and εt

are independent of each other and across t. The parameter ν is set equal to the sample mean of actual
excess returns on 10 size portfolios from NYSE and AMEX. β1 is set equal to the sample betas of the 10
size portfolios with respect to the value-weighted NYSE/AMEX market returns. σ2

m is the sample variance
of the market returns. β2 is determined by β2 = ν − β1λ

∗
1 where λ∗

1 = argminλ1
(ν − β1λ1)′(ν − β1λ1),

and Σε = V − β1β
′
1σ

2
m − β2β

′
2 where V is the sample variance matrix of the excess returns. The useless

factor gt is N(0, 1), independently and identically distributed across t, and is independent of f1t, f2t and εt.
For standard GMM, the initial weighting matrix is the identity matrix and the rejection rates reported in
the table are based on the Wald test using the estimated γ of the second round (l = 2), with the variance
estimated at the end of the second round. For nonstandard GMM, the weighting matrix WT is the inverse
of the sample version of E[(1 + rf + rt)(1 + rf + rt)′] where rf is the average T-bill rate. χ2

1(1 − α) is the
100(1 − α) percentile of the χ2

1 distribution. The simulation has 10000 replications.

Panel A: Rejection rates of γ = 0 of standard GMM, P [ξ(2)
Pa

> χ2
1(1 − α)]

Significance level α
Model T 0.10 0.05 0.01

E[rt(1 − gtγ)] = 0N 250 0.226 0.125 0.021
500 0.312 0.183 0.038
1000 0.434 0.289 0.079
∞ 0.988 0.954 0.759

E[rt(1 − f1tλ1 − gtγ)] = 0N 250 0.209 0.107 0.018
500 0.288 0.164 0.031
1000 0.414 0.270 0.066
∞ 0.975 0.922 0.675

E[rt(1 − f1tλ1 − f2tλ2 − gtγ)] = 0N 250 0.082 0.028 0.002
500 0.060 0.020 0.001
1000 0.051 0.014 0.000
∞ 0.004 0.000 0.000

Panel B: Rejection rates of γ = 0 of nonstandard GMM, P [ξW
P > χ2

1(1 − α)]

Significance level α
Model T 0.10 0.05 0.01

E[rt(1 − gtγ)] = 0N 250 0.187 0.092 0.011
500 0.282 0.154 0.024
1000 0.400 0.251 0.060
∞ 0.975 0.922 0.676

E[rt(1 − f1tλ1 − gtγ)] = 0N 250 0.184 0.087 0.010
500 0.276 0.145 0.021
1000 0.391 0.242 0.052
∞ 0.952 0.872 0.578

E[rt(1 − f1tλ1 − f2tλ2 − gtγ)] = 0N 250 0.058 0.016 0.001
500 0.047 0.014 0.000
1000 0.043 0.011 0.000
∞ 0.003 0.000 0.000
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Table 2
Rejection Rates of the Standard and Nonstandard GMM Over-identifying Restriction Tests

This table presents the probability of rejecting the standard and nonstandard GMM over-identifying re-
striction test in three different models. A finite T is the number of time-series observations, the rejection
rates for a finite T are based on simulation. For T = ∞, the rejection rates are obtained from theoret-
ical asymptotic distributions. In the simulation, the excess returns on the N assets, rt, are generated by
rt = ν +β1f1t +β2f2t +εt, where f1t ∼ N(0, σ2

m), f2t ∼ N(0, 1), εt ∼ N(0N , Σε), and f1t, f2t and εt are inde-
pendent of each other and across t. The parameter ν is set equal to the sample mean of actual excess returns
on 10 size portfolios of NYSE and AMEX. β1 is set equal to the sample betas of the 10 size portfolios with re-
spect to the value-weighted NYSE/AMEX market returns. σ2

m is the sample variance of the market returns.
β2 is determined by β2 = ν−β1λ

∗
1, where λ∗

1 = argminλ1
(ν−β1λ1)′(ν−β1λ1), and Σε = V −β1β

′
1σ

2
m−β2β

′
2,

where V is the sample variance matrix of the excess returns. The useless factor gt is N(0, 1), independently
and identically distributed across t, and is independent of f1t, f2t and εt. For standard GMM, the initial
weighting matrix is the identity matrix and the rejection rates reported in the first two panels of the table
are based on the over-identifying restriction test of the second round (l = 2) and the third round (l = 3),
respectively. χ2

m(1 − α) is the 100(1 − α) percentile of the χ2
m distribution. For nonstandard GMM, the

weighting matrix WT is the inverse of the sample version of E[(1 + rf + rt)(1 + rf + rt)′] where rf is the
average T-bill rate. c is the 100(1 − α) percentile of the distribution

∑m
i=1 ρiz

2
i , where zis are independent

standard normal variates. The ρis are the nonzero eigenvalues of ŜW
T [WT −WT X(X ′WT X)−1X ′WT ], where

X is the matrix of estimated betas and ŜW
T is the estimated variance matrix of the sample moments. The

simulation has 10000 replications.

Panel A: Rejection rates of the second round standard GMM OIR test, P [ξ(2)
O > χ2

m(1 − α)]

Significance level α
Model m =DF T 0.10 0.05 0.01

E[rt(1 − gtγ)] = 0N 9 250 0.111 0.074 0.029
9 500 0.129 0.099 0.057
9 1000 0.113 0.091 0.059
9 ∞ 0.094 0.074 0.049

E[rt(1 − f1tλ1)] = 0N 9 250 0.715 0.586 0.328
9 500 0.962 0.926 0.797
9 1000 1.000 0.999 0.995
9 ∞ 1.000 1.000 1.000

E[rt(1 − f1tλ1 − gtγ)] = 0N 8 250 0.243 0.169 0.066
8 500 0.380 0.301 0.178
8 1000 0.431 0.367 0.262
8 ∞ 0.404 0.340 0.247
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Table 2 continued
Rejection Rates of the Standard and Nonstandard GMM Over-identifying Restriction Tests

Panel B: Rejection rates of the third round standard GMM OIR test, P [ξ(3)
O > χ2

m(1 − α)]

Significance level α
Model m =DF T 0.10 0.05 0.01

E[rt(1 − gtγ)] = 0N 9 250 0.567 0.444 0.224
9 500 0.805 0.737 0.575
9 1000 0.889 0.859 0.796
9 ∞ 0.944 0.931 0.902

E[rt(1 − f1tλ1)] = 0N 9 250 0.718 0.590 0.332
9 500 0.963 0.927 0.800
9 1000 1.000 1.000 0.996
9 ∞ 1.000 1.000 1.000

E[rt(1 − f1tλ1 − gtγ)] = 0N 8 250 0.517 0.395 0.195
8 500 0.757 0.683 0.499
8 1000 0.864 0.829 0.743
8 ∞ 0.926 0.910 0.875

Panel C: Rejection rates of the nonstandard GMM OIR test, P [ξW
O > c]

Significance level α
Model m =DF T 0.10 0.05 0.01

E[rt(1 − gtγ)] = 0N 9 250 0.538 0.421 0.222
9 500 0.759 0.680 0.501
9 1000 0.862 0.824 0.741
9 ∞ 0.924 0.907 0.871

E[rt(1 − f1tλ1)] = 0N 9 250 0.735 0.622 0.380
9 500 0.967 0.933 0.812
9 1000 1.000 0.999 0.996
9 ∞ 1.000 1.000 1.000

E[rt(1 − f1tλ1 − gtγ)] = 0N 8 250 0.506 0.390 0.204
8 500 0.728 0.652 0.478
8 1000 0.832 0.795 0.702
8 ∞ 0.900 0.878 0.835
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