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1. Introduction

Sample autocorrelation coefficients are among the most commonly used test statistics for

examining the randomness of economic and financial time series. Despite the widespread

popularity, tests based on sample autocorrelation coefficients typically use critical values

based on their asymptotic normal distribution. However, it is found that this approxima-

tion is, in general, unsatisfactory, and tests based on it are usually undersized. Therefore,

some alternative approximations are proposed in the literature. Dufour and Roy (1985)

suggest using a normal approximation based on the exact mean and variance of the sample

autocorrelation coefficients. Ali (1984) suggests using a four-parameter Pearson distribution

approximation based on the first four moments of the sample autocorrelation coefficients.

For some popular significance levels, simulation results show that these alternative approxi-

mations provide a far better size property than the asymptotic normal approximation.

Ideally, one would like to evaluate the exact distribution of the sample autocorrelation

coefficients so that exact inferences can be made. Although this exact distribution is well

known (see Ali (1984) and Provost and Rudiuk (1995)), its practical use has been very

limited. The main obstacle in its computation is obtaining the eigenvalues of a symmetric

n× n matrix, where n is the length of the time series. As the computation time required to

calculate the eigenvalues for a general symmetric n× n matrix is of O(n3), it is impractical

to directly compute the eigenvalues of the matrix concerned when the sample size is large.

In this paper, we overcome this problem by exploiting the structure of the symmetric matrix

that characterizes the sample autocorrelation coefficient and derive an efficient algorithm to

compute its eigenvalues. With the eigenvalues available, the exact distribution as well as the

exact moments and joint moments of the sample autocorrelation coefficients can be easily

computed under the assumption that the time series is multivariate elliptically distributed.

In addition, we evaluate several popular autocorrelation-based tests of randomness. Ex-

plicit expressions of the exact mean and variance are obtained for Knoke’s test, the variance-

ratio test, the long-horizon regression test, the Box-Pierce test, and the Ljung-Box test. It

is found that the exact mean and variance of these tests differ significantly from the ap-

proximate mean and variance based on their asymptotic distributions. Based on the exact
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mean and variance of the Box-Pierce test statistic, a simple adjusted Box-Pierce test is pro-

posed and it is shown to have much more satisfactory size properties than the traditional

Box-Pierce and Ljung-Box tests.

The remainder of the paper is organized as follows. Section 2 presents the eigenvalues

that determine the distribution of the sample autocorrelation coefficients. Section 3 discusses

the exact distribution and moments of the sample autocorrelation coefficients under the

multivariate elliptical distribution assumption. Section 4 evaluates some popular tests based

on sample autocorrelations. Section 5 concludes the paper and the Appendix contains proofs

of all propositions.

2. Sample autocorrelation coefficients

Several definitions of the sample autocorrelation coefficients have been proposed in the liter-

ature. We consider the most standard one: given n observations of a time series x1, . . . , xn,

the sample autocorrelation coefficient at lag k is given by

ρ̂(k) =

∑n−k
i=1 (xi − x̄)(xi+k − x̄)∑n

i=1(xi − x̄)2
, (1)

where x̄ = 1
n

∑n
i=1 xi is the sample mean, and 1 ≤ k ≤ n− 1. In matrix notation,

ρ̂(k) =
x′MnAkMnx

x′Mnx
, (2)

where x = [x1, . . . , xn]′, Ak is an n× n symmetric Toeplitz matrix with [0′k,
1
2
, 0′n−k−1] as

its first row, where 0k stands for a k-vector of zeros, and Mn = In − 1
n
1n1′n, where In is an

identity matrix with dimension n and 1n is an n-vector of ones.

2.1. The eigenvalue problem

To further simplify the expression for ρ̂(k), we note that Mn is an idempotent matrix with

rank n− 1 and it is orthogonal to 1n, so we can write Mn = PnP
′
n where Pn is an n× (n− 1)

orthonormal matrix such that P ′n1n = 0n−1 and P ′nPn = In−1. Letting y = P ′nx and denoting

Bk = P ′nAkPn, we can write

ρ̂(k) =
x′PnP

′
nAkPnP

′
nx

x′PnP ′nx
=
y′P ′nAkPny

y′y
=
y′Bky

y′y
. (3)
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Suppose Bk = H ′ΞH, where Ξ = Diag(ξ1, . . . , ξn−1) is a diagonal matrix of the eigenvalues

of Bk and H is a matrix with its columns equal to the corresponding eigenvectors of Bk.

Using the transformation z = Hy, we can then simplify ρ̂(k) to

ρ̂(k) =
y′H ′ΞHy

y′H ′Hy
=
z′Ξz

z′z
=

n−1∑
i=1

ξiu
2
i , (4)

where ui = zi/(z
′z)

1
2 . From this expression, we can see that the distribution of ρ̂(k) depends

only on the distribution of u = z/(z′z)
1
2 and the eigenvalues of Bk, so we need to obtain the

eigenvalues of Bk to study the distribution of ρ̂(k). In addition, these eigenvalues also give

us a bound on ρ̂(k). This is because by the Rayleigh-Ritz theorem, we have

min
1≤i≤n−1

ξi ≤ ρ̂(k) ≤ max
1≤i≤n−1

ξi, (5)

and these bounds only depend on n and k but not on the distribution of u.

As it turns out, the eigenvalues of Bk are closely related to the eigenvalues of Ak. The

eigenvalues and eigenvectors of Ak were obtained by Provost and Rudiuk (1995). We sum-

marize their results in the following Proposition.

Proposition 1. Suppose n = mk + l, where m = bn/kc denotes the integral part of n/k.

Let φ = [φ1, . . . φm+1]
′ and θ = [θ1, . . . , θm]′, where φs = sπ/(m + 2) and θs = sπ/(m + 1).

Define Qa and Qb as discrete sine transform matrices of order m+ 1 and m:

Qa =

((
2

m+ 2

) 1
2

sin(rφs)

)m+1

r,s=1

, Qb =

((
2

m+ 1

) 1
2

sin(rθs)

)m

r,s=1

. (6)

The eigenvalues of Ak are given by

λ =

[
cos(φ)⊗ 1l

cos(θ)⊗ 1k−l

]
, (7)

and the corresponding matrix of the eigenvectors of Ak is given by

Q = [In, 0n×(k−l)]

[
Qa ⊗ EL,

[
Qb

0′m

]
⊗ ER

]
, (8)

where EL equals the first l columns of Ik and ER equals the last k − l columns of Ik.
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In Proposition 1, we adopt the convention that when l = 0, 1l and EL are null matrices which

implies λ = cos(θ) ⊗ 1k and Q = Qb ⊗ Ik. This allows us to present the eigenvalues and

eigenvectors of Ak more compactly than the expressions in Provost and Rudiuk (1995). In

addition, the eigenvectors that we present are normalized such that QQ′ = In and Q′Q = In.

Finally, our proof of Proposition 1 is significantly shorter than the one in Provost and Rudiuk

(1995).

With the explicit solutions to the eigenvalues and eigenvectors of Ak available, our next

lemma presents the relation between the eigenvalues of Ak and Bk, which is the first step in

our effort to obtain the eigenvalues of Bk.

Lemma 1. Let Λ = Diag(λ) and q̃ = (In + Λ)
1
2Q′1n, where λ and Q are defined in (7) and

(8). Suppose ξ1 ≥ ξ2 · · · ≥ ξn−1 > ξn = −1 are the eigenvalues of Λ− 1
n
q̃q̃′. Then, ξ1 to ξn−1

are the eigenvalues of Bk.

Lemma 1 suggests that the eigenvalues of Bk can be obtained from the eigenvalues of the

matrix Λ− 1
n
q̃q̃′, which differs from Λ by a matrix of rank one. In numerical matrix algebra,

this problem is known as the rank-one update of a diagonal matrix, and there is a fast and

stable algorithm with computation time of O(n2) (see Li (1993) and Gu and Eisenstat (1994)

and references therein).1 Although Lemma 1 allows us to significantly reduce the computa-

tion time for obtaining the eigenvalues of Bk, the rank-one update problem in Lemma 1 can

be further deflated because λ has many repeated eigenvalues and many of the elements of q̃

are zero. The following Proposition shows that the eigenvalues of Bk can be divided into two

sets: one set consists of the eigenvalues for Ak, and the other set is obtained from solving a

potentially very small rank-one update problem.

Proposition 2. Suppose n = mk + l, where m = bn/kc denotes the integral part of n/k.

Denote φo and φe as the vectors of odd and even elements of φ, and θo and θe as the vectors

of odd and even elements of θ. When l > 0, the eigenvalues of Bk are given by ξ = [ξ′a, ξ
′
b]
′,

where

ξa = [cos(φo)′ ⊗ 1′l−1, cos(φe)′ ⊗ 1′l, cos(θo)′ ⊗ 1′k−l−1, cos(θe)′ ⊗ 1′k−l]
′ (9)

1In addition to the reduction of computation time, the requirement of memory storage is also significantly
reduced because there is no need to create and store the (n− 1)× (n− 1) matrix Bk in order to obtain its
eigenvalues.
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and ξb are the eigenvalues of

D − 1

n
r̃r̃′, (10)

that are not equal to −1, where D = Diag([cos(φo)′, cos(θo)′]) and

r̃ =

[(
4l

m+ 2

) 1
2
[
csc

(
φo

2

)
− sin

(
φo

2

)]′
,

(
4(k − l)
m+ 1

) 1
2
[
csc

(
θo

2

)
− sin

(
θo

2

)]′]′
. (11)

When l = 0, the terms that involve φo and φe drop out.

Proposition 2 suggests that most of the eigenvalues of Bk are the same as the eigenvalues of

Ak and they are readily available. The rest of the eigenvalues can be obtained by performing

a rank-one update on D. In the next subsection, we provide an explicit equation for solving

this rank-one update problem.

2.2. Finding the distinct eigenvalues

Let p be the dimension of D in Proposition 2. We have p = b(m + 1)/2c when l = 0 and

p = m+1 when l > 0, and p can be significantly smaller than n. The eigenvalues of D− 1
n
r̃r̃′

are the solutions to the equation |D − 1
n
r̃r̃′ − xIp| = 0. Since D is diagonal, the eigenvalues

can be written as the solutions to the following equation

f(x) =
1

n

p∑
i=1

r̃2i
di − x

− 1 = 0, (12)

where di is the ith diagonal element of D and r̃i is the ith element of r̃. Since we know the

smallest root of f(x) = 0 is −1 and it is not an eigenvalue of Bk, we can solve for ξb from

the roots of the equation g(x) = f(x)/(1 + x) = 0. Our objective is to obtain an explicit

expression for g(x).

Using the fact that

[csc(ϕ/2)− sin(ϕ/2)]2 =
[1 + cos(ϕ)]2

2[1− cos(ϕ)]
, (13)

we can write f(x) as

f(x) =
2l

n(m+ 2)

b(m+2)/2c∑
i=1

[1 + cos(φ2i−1)]
2

[1− cos(φ2i−1)][cos(φ2i−1)− x]
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+
2(k − l)
n(m+ 1)

b(m+1)/2c∑
i=1

[1 + cos(θ2i−1)]
2

[1− cos(θ2i−1)][cos(θ2i−1)− x]
− 1. (14)

Since f(−1) = 0, we have

0 =
2l

n(m+ 2)

b(m+2)/2c∑
i=1

1 + cos(φ2i−1)

1− cos(φ2i−1)
+

2(k − l)
n(m+ 1)

b(m+1)/2c∑
i=1

1 + cos(θ2i−1)

1− cos(θ2i−1)
− 1. (15)

Subtracting (15) from (14), we obtain an alternative expression of f(x)

f(x) =
2l

n(m+ 2)

b(m+2)/2c∑
i=1

[1 + cos(φ2i−1)](1 + x)

[1− cos(φ2i−1)][cos(φ2i−1)− x]

+
2(k − l)
n(m+ 1)

b(m+1)/2c∑
i=1

[1 + cos(θ2i−1)](1 + x)

[1− cos(θ2i−1)][cos(θ2i−1)− x]
. (16)

Denoting δ = k/n, we can use the fact that [1 + cos(ϕ)]/[1 − cos(ϕ)] = cot2(ϕ/2) to write

g(x) = f(x)/(1 + x) as

g(x) =
2(1−mδ)
m+ 2

b(m+2)/2c∑
i=1

cot2(φ2i−1/2)

cos(φ2i−1)− x
+

2[(m+ 1)δ − 1]

m+ 1

b(m+1)/2c∑
i=1

cot2(θ2i−1/2)

cos(θ2i−1)− x
. (17)

Since g(x) only depends on m and δ, the roots of g(x) = 0 (i.e., ξb) are completely determined

by m and δ. When l = 0 (i.e., δ = 1/m), the first term in g(x) vanishes and the second

term is only a function of m, so ξb is only a function of m when l = 0. From (17), it is easy

to see that when l > 0, g(x) has m+ 1 poles at cos(φo) and cos(θo) and it strictly increases

between these poles, so the roots of g(x) = 0 must be between the poles. As a result, we

have the following bounds on the elements of ξb when l > 0:

cos

(
iπ

m+ 2

)
> ξbi > cos

(
iπ

m+ 1

)
if i is odd, (18)

cos

(
(i− 1)π

m+ 1

)
> ξbi > cos

(
(i+ 1)π

m+ 2

)
if i is even. (19)

Similarly, we have the following bounds on the elements of ξb when l = 0:

cos

(
(2i− 1)π

m+ 1

)
> ξbi > cos

(
(2i+ 1)π

m+ 1

)
. (20)

These bounds are useful because they allow us to efficiently locate the roots of g(x) = 0.

With some additional work, we can further tighten the upper bounds in (19) and (20). The

results are summarized in the following lemma.
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Lemma 2. When l > 0, the elements of ξb are within the following bounds:

cos

(
iπ

m+ 2

)
> ξbi > cos

(
iπ

m+ 1

)
if i is odd, (21)

cos

(
iπ

m+ 1

)
> ξbi > cos

(
(i+ 1)π

m+ 2

)
if i is even. (22)

When l = 0, the elements of ξb are within the following bounds:

cos

(
2iπ

m+ 1

)
> ξbi > cos

(
(2i+ 1)π

m+ 1

)
, i = 1, . . . , b(m− 1)/2c. (23)

For m up to a certain order, the roots of g(x) = 0 can be solved analytically. In Table 1,

we use Mathematica to further simplify the equation g(x) = 0 and report the solutions of ξb

for 3 ≤ m ≤ 14 when l = 0, and for 1 ≤ m ≤ 10 when l > 0. From Table 1, we can see that

when l = 0, analytical solutions for ξb are available for m up to 10, and when l > 0, analytical

solutions for ξb are available for m up to 4. With higher m, one needs to numerically solve

for the roots of a polynomial. With the help of Table 1, computing ξ for k ≥ n/10 takes

almost no time even for very large n.

Table 1 about here

As m goes up (i.e., k goes down), the computation time for solving the rank-one update

problem increases. In terms of computation time, the worst case scenario is for k = 1 which

requires one to solve a rank-one update problem of b(n + 1)/2c dimension. Nevertheless,

the rank-one update method is still much faster than the standard way of computing the

eigenvalues of B1. To provide an idea of how fast our method is, we perform an experiment

using the Windows version of Matlab running on an Opteron 165 processor. For n = 2400, it

takes only 0.054 second for our program to compute the eigenvalues of B1 and 0.438 second

to compute all the eigenvalues of B1 to B2399. In contrast, using the standard eig function of

Matlab, it takes 31.36 seconds to compute the eigenvalues of B1, and if one needs to compute

all the eigenvalues of B1 to B2399, it would take 21 hours.2 Therefore, our method provides a

phenomenal speedup of the computation of the eigenvalues of Bk relative to the traditional

method, which in turn gives us a practical way to numerically compute the exact moments

and distribution of ρ̂(k) even for very large n.

2For a fair comparison, we call eig to only compute the eigenvalues (but not the eigenvectors) of Bk.
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2.3. Range of sample autocorrelation coefficients

From (5), we know that ρ̂(k) is bounded by the smallest and largest eigenvalue of Bk.

Using the results in Proposition 2 and Lemma 2, the following lemma provides an explicit

characterization of the range of ρ̂(k).

Lemma 3. Suppose n = mk + l where m = bn/kc. Denote ξ∗b and ξ∗∗b as the smallest and

largest element of ξb, respectively. When k = 1, we have

cos

(
2π

n+ 1

)
≥ ρ̂(1) ≥ − cos

(
π

n+ 1

)
if n is even, (24)

cos

(
2π

n+ 1

)
≥ ρ̂(1) ≥ ξ∗b if n is odd. (25)

When k > 1 and l = 0, we have

cos

(
π

m+ 1

)
≥ ρ̂(k) ≥ − cos

(
π

m+ 1

)
. (26)

When k > 1 and l = 1, we have

ξ∗∗b ≥ ρ̂(k) ≥ ξ∗b if m is even, (27)

ξ∗∗b ≥ ρ̂(k) ≥ − cos

(
π

m+ 2

)
if m is odd. (28)

When k > 1 and l > 1, we have

cos

(
π

m+ 2

)
≥ ρ̂(k) ≥ − cos

(
π

m+ 2

)
. (29)

Lemma 3 suggests that while we can have −1 < ρ(k) < 1 for the population autocorrelation

coefficient, the range that the sample autocorrelation coefficient ρ̂(k) can take is more limited,

especially when k is large relative to n. For example, when n/2 ≤ k ≤ n − 1, we have

|ρ̂(k)| ≤ 1/2 and for n/3 ≤ k < (n− 1)/2, we have |ρ̂(k)| ≤ 1/
√

2. In Figure 1, we plot the

range of ρ̂(k) for k = 1, . . . , n − 1 under four different assumptions on the sample size. It

clearly shows that when k goes up, the range of ρ̂(k) becomes narrower.3 In addition, the

3Some simple degrees of freedom correction (like multiplying ρ̂(k) by (n − 1)/(n − k − 1)) can help to
restore the range of ρ̂(k) to be closer to (−1, 1), especially for k < n/2. We thank an anonymous referee for
pointing this out to us.
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range of ρ̂(k) is a step function, it shrinks whenever n/k goes through an integer value. As

our bounds on ρ̂(k) work for any time series, this implies that we should expect to observe

a decaying ρ̂(k) as k increases, regardless of whether the time series is stationary or not. In

addition, the fact that ρ̂(k) is bounded suggests that a test that is based on the normal or

Pearson distribution may have a size quite different from its level.4

Figure 1 about here

3. Exact distribution and moments of ρ̂(k)

For the sake of deriving the exact distribution and moments of ρ̂(k), we need to make

an assumption on the joint distribution of x. We assume x has a multivariate elliptical

distribution with mean µ1n and variance-covariance matrix σ2In, so that the time series is

uncorrelated. Under this assumption, the exact distribution as well as the exact moments and

joint moments of ρ̂(k) can be obtained, and they are provided in the following subsections.

3.1. Exact distribution of ρ̂(k)

From (4), we know that ρ̂(k) can be written as

ρ̂(k) =
y′Bky

y′y
=
z′Ξz

z′z
= u′Ξu, (30)

where Ξ is the diagonal matrix of the eigenvalues of Bk. Under the assumption that x =

[x1, . . . , xn]′ is multivariate elliptically distributed with mean µ1n and variance-covariance

matrix σ2In, z has a spherical distribution. Since the distribution of u = z/(z′z)
1
2 is the

same for all spherical distributions z (see, for example, Theorem 1.5.6 of Muirhead (1982)),

we can assume without loss of generality that z ∼ N(0n−1, In−1) or y ∼ N(0n−1, In−1).

Therefore, in order to compute the cumulative density function of ρ̂(k), we only need to

evaluate the following probability

P [ρ̂(k) < c] = P [z′Ξz < cz′z] = P

[
n−1∑
i=1

(ξi − c)z2i < 0

]
, (31)

4We find that when k > 3n/4, the Pearson distribution that matches the first four moments of ρ̂(k) is
Type IV, which is a distribution with unbounded support.
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where ξi’s are the eigenvalues of Bk. This amounts to computing the probability for a linear

combination of n − 1 independent χ2
1 random variables to be less than zero. This problem

has been well studied in the statistics and econometrics literature. Using the results from

Gil-Pelaez (1951) and Imhof (1961), we can express

P [ρ̂(k) < c] =
1

2
− 1

π

∫ ∞
0

sin τ(t)

tη(t)
dt, (32)

where

τ(t) =
1

2

n−1∑
i=1

arctan(2t(ξi − c)), (33)

η(t) =
n−1∏
i=1

[1 + 4t2(ξi − c)2]
1
4 . (34)

Numerical evaluation of this integral was studied by Imhof (1961), Davies (1980), Ansley,

Kohn, and Shively (1992), and Lu and King (2002). The only time-consuming part for

evaluating this integral is to obtain the ξi’s. With our fast algorithm for the computation

of ξi’s, we can numerically evaluate the exact distribution of ρ̂(k) with high accuracy and

efficiency.5

With our numerical method of computing the exact distribution of ρ̂(k), we plot the lower

and upper fifth percentiles of the exact distribution of ρ̂(k) as a function of k in Figure 2

using the solid lines, for n = 60, 240, 600, and 2400. The lower and upper fifth percentiles

of the asymptotic normal distribution are also plotted using the dotted lines for comparison.

It can be seen from the plot that the asymptotic normal distribution does a very poor job in

approximating the true distribution, especially when k is large. This suggests that we could

have a serious size problem when using the asymptotic normal distribution to test the null

hypothesis.

Figure 2 about here

In Figures 3a and 3b, we evaluate the actual size properties of three approximation tests

of H0 : ρ(k) = 0 as a function of k under four different choices of n. The first approximation

5From Proposition 2, we know ξ has many repeated elements, this allows us to further speed up the
computation of sin τ(t) and η(t).
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test is based on the asymptotic normal distribution and assumes ρ̂(k) ∼ N(0, 1/n). The

second approximation test is also a normal approximation, and uses the exact mean and

variance of ρ̂(k). This approximation test is suggested by Dufour and Roy (1985). The

third test is based on Pearson’s approximation, and it is suggested by Ali (1984). All tests

are two-sided tests and are assumed to have a nominal size of 10% in Figure 3a and 5%

in Figure 3b. If the tests have a good size property, the actual probabilities of rejection

should be close to the nominal size. We use the solid lines to represent the actual size of

the normal approximation test based on the asymptotic mean and variance, the dotted lines

to represent the normal approximation test based on the exact mean and variance, and the

dashed lines to represent the test based on Pearson’s approximation. We can see that the

normal approximation test based on the asymptotic distribution behaves very poorly even

for moderately large k. From Lemma 3, we know that the range of ρ̂(k) shrinks when k goes

up. But the critical values based on the asymptotic normal distribution do not change with

k. Therefore, we expect the asymptotic test to be too conservative as k increases. Compared

to the test based on the asymptotic distribution, the normal approximation test based on

the exact mean and variance and the test that is based on Pearson’s approximation behave

far better. Except when k is close to n, the actual probabilities of rejection are close to

the assumed nominal size. This is consistent with the simulation results of Dufour and Roy

(1985) and Ali (1984). However, given that ρ̂(k) is bounded, there can be situations that the

normal distribution (which is unbounded) could not approximate the exact distribution of

ρ̂(k) well, especially in the two tails. Similarly, there are situations under which the Pearson’s

distribution does not provide a good approximation of the exact distribution of ρ̂(k). With

the development of our efficient numerical method of computing the exact distribution of

ρ̂(k), we can overcome this problem by evaluating the exact distribution directly.

Figure 3a about here

Figure 3b about here
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3.2. Exact moments of ρ̂(k)

We now turn our attention to the problem of computing the exact moments of ρ̂(k). The

following Proposition provides a fast method for computing all the moments of ρ̂(k).

Proposition 3. Suppose x = [x1, . . . , xn]′ is multivariate elliptically distributed with mean

µ1n and variance-covariance matrix σ2In. The sth moment of ρ̂(k) is given by

E[ρ̂(k)s] =
E[(y′Bky)s]

(n− 1)(n+ 1) · · · (n− 3 + 2s)
, (35)

where y ∼ N(0n−1, In−1), and E[(y′Bky)s] is obtained by using the following recursive rela-

tion6

E[(y′Bky)s] = (s− 1)!
s∑
j=1

2j−1tr(Bj
k)E[(y′Bky)s−j]

(s− j)!
. (36)

In order to obtain the moments of ρ̂(k) using Proposition 3, we need to be able to compute

tr(Bj
k). Since

tr(Bj
k) =

n−1∑
i=1

ξji , (37)

where ξi are the eigenvalues of Bk, it is very easy to compute tr(Bj
k) once we obtain ξi using

our efficient algorithm. As a result, evaluating the moments of ρ̂(k) up to any order can be

easily accomplished. In addition, with the noncentral moments of ρ̂(k) available, the central

moments of ρ̂(k) can also be easily obtained.

For small s, it is possible to derive E[ρ̂(k)s] as an explicit polynomial of n and k and

these expressions are in fact available in the literature. The first four moments of ρ̂(k) are

E[ρ̂(k)] = − n− k
n(n− 1)

, (38)

E[ρ̂(k)2] =
(n− k)(n2 + n− 3k)

n2(n2 − 1)
− 2(n− 2k)+

n(n2 − 1)
, (39)

E[ρ̂(k)3] = −3(n− k)[n2(n+ 1)− n(n+ 4)k + 5k2]

n3(n2 − 1)(n+ 3)
+

6(n− 3k)(n− 2k)+

n2(n2 − 1)(n+ 3)

6There exist explicit expressions of E[(y′Bky)s] in the literature (see Magnus (1986) and Holmquist
(1996)). However, as pointed out by Kan (2008), these explicit expressions are unsuitable for computational
purpose except when s is very small.

12



− 6(n− 3k)+

n(n2 − 1)(n+ 3)
, (40)

E[ρ̂(k)4] =
3(n− k)[n3(n+ 1)(n+ 3)− n2(n2 + 8n+ 21)k + 3n(2n+ 15)k2 − 35k3]

n4(n2 − 1)(n+ 3)(n+ 5)
−

12[2n2 − n(n+ 6)k + 15k2](n− 2k)+

n3(n2 − 1)(n+ 3)(n+ 5)
+

24([(n− 3k)+]2 − n(n− 4k)+)

n2(n2 − 1)(n+ 3)(n+ 5)
, (41)

where a+ stands for max[a, 0]. The mean of ρ̂(k) was derived by Moran (1948). The second

moment of ρ̂(k) was derived by Dufour and Roy (1985, 1989) and Anderson (1990). The

third and fourth moments of ρ̂(k) were given in Anderson (1990, 1993). Provost and Rudiuk

(1995) also provide the analytical expression of the fifth moment of ρ̂(k). For higher order

moments of ρ̂(k), analytical expressions are not available. The greatest difficulty in gen-

erating explicit formula of higher order moments of ρ̂(k) is the extremely involved algebra

needed in evaluating tr(Bj
k); its complexity increases exponentially with increasing j. In con-

trast, our approach of evaluating tr(Bj
k) is relatively simple, and it can be used to efficiently

compute the moments of ρ̂(k) up to any order.

3.3. Exact joint moments of ρ̂(k)

Most tests of randomness are linear combination of ρ̂(k) or ρ̂(k)2. In order to compute the

exact mean and variance of these test statistics, we need to have expressions for Var[ρ̂(k)]

and Var[ρ̂(k)2] as well as for Cov[ρ̂(j), ρ̂(k)] and Cov[ρ̂(j)2, ρ̂(k)2]. Var[ρ̂(k)] and Var[ρ̂(k)2]

can be easily obtained using the results in Proposition 3, but evaluation of the covariances

requires analytical expressions for the joint moments. The following Proposition presents a

general result for the mixed moments of p sample autocorrelation coefficients.

Proposition 4. Suppose x = [x1, . . . , xn]′ is multivariate elliptically distributed with mean

µ1n and variance-covariance matrix σ2In. The expectation of the product ρ̂(k1)
s1 · · · ρ̂(kp)

sp

is given by

E

[
p∏
i=1

ρ̂(ki)
si

]
=

1

(n− 1)(n+ 1) · · · (n− 3 + 2s)
E

[
p∏
i=1

(y′Bkiy)si

]
, (42)

where s = s1 + · · · + sp and y ∼ N(0n−1, In−1). The expectation of the product of quadratic
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forms can be evaluated using

E

[
p∏
i=1

(y′Bkiy)si

]
=

1

s!

s1∑
ν1=0

· · ·
sp∑
νp=0

(−1)
∑p

i=1 νi

(
s1
ν1

)
· · ·
(
sp
νp

)
E[(y′Bνy)s], (43)

where Bν =
(
s1
2
− ν1

)
B1 +

(
s2
2
− ν2

)
B2 + · · ·+

( sp
2
− νp

)
Bp and E[(y′Bνy)s] can be computed

using the recursive relation in (36).

Note that in Proposition 4, we present the moments of a product of quadratic forms in

normal random variables using a new formula from Kan (2008). Unlike existing expressions

(e.g., Magnus (1978, 1979) and Holmquist (1996)), this expression is computationally very

efficient, and it allows us to compute the mixed moments of ρ̂(ki) even for fairly large s.7

When s is small, we can derive analytical expressions of the mixed moments of ρ̂(ki).

The following lemma presents the analytical expressions of E[ρ̂(j)ρ̂(k)] and E[ρ̂(j)2ρ̂(k)2].

Together with the expressions of E[ρ̂(k)] and E[ρ̂(k)2] in (38) and (39), we can then obtain

analytical expressions for Cov[ρ̂(j), ρ̂(k)] and Cov[ρ̂(j)2, ρ̂(k)2].

Lemma 4. Suppose x = [x1, . . . , xn]′ is multivariate elliptically distributed with mean µ1n

and variance-covariance matrix σ2In. Denote aj = tr(Bj), ajk = tr(BjBk), ajkl = tr(BjBkBl),

and ajklm = tr(BjBkBlBm). Then for j < k, the expectation of ρ̂(j)ρ̂(k) and ρ̂(j)2ρ̂(k)2 are

given by

E[ρ̂(j)ρ̂(k)] =
ajak + 2ajk
n2 − 1

=
(n− 3j)(n− k)

n2(n2 − 1)
− 2(n− j − k)+

n(n2 − 1)
, (44)

E[ρ̂(j)2ρ̂(k)2] =
a2ja

2
k + 16ajajkk + 16akakjj + 4ajjakk + 8a2jk

(n2 − 1)(n+ 3)(n+ 5)

+
2a2jakk + 2a2kajj + 8ajakajk + 16ajkjk + 32ajjkk

(n2 − 1)(n+ 3)(n+ 5)

=
−(n− k)

n4(n2 − 1)(n+ 3)(n+ 5)

[
105j2k − (75j2 + 60jk)n

+ (36j − 3j2 + 15k − 3jk)n2 + (5j + 3k − 5)n3 + (j − 6)n4 − n5
]

− 2

n3(n2 − 1)(n+ 3)(n+ 5)

[
(15j2 + 9n2 − jn2 + n3)(n− 2k)+

7A set of Matlab programs to implement this and other results in the paper is available at
http://www.rotman.utoronto.ca/∼kan/research.htm.
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+ (15k2 − 24kn+ 9n2 − kn2 + n3)(n− 2j)+

+ (60jk − 24jn− 4n3)(n− j − k)+
]

+
2

n2(n2 − 1)(n+ 3)(n+ 5)

[
6(n− 3k)(n− 2j − k)+

+ 6(n− 3j)(n− j − 2k)+ + 2(n− 3j)(n+ j − 2k)+

− 12n(n− 2j − 2k)+ + 4(2n− 3k)(n−max[2j, k])+

− 2n(n+ 2j − 2 max[2j, k])+ − 2n(n− k)2δ2j,k
]
, (45)

where δ2j,k = 1 if 2j = k and zero otherwise.

The analytical expression of Cov[ρ̂(j), ρ̂(k)] is already available in Dufour and Roy (1985,

1989) and Anderson (1990), but our analytical expression of Cov[ρ̂(j)2, ρ̂(k)2] is new.

4. Evaluation of various approximate tests

Most specification tests of randomness are based on the linear combination of either ρ̂(k)

or ρ̂(k)2. Statistical inferences are usually based on the approximate distributions of these

test statistics. Due to the lack of knowledge of the exact distribution, exact tests are rarely

seen, and performance of the approximate tests are hard to evaluate. Using our results

from Sections 3.2 and 3.3, we are able to obtain the exact mean and variance for these

test statistics, which provide a means to evaluate these approximate tests and enhance our

understanding of the exact properties of these test statistics.

4.1. Evaluation of approximate tests based on a linear combina-
tion of ρ̂(k)

In this subsection, we evaluate three different specification tests of randomness that are linear

combinations of ρ̂(k): Knoke’s test, the variance-ratio test, and the long-horizon regression

test. Knoke’s test was suggested by Knoke (1977) and its test statistic is given by

T =
n−1∑
k=1

ρ̂(k)

k
. (46)
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Knoke’s test is a normal approximation test that is based on the exact mean of T but the

variance of T is obtained by simulation. With our results from Section 3, we are able to

provide the exact variance of Knoke’s statistic. In the following lemma, both the exact mean

and variance of Knoke’s statistic are presented.

Lemma 5. Suppose x = [x1, . . . , xn]′ is multivariate elliptically distributed with mean µ1n

and variance-covariance matrix σ2In. The exact mean of Knoke’s statistic is given by

E[T ] =
n−1∑
k=1

− n− k
n(n− 1)k

=
1

n
− 1

n− 1

n−1∑
k=1

1

k
=

1−Hn

n− 1
, (47)

where Hn =
∑n

k=1
1
k

is the nth harmonic number. The exact variance of Knoke’s statistic is

given by

Var[T ] =
n−1∑
j=1

n−1∑
k=1

Cov[ρ̂(j), ρ̂(k)]

jk

=
(n+ 2)n(n− 1)H

(2)
n − 2n2H2

n + (3n2 + 3n− 2)Hn − 2n(3n− 2)

(n+ 1)n(n− 1)2
, (48)

where H
(2)
n =

∑n
k=1

1
k2

.

For the variance-ratio and long-horizon regression tests, several asymptotic distributions

are currently available in the literature, but the most popular test is still the normal approxi-

mation test due to its simplicity. If these normal approximation tests are accurate, we should

expect the exact mean and variance of these test statistics to be close to the approximate

mean and variance.

The variance-ratio test statistic is given by

θ̂(m) = 1 + 2
m−1∑
k=1

(
1− k

m

)
ρ̂(k), (49)

where m is the length of the long-horizon returns chosen in the variance ratio test, and

2 ≤ m ≤ n.8 The most popular asymptotic distribution of θ̂(m), suggested by Lo and

8Note that there are many ways of defining the sample variance ratio (see, e.g., Cochrane (1988), Lo and
MacKinlay (1988), and Poterba and Summers (1988)). Nevertheless, they are all asymptotically equivalent
under the null hypothesis.
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Mackinlay (1988), is

√
n(θ̂(m)− 1)

A∼ N

(
0,

2(m− 1)(2m− 1)

3m

)
, (50)

which is derived under the assumption that m is fixed and n→∞.

By providing the exact mean and variance of θ̂(m), we can evaluate how well the above

asymptotic normal distribution approximates the exact distribution. The explicit expressions

for the exact mean and variance of the variance ratio test statistic are given in the following

lemma.

Lemma 6. Suppose x = [x1, . . . , xn]′ is multivariate elliptically distributed with mean µ1n

and variance-covariance matrix σ2In. The exact mean and variance of the variance ratio

test statistic are given by

E[θ̂(m)] = 1− 2
m−1∑
k=1

(
1− k

m

)
n− k

n(n− 1)
= 1− (3n−m− 1)(m− 1)

3n(n− 1)
, (51)

Var[θ̂(m)] = 4
m−1∑
j=1

m−1∑
k=1

(
1− j

m

)(
1− k

m

)
Cov[ρ̂(j), ρ̂(k)]

=
(m− 1)[(2m− 1)(2n2 +m(m+ 1))− (7m2 −m− 2)n]

3m(n+ 1)(n− 1)2

+
2(m+ 1)(m− 1)2[(m+ 4)n− 2m− 2]

9(n+ 1)n2(n− 1)2

+
2(m− 2)4(2m− 1)− (2m− 2− n)+5

15m2(n− 1)3
, (52)

where (a)r = a(a+ 1) · · · (a+ r − 1) and (a)+r = max[a, 0](a+ 1) · · · (a+ r − 1).

According to (50), the approximate mean and variance of θ̂(m) are 1 and 2(m − 1)(2m −
1)/(3mn), respectively. (51) suggests that the exact mean of θ̂(m) is always less than its

approximate mean of 1. In Figure 4, we plot the ratio of the approximate variance of θ̂(m)

to its exact variance as a function of m using the solid lines for four different sample sizes

(n = 60, 240, 600, and 2400). We can see that the approximate variance can be much higher

than the exact variance, especially when m is large relative to n. In addition, the variance-

17



ratio test statistic is bounded from below.9 Therefore, the normal approximation test based

on the asymptotic distribution in (50) can have a serious size problem.

Figure 4 about here

The long-horizon regression test statistic is given by

β̂(m) =
2m−1∑
k=1

min[k, 2m− k]

m
ρ̂(k), (54)

wherem is the length of the long-horizon returns chosen, and 1 ≤ m ≤ n/2. The conventional

asymptotic distribution of β̂(m), provided by Richardson and Smith (1991), is

√
nβ̂(m)

A∼ N

(
0,

2m2 + 1

3m

)
, (55)

which is derived under the assumption that m is fixed and n→∞. In Lemma 7, we provide

explicit expressions for the exact mean and the exact variance of the long-horizon regression

test statistic, which can help us to evaluate the approximate mean and variance provided by

Richardson and Smith (1991).

Lemma 7. Suppose x = [x1, . . . , xn]′ is multivariate elliptically distributed with mean µ1n

and variance-covariance matrix σ2In. The exact mean and variance of the long-horizon

regression test statistic are given by

E[β̂(m)] = −
2m−1∑
k=1

min[k, 2m− k]

m

n− k
n(n− 1)

= −m(n−m)

n(n− 1)
, (56)

Var[β̂(m)] =
2m−1∑
j=1

2m−1∑
k=1

min[j, 2m− j] min[k, 2m− k]

m2
Cov[ρ̂(j), ρ̂(k)]

=
(2m2 + 1)(n−m)

3m(n2 − 1)
− 2m2(n−m)[n+ (n− 2)m]

(n− 1)2n2(n+ 1)

9It can be shown that the variance-ratio test statistic can be expressed as

θ̂(m) =
1′mΓ̂1m
m

, (53)

where Γ̂ = (γ̂ij) is an m × m sample autocorrelation matrix with γ̂ij = ρ̂(|i − j|). It is well known that
the sample autocorrelation matrix is positive semi-definite (see e.g., McLeod and Jimenez (1984)); it follows

that θ̂(m) ≥ 0.
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+
(m2 − 1)(7m2 + 2)− 30m3(n− 2m)

15m(n− 1)3

+
4(3m− n− 2)+5 − (4m− n− 2)+5

60m2(n− 1)3
. (57)

According to (55), the approximate mean and variance of β̂(m) are 0 and (2m2 + 1)/(3mn),

respectively. From (56), it is easy to see that the exact mean of β̂(m) is always less than the

approximate mean of 0. In Figure 4, we also plot the ratio of approximate variance to exact

variance of β̂(m) as a function of m using the dashed lines for four different sample sizes

(n = 60, 240, 600, and 2400). Just like the variance-ratio test statistic, the approximate

variance of β̂(m) can be much higher than its exact variance, especially when m is large

relative to n. Therefore, the normal approximation test based on the asymptotic distribution

in (55) can also have serious size problem.

4.2. Evaluation of approximate tests based on a linear combina-
tion of ρ̂(k)2

In this subsection, we examine the finite sample property of two well-known portmanteau

statistics, Box-Pierce Q-statistic and Ljung-Box Q-statistic. These two statistics are con-

structed based on linear combinations of ρ̂(k)2 and are given by

QBP = n
m∑
k=1

ρ̂(k)2, (58)

QLB = n(n+ 2)
m∑
k=1

ρ̂(k)2

n− k
. (59)

In practice, the distributions of QBP and QLB under the null hypothesis of uncorrelatedness

are approximated by the distribution of χ2
m. Therefore, if these two test statistics are well

behaved, they should have mean close to m and variance close to 2m.

Using the explicit expressions for the exact moments of ρ̂(k), we can readily obtain the

analytical expressions for the exact mean of the two Q-statistics, which are provided in the

following lemma.

Lemma 8. Suppose x = [x1, . . . , xn]′ is multivariate elliptically distributed with mean µ1n

and variance-covariance matrix σ2In. Let h = (m − bn/2c)+. The exact mean of QBP and
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QLB are given by10

E[QBP ] =
m[2n3 − (m+ 3)n2 + (m+ 1)(2m+ 1)]− 4nh(2m− n+ 1− h)

2n(n2 − 1)
, (60)

E[QLB] =
(n+ 2) {m[2n(n− 3)− 3(m+ 1)] + 4n[2h+ n(Hn−1 −Hn−m+h−1)]}

2n(n2 − 1)
, (61)

where Hn =
∑n

k=1
1
k

is the nth harmonic number.

Using (41) and (45), it is easy to numerically compute Var[QBP ] and Var[QLB]. However,

analytical expressions of Var[QBP ] and Var[QLB] are much harder to obtain. After laborious

algebra, we can obtain the following analytical expression for E[Q2
BP ]:

E[Q2
BP ] = n2

m∑
k=1

E[ρ̂(k)4] + 2n2

m−1∑
j=1

m∑
k=j+1

E[ρ̂(j)2ρ̂(k)2]

=
1

(n2 − 1)(n+ 3)(n+ 5)

{ m

12n2

[
24n(−2− 2n− n2 + 3n3 − 2n4 + n5)

+ (35 + 114n2 + 60n3 − 261n4 + 84n5 + 12n6)m

− 6(−35− 80n− 70n2 − 14n3 + 17n4 + 2n5)m2

+ (455 + 720n+ 282n2 + 24n3 + 3n4)m3 − 12(−35− 24n+ n2)m4 + 140m5
]

+ [4n(n−m)(n−m− 1) + 6m− 2n+ 3]ζm + 4nq4(q4 + 1)(4q4 − 12m+ 3n− 4)

+ 4q3(q3 + 1)[2q3(q3 + 1)− (3m− n+ 1)(3m− n+ 2)− 1]

+
q2
6n

(
−(2m− n+ 2)

[
(24− 84n− 150n2 + 59n3 + 16n4)

− 2m(−63− 54n+ 63n2 + 10n3)− 6m2(−39− 18n+ n2) + 156m3
]

+ ζn
[
48− 27n− 111n2 + 43n3 + 16n4 − 2m(−87− 111n+ 63n2 + 10n3)

− 6m2(−47− 18n+ n2) + 156m3
])}

, (62)

where ζx equals 1 if x is odd and 0 otherwise, q2 = b(2m−n+1)+/2c, q3 = b(3m−n+1)+/2c,
and q4 = b(4m − n + 2)+/2c. In order to conserve space, we do not provide the proof of

this expression but its proof is available upon request. With the analytical expressions of

E[QBP ] and E[Q2
BP ] available, we can easily obtain an analytical expression of Var[QBP ].

With the ability to compute the exact mean and variance of the two portmanteau statis-

tics, we can now evaluate how well the asymptotic χ2
m distribution approximates the exact

10Dufour and Roy (1986) provide the analytical expression of E[QBP ] for m ≤ n/2.
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distributions of QBP and QLB. In Figure 5, we plot the exact mean of the two Q-statistics as

a function of m for four different sample sizes (n = 60, 240, 600, and 2400). From Figure 5,

it can be seen that the exact mean of QLB is very close to the approximate mean of m.

However, the exact mean of the QBP deviates significantly from m except when m is very

small. The deviation increases as m increases. In Figure 6, we plot the exact variance of the

two Q-statistics as a function of m for the four different sample sizes. It can be seen that the

approximate variance of 2m does not provide a good approximation of the exact variance

for either one of the two Q-statistics. Even for moderately small values of m, the exact

variance of the Ljung-Box Q-statistic exceeds the approximate variance significantly. As for

the Box-Pierce Q-statistic, its exact variance is close to the approximate variance when m

is small to moderate relative to n. However, when m is large relative to n, Var[QBP ] is

significantly below the approximate variance. Figures 5 and 6 confirm the results from pre-

vious studies (e.g., Davies, Triggs, and Newbold (1977), and Dufour and Roy (1986)) which

find that the Box-Pierce test suffers a location bias, and that the variance of the Ljung-Box

statistic can be much larger than the asymptotic variance even though its mean is close to

the approximate mean.

Figure 5 about here

Figure 6 about here

Since the exact mean and variance of the two Q-statistics are not close to the mean and

variance of the asymptotic χ2
m distribution, there can be a potential problem with the size

of these two tests. We use Monte-Carlo simulation to evaluate the size property of QBP and

QLB. For each of the four different sample sizes (n = 60, 240, 600, and 2400), we generate a

time series of length n independently from a standard normal distribution and compute QBP

and QLB. We repeat this experiment 1,000,000 times and examine the actual probabilities

of rejection of the two Q-statistics based on the χ2
m approximation. The actual sizes of the

two tests are presented in Figures 7a (for a nominal size of 10%) and 7b (for a nominal

size of 5%). The dashed lines represent the actual size of the Box-Pierce test, and the solid

lines represent the actual size of the Ljung-Box test. Figures 7a and 7b show that both the
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Box-Pierce and the Ljung-Box tests have unsatisfactory size properties: the Box-Pierce test

leads to under-rejection of the null hypothesis and the Ljung-Box test leads to over-rejection

of the null hypothesis. These findings agree with the results of some earlier studies (e.g.,

Davies, Triggs, and Newbold (1977), and Ansley and Newbold (1979)) and suggest that

these two tests can be quite unreliable even when m is moderately large relative to n.

Figure 7a about here

Figure 7b about here

4.3. Modified portmanteau tests

Since there are serious size problems with the Box-Pierce and Ljung-Box tests, there have

been some attempts in the literature to propose modified portmanteau tests that aim at

correcting this size problem. One of the earlier attempts is by Dufour and Roy (1986). They

suggest the test statistic

QDR =
m∑
k=1

(ρ̂(k)− E[ρ̂(k)])2

Var[ρ̂(k)]

A∼ χ2
m, (63)

where E[ρ̂(k)] and Var[ρ̂(k)] are the exact mean and variance of ρ̂(k) based on (38) and (39).

Note that unlike QBP and QLB, we have E[QDR] = m, so QDR may be closer to the χ2
m

distribution.

Another attempt is by Kwan and Sim (1996) who propose the following test statistic

QKS =
m∑
k=1

(n− k − 3)z2k, (64)

where

zk =
1

2
ln

(
1 + ρ̂(k)

1− ρ̂(k)

)
(65)

is Fisher’s transformation of ρ̂(k) and zk is supposed to be closer to a normal distribution

than ρ̂(k). In addition, their test is performed by comparing QKS with χ2
α, where α is the
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approximate mean of QKS, and it is given by11

α =
m∑
k=1

(n− k − 3)

(
E[ρ̂(k)2] +

2

3
E[ρ̂(k)4]

)
. (66)

Note that Dufour and Roy (1986) and Kwan and Sim (1996) also propose other more compli-

cated versions of their modified portmanteau tests. We have also analyzed the other modified

portmanteau tests and they perform similarly to the tests reported in here. In order to con-

serve space, we do not report the size analysis of the other modified portmanteau tests but

the results are available upon request.

We now propose our version of a modified portmanteau test, which we call the adjusted

Box-Pierce test. It is defined as

Qa
BP = m+

√
2m

Var[QBP ]
(QBP − E[QBP ])

A∼ χ2
m. (67)

Since we have the analytical expressions of E[QBP ] and Var[QBP ], the adjusted Box-Pierce

test statistic can be computed with minimal additional effort.12 Note that with this ad-

justment, we have E[Qa
BP ] = m and Var[Qa

BP ] = 2m, so the first two moments of Qa
BP are

exactly the same as those from the χ2
m distribution.

In Figures 8a and 8b, we report the actual probabilities of rejection for the three modified

portmanteau tests using the same simulation experiment as in Figures 7a and 7b. The

nominal size of the test is set to be 10% in Figures 8a and 5% in Figures 8b. The dashed

lines represent the actual probabilities of rejection for QDR. The figures show that there is

still an over-rejection problem with QDR, and this over-rejection problem is also documented

by Dufour and Roy (1986) and Kwan and Sim (1996). The dotted lines represent the actual

probabilities of rejection for QKS. Even though there is still an over-rejection problem, it

shows a remarkable improvement over QBP , QLB and QDR. Finally, the solid lines represent

the actual probabilities of rejection for our adjusted Box-Pierce test. Despite the simplicity

of the adjusted Box-Pierce test, its size is almost correct and compares quite favorably with

11Instead of using (39) and (41), Kwan and Sim (1996) use approximate formulas from Davies, Triggs,
and Newbold (1977) to obtain E[ρ̂(k)2] and E[ρ̂(k)4], who assume that the mean of the data is known.

12We can similarly define an adjusted Ljung-Box test. Simulation evidence shows that both adjusted tests
have similar size properties (results are available upon request). We prefer the adjusted Box-Pierce test
because it is easier to compute.
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the other modified portmanteau tests. Therefore, we believe the adjusted Box-Pierce test

statistic is a better choice than the modified portmanteau tests by Dufour and Roy (1986)

and Kwan and Sim (1996).

Figure 8a about here

Figure 8b about here

5. Conclusions

Sample autocorrelation coefficients are widely used for testing randomness. Though it is

common knowledge that the asymptotic test is unsatisfactory, exact tests based on sample

autocorrelation coefficients are largely unavailable in the current literature due to the lack

of an efficient approach to computing the exact distribution of the sample autocorrelation

coefficients. The main obstacle is in obtaining the eigenvalues for an n×n symmetric matrix

that characterizes a given autocorrelation coefficient. In this paper, we provide an efficient

algorithm for obtaining the eigenvalues for this matrix. Under the assumption of a mul-

tivariate elliptical distribution, we provide an efficient numerical algorithm for evaluating

the cumulative density function of the sample autocorrelation coefficients, as well as explicit

expressions for the exact moments and joint moments of the sample autocorrelation coef-

ficients. This enables us to evaluate the size property of the asymptotic normal test and

the normal approximation test based on the exact mean and variance. We find that the

asymptotic test has a serious under-rejection problem and that the normal approximation

test is a remarkable improvement over the asymptotic test for certain popular significance

levels. However, there can be cases in which the normal approximation test does not work

well, especially in the extreme end of the two tails. With our efficient algorithm, exact tests

are now practical to conduct.

In addition, we provide explicit expressions for the exact mean and variance of various

autocorrelation-based test statistics to help evaluate these tests. Actual size properties of

the Box-Pierce and Ljung-Box tests are investigated, and they are shown to have poor size

properties when the number of lags is relative large to the sample size. A simple adjusted
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Box-Pierce test based on the exact mean and variance of the traditional Box-Pierce test

statistic is proposed, and it is shown to have a far superior size property than the traditional

Box-Pierce and Ljung-Box tests as well as other modified portmanteau tests proposed in the

literature.
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Appendix A

Proof of Proposition 1. Let Tm be an m × m symmetric tridiagonal Toeplitz matrix

with its first row as [0, 1
2
, 0′m−2]. It is well known that cos(θ) and Qb are the eigenvalues

and eigenvectors of Tm (see e.g., Trench (1985)), so we have Tm = QbΛbQ
′
b, where Λb =

Diag(cos(θ)). Similarly, we have Tm+1 = QaΛaQ
′
a, where Λa = Diag(cos(φ)). Denoting

Λ = Diag(λ) and em = [0′m−1,
1
2
]′, we have

QΛQ′

= [In, 0n×(k−l)]

(
QaΛaQ

′
a ⊗ ELE ′L +

[
Qb

0′m

]
Λb[Q

′
b, 0m]⊗ ERE ′R

)
[In, 0n×(k−l)]

′

= [In, 0n×(k−l)]

(
Tm+1 ⊗ ELE ′L +

[
Tm 0m

0′m 0

]
⊗ ERE ′R

)
[In, 0n×(k−l)]

′

= [In, 0n×(k−l)]

(
Tm+1 ⊗ ELE ′L + Tm+1 ⊗ ERE ′R −

[
0m×m em

e′m 0

]
⊗ ERE ′R

)
[In, 0n×(k−l)]

′

= [In, 0n×(k−l)](Tm+1 ⊗ Ik)[In, 0n×(k−l)]
′

= Ak. (68)

The penultimate equality follows because ELE
′
L + ERE

′
R = Ik and the matrix[

0m×m em

e′m 0

]
⊗ ERE ′R =

[
0mk×mk em ⊗ ERE ′R

e′m ⊗ ERE ′R 0k×k

]
(69)

has only nonzero elements in its last k− l rows and columns. The last equality in (68) follows

because Tm+1⊗ Ik is an (m+ 1)k× (m+ 1)k symmetric matrix with entries of 1/2 in its kth

superdiagonal and sub-diagonal, and zero otherwise. It remains to show that QQ′ = In and

Q′Q = In. Let

Q∗ =

[
Qa ⊗ EL,

[
Qb

0′m

]
⊗ ER

]
. (70)

Using the fact that E ′LEL = Il, E
′
RER = Ik−l, E

′
LER = 0l×(k−l), QaQ

′
a = Q′aQa = Im+1,

QbQ
′
b = Q′bQb = Im, we have

Q′∗Q∗ =

[
Im+1 ⊗ Il 0(m+1)l×m(k−l)

0m(k−l)×(m+1)l Im ⊗ Ik−l

]
= In (71)
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and

Q∗Q
′
∗ = Im+1⊗ELE ′L+

(
Im+1 −

[
0m×m 0m

0′m 1

])
⊗ERE ′R =

[
In 0n×(k−l)

0(k−l)×n 0(k−l)×(k−l)

]
. (72)

Since Q = [In, 0n×(k−l)]Q
∗, we have QQ′ = In and

Q′Q = Q′∗[In, 0n×(k−l)]
′[In, 0n×(k−l)]Q∗ = Q′∗Q∗Q

′
∗Q∗ = In. (73)

This completes the proof.

Proof of Lemma 1. Writing

Bk = P ′nQΛQ′Pn = P ′nQ(In + Λ)Q′Pn − P ′nQ′QPn = P ′nQ(In + Λ)Q′Pn − In−1,(74)

Λ− 1

n
q̃q̃′ = (In + Λ)− 1

n
(In + Λ)

1
2Q′1n1′nQ(In + Λ)

1
2 − In

= (In + Λ)
1
2Q′MnQ(In + Λ)

1
2 − In

= (In + Λ)
1
2Q′PnP

′
nQ(In + Λ)

1
2 − In, (75)

we can see that the eigenvalues of Bk are equal to the eigenvalues of P ′nQ(In+Λ)Q′Pn minus

one, and the eigenvalues of Λ− 1
n
q̃q̃′ are equal to the eigenvalues of (In+Λ)

1
2Q′PnP

′
nQ(In+Λ)

1
2

minus one. Since AB andBA share the same nonzero eigenvalues, (In+Λ)
1
2Q′PnP

′
nQ(In+Λ)

1
2

and P ′nQ(In+Λ)Q′Pn share the same eigenvalues except that (In+Λ)
1
2Q′PnP

′
nQ(In+Λ)

1
2 has

one more eigenvalue of zero. Therefore, Bk and Λ− 1
n
q̃q̃′ share the same eigenvalues except

that Λ − 1
n
q̃q̃′ has one more eigenvalue of −1. It remains to show that the eigenvalues of

Bk are greater than −1. This follows because the eigenvalues of Ak are all greater than −1,

and by the Poincaré separation theorem (see, e.g., Magnus and Neudecker (1999, p.209)),

the n − 1 eigenvalues of Bk = P ′nAkPn must lie between the n eigenvalues of Ak, and as a

result the eigenvalues of Bk must also be greater than −1. This completes the proof.

Proof of Proposition 2. Let qa = Q′a1m+1 and qb = Q′b1m. It is straightforward to show

that the elements of qa and qb are given by

qa,i =

{ (
2

m+2

) 1
2 cot(φi/2) if i is odd,

0 if i is even,
(76)

qb,i =

{ (
2

m+1

) 1
2 cot(θi/2) if i is odd,

0 if i is even.
(77)

27



Since the last k − l rows of Q∗ in (70) are zero, we have

q = Q′1n = Q′∗1(m+1)k =

[
Q′a1m+1 ⊗ E ′L1k

Q′b1m ⊗ E ′R1k

]
=

[
qa ⊗ 1l

qb ⊗ 1k−l

]
. (78)

It follows that q̃ = (In + Λ)
1
2Q′1n is given by

q̃ =

[
q̃a ⊗ 1l

q̃b ⊗ 1k−l

]
, (79)

where

q̃a,i = [1 + cos(φi)]
1
2 qa,i =

√
2 cos(φi/2)qa,i =

{
2[csc(φi/2)−sin(φi/2)]√

m+2
if i is odd,

0 if i is even,
(80)

q̃b,i = [1 + cos(θi)]
1
2 qb,i =

√
2 cos(θi/2)qb,i =

{
2[csc(θi/2)−sin(θi/2)]√

m+1
if i is odd,

0 if i is even.
(81)

Note that for q̃i = 0, the corresponding λi of Ak remains as an eigenvalue of Bk, so we just

focus on the cases with nonzero q̃i. Define q̃oa and q̃ob as the vectors of odd elements of q̃a and

q̃b, respectively. Let

q̃o =

[
q̃oa ⊗ 1l

q̃ob ⊗ 1k−l

]
, λo =

[
cos(φo)⊗ 1l

cos(θo)⊗ 1k−l

]
, λe =

[
cos(φe)⊗ 1l

cos(θe)⊗ 1k−l

]
, (82)

and Λo = Diag(λo); the eigenvalues of Bk are given by λe and the eigenvalues of

Λo − 1

n
q̃oq̃o′. (83)

As λo has many duplicate elements, it allows us to further deflate the problem. Consider

the following orthonormal matrix

R =

[
Ib(m+2)/2c ⊗Ra 0b(m+2)/2c×b(m+1)/2c

0b(m+1)/2c×b(m+2)/2c Ib(m+1)/2c ⊗Rb

]
, (84)

where Ra = [l−
1
2 1l, Pl] and Rb = [(k − l)−

1
2 1k−l, Pk−l] and they are both orthonormal

matrices. Using the fact that R′a1l = [l
1
2 , 0′l−1]

′ and R′b1k−l = [(k − l) 1
2 , 0′k−l−1]

′, we obtain

r ≡ R′q̃o =

[
q̃oa ⊗ [l

1
2 , 0′l−1]

′

q̃ob ⊗ [(k − l) 1
2 , 0′k−l−1]

′

]
(85)
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and it has only nonzero elements of l
1
2 q̃oa and (k− l) 1

2 q̃ob . Note that Λo− 1
n
q̃oq̃o′ and R′ΛoR−

1
n
R′q̃oq̃o′R = Λo − 1

n
rr′ share the same eigenvalues, so we can obtain the eigenvalues of

Λo − 1
n
rr′ instead. For the zero elements of r, the corresponding elements of λo are also the

eigenvalues of Bk, so [cos(φo)′ ⊗ 1′l−1, cos(θo)′ ⊗ 1′k−l−1] are eigenvalues of Bk. Eliminating

the zero elements in r, the rest of the eigenvalues of Bk can be obtained as the eigenvalues

of

Diag([cos(φo)′, cos(θo)′])− 1

n
r̃r̃′, (86)

where r̃ = [l
1
2 q̃oa
′, (k − l) 1

2 q̃ob
′]′ is the nonzero elements of r̃. This completes the proof.

Proof of Lemma 2. We only provide the proof for the case that l > 0. The proof for the

case of l = 0 is similar. For even i, g(x) strictly increases in x when cosφi+1 < x < cos θi−1,

so in order to show cos θi > ξbi, we need to prove that g(cos θi) > 0 for even i. Defining

h(j) = g(cos θ2j), we have

h′(j) = −g′(cos θ2j) sin θ2j
2π

m+ 1
< 0. (87)

The above inequality holds because g′(cos θ2j) > 0 and sin θ2j > 0 when 0 < θ2j < π. This

implies g(cos θ2) > g(cos θ4) > · · · > g(cos θ2p), where p = bm/2c. Therefore, in order to

show g(cos θi) > 0 for even i, it suffices to show g(cos θ2p) > 0.

By defining

g1(x) =

b(m+2)/2c∑
i=1

cot2(φ2i−1/2)

cosφ2i−1 − x
, (88)

g2(x) =

b(m+1)/2c∑
i=1

cot2(θ2i−1/2)

cos θ2i−1 − x
, (89)

we can write

g(x) =
2(1−mδ)
m+ 2

g1(x) +
2[(m+ 1)δ − 1]

m+ 1
g2(x). (90)

Note thatmδ < 1 and (m+1)δ > 1, so if we can prove that g1(cos θ2p) > 0 and g2(cos θ2p) > 0,

it implies g(cos θ2p) > 0.

We first consider the case that m is even. When m is even, 2p = m. Note that

g2(cos θm) > 0 because all of its terms are positive. For g1(cos θm), all of its terms are
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positive except for the last term. Keeping only the first and the last term, we have

g1(cos θm) ≥ cot2(φ1/2)

cosφ1 − cos θm
+

cot2(φm+1/2)

cosφm+1 − cos θm

=
cot2(φ1/2)

cosφ1 + cos θ1
+

tan2(φ1/2)

− cosφ1 + cos θ1

=
2 [cos2 φ1(2− cos θ1)− cos θ1]

(cos2 φ1 − cos2 θ1) sin2 φ1

. (91)

The denominator of the above expression is positive, so we just need to show that the

numerator is also positive. Since both cos2 x and cosx are concave function for 0 < x < π/2,

we have

φ1 =
1

m+ 2
× 0 +

(m+ 1)

m+ 2
× θ1

⇒ cos2 φ1 ≥
1

m+ 2
+

(m+ 1) cos2 θ1
m+ 2

=
1 + (m+ 1) cos2 θ1

m+ 2
, (92)

θ1 =
(m− 2)

m+ 1
× 0 +

3

m+ 1
× π

3

⇒ cos θ1 ≥
m− 2

m+ 1
+

3

2(m+ 1)
=

2m− 1

2m+ 2
>
m− 1

m+ 1
. (93)

Therefore,

cos2 φ1(2− cos θ1)− cos θ1 ≥
[

1 + (m+ 1) cos2 θ1
m+ 2

]
(2− cos θ1)− cos θ1

=
(1− cos θ1) [2− (m+ 1)(cos θ1 − cos2 θ1)]

m+ 2

≥ (1− cos θ1) [2 cos θ1 − (m+ 1)(cos θ1 − cos2 θ1)]

m+ 2

=
(1− cos θ1) cos θ1 [(m+ 1) cos θ1 − (m− 1)]

m+ 2
> 0. (94)

For the case that m is odd, 2p = m − 1. When m = 1, ξb1 = δ − 1
2

(see Table 1) and it is

between 0 and 1/2, so (21) holds. It remains to show that for m ≥ 3, g1(cos θm−1) > 0 and

g2(cos θm−1) > 0. It is trivial to see that all the terms in g2(cos θm−1) are positive except for

the last term, so keeping only the first and the last term, we have

g2(cos θm−1) ≥
cot2(θ1/2)

cos θ1 − cos θm−1
+

cot2(θm/2)

cos θm − cos θm−1

=
cot2(θ1/2)

cos θ1 + cos θ2
+

tan2(θ1/2)

− cos θ1 + cos θ2

=
2(2 + cos θ2)

sin2 θ1(1 + 2 cos θ2)
> 0. (95)

30



Similarly, keeping only the first and the last term of g1(cos θm−1), we have

g1(cos θm−1) ≥
cot2(φ1/2)

cosφ1 − cos θm−1
+

cot2(φm/2)

cosφm − cos θm−1

=
cot2(φ1/2)

cosφ1 + cos θ2
+

tan2(φ1)

− cosφ2 + cos θ2

=
[(1− cosφ1)

3 + 2 cos4φ1 − 2 cos2 θ1(1− 2 cosφ1 + 2 cos2φ1)]

tan2(φ1/2) cos2 φ1(cosφ2 − cos θ2)(cosφ1 + cos θ2)
. (96)

The denominator of the above expression is obviously positive, so we only need to show that

its numerator is also positive. Denoting u = cosφ1 and applying (92), we can write the

numerator as

(1− u)3 + 2u4 − 2 cos2 θ1(1− 2u+ 2u2)

≥ (1− u)3 + 2u4 − 2[(m+ 2)u2 − 1]

m+ 1
(1− 2u+ 2u2)

=
(1− u2)[m+ 3− (3m+ 7)u+ (2m+ 6)u2]

m+ 1
. (97)

Let q(x) = m+ 3− (3m+ 7)x+ (2m+ 6)x2. When 0 ≤ m < 3 + 4
√

2, the quadratic equation

q(x) = 0 has no real roots and q(u) > 0. For m ≥ 3 + 4
√

2, we use (93) to show that

u > cos θ1 >
2m− 1

2m+ 2
>

3m+ 7 +
√
m2 − 6m+ 9

4(m+ 3)
>

3m+ 7 +
√
m2 − 6m− 23

4(m+ 3)
(98)

and the last term is the larger root of q(x) = 0. As q(x) is an increasing function of x for

x greater than the larger root of q(x) = 0, we also have q(u) > 0 when m ≥ 3 + 4
√

2. This

completes the proof.

Proof of Lemma 3. When k = 1, l = 0 and m = n. So, ξa = [cos(θe)′ ⊗ 1′k]
′. From Lemma

2, we know that

cos

(
2π

n+ 1

)
≥ ξ∗∗b ≥ cos

(
3π

n+ 1

)
, (99)

cos

(
(n− 2)π

n+ 1

)
≥ ξ∗b ≥ cos

(
(n− 1)π

n+ 1

)
if n is even,

cos

(
(n− 1)π

n+ 1

)
≥ ξ∗b ≥ cos

(
nπ

n+ 1

)
if n is odd. (100)

Therefore,

cos

(
2π

n+ 1

)
≥ ρ̂(1) ≥ − cos

(
π

n+ 1

)
if n is even, (101)
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cos

(
2π

n+ 1

)
≥ ρ̂(1) ≥ ξ∗b if n is odd. (102)

When k > 1 and l = 0, we have ξa =
[
cos(θo)′ ⊗ 1′k−1, cos(θe)′ ⊗ 1′k

]′
. Since it must be true

that cos θ1 > ξbi > cos θm, we have

cos

(
π

m+ 1

)
≥ ρ̂(k) ≥ cos

(
m

m+ 1

)
= − cos

(
π

m+ 1

)
. (103)

When k > 1 and l = 1, we have ξa =
[
cos(φe)′, cos(θo)′ ⊗ 1′k−2, cos(θe)′ ⊗ 1′k−1

]′
. And from

Lemma 2, we have

cos

(
π

m+ 2

)
> ξ∗∗b > cos

(
π

m+ 1

)
, (104)

cos

(
mπ

m+ 1

)
> ξ∗b > cos

(
(m+ 1)π

m+ 2

)
if m is even, (105)

cos

(
mπ

m+ 2

)
> ξ∗b > cos

(
mπ

m+ 1

)
if m is odd. (106)

Therefore,

ξ∗∗b ≥ ρ̂(k) ≥ ξ∗b if m is even, (107)

ξ∗∗b ≥ ρ̂(k) ≥ − cos

(
π

m+ 2

)
if m is odd. (108)

When k > 1 and l > 1, ξa =
[
cos(φo)′ ⊗ 1′l−1, cos(φe)′ ⊗ 1′l−1, cos(θo)′ ⊗ 1′k−l−1, cos(θe)′ ⊗ 1′k−l

]′
.

Since it must be true that cos(φ1) > ξbi > cos(φm+1), we have

cos

(
π

m+ 2

)
≥ ρ̂(k) ≥ cos

(
(m+ 1)π

m+ 2

)
= − cos

(
π

m+ 2

)
. (109)

This completes the proof.

Proof of Propositions 3 and 4. It is well known that when y has a spherical distribution,

u = y/(y′y)
1
2 and y′y are independent of each other (see, e.g., Theorem 1.5.6 of Muirhead

(1982)). Since the distribution of u is the same for all spherical distributions y, we can

assume normality of y without loss of generality. Therefore,

E

[
p∏
i=1

(y′Biy)si

]
= E

[
(y′y)s

p∏
i=1

(
y′Bkiy

y′y

)si]
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= E

[
(y′y)s

p∏
i=1

(u′Bkiu)
si

]

= E[(y′y)s]E

[
p∏
i=1

(u′Bkiu)
si

]

= (n− 1)(n+ 1) · · · (n− 3 + 2s)E

[
p∏
i=1

(
y′Bkiy

y′y

)si]
. (110)

The third equality follows from the independence of u and y′y. The last equality follows

because y′y ∼ χ2
n−1, so its sth moment is given by (n − 1)(n + 1) · · · (n − 3 + 2s) (see, for

example, Johnson, Kotz, and Balakrishnan (1995, Eq. 18.8)). The recursive relation in (36)

is based on a recursive relation between moments and cumulants and can be found in Mathai

and Provost (1992, Eq. 3.2b.8). Finally, (43) is obtained from Proposition 4 of Kan (2008).

This completes the proof.

Proof of Lemma 4. The first equalities of E[ρ̂(j)ρ̂(k)] and E[ρ̂(j)2ρ̂(k)2] follow from our

Proposition 4 and Lemma 6.2 of Magnus (1978). To obtain the second equalities, we need

to have expressions of all the traces. The expressions of aj and ajk are easy to obtain and

they are given by

aj = −n− j
n

, (111)

ajk = −j(n− k)

n2
− (n− j − k)+

n
+

(n− k)δj,k
2

, j ≤ k. (112)

For j < k, the other traces are given by

ajjk = −(n− k)(n2 − 2jn+ 4j2)

4n3
+

(n− k)(n− 2j)+

2n2
− j(n− j − k)+

n2

− 3(n− 2j − k)+

4n
− (n−max[2j, k])+

2n
+

(n− k)δ2j,k
4

, (113)

ajkk =
(n− k)(n− 2k)j

2n3
− j(n− 2k)+

2n2
− k(n− j − k)+

n2

− 3(n− j − 2k)+ + (n+ j − 2k)+

4n
, (114)

ajjkk = −(n− k)(8j2k − 4j2n− 4jkn+ 2jn2 + 2kn2 − n4)

8n4

− (4k2 − 6kn+ 2n2)(n− 2j)+

8n3
− (8jk − 2jn+ 2kn− n3)(n− j − k)+

8n3
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− (4j2 + 2jn+ 3n2)(n− 2k)+

8n3
− k(n− 2j − k)+ + j(n− j − 2k)+

2n2

− (n− 2j − 2k)+

2n
− (n+ 2j − 2 max[2j, k])+

8n

− (2k − n)(n−max[2j, k])+

4n2
, (115)

ajkjk =
j2(n− k)2

n4
− [8jk + 2n(k − j)− n3](n− j − k)+

4n3
− k(n− 2j − k)+

2n2

− j(n+ j − 2k)+ + j(n− j − 2k)+

2n2
− (n− 2k)+ + (n− 2j − 2k)+

2n
. (116)

The proof of the above expressions are available upon request. Using these expressions and

upon simplification, we obtain our explicit expressions of E[ρ̂(j)ρ̂(k)] and E[ρ̂(j)2ρ̂(k)2]. This

completes the proof.

Proof of Lemma 5. By substituting in the expression of the exact mean of ρ̂(k) which

is given in (38), the expression for the exact mean of Knoke’s statistic is straightforward.

To obtain the explicit expression for the exact variance, we first need to get the explicit

expression for Var[ρ̂(k)] and Cov[ρ̂(j), ρ̂(k)], which can be derived from (38), (39) and (44).

The expressions are given by

Var[ρ̂(k)] =
(n− 2)(n− k)(n2 + n− 2k)

(n+ 1)n2(n− 1)2
− 2(n− 2k)+

n(n2 − 1)
, (117)

Cov[ρ̂(j), ρ̂(k)] = −2(n− k)[n+ (n− 2)j]

(n+ 1)n2(n− 1)2
− 2(n− j − k)+

n(n2 − 1)
for j < k. (118)

In addition, we need two more identities to obtain Var[T ],

2
n−2∑
j=1

n−1∑
k=j+1

1

jk
= H2

n−1 −H
(2)
n−1, (119)

n−2∑
j=1

n−1−j∑
k=1

n− j − k
jk

= n[(Hn − 1)2 − (H(2)
n − 1)]. (120)

Given the above expressions, we can write

Var[T ] =
n−1∑
k=1

Var[ρ̂(k)]

k2
+ 2

n−2∑
j=1

n−1∑
k=j+1

Cov[ρ̂(j), ρ̂(k)]

jk

=
(n− 2)

∑n−1
k=1

(n−k)(n2+n−2k)
k2

− 4
∑n−2

j=1

∑n−1
k=j+1

(n−k)[n+(n−2)j]
jk

(n+ 1)n2(n− 1)2
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−
2
∑n−2

j=1

∑n−1−j
k=1

n−j−k
jk

n(n2 − 1)

=
(n− 2)[2n− n(n+ 3)Hn + n2(n+ 1)H

(2)
n ]

(n+ 1)n2(n− 1)2

− 2n[n(H2
n −H

(2)
n )− 4(n− 1)Hn + (n+ 2)(n− 1)]

(n+ 1)n2(n− 1)2

− 2n[(Hn − 1)2 − (H
(2)
n − 1)]

n(n2 − 1)

=
(n+ 2)n(n− 1)H

(2)
n − 2n2H2

n + (3n2 + 3n− 2)Hn − 2n(3n− 2)

(n+ 1)n(n− 1)2
. (121)

This completes the proof.

Proof of Lemma 6. Using the analytical expression of E[ρ̂(k)] in (38), it is straightforward

to obtain the analytical expression of E[θ̂(m)]. For Var[θ̂(m)], we use (117) and (118) to

obtain

Var[θ̂(m)] = 4
m−1∑
k=1

(
1− k

m

)2

Var[ρ̂(k)]

+ 8
m−2∑
j=1

m−1∑
k=j+1

(
1− j

m

)(
1− k

m

)
Cov[ρ̂(j), ρ̂(k)]

= 4
m−1∑
k=1

(
1− k

m

)2(
(n− 2)(n− k)(n2 + n− 2k)

(n+ 1)n2(n− 1)2

)
+

+ 8
m−2∑
j=1

m−1∑
k=j+1

(
1− j

m

)(
1− k

m

)(
−2(n− k)[n+ (n− 2)j]

(n+ 1)n2(n− 1)2

)

+ 4
m−1∑
j=1

m−1∑
k=1

(
1− j

m

)(
1− k

m

)(
−2(n− j − k)+

n(n2 − 1)

)
. (122)

The analytical expressions for the first two terms can be easily obtained. For the last term,

we obtain separate analytical expressions for n ≥ 2(m − 1) and for n < 2(m − 1). Then

combining these expressions and after simplification, we obtain (52). This completes the

proof.

Proof of Lemma 7. Using the analytical expression of E[ρ̂(k)] in (38), it is straightforward

to obtain the analytical expression of E[θ̂(m)]. The exact variance of β̂(m) can be derived
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as following

Var[β̂(m)] =
2m−1∑
j=1

2m−1∑
k=1

min[j, 2m− j] min[k, 2m− k]

m2
Cov[ρ̂(j), ρ̂(k)]

=
m∑
j=1

m∑
k=1

jk

m2
Cov[ρ̂(j), ρ̂(k)] + 2

m∑
j=1

2m−1∑
k=m+1

j(2m− k)

m2
Cov[ρ̂(j), ρ̂(k)]

+
2m−1∑
j=m+1

2m−1∑
k=m+1

(2m− j)(2m− k)

m2
Cov[ρ̂(j), ρ̂(k)]. (123)

Then using (117) and (118), we can obtain analytical expression of Var[β̂(m)] for three

different cases: (1) n ≥ 4m−2, (2) 3m−1 ≤ n < 4m−2, and (3) n < 3m−1. By combining

these three analytical expressions of Var[β̂(m)] and after simplification, we obtain (57). This

completes the proof.

Proof of Lemma 8. Using (39), we obtain

E[QBP ] =
m∑
k=1

(n− k)(n2 + n− 3k)

n(n2 − 1)
−

m−h∑
k=1

2(n− 2k)

n2 − 1

=
m[2n3 − (m+ 3)n2 + (m+ 1)(2m+ 1)]− 4nh(2m− n+ 1− h)

2n(n2 − 1)
, (124)

E[QLB] = (n+ 2)
m∑
k=1

(n2 + n− 3k)

n(n2 − 1)
− (n+ 2)

m−h∑
k=1

2(n− 2k)

(n2 − 1)(n− k)

=
(n+ 2) {m[2n(n− 3)− 3(m+ 1)] + 4n[2h+ n(Hn−1 −Hn−m+h−1)]}

2n(n2 − 1)
.(125)

This completes the proof.
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Fig. 1. For four different sample sizes (n), the figure presents the range of the kth lag sample
autocorrelation coefficient for k = 1, . . . , n− 1.
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Fig. 2. The figure presents the lower and upper fifth percentiles of both the exact and
asymptotic distributions of ρ̂(k) as a function of k for four different sample sizes (n) under
the assumption that the data are serially uncorrelated and jointly elliptically distributed with
constant mean and variance. The solid lines represent the percentiles based on the exact
distribution. The dotted lines represent the percentiles based on the asymptotic normal
distribution.
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Fig. 3a. The figure presents the actual sizes of the asymptotic test, normal approximation test
using exact mean and variance, and test based on Pearson’s approximation for H0 : ρ(k) = 0
as a function of k for four different sample sizes (n) when the nominal size of the test is 10%.
The solid lines represent the actual size of the asymptotic test. The dotted lines represent
the actual size of the normal approximation test using exact mean and variance. The dashed
lines represent the actual size of the test based on Pearson’s approximation.
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Fig. 3b. The figure presents the actual sizes of the asymptotic test, normal approximation
test using exact mean and variance, and test based on Pearson’s approximation for H0 :
ρ(k) = 0 as a function of k for four different sample sizes (n) when the nominal size of the
test is 5%. The solid lines represent the actual size of the asymptotic test. The dotted lines
represent the actual size of the normal approximation test using exact mean and variance.
The dashed lines represent the actual size of the test based on Pearson’s approximation.
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Fig. 4. The figure plots the ratio of approximate to exact variance of the variance-ratio test
statistic (θ̂(m)) and long-horizon regression test statistic (β̂(m)) as a function of m for four
different sample sizes (n). The solid lines represent the ratios for the variance-ratio test
statistic and dashed lines represent the ratios for the long-horizon regression test statistic.
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Fig. 5. The figure presents the exact mean of the two Q-statistics as a function of m for
four different sample sizes (n). The solid lines represent the exact mean of Ljung-Box Q-
statistic. The dashed lines represent the exact mean of Box-Pierce Q-statistic. The dotted
lines represent the asymptotic mean of the statistics.
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Fig. 6. The figure presents the exact variance of the two Q-statistics as a function of m for
four different sample sizes (n). The solid lines represent the exact variance of Ljung-Box
Q-statistic. The dashed lines represent the exact variance of Box-Pierce Q-statistic. The
dotted lines represent the asymptotic variance of the statistics.
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Fig. 7a. The figure presents the actual sizes of the Box-Pierce test (QBP ) and the Ljung-Box
test (QLB) as a function of m for four different sample sizes (n) when the nominal size of
the test is 10%. The dashed lines represent the actual size of the Box-Pierce test and the
solid lines represent the actual size of the Ljung-Box test.
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Fig. 7b. The figure presents the actual sizes of the Box-Pierce test (QBP ) and the Ljung-Box
test (QLB) as a function of m for four different sample sizes (n) when the nominal size of the
test is 5%. The dashed lines represent the actual size of the Box-Pierce test and the solid
lines represent the actual size of the Ljung-Box test.
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Fig. 8a. The figure presents the actual sizes of the Dufour-Roy test (QDR), the Kwan-Sim
test (QKS), and the adjusted Box-Pierce test (Qa

BP ) as a function of m for four different
sample sizes (n) when the nominal size of the test is 10%. The dashed lines represent the
actual size of the Dufour-Roy test, the dotted lines represent the actual size of the Kwan-Sim
test, and the solid lines represent the actual size of the adjusted Box-Pierce test.
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Fig. 8b. The figure presents the actual sizes of the Dufour-Roy test (QDR), the Kwan-Sim
test (QKS), and the adjusted Box-Pierce test (Qa

BP ) as a function of m for four different
sample sizes (n) when the nominal size of the test is 5%. The dashed lines represent the
actual size of the Dufour-Roy test, the dotted lines represent the actual size of the Kwan-Sim
test, and the solid lines represent the actual size of the adjusted Box-Pierce test.
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Table 1
List of eigenvalues of P ′nAkPn that are distinct from the eigenvalues of Ak

m ξb

l = 0

3 −2/3

4 −1/4

5 (−4±
√

21)/10

6 (−1±
√

7)/6

7 Roots of 14x3 + 12x2 − 3x− 2 = 0

8 Roots of 16x3 + 6x2 − 6x− 1 = 0

9 Roots of 144x4 + 128x3 − 60x2 − 48x+ 1 = 0

10 Roots of 80x4 + 32x3 − 48x2 − 12x+ 3 = 0

11 Roots of 176x5 + 160x4 − 112x3 − 96x2 + 9x+ 6 = 0

12 Roots of 192x5 + 80x4 − 160x3 − 48x2 + 24x+ 3 = 0

13 Roots of 832x6 + 768x5 − 720x4 − 640x3 + 120x2 + 96x− 1 = 0

14 Roots of 112x6 + 48x5 − 120x4 − 40x3 + 30x2 + 6x− 1 = 0

l > 0

1 δ − 1/2

2 (2δ − 1±
√

4δ2 + 12δ + 1)/4

3 Roots of x3 +
(
1
2
− δ
)
x2 −

(
1
4

+ δ
)
x− δ

2
= 0

4 Roots of x4 +
(
1
2
− δ
)
x3 −

(
1
2

+ δ
)
x2 −

(
1
8

+ δ
4

)
x+

(
1
16
− δ

4

)
= 0

5 Roots of x5 +
(
1
2
− δ
)
x4 −

(
3
4

+ δ
)
x3 − x2

4
+ x

8
+
(

1
32
− 3δ

16

)
= 0

6 Roots of x6 +
(
1
2
− δ
)
x5 − (1 + δ)x4 −

(
3
8
− δ

4

)
x3 +

(
1
4

+ δ
4

)
x2 +

(
1
16
− δ

8

)
x− δ

8
= 0

7 Roots of x7 +
(
1
2
− δ
)
x6 −

(
5
4

+ δ
)
x5 −

(
1
2
− δ

2

)
x4 +

(
7
16

+ δ
2

)
x3

+
(
1
8
− δ

8

)
x2 −

(
1
32

+ δ
8

)
x− δ

16
= 0

8 Roots of x8 +
(
1
2
− δ
)
x7 −

(
3
2

+ δ
)
x6 −

(
5
8
− 3δ

4

)
x5 +

(
11
16

+ 3δ
4

)
x4

+
(

7
32
− 3δ

16

)
x3 −

(
3
32

+ 3δ
16

)
x2 −

(
1
64

+ δ
32

)
x+

(
1

256
− δ

32

)
= 0

9 Roots of x9 +
(
1
2
− δ
)
x8 −

(
7
4

+ δ
)
x7 −

(
3
4
− δ
)
x6 + (1 + δ)x5 +

(
11
32
− 5δ

16

)
x4

−
(
13
64

+ 5δ
16

)
x3 − 3x2

64
+ 3x

256
+
(

1
512
− 5δ

256

)
= 0

10 Roots of x10 +
(
1
2
− δ
)
x9 − (2 + δ)x8 −

(
7
8
− 5δ

4

)
x7 +

(
11
8

+ 5δ
4

)
x6 +

(
1
2
− δ

2

)
x5

−
(
3
8

+ δ
2

)
x4 −

(
13
128
− 3δ

64

)
x3 +

(
9

256
+ 3δ

64

)
x3 +

(
3

512
− 3δ

256

)
x2 +

(
1

512
− 3δ

256

)
x− 3δ

256
= 0
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