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This online appendix is structured as follows. In Section 1, we provide theorems and additional

simulation results for the gross returns case studied in the paper. In Section 2, we present theoretical

and simulation results for the excess returns case. Finally, Section 3 is for the optimal generalized

method of moments (GMM) case.

1. Theorems and Additional Simulation Results

First, we derive the limiting distributions of the parameter estimates and their corresponding t-

statistics as well as the HJ-distance test for correct model specification when a useless factor is

present in the model. Next, we report additional simulation evidence to substantiate some of the

claims made in the paper.

1.1 Theorems

Consider a candidate SDF that is given by

yt = f̃ ′tγ1 + gtγ2, (1)

where f̃t = [1, f ′t ]
′, ft is a (K − 1)-vector of useful risk factors and gt denotes a useless factor that

is independent of xt and ft for all time periods. For ease of exposition, we assume that E[gt] = 0

and Var[gt] = 1.1 Let B = E[xtf̃
′
t ], and note that the independence between gt and xt implies

d = E[xtgt] = 0N (2)

and

E[xtx
′
tg

2
t ] = E[E[xtx

′
t|gt]g2t ] = UE[g2t ] = U. (3)

Now let D = [B, d], γ = [γ′1, γ2]
′, e(γ) = Dγ − q, d̂ = 1

T

∑T
t=1 xtgt, B̂ = 1

T

∑T
t=1 xtf̃

′
t , and

D̂ = [B̂, d̂]. Note that since d = 0N , the vector of pricing errors

e(γ) = Bγ1 + dγ2 − q = Bγ1 − q (4)

is independent of the choice of γ2. The pseudo-true value of the SDF parameter associated with

the useless factor (γ∗2) cannot be identified. In the following, we set γ∗2 = 0, which is a natural

1This assumption does not affect our asymptotic results on statistical inference for the slope parameters of the
linear SDF. It does, however, affect the limiting distribution of the estimated SDF’s intercept and the statistical
inference on it. The limiting results derived under a generic mean and variance of the useless factor are available
from the authors upon request.
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choice because in Theorem 1 we will show that γ̂2 is symmetrically distributed around zero. While

the pseudo-true value γ∗2 is not identified, the sample estimates of the SDF parameters are always

identified and they are given by

γ̂ = (D̂′Û−1D̂)−1D̂′Û−1q. (5)

Note that the estimator in Equation (5) can be obtained equivalently by running an ordinary

least squares (OLS) regression of Û−
1
2 q on Û−

1
2 B̂ and Û−

1
2 d̂. In order to construct γ̂2, we can

project Û−
1
2 q and Û−

1
2 d̂ on Û−

1
2 B̂, and then regress the residuals from the first projection on the

residuals from the second projection. It follows that

γ̂2 =
d̂′Û−

1
2 [IN − Û−

1
2 B̂(B̂′Û−1B̂)−1B̂′Û−

1
2 ]Û−

1
2 q

d̂′Û−
1
2 [IN − Û−

1
2 B̂(B̂′Û−1B̂)−1B̂′Û−

1
2 ]Û−

1
2 d̂
. (6)

Similarly, the parameter vector γ̂1 is obtained by projecting Û−
1
2 q and Û−

1
2 B̂ on Û−

1
2 d̂ and then

regressing the residuals from the first projection on the residuals from the second projection, which

yields

γ̂1 = (B̂′Û−
1
2 [IN − Û−

1
2 d̂(d̂′Û−1d̂)−1d̂′Û−

1
2 ]Û−

1
2 B̂)−1

× B̂′Û−
1
2 [IN − Û−

1
2 d̂(d̂′Û−1d̂)−1d̂′Û−

1
2 ]Û−

1
2 q. (7)

We make the following assumptions.

Assumption 1. Assume that (i) N > K + 1; (ii) [x′t, f
′
t , gt]

′ are jointly stationary and ergodic

processes with finite fourth moments; (iii) et(γ
∗
1) − e(γ∗1) forms a martingale difference sequence;

and (iv) the matrices B (N ×K) and D (N×(K + 1)) have a column rank K.

Assumption 2. Let εt = xt − B(E[f̃tf̃
′
t ])
−1f̃t and assume that E[εtε

′
t|f̃t] = Σ (conditional ho-

moscedasticity).

Our first results are concerned with the limiting behavior of γ̂1 and γ̂2 under correctly specified

and misspecified models. We adopt the following notation. Let B̃ = U−
1
2B, q̃ = U−

1
2 q, and

P be an N × (N − K) orthonormal matrix whose columns are orthogonal to B̃ so that PP ′ =

IN − B̃(B̃′B̃)−1B̃′. Also, let z ∼ N(0N , IN ) and y ∼ N(0N , U
− 1

2SU−
1
2 ), and they are independent

of each other. Finally, we define w = P ′z ∼ N(0N−K , IN−K), s = (q̃′Pw)/(q̃′PP ′q̃)
1
2 ∼ N(0, 1),
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u = P ′y ∼ N(0N−K , Vu) with Vu = P ′U−
1
2SU−

1
2P , and r = (B̃′B̃)−

1
2 B̃′y ∼ N(0K , Vr) with

Vr = (B̃′B̃)−
1
2 B̃′U−

1
2SU−

1
2 B̃(B̃′B̃)−

1
2 .

Theorem 1. Assume that the conditions in Assumption 1 are satisfied.

(a) If δ = 0, that is, the model is correctly specified, we have

√
T (γ̂1 − γ∗1)

d→ (B̃′B̃)−
1
2

[
r − w′u

w′w
(B̃′B̃)−

1
2 B̃′z

]
, (8)

and

γ̂2
d→ w′u

w′w
. (9)

(b) If δ > 0, that is, the model is misspecified, we have

γ̂1 − γ∗1
d→ − δs

w′w
(B̃′B̃)−1B̃′z, (10)

and
1√
T
γ̂2

d→ δs

w′w
. (11)

Proof. See the Appendix.

The results in Theorem 1 subsume the results in Proposition 1 in the paper and can be sum-

marized as follows. First, for correctly specified models, Theorem 1 shows that γ̂2 converges to a

bounded random variable rather than the constant zero.2 While the parameter estimates for the

useful factors are consistently estimable, they are asymptotically nonnormally distributed. Sec-

ond, the presence of a useless factor further exacerbates the inference problems when the model is

misspecified. In this case, the estimator γ̂1 is inconsistent, while the estimator γ̂2 diverges at rate

T
1
2 .

We next derive the limiting distributions of two types of t-statistics (as defined in the paper):

(i) tc(γ̂1i) of H0 : γ1i = γ∗1i for i = 1, . . . ,K, and tc(γ̂2) of H0 : γ2 = 0 that use standard

errors obtained under the assumption that the model is correctly specified, and (ii) tm(γ̂1i) of

H0 : γ1i = γ∗1i for i = 1, . . . ,K, and tm(γ̂2) of H0 : γ2 = 0 that use standard errors under

2The limiting random variable has mean zero and variance tr(Vu)/[(N −K)(N −K − 2)], where tr(·) is the trace
operator.
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potentially misspecified models. The two types of t-statistics are based on the estimated covariance

matrices Σ̂0
γ̂ = 1

T

∑T
t=1 ĥ

0
t ĥ

0′
t and Σ̂γ̂ = 1

T

∑T
t=1 ĥtĥ

′
t, where

ĥ0t = (D̂′Û−1D̂)−1D̂′Û−1êt, (12)

ĥt = ĥ0t + (D̂′Û−1D̂)−1([f̃ ′t , gt]
′ − D̂′Û−1xt)ê′Û−1xt, (13)

êt = xt(f̃
′
t γ̂1 + gtγ̂2)− q and ê = 1

T

∑T
t=1 êt.

The results presented below are driven, to a large extent, by the limiting behavior of the matrix

Ŝ = 1
T

∑T
t=1 êtê

′
t. In the presence of a useless factor, the results in Theorem 1 imply that for

misspecified models

êt = (T−
1
2 γ̂2)(T

1
2xtgt) +Op(1) (14)

and
Ŝ

T
= (T−

1
2 γ̂2)

2U + op(1), (15)

so Ŝ diverges at rate T . In contrast, for correctly specified models, we have

Ŝ = S + γ̂22U + op(1), (16)

so that Ŝ converges to a random matrix.

In addition to the random variables and matrices defined before Theorem 1, we introduce

the following notation. Let ũ ∼ N(0, 1), r̃i ∼ N(0, 1), z̃i ∼ N(0, 1), v ∼ χ2
N−K−1, and they

are independent of each other and w. Theorem 2 and Corollary 1 (Proposition 2 in the paper)

below provide the limiting distributions of the t-statistics under correctly specified and misspecified

models.

Theorem 2.

(a) Suppose that the conditions in Assumptions 1 and 2 hold.3 If δ = 0, that is, the model is

3The limiting distribution of tc(γ̂2) does not depend on the conditional homoscedasticity assumption. The expres-
sions for the limiting distributions of the other t-statistics under conditional heteroscedasticity are more involved,
and the results are available upon request.
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correctly specified, we have

tc(γ̂1i)
d→ ũz̃i +

√
λi
√
w′wr̃i[

λiw′w + z̃2i + ũ2
(

1 +
z̃2i
w′w

)] 1
2

, (17)

tm(γ̂1i)
d→ ũz̃i +

√
λi
√
w′wr̃i[

λiw′w + z̃2i + ũ2
(

1 +
z̃2i
w′w

)
+

z̃2i v
w′w

] 1
2

, (18)

tc(γ̂2)
d→ ũ(

1 + ũ2

w′w

) 1
2

, (19)

tm(γ̂2)
d→ ũ(

1 + ũ2+v
w′w

) 1
2

, (20)

where λi is a positive constant and its explicit expression is given in the Appendix.

(b) Suppose that the conditions in Assumption 1 hold and denote the sign operator by sgn (·). If

δ > 0, that is, the model is misspecified, we have

tc(γ̂1i)
d→ z̃i(

1 +
z̃2i
w′w

) 1
2

, (21)

tm(γ̂1i)
d→ N

(
0,

1

4

)
, (22)

tc(γ̂2)
d→ sgn(s)

√
w′w, (23)

tm(γ̂2)
d→ N(0, 1). (24)

Proof. See the Appendix.

Corollary 1.

(a) Suppose that the conditions in Assumptions 1 and 2 hold. Then, for correctly specified

models, the limiting distributions of t2c(γ̂1i), t
2
m(γ̂1i), t

2
c(γ̂2), and t2m(γ̂2) are stochastically

dominated by χ2
1.

(b) Suppose that the conditions in Assumption 1 hold. Then, for misspecified models, the limiting

distributions of t2c(γ̂1i) and t2m(γ̂1i) are stochastically dominated by χ2
1.

Proof. See the Appendix.
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Finally, it is instructive to investigate whether the presence of a useless factor affects the limiting

behavior of the specification test based on the sample squared HJ-distance

δ̂
2

= ê′Û−1ê. (25)

In the absence of a useless factor, it is well known that under a correctly specified model (Jagan-

nathan and Wang 1996)

T δ̂
2 d→

N−K∑
i=1

ξiXi, (26)

where the Xi’s are independent chi-squared random variables with one degree of freedom and the

ξi’s are the N −K nonzero eigenvalues of

S
1
2U−1S

1
2 − S

1
2U−1B(B′U−1B)−1B′U−1S

1
2 . (27)

In practice, the specification test based on the HJ-distance is performed by comparing T δ̂
2

with

the critical values of
∑N−K

i=1 ξ̂iXi, where the ξ̂i’s are the nonzero eigenvalues of

Ŝ
1
2 Û−1Ŝ

1
2 − Ŝ

1
2 Û−1B̂(B̂′Û−1B̂)−1B̂′Û−1Ŝ

1
2 . (28)

When the model is misspecified, Hansen, Heaton, and Luttmer (1995) show that the sample squared

HJ-distance has a limiting normal distribution. However, in the presence of a useless factor, the

above results do not hold. In the next theorem, we add to the existing literature (Kan and Zhang

1999) by characterizing the limiting behavior of the sample squared HJ-distance in the presence of

a useless factor.

Theorem 3. Let Q1 ∼ Beta
(
N−K

2 , 12
)

with density fQ1(·), Q2 ∼ Beta
(
N−K−1

2 , 12
)

with density

fQ2(·), and cα be the 100(1− α)-th percentile of χ2
N−K−1.

(a) Suppose that the assumptions in part (a) of Theorem 2 hold. If δ = 0, we have

T δ̂
2 d→ E[(f̃ ′tγ

∗
1)

2]χ2
N−K−1, (29)

and the limiting probability of rejecting H0 : δ2 = 0 by the HJ-distance test of size α is∫ 1

0
P

[
χ2
N−K−1 >

cα
q

]
fQ1(q)dq < α. (30)
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(b) Suppose that the assumptions in Theorem 1 hold. If δ > 0, we have

δ̂
2 d→ δ2Q2 (31)

and the limiting probability of rejecting H0 : δ2 = 0 by the HJ-distance test of size α is∫ 1

0
P

[
χ2
N−K >

cαq

1− q

]
fQ2(q)dq < 1. (32)

Proof. See the Appendix.

An immediate consequence of the result in Theorem 3 is that the presence of a useless factor

tends to distort the inference on the specification test as well. More specifically, part (b) of The-

orem 3 reveals that the HJ-distance test of correct model specification is inconsistent under the

alternative.

Note that the limiting probabilities of rejection in Equations (30) and (32) are only functions of

the significance level α and the degree of over-identification N−K. Figure 1 plots these probabilities

for different significance levels (α = 0.01, 0.05, and 0.1) and N −K ranging from 2 to 20.

Figure 1 about here

The top panel of Figure 1 reveals that under a correctly specified model, the limiting probability

of rejection of the HJ-distance test is below its nominal level when a useless factor is present. When

the model is misspecified, the bottom panel of Figure 1 shows that the probability of rejection of

the HJ-distance test will not approach one even in large samples. In fact, there is a nonzero

probability that the HJ-distance test will favor the null of correct specification, and this probability

is particularly high when N −K is small. As a result, the presence of a useless factors makes it

more difficult for the HJ-distance test to detect a misspecified model.

1.2 Additional simulation results

In the following, we report some additional simulation results that, in the interest of brevity, were

omitted from the paper. First, we consider a scenario in which a linear combination of two useful

factors is useless. Although our theoretical setup in Section 2 of the paper is not specifically

designed to deal with this type of situation, it is still interesting to examine how our sequential
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model selection procedure fares in this framework. Each factor is created by adding a normally

distributed error to the excess market return. The error term in each factor has a mean of zero and

a variance of 4% of the variance of the excess market return. The two error terms are independent

of each other as well as of the returns on the test assets and the market portfolio. As in Table 4 of

the paper, the returns and the factors are drawn from a multivariate normal distribution. We are

interested in determining the probability that (i) both factors survive, (ii) only one factor survives,

and (iii) no factor survives using the sequential procedure (with the Bonferroni adjustment) based on

misspecification-robust t-tests. For comparison, we also report results of the sequential procedure

based on t-tests under correct model specification. The nominal level of the sequential testing

procedures is set equal to 5%. Ideally, in this framework, only one factor should survive the testing

procedures described above.

Table 1 about here

Panel A of Table 1 shows that when the model is correctly specified, the procedures based on tc

and tm do a similarly good job in retaining only one factor in the model. For example, for T = 1000,

the probability that only one factor survives is either 89% or 90% depending on whether we use tc

or tm. For this sample size, the probabilities that both factors survive and no factor survives are

very low and similar across procedures. However, when the model is misspecified (see Panel B), the

procedures based on tc and tm deliver very different results for the “Both factors survive” and “One

factor survives” cases. For T = 1000, the probability that both factors survive the model selection

procedure based on tc is 37.5%, while the probability that both factors survive the model selection

procedure based on tm is 1.7%. This difference in probabilities becomes larger as the sample size is

allowed to grow. Importantly, the probabilities that only one factor survives are markedly different

across procedures. For example, when T = 1000, the probability that only one factor survives is

about 89% when using t-tests under misspecified models, while it is only 56.6% when using t-tests

under correctly specified models.4 In summary, our selection procedure based on t-tests that are

robust to misspecification continues to perform reasonably well even when no single factor is useless

but a linear combination of them is.
4In an unreported empirical example of the liquidity-augmented CAPM of Liu (2006), the market factor and

the liquidity factor of Pastor and Stambaugh (2003) appear to be individually useful but jointly cause a model
identification failure. Our proposed model selection procedure proves to be effective in retaining only one useful
factor (the market factor in this case) and restoring the full rank condition necessary for identification.
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Next, we investigate the robustness of the results in Table 3 of the paper to the inclusion of an

unpriced factor with nonzero correlation with the returns on the test assets. Specifically, we consider

a model with a constant, a priced useful factor, and an unpriced factor, where the unpriced factor

is calibrated to three observed factors with a different correlation (weak, moderate, and strong)

with the returns on the test assets. In Tables 2 to 4, the priced useful factor is always calibrated

to the properties of vw, while the unpriced factor is calibrated to the properties of cnd · cay, cnd,

and smb, respectively.

Tables 2 to 4 about here

The simulation results clearly indicate that the misspecification-robust t-test for the priced

useful factor exhibits smaller underrejections (and improved power) compared with those in Table 3

of the paper, while the rejection rates for the unpriced factor remain largely unchanged.

2. Theoretical and Simulation Results for Excess Returns

In the following analysis, we provide theoretical and simulation results for the excess returns case.

The proofs are similar to the gross returns case and are omitted, but they are available from the

authors upon request.

2.1 Theoretical results

Let xt be the excess returns on N test assets at time t with mean µ and covariance matrix V. It is

well known that when only excess returns are used as test assets, it is not possible to identify the

mean of the candidate SDF and some normalization of the SDF becomes necessary. As a result,

we follow Kan and Robotti (2008) and define the candidate SDF as

yt = 1− (ft − µf )′γ1 − (gt − µg)γ2, (33)

where ft is a vector of K systematic factors with mean µf and covariance matrix Sf , and gt is a

useless factor with mean µg and variance σ2g, such that it is independent of ft and xt for all time

periods.5

5Note that here the number of useful factors is set equal to K. This differs from the analysis in the previous section
where the number of useful factors is set equal to K − 1.
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The pseudo-true value of γ1 under the modified HJ-distance measure is given by

γ∗1 = (B′V −1B)−1B′V −1µ, (34)

where B = Cov[xt, f
′
t ]. We set the pseudo-true value of γ2, γ

∗
2, equal to 0 even though it is not

identified (see Section 2 of the paper for a discussion of this issue). Let d = Cov[xt, gt] = 0N ,

µ̂ = 1
T

∑T
t=1 xt, V̂ = 1

T

∑T
t=1(xt − µ̂)(xt − µ̂)′, and

D̂ =

[
1

T

T∑
t=1

xt(ft − µ̂f )′,
1

T

T∑
t=1

xt(gt − µ̂g)

]
≡ [B̂, d̂]. (35)

The sample estimator of γ = [γ′1, γ2]
′ is given by

γ̂ =

[
γ̂1

γ̂2

]
= (D̂′V̂ −1D̂)−1D̂′V̂ −1µ̂. (36)

It is straightforward to show that

γ̂1 = (B̂′V̂ −
1
2 [IN − V̂ −

1
2 d̂(d̂′V̂ −1d̂)−1d̂′V̂ −

1
2 ]V̂ −

1
2 B̂)−1

× B̂′V̂ −
1
2 [IN − V̂ −

1
2 d̂(d̂′V̂ −1d̂)−1d̂′V̂ −

1
2 ]V̂ −

1
2 µ̂ (37)

and

γ̂2 =
d̂′V̂ −

1
2 [IN − V̂ −

1
2 B̂(B̂′V̂ −1B̂)−1B̂′V̂ −

1
2 ]V̂ −

1
2 µ̂

d̂′V̂ −
1
2 [IN − V̂ −

1
2 B̂(B̂′V̂ −1B̂)−1B̂′V̂ −

1
2 ]V̂ −

1
2 d̂
. (38)

Finally, Kan and Robotti (2008) suggest that a modification of the traditional HJ-distance is

needed when using the de-meaned factors. Their proposed measure, the modified HJ-distance,

employs the inverse of the covariance matrix (instead of the second moment matrix) of the excess

returns as the weighting matrix, and is given by

δm =
√
e(γ∗1)

′V −1e(γ∗1), (39)

where e(γ∗1) = µ−Bγ∗1. The sample version of the model misspecification measure in Equation (39)

is given by

δ̂m =
√
ê′V̂ −1ê, (40)

where ê = µ̂− D̂γ̂.

In deriving the limiting behavior of γ̂1 and γ̂2 under correctly specified and misspecified models,

we adopt the following notation. Let B̃ = V −
1
2B, µ̃ = V −

1
2µ, et(γ

∗
1) = xty

∗
t , y

∗
t = 1− (ft − µf )′γ∗1,
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S = E[et(γ
∗
1)et(γ

∗
1)
′], and P be an N × (N −K) orthonormal matrix whose columns are orthogonal

to B̃ so that PP ′ = IN − B̃(B̃′B̃)−1B̃′. Also, let z ∼ N(0N , IN ) and y ∼ N(0N , V
− 1

2SV −
1
2 ),

and they are independent of each other. Finally, we define w = P ′z ∼ N(0N−K , IN−K), s =

(µ̃′Pw)/(µ̃′PP ′µ̃)
1
2 ∼ N(0, 1), u = P ′y ∼ N(0N−K , Vu) with Vu = P ′V −

1
2SV −

1
2P , and r =

(B̃′B̃)−
1
2 B̃′y ∼ N(0K , Vr) with Vr = (B̃′B̃)−

1
2 B̃′V −

1
2SV −

1
2 B̃(B̃′B̃)−

1
2 .

Theorem 4. Assume that the conditions in Assumption 1 are satisfied.

(a) If δm = 0, that is, the model is correctly specified, we have

√
T (γ̂1 − γ∗1)

d→ (B̃′B̃)−
1
2

[
r − w′u

w′w
(B̃′B̃)−

1
2 B̃′z

]
, (41)

and

γ̂2
d→ w′u

σgw′w
. (42)

(b) If δm > 0, that is, the model is misspecified, we have

γ̂1 − γ∗1
d→ − δms

w′w
(B̃′B̃)−1B̃′z, (43)

and
1√
T
γ̂2

d→ δms

σgw′w
. (44)

As in the case of gross returns, we define two types of t-statistics: (i) tc(γ̂1i), for i = 1, . . . ,K,

and tc(γ̂2) that use standard errors obtained under the assumption that the model is correctly

specified, and (ii) tm(γ̂1i), for i = 1, . . . ,K, and tm(γ̂2) that use standard errors under potentially

misspecified models. The two types of t-statistics are based on the estimated covariance matrices

Σ̂0
γ̂ = 1

T

∑T
t=1 ĥ

0
t ĥ

0′
t and Σ̂γ̂ = 1

T

∑T
t=1 ĥtĥ

′
t, where

ĥ0t = (D̂′V̂ −1D̂)−1D̂′V̂ −1ẽt, (45)

ĥt = ĥ0t + (D̂′V̂ −1D̂)−1
(

[(ft − µ̂f )′, gt − µ̂g]′ − D̂′V̂ −1(xt − µ̂)
)
ût, (46)

ẽt = (xt − µ̂)ŷt + µ̂, ŷt = 1− (ft − µ̂f )′γ̂1 − (gt − µ̂g)γ̂2, and ût = ê′V̂ −1(xt − µ̂).

In addition to the random variables and matrices defined before Theorem 4, we introduce

the following notation. Let ũ ∼ N(0, 1), r̃i ∼ N(0, 1), z̃i ∼ N(0, 1), v ∼ χ2
N−K−1, and they
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are independent of each other and w. Let ci and ĉi be the i-th diagonal elements of C and Ĉ,

respectively, where

C = S−1f Cov[(ft − µf )(ft − µf )′, y∗t
2]S−1f + γ∗1E[(ft − µf )y∗t

2]′S−1f

+ S−1f E[(ft − µf )y∗t
2]γ∗1

′ + E[y∗t
2]γ∗1γ

∗
1
′ (47)

and

Ĉ = S−1f Cov[(ft − µf )(ft − µf )′, y∗t
2]S−1f − γ

∗
1γ
∗
1
′. (48)

Define

λi = 1 +
ci

E[y∗t
2]bi

, (49)

λ̂i = 1 +
ĉi

E[y∗t
2]bi

, (50)

where bi is the i-th diagonal element of (B̃′B̃)−1. Theorem 5 below provides the limiting distri-

butions of the t-statistics under correctly specified and misspecified models. Let the following

assumption replace Assumption 2.

Assumption 2’. Let εt = (xt − µ) − BS−1f (ft − µf ) and assume that E[εt|ft] = 0N and

Cov[εtε
′
t, y
∗2
t ] = 0N×N .

Theorem 5.

(a) Suppose that the conditions in Assumptions 1 and 2’ hold. If δm = 0, that is, the model is

correctly specified, we have

tc(γ̂1i)
d→ ũz̃i +

√
λi
√
w′wr̃i[

λ̂iw′w + z̃2i + ũ2
(

1 +
z̃2i
w′w

)] 1
2

, (51)

tm(γ̂1i)
d→ ũz̃i +

√
λi
√
w′wr̃i[

λ̂iw′w + z̃2i + ũ2
(

1 +
z̃2i
w′w

)
+

z̃2i v
w′w

] 1
2

, (52)

tc(γ̂2)
d→ ũ(

1 + ũ2

w′w

) 1
2

, (53)

tm(γ̂2)
d→ ũ(

1 + ũ2+v
w′w

) 1
2

. (54)
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(b) Suppose that the conditions in Assumption 1 hold and denote the sign operator by sgn (·). If

δm > 0, that is, the model is misspecified, we have

tc(γ̂1i)
d→ z̃i(

1 +
z̃2i
w′w

) 1
2

, (55)

tm(γ̂1i)
d→ N

(
0,

1

4

)
, (56)

tc(γ̂2)
d→ sgn(s)

√
w′w, (57)

tm(γ̂2)
d→ N(0, 1). (58)

In the next theorem, we characterize the limiting behavior of the sample squared modified

HJ-distance in the presence of a useless factor for the excess returns case.

Theorem 6. Let Q1 ∼ Beta
(
N−K

2 , 12
)

with density fQ1(·), Q2 ∼ Beta
(
N−K−1

2 , 12
)

with density

fQ2(·), and cα be the 100(1− α)-th percentile of χ2
N−K−1.

(a) Suppose that the assumptions in part (a) of Theorem 5 hold. If δm = 0, we have

T δ̂
2

m
d→ E[y∗2t ]χ2

N−K−1 (59)

and the limiting probability of rejecting H0 : δ2m = 0 by the modified HJ-distance test of size

α is ∫ 1

0
P

[
χ2
N−K−1 >

cα
q

]
fQ1(q)dq < α. (60)

(b) Suppose that the assumptions in Theorem 4 hold. If δm > 0, we have

δ̂
2

m
d→ δ2mQ2 (61)

and the limiting probability of rejecting H0 : δ2m = 0 by the modified HJ-distance test of size

α is ∫ 1

0
P

[
χ2
N−K >

cαq

1− q

]
fQ2(q)dq < 1. (62)

Overall, the results for excess returns are very similar to the results for gross returns in the

paper. The only noticeable differences are for the t-tests on γ̂1i in part (a) of Theorem 5. This

implies that the nature of the problem (and the solution) is essentially the same regardless of

whether one uses gross returns or excess returns in the analysis.
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2.2 Simulation results

In this section, we undertake Monte Carlo experiments to assess the small-sample properties

of the test statistics based on the modified HJ-distance in models with useful and useless factors.

The simulation designs, data, and models are the same as the ones considered in Tables 1–4 of the

paper and in Table 1 of Section 1 of this online appendix.

The results in Panel A of Table 5 show that for models that are correctly specified and contain

only useful factors, the standard asymptotics provides an accurate approximation of the finite-

sample behavior of the t-tests.

Table 5 about here

Since the useful factor, calibrated to the properties of the value-weighted market excess return, is

closely replicated by the returns on the test assets, the differences between the t-tests under correctly

specified models (tc) and the t-tests under potentially misspecified models (tm) are negligibly small

even when the model fails to hold exactly.

Panel B of Table 5 and Table 6 present the empirical size of the t-tests in the presence of a

useless factor.

Table 6 about here

The simulation results for the t-tests on the parameters of the useful factor confirm our theoreti-

cal findings that the null hypothesis is underrejected when N(0, 1) is used as a reference distribution.

This is the case for correctly specified and misspecified models.

Similarly, the inference on the useless factor proves to be conservative when the model is cor-

rectly specified. However, when the model is misspecified, there are substantial differences between

tc and tm for the useless factor. Since the tc test for significance of the useless factor is asymp-

totically distributed (up to a sign) as
√
χ2
N−K , it tends to overreject severely when the critical

values from N(0, 1) are used and the degree of overrejection increases with the sample size. In

contrast, the tm test on the useless factor has good size properties although, for small sample sizes,

it slightly underrejects. As the sample size increases, the empirical rejection rates approach the
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limiting rejection probabilities (as shown in the rows for T =∞) computed from the corresponding

asymptotic distributions in Theorem 5.

Table 7 reports the survival rates of different factors when using the sequential procedure

described in Section 3 of the paper.

Table 7 about here

Panel A shows that when the model is correctly specified, the procedures based on tc and tm

do a similarly good job in retaining the useful factors with nonzero SDF parameters in the model

(the survival probabilities are 85–96% for T = 600) and eliminating the irrelevant factors. This

indicates that using the tc test in the presence of a useless factor is not problematic when the

underlying model holds exactly. However, as shown in Panel B, the situation drastically changes

when the model is misspecified. In this case, the procedures based on tc and tm still retain the

useful factors with nonzero SDF parameters with similarly high probability (75–93% for T = 600),

but they produce very different results when it comes to the useless factor. For example, despite

its conservative nature (due to the Bonferroni adjustment), the procedure based on tc will retain

the useless factor 26–30% of the time for T = 1000. In contrast, the procedure based on tm will

retain the useless factor only about 0.6–0.8% of the time for T = 1000. Similarly, the probability

of at least one irrelevant factor being selected in the final specification of the model is 30–48%

(1.3–1.5%) for T = 1000 when the tc (tm) test is used and the model is misspecified.

Finally, we consider a scenario in which a linear combination of two useful factors is useless.

Table 8 about here

Panel A of Table 8 shows that when the model is correctly specified, the procedures based on

tc and tm are both effective in retaining only one factor in the model. However, when the model

is misspecified (see Panel B), the procedures based on tc and tm deliver very different results. For

T = 1000, the probability that both factors survive the model selection procedure based on tc is

about 38%, while the probability that both factors survive the model selection procedure based

on tm is about 2%. Importantly, the probabilities that only one factor survives are very different

across procedures. For example, when T = 1000, the probability than only one factor survives is
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about 89% when using t-tests under misspecified models, while it is only about 56% when using

t-tests under correctly specified models.

3. Simulation Results for Optimal GMM Using Gross Returns

We use the same notation as in the paper and set the number of useful factors equal to K − 1. The

optimal s-step (s ≥ 2) GMM estimator of the SDF parameters is defined as

γ̂(s) =
(
D̂′Ŝ−1(s−1)D̂

)−1
D̂′Ŝ−1(s−1)q, (63)

where

D̂ =

[
1

T

T∑
t=1

xtf̃
′
t ,

1

T

T∑
t=1

xtgt

]
(64)

and

Ŝ(s−1) =
1

T

T∑
t=1

[
et

(
γ̂(s−1)

)
− e

(
γ̂(s−1)

)] [
et

(
γ̂(s−1)

)
− e

(
γ̂(s−1)

)]′
(65)

with et

(
γ̂(s−1)

)
= xt

[
f̃ ′t γ̂

(s−1)
1 + gtγ̂

(s−1)
2

]
−q = xtyt

(
γ̂(s−1)

)
−q, e

(
γ̂(s−1)

)
= T−1

∑T
t=1 et

(
γ̂(s−1)

)
=

D̂γ̂(s−1) − q.

Let ût = e
(
γ̂(s)
)′
Ŝ−1(s−1)xt and ẑt = e

(
γ̂(s)
)′
Ŝ−1(s−1)

(
et

(
γ̂(s−1)

)
− e

(
γ̂(s−1)

))
. A consistent

estimator of the asymptotic variance of the SDF parameters under misspecified models is given by

(a proof of this result is available upon request) Σ̂γ̂(s) = 1
T

T∑
t=1

ĥtĥ
′
t, where

ĥt = (D̂′Ŝ−1(s−1)D̂)−1
[
D̂′Ŝ−1(s−1)

(
xtyt

(
γ̂(s)
)
− et

(
γ̂(s−1)

)
ẑt

)
+ [f̃ ′t , gt]

′ût

]
− γ̂(s). (66)

When the model is correctly specified, the ĥt expression simplifies to

ĥ0t =
(
D̂′Ŝ−1(s−1)D̂

)−1
D̂′Ŝ−1(s−1)et

(
γ̂(s)
)
. (67)

In addition, the GMM test of correct model specification is given by

Te
(
γ̂(s)
)′
Ŝ−1(s−1)e

(
γ̂(s)
)
. (68)

In the absence of a useless factor, it is well known that under a correctly specified model this test

is asymptotically chi-squared distributed with N −K degrees of freedom.

Tables 9 to 13 about here
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In our simulations, we use the identity matrix to compute the first-step GMM estimator and

analyze the finite-sample properties of the optimal 3-step GMM estimator and specification test

in models with useful and useless factors. Our Monte Carlo simulations (see Tables 9–13) show

that the results for optimal GMM are broadly consistent with the ones for the estimators and test

statistics based on the HJ-distance. In addition, the rejection rates for the limiting case (T =∞) are

equivalent to those based on the asymptotic distributions given in Theorem 2 in the first section of

this online appendix. This implies that our robust model selection procedure is also applicable to

the class of optimal GMM estimators.
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Appendix: Preliminary Lemma and Proofs of Main Results

A.1 Preliminary Lemma

Lemma A.1. Let

xt = BS−1
f̃
f̃t + εt, (A.1)

where B = E[xtf̃
′
t ], Sf̃ = E[f̃tf̃

′
t ], and E[εt|f̃t] = 0N . Suppose Cov[εtε

′
t, (f̃

′
tγ
∗
1)

2] = 0N×N (a

sufficient condition for this to hold is E[εtε
′
t|f̃t] = Σ, that is, conditional homoscedasticity). When

the model is correctly specified, we have

S = E[(xtf̃
′
tγ
∗
1 − q)(xtf̃ ′tγ∗1 − q)′] = E[(f̃ ′tγ

∗
1)

2]U +BCB′, (A.2)

where U = E[xtx
′
t] and C is a symmetric K ×K matrix.

Proof of Lemma A.1. Under a correctly specified model, we have q = Bγ∗1. It follows that

S = E[xtx
′
t(f̃
′
tγ
∗
1)

2]− qq′ = E[xtx
′
t(f̃
′
tγ
∗
1)

2]−Bγ∗1γ∗1B′. (A.3)

For the first term, we have

E[xtx
′
t(f̃
′
tγ
∗
1)

2] = E[xtx
′
t]E[(f̃ ′tγ

∗
1)

2] + Cov[xtx
′
t, (f̃

′
tγ
∗
1)

2]

= E[(f̃ ′tγ
∗
1)

2]U + Cov[BS−1
f̃
f̃tf̃
′
tS
−1
f̃
B′ + εtε

′
t, (f̃

′
tγ
∗
1)

2]

= E[(f̃ ′tγ
∗
1)

2]U +BS−1
f̃

Cov[f̃tf̃
′
t , (f̃

′
tγ
∗
1)

2]S−1
f̃
B′, (A.4)

where the last equality follows from the assumption that Cov[εtε
′
t, (f̃

′
tγ
∗
1)

2] = 0N×N . Therefore, we

have

S = E[(f̃ ′tγ
∗
1)

2]U +BCB′, (A.5)

where

C = S−1
f̃

Cov[f̃tf̃
′
t , (f̃

′
tγ
∗
1)

2]S−1
f̃
− γ∗1γ∗1′. (A.6)

This completes the proof.

A.2 Proofs of Theorems and Corollary 1

Proof of Theorem 1.
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part (a): We start with the limiting distribution of
√
T (γ̂1 − γ∗1). Under the assumptions in

Theorem 1, we have
√
TÛ−

1
2 d̂

d→ z ∼ N(0N , IN ) (A.7)

and

−
√
TÛ−

1
2 (B̂γ∗1 − q)

d→ y ∼ N(0N , Vy), (A.8)

where Vy = E[mtm
′
t] is the covariance matrix of y, and

mt = U−
1
2 (xtf̃

′
tγ
∗
1 − q) = U−

1
2 et(γ

∗
1). (A.9)

Therefore, we have Vy = U−
1
2SU−

1
2 for correctly specified models. In addition, y and z are

independent of each other. Using y and z, we can write Equation (7) as

√
T (γ̂1 − γ∗1) = (B̂′Û−

1
2 [IN − Û−

1
2 d̂(d̂′Û−1d̂)−1d̂′Û−

1
2 ]Û−

1
2 B̂)−1

× B̂′Û−
1
2 [IN − Û−

1
2 d̂(d̂′Û−1d̂)−1d̂′Û−

1
2 ]
√
T Û−

1
2 (q − B̂γ∗1)

d→ (B̃′[IN − z(z′z)−1z′]B̃)−1B̃′[IN − z(z′z)−1z′]y

= (B̃′[IN − z(z′z)−1z′]B̃)−1B̃′[IN − z(z′z)−1z′][PP ′ + B̃(B̃′B̃)−1B̃′]y

= −(B̃′[IN − z(z′z)−1z′]B̃)−1
B̃′zz′PP ′y

z′z
+ (B̃′B̃)−1B̃′y. (A.10)

Let w = P ′z ∼ N(0N−K , IN−K), u = P ′y ∼ N(0N−K , Vu) with Vu = P ′U−
1
2SU−

1
2P , r =

(B̃′B̃)−
1
2 B̃′y ∼ N(0K , Vr) with Vr = (B̃′B̃)−

1
2 B̃′U−

1
2SU−

1
2 B̃(B̃′B̃)−

1
2 . Making use of the iden-

tity

(B̃′[IN − z(z′z)−1z′]B̃)−1 = (B̃′B̃)−1 +
(B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

w′w
(A.11)

and z′z = z′B̃(B̃′B̃)−1B̃′z + w′w, we obtain

√
T (γ̂1 − γ∗1)

d→ (B̃′B̃)−
1
2

[
−w

′u

w′w
(B̃′B̃)−

1
2 B̃′z + r

]
. (A.12)

For the derivation of the limiting distribution of γ̂2, we defineM = IN−U−
1
2B(B′U−1B)−1B′U−

1
2

and M̂ = IN − Û−
1
2 B̂(B̂′Û−1B̂)−1B̂′Û−

1
2 . Using that M̂Û−

1
2 B̂ = 0N×K , we obtain

√
TM̂Û−

1
2 q =

√
TM̂Û−

1
2 (q − B̂γ∗1)

d→My, (A.13)

and we can rewrite γ̂2 as

γ̂2 =
(
√
TÛ−

1
2 d̂)′(

√
TM̂Û−

1
2 (B − B̂)γ∗1)

(
√
TÛ−

1
2 d̂)′M̂(

√
TÛ−

1
2 d̂)

. (A.14)
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Then, from Equations (A.7), (A.8), and M̂
p→M = PP ′, we get

γ̂2
d→ z′My

z′Mz
=

(P ′z)′(P ′y)

(P ′z)′(P ′z)
=
w′u

w′w
. (A.15)

This completes the proof of part (a) of Theorem 1.

part (b): Using the fact that Û−
1
2 B̂

a.s.−→ B̃ and
√
TÛ−

1
2 d̂

d→ z, we can obtain the limiting

distribution of γ̂1 in Equation (7) as

γ̂1
d→ (B̃′[IN − z(z′−1z′]B̃)−1B̃′[IN − z(z′−1z′]q̃. (A.16)

Using Equation (A.11) and the fact that γ∗1 = (B̃′B̃)−1B̃′q̃, we obtain

γ̂1 − γ∗1
d→

[
(B̃′B̃)−1 +

(B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

w′w

](
B̃′q̃ − B̃′zz′q̃

z′z

)
− (B̃′B̃)−1B̃′q̃

= −(B̃′B̃)−1B̃′z
z′q̃

z′z
+ (B̃′B̃)−1B̃′z

z′B̃(B̃′B̃)−1B̃′q̃

w′w
− (B̃′B̃)−1B̃′z

z′q̃

z′z

z′B̃(B̃′B̃)−1B̃′z

w′w

= −(B̃′B̃)−1B̃′z
z′q̃

w′w
+ (B̃′B̃)−1B̃′z

z′B̃(B̃′B̃)−1B̃′q̃

w′w

= −z
′Mq̃

w′w
(B̃′B̃)−1B̃′z

= − δs

w′w
(B̃′B̃)−1B̃′z, (A.17)

and the last equality follows because δ2 = q̃′PP ′q̃ and s = q̃′PP ′z/(q̃′PP ′q̃)
1
2 .

For the limiting distribution of γ̂2, we have

T−
1
2 γ̂2 =

(
√
T d̂′Û−

1
2 )M̂Û−

1
2 q

(
√
T d̂′Û−

1
2 )M̂(

√
TÛ−

1
2 d̂)

d→ z′Mq̃

z′Mz
=

δs

w′w
. (A.18)

This completes the proof of part (b) of Theorem 1.

Proof of Theorem 2.

part (a): Using Lemma A.1, we have

S = E[(f̃ ′tγ
∗
1)

2]U +BCB′ (A.19)

under the conditional homoscedasticity assumption. It follows that

Vu = P ′U−
1
2SU−

1
2P = E[(f̃ ′tγ

∗
1)

2]IN−K , (A.20)

Vr = (B̃′B̃)−
1
2 B̃′U−

1
2SU−

1
2 B̃(B̃′B̃)−

1
2 = E[(f̃ ′tγ

∗
1)

2]IK + (B̃′B̃)
1
2C(B̃′B̃)

1
2 , (A.21)

Cov[u, r′] = P ′U−
1
2SU−

1
2 B̃(B̃′B̃)−

1
2 = 0(N−K)×K . (A.22)
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Let ũ = w′u/(w′Vuw)
1
2 = E[(f̃ ′tγ

∗
1)

2]−
1
2w′u/(w′w)

1
2 . It is easy to show that ũ ∼ N(0, 1) and it is

independent of w, z, and r. Using ũ, we can simplify the limiting distribution of
√
T (γ̂1 − γ∗1) in

Equation (A.12) to

√
T (γ̂1 − γ∗1)

d→ −E[(f̃ ′tγ
∗
1)

2]
1
2

ũ

(w′w)
1
2

(B̃′B̃)−1B̃′z + (B̃′B̃)−
1
2 r. (A.23)

The estimated covariance matrix of γ̂ for a potentially misspecified model is given by

V̂m(γ̂) =
1

T 2

T∑
t=1

ĥtĥ
′
t, (A.24)

where

ĥt = (D̂′Û−1D̂)−1D̂′Û−1êt + (D̂′Û−1D̂)−1([f̃ ′t , gt]
′ − D̂′Û−1xt)ût, (A.25)

and ût = ê′Û−1xt. In order to derive the limiting distribution of ĥt, we need to obtain the limiting

representations of (D̂′Û−1D̂)−1, (D̂′Û−1D̂)−1D̂′Û−1, and ût.

It is straightforward to show that

D̂′Û−1 =

 B̃′U−
1
2 +Op(T

− 1
2 )

1√
T
z′U−

1
2 +Op(T

−1)

 , (A.26)

D̂′Û−1D̂ =

 B̃′B̃ +Op(T
− 1

2 ) 1√
T
B̃′z +Op(T

−1)

1√
T
z′B̃ +Op(T

−1) z′z
T +Op(T

− 3
2 )

 . (A.27)

Then, using the partitioned matrix inverse formula, we have

(D̂′Û−1D̂)−1 =

 H +Op(T
− 1

2 ) −
√
T (B̃′B̃)−1B̃′z

w′w +Op(1)

−
√
T z′B̃(B̃′B̃)−1

w′w +Op(1) T
w′w +Op(T

1
2 )

 , (A.28)

where

H = (B̃′[IN − z(z′z)−1z′]B̃)−1 = (B̃′B̃)−1 +
(B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

w′w
. (A.29)

After simplification, we obtain

(D̂′Û−1D̂)−1D̂′Û−1 =

 (B̃′B̃)−1B̃′−
1
2 − (B̃′B̃)−1B̃′zw′P ′U−

1
2

w′w +Op(T
− 1

2 )
√
Tw′P ′U−

1
2

w′w +Op(1)

 . (A.30)

With the above expressions, we now derive the limiting distribution of ût. Note that the vector

of sample pricing errors is given by

ê = D̂γ̂ − q = D̂(D̂′Û−1D̂)−1D̂′Û−1q − q. (A.31)
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Using Equations (A.13), (A.15), and the identity

IN − Û−
1
2 D̂(D̂′Û−1D̂)−1D̂′Û−

1
2 = M̂ − M̂Û−

1
2 d̂(d̂′Û−

1
2 M̂Û−

1
2 d̂)−1d̂′Û−

1
2 M̂, (A.32)

we can obtain the limiting distribution of −
√
TÛ−

1
2 ê as

−
√
T Û−

1
2 ê =

√
TM̂Û−

1
2 q −

√
TM̂Û−

1
2 d̂γ̂2

d→My −Mz
w′u

w′w
= P

(
IN−K −

ww′

w′w

)
u, (A.33)

and we have
√
T ût

d→ −u′
(
IN−K −

ww′

w′w

)
P ′U−

1
2xt. (A.34)

Using Equations (A.28), (A.30), (A.34), and the fact that

êt = xt(f̃
′
t γ̂1 + γ̂2gt)− q = xtf̃

′
tγ
∗
1 − q +

w′u

w′w
xtgt +Op(T

− 1
2 ) (A.35)

under a correctly specified model, we can write the limiting distribution of ĥt = [ĥ′1t, ĥ2t]
′, where

ĥ1t denotes the first K elements of ĥt, as

ĥ1t
d→

[
(B̃′B̃)−1B̃′U−

1
2 − (B̃′B̃)−1B̃′zw′P ′U−

1
2

w′w

](
xtf̃
′
tγ
∗
1 − q + xtgt

w′u

w′w

)
+

(B̃′B̃)−1B̃′z

w′w
u′
(
IN−K −

ww′

w′w

)
P ′U−

1
2xtgt, (A.36)

ĥ2t√
T

d→ 1

w′w
w′P ′U−

1
2

(
xtf̃
′
tγ
∗
1 − q + xtgt

w′u

w′w

)
− 1

w′w
u′
(
IN−K −

ww′

w′w

)
P ′U−

1
2xtgt. (A.37)

Under the conditional homoscedasticity assumption, we have

1

T

T∑
t=1

(xtf̃
′
tγ
∗
1 − q)(xtf̃ ′tγ∗1 − q)′

a.s.−→ S = E[(f̃ ′tγ
∗
1)

2]U +BCB′. (A.38)

Together with the fact that

1

T

T∑
t=1

xtx
′
tg

2
t

a.s.−→ E[xtx
′
tg

2
t ] = E[xtx

′
t]E[g2t ] = U, (A.39)

we can show that the estimated misspecification-robust covariance matrix of γ̂1 has a limiting

distribution of

T V̂m(γ̂1) =
1

T

T∑
t=1

ĥ1tĥ
′
1t

d→ E[(f̃ ′tγ
∗
1)

2]

(
1 +

ũ2

w′w

)[
(B̃′B̃)−1 +

(B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

w′w

]
+ C

+ u′
(
IN−K −

ww′

w′w

)
u

(B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

(w′w)2
. (A.40)
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Let bi be the i-th diagonal element of (B̃′B̃)−1. Then, we can readily show that

z̃i = −ι
′
i(B̃
′B̃)−1B̃′z√
bi

∼ N(0, 1), (A.41)

v =
u′[IN−K − w(w′w)−1w′]u

E[(f̃ ′tγ
∗
1)

2]
∼ χ2

N−K−1, (A.42)

and v is independent of ũ, z and w. Using z̃i and v, we can express the limiting distribution of

s2m(γ̂1i) as

Ts2m(γ̂1i) = T ι′iV̂m(γ̂1)ιi
d→ E[(f̃ ′tγ

∗
1)

2]bi

[(
1 +

ũ2

w′w

)(
1 +

z̃2i
w′w

)
+

z̃2i v

(w′w)2

]
+ ci, (A.43)

where ci is the i-th diagonal element of C. In addition, by letting

r̃i = (E[(f̃ ′tγ
∗
1)

2]bi + ci)
− 1

2 ι′i(B̃
′B̃)−

1
2 r ∼ N(0, 1), (A.44)

we can write the i-th element in Equation (A.23) as

√
T (γ̂1i − γ∗1i)

d→ (E[(f̃ ′tγ
∗
1)

2]bi)
1
2

ũz̃i

(w′w)
1
2

+ (E[(f̃ ′tγ
∗
1)

2]bi + ci)
1
2 r̃i. (A.45)

Finally, by letting6

λi = 1 +
ci

E[(f̃ ′tγ
∗
1)

2]bi
> 0, (A.46)

we can write the limiting distribution of tm(γ̂1i) as

tm(γ̂1i) =
γ̂1i − γ∗1i
sm(γ̂1i)

d→ ũz̃i +
√
λi
√
w′wr̃i[

λi(w′w) + z̃2i + ũ2
(

1 +
z̃2i
w′w

)
+

z̃2i v
w′w

] 1
2

. (A.47)

The estimated covariance matrix of γ̂1 that assumes a correctly specified model is obtained by

dropping the second term in Equation (A.40). Then, it can be shown that

Ts2c(γ̂1i)
d→ E[(f̃ ′tγ

∗
1)

2]bi

[(
1 +

ũ2

w′w

)(
1 +

z̃2i
w′w

)]
+ ci (A.48)

and hence

tc(γ̂1i) =
γ̂1i − γ∗1i
sc(γ̂1i)

d→ ũz̃i +
√
λi
√
w′wr̃i[

λi(w′w) + z̃2i + ũ2
(

1 +
z̃2i
w′w

)] 1
2

. (A.49)

6From Equation (A.44), we can see that E[(f̃ ′tγ
∗
1)2]bi + ci is the variance of ι′i(B̃

′B̃)−
1
2 r. Therefore, we have

λi > 0.
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We now turn our attention to the limiting distributions of tc(γ̂2) and tm(γ̂2). From part (a) of

Theorem 1, we have

γ̂2
d→ w′u

w′w
=

(w′Vuw)
1
2

(w′w)
ũ, (A.50)

where ũ = w′u/(w′Vuw)
1
2 ∼ N(0, 1), and it is independent of w. Using Equation (A.37), we obtain

s2m(γ̂2) =
1

T 2

T∑
t=1

ĥ22t

d→ 1

(w′w)2

[
w′Vuw +

(w′u)2

w′w

]
+
u′[IN−K − w(w′w)−1w′]u

(w′w)2

=
w′Vuw + u′u

(w′w)2
. (A.51)

Therefore, the t-statistic of γ̂2 under the misspecification-robust standard error is given by

tm(γ̂2) =
γ̂2

sm(γ̂2)

d→ ũ(
1 + u′u

w′Vuw

) 1
2

. (A.52)

For s2c(γ̂2) which assumes a correctly specified model, we drop the second term in ĥ2t, and we

obtain

s2c(γ̂2)
d→ 1

(w′w)2

[
w′Vuw +

(w′u)2

w′w

]
=
w′Vuw

(w′w)2

(
1 +

ũ2

w′w

)
. (A.53)

It follows that

tc(γ̂2) =
γ̂2

sc(γ̂2)

d→ ũ(
1 + ũ2

w′w

) 1
2

. (A.54)

Under the conditional homoscedasticity assumption, Vu = E[(f̃ ′tγ
∗
1)

2]IN−K , so we can write

tm(γ̂2)
d→ ũ(

1 + ũ2+v
w′w

) 1
2

, (A.55)

where v is defined in Equation (A.42). This completes the proof of part (a) of Theorem 2.

part (b): We first derive the limiting distribution of ĥt in Equation (A.25). When a model is

misspecified, we can see from part (b) of Theorem 1 that γ̂2 = Op(T
1
2 ) and γ̂1 = Op(1), so γ̂2 is

the dominant term. Therefore, using Equation (11), we have

êt = xt(f̃
′
t γ̂1 + gtγ̂2)− q = xtgtγ̂2 +Op(1) =

√
Tδs

w′w
xtgt +Op(1). (A.56)
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In addition, using Equations (A.31), (A.32), and (A.18), we have

−Û−
1
2 ê = M̂Û−

1
2 q − M̂Û−

1
2 d̂γ̂2

d→Mq̃ − Mzz′Mq̃

z′Mz
= P [IN−K − w(w′w)−1w′]P ′q̃. (A.57)

It follows that under a misspecified model,

ût = ê′Û−1xt
d→ −q̃′P [IN−K − w(w′w)−1w′]P ′U−

1
2xt. (A.58)

Then, using Equations (A.28) and (A.30), we can express the limiting distribution of ĥt = [ĥ′1t, ĥ2t]
′

as

ĥ1t√
T

d→ q̃′Pw

w′w
(B̃′B̃)−1B̃′

(
IN −

zw′

w′w
P ′
)
U−

1
2xtgt

+
(B̃′B̃)−1(B̃′z)

w′w
q̃′P [IN−K − w(w′w)−1w′]P ′U−

1
2xtgt, (A.59)

ĥ2t
T

d→ q̃′Pw

(w′w)2
w′P ′U−

1
2xtgt −

1

w′w
q̃′P [IN−K − w(w′w)−1w′]P ′U−

1
2xtgt. (A.60)

Using the fact that P ′B̃ = 0(N−K)×K and [IN−K − w(w′w)−1w′]w = 0N−K , we have

B̃′
(
IN −

zw′

w′w
P ′
)
P [IN−K − w(w′w)−1w′]P ′q̃ = 0K , (A.61)

and we can show that the two terms in the limiting distribution of ĥ1t/
√
T are asymptotically

uncorrelated. It follows that

V̂m(γ̂1) =
1

T 2

T∑
t=1

ĥ1tĥ
′
1t

=
(q̃′Pw)2

(w′w)2

[
(B̃′B̃)−1 +

(B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

w′w

]

+
1

(w′w)2

[
q̃′PP ′q̃ − (q̃′Pw)2

w′w

]
(B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

=
δ2

(w′w)2

[
s2(B̃′B̃)−1 + (B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

]
. (A.62)

Using z̃i as defined in Equation (A.41), we can express the limiting distribution of s2m(γ̂1i) as

s2m(γ̂1i) = ι′iV̂m(γ̂1)ιi
d→ δ2bi

(w′w)2
(s2 + z̃2i ). (A.63)

In addition, we can also use z̃i to express the i-th element in Equation (10) as

γ̂1i − γ∗1i
d→ δs

√
biz̃i

w′w
. (A.64)
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It follows that when the model is misspecified, tm(γ̂1i) has the following limiting distribution:

tm(γ̂1i) =
γ̂1i − γ∗1i
sm(γ̂1i)

d→ sz̃i√
s2 + z̃2i

. (A.65)

To show that tm(γ̂1i)
d→ N(0, 1/4), consider the polar transformation s = ω cos(θ) and z̃i = ω sin(θ),

where ω =
√
s2 + z̃2i . The joint density of (ω, θ) is given by

f(ω, θ) =
ωe−

ω2

2

2π
I{ω>0}I{0<θ<2π}. (A.66)

Therefore, ω and θ are independent. Using the polar transformation, we obtain

sz̃i√
s2 + z̃2i

= ω cos(θ) sin(θ) =
ω sin(2θ)

2
. (A.67)

Since θ is uniformly distributed over (0, 2π), sin(θ) and sin(2θ) have the same distribution. It

follows that ω sin(2θ)
d
= ω sin(θ) ∼ N(0, 1). Therefore,

tm(γ̂1i)
d→ N

(
0,

1

4

)
. (A.68)

The estimated covariance matrix of γ̂1 that assumes a correctly specified model is obtained by

dropping the second term in the line before Equation (A.62). We can then show that

s2c(γ̂1i)
d→ δ2s2bi

(w′w)2

(
1 +

z̃2i
w′w

)
. (A.69)

Using Equation (A.64), we can then obtain the limiting distribution of tc(γ̂1i) as

tc(γ̂1i) =
γ̂1i − γ∗1i
sc(γ̂1i)

d→ z̃i(
1 +

z̃2i
w′w

) 1
2

. (A.70)

Turning our attention to the limiting distributions of tc(γ̂2) and tm(γ̂2), we use Equation (A.60)

and the fact that δ2 = q̃′PP ′q̃ to obtain

s2m(γ̂2)

T
=

1

T 3

T∑
t=1

ĥ22t

d→ (q̃′2

(w′w)4
w′w +

1

(w′w)2
q̃′P

(
IN−K −

ww′

w′w

)
P ′q̃

=
δ2

(w′w)2
. (A.71)

26



Therefore, using Equation (11), the t-statistic of γ̂2 under the misspecification-robust standard

error is given by

tm(γ̂2) =
γ̂2

sm(γ̂2)

d→ s ∼ N(0, 1). (A.72)

For s2c(γ̂2) which assumes a correctly specified model, we drop the second term of ĥ2t in Equa-

tion (A.60), and we obtain
s2c(γ̂2)

T

d→ (q̃′Pw)2

(w′w)3
=

δ2s2

(w′w)3
. (A.73)

It follows that

tc(γ̂2) =
γ̂2

sc(γ̂2)

d→ sgn(s)
√
w′w. (A.74)

Note that since s ∼ N(0, 1), sgn(s) has probabilities of 1/2 of taking the values of −1 or 1, and it

is independent of s2. As a result, sgn(s) is also independent of w′w ∼ χ2
N−K .7 This completes the

proof of part (b) of Theorem 2.

Proof of Corollary 1 (Proposition 2 in the paper).

We only provide the proof of part (a) since the proof of part (b) is similar for t2c(γ̂1i) and obvious

for t2m(γ̂1i). First, comparing the limiting distribution of t2c(γ̂1i) with the limiting distribution of

t2m(γ̂1i) in part (a) of Theorem 2, we see that there is an extra positive term z̃2i v/(w
′w) in the

denominator. Therefore, the limiting distribution of t2m(γ̂1i) is stochastically dominated by the

limiting distribution of t2c(γ̂1i). It remains to be shown that the latter is stochastically dominated

by χ2
1. From part (a) of Theorem 2, we have

t2c(γ̂1i)
d→ (ũz̃i +

√
λi
√
w′wr̃i)

2

λi(w′w) + z̃2i + ũ2
(

1 +
z̃2i
w′w

) . (A.76)

Let t̃ = z̃i/
√
w′w. It is easy to see that the limit of t2c(γ̂1i) is stochastically dominated by (t̃ũ +

√
λir̃i)

2/(λi + t̃2) ∼ χ2
1.

Next, since 1 + ũ2/(w′w) > 1 and 1 + (ũ2 + v)/(w′w) > 1 almost surely, both the limiting distri-

butions of t2c(γ̂2) and t2m(γ̂2) are stochastically dominated by ũ2 ∼ χ2
1. This completes the proof of

Corollary 1.

7It is straightforward to show that the limiting probability density function of tc(γ̂2) is

f(t) =
|t|N−K−1e−

t2

2

2
N−K

2 Γ
(
N−K

2

) . (A.75)
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Proof of Theorem 3.

part (a): Using Equation (A.33) in the proof of Theorem 2, we can easily obtain

T δ̂
2

= T ê′Û−1ê
d→ u′[IN−K − w(w′w)−1w′]u = u′PwP

′
wu, (A.77)

where Pw is an (N−K)× (N−K−1) orthonormal matrix such that PwP
′
w = IN−K−w(w′w)−1w′.

Let ṽ = (P ′wVuPw)−
1
2P ′wu ∼ N(0N−K−1, IN−K−1), which is independent of w. Then, we have

T δ̂
2 d→ ṽ′(P ′wVuPw)ṽ. (A.78)

For testing H0 : δ = 0, T δ̂
2

is compared with
∑N−K−1

i=1 ξ̂iXi, where the Xi’s are independent

chi-squared random variables with one degree of freedom and the ξ̂i’s are the N −K − 1 nonzero

eigenvalues of

Ŝ
1
2 Û−1Ŝ

1
2 − Ŝ

1
2 Û−1D̂(D̂′Û−1D̂)−1D̂′Û−1Ŝ

1
2 . (A.79)

Using Equation (A.32), we can write the above matrix as

Ŝ
1
2 Û−

1
2 [IN − Û−

1
2 D̂(D̂′Û−1D̂)−1D̂′Û−

1
2 ]Û−

1
2 Ŝ

1
2

= Ŝ
1
2 Û−

1
2 M̂Û−

1
2 Ŝ

1
2 − Ŝ

1
2 Û−

1
2 M̂Û−

1
2 d̂(d̂′Û−

1
2 M̂Û−

1
2 d̂)−1d̂′Û−

1
2 M̂Û−

1
2 Ŝ

1
2 . (A.80)

Let P̂ be anN×(N−K) orthonormal matrix such that P̂ P̂ ′ = M̂ and P̂w be an (N−K)×(N−K−1)

orthonormal matrix such that P̂wP̂
′
w = IN−K − P̂ ′−

1
2 d̂(d̂′Û−

1
2 M̂Û−

1
2 d̂)−1d̂′Û−

1
2 P̂ . We can easily

show that ξ̂i’s are the nonzero eigenvalues of

Ŝ
1
2 Û−

1
2 P̂ P̂wP̂

′
wP̂
′Û−

1
2 Ŝ

1
2 , (A.81)

or equivalently the eigenvalues of

P̂ ′wP̂
′Û−

1
2 ŜÛ−

1
2 P̂ P̂w. (A.82)

Using Equation (A.35), we can show that

P̂ ′Û−
1
2 êt

d→ P ′U−
1
2 et(γ

∗
1) +

w′u

w′w
P ′U−

1
2xtgt. (A.83)

It follows that

P̂ ′Û−
1
2 ŜÛ−

1
2 P̂

d→ P ′U−
1
2SU−

1
2P +

(w′u)2

(w′w)2
IN−K = Vu +

(w′Vuw)ũ2

(w′w)2
IN−K , (A.84)

where ũ = w′u/(w′Vuw)
1
2 ∼ N(0, 1) and it is independent of w.
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Under the conditional homoscedasticity assumption, we have Vu = E[(f̃ ′tγ
∗
1)

2]IN−K and hence

T δ̂
2 d→ E[(f̃ ′tγ

∗
1)

2]ṽ′ṽ ∼ E[(f̃ ′tγ
∗
1)

2]χ2
N−K−1, (A.85)

P̂ ′wP̂
′Û−

1
2 ŜÛ−

1
2 P̂ P̂w

d→ E[(f̃ ′tγ
∗
1)

2]

(
1 +

ũ2

w′w

)
IN−K−1. (A.86)

It follows that

ξ̂i
d→ E[(f̃ ′tγ

∗
1)

2]

(
1 +

ũ2

w′w

)
=
E[(f̃ ′tγ

∗
1)

2]

Q1
, (A.87)

where Q1 = w′w/(ũ2 +w′w) ∼ Beta
(
N−K

2 , 12
)

and it is independent of ṽ′ṽ. Therefore, the limiting

probability of rejection of the HJ-distance test of size α is∫ 1

0
P

[
χ2
N−K−1 >

cα
q

]
fQ1(q)dq, (A.88)

where cα is the 100(1 − α) percentile of χ2
N−K−1. Since 0 < Q1 < 1, the limiting probability of

rejection is less than α. This completes the proof of part (a) of Theorem 3.

part (b): Using Equation (A.57), the limiting distribution of the squared sample HJ-distance

δ̂
2

= ê′Û−1ê can be obtained as

δ̂
2 d→ q̃′P [IN−K − w(w′w)−1w′]P ′q̃

= (q̃′PP ′q̃)
w′[IN−K − P ′q̃(q̃′PP ′q̃)−1q̃′P ]w

w′w
= δ2Q2, (A.89)

where

Q2 =
w′[IN−K − P ′q̃(q̃′PP ′q̃)−1q̃′P ]w

w′w
∼ Beta

(
N −K − 1

2
,
1

2

)
(A.90)

and it is independent of w.

From the proof of part (a), we know that the ξ̂i’s are the eigenvalues of

P̂ ′wP̂
′Û−

1
2 ŜÛ−

1
2 P̂ P̂w. (A.91)

From Equations (15) and (11), we have

Ŝ

T

d→ δ2s2

(w′w)2
U, (A.92)

which implies

P̂ ′wP̂
′Û−

1
2 ŜÛ−

1
2 P̂ P̂w

T

d→ δ2s2

(w′w)2
IN−K−1 (A.93)
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and
ξ̂i
T

d→ δ2s2

(w′w)2
=
δ2(1−Q2)

w′w
. (A.94)

When we compare T δ̂
2

with the distribution of
∑N−K−1

i=1 ξ̂iXi, we are effectively comparing Q2

with (1−Q2)/(w
′w)χ2

N−K−1, and we will reject H0 : δ = 0 when

w′w >
cαQ2

1−Q2
. (A.95)

Note that w′w ∼ χ2
N−K and it is independent of Q2, so the limiting probability of rejection for a

test with size α is ∫ 1

0
P

[
χ2
N−K >

cαq

1− q

]
fQ2(q)dq. (A.96)

This completes the proof of part (b) of Theorem 3.
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Table 1
Survival rates when a linear combination of the factors is useless

Panel A: Correctly specified model

Both factors survive One factor survives No factor survives

T tc tm tc tm tc tm

200 0.025 0.002 0.250 0.251 0.726 0.746
600 0.015 0.001 0.680 0.688 0.305 0.311
1000 0.014 0.001 0.889 0.900 0.098 0.100

Panel B: Misspecified model

Both factors survive One factor survives No factor survives

T tc tm tc tm tc tm

200 0.138 0.013 0.229 0.255 0.633 0.732
600 0.277 0.015 0.505 0.685 0.217 0.300
1000 0.375 0.017 0.566 0.888 0.059 0.095

The table presents the probability that both factors survive, only one factor survives, and no factor
survives in a model in which a linear combination of two useful factors is useless. The sequential proce-
dure is implemented by using the misspecification-robust t-test (tm column) as well as the t-test under
correctly specified models (tc column). The false discovery rate of the multiple testing procedure is
controlled using the Bonferroni method. The nominal level of the sequential testing procedure is set
equal to 5%. Panels A and B are for correctly specified and misspecified models, respectively. We
report results for different values of the number of time-series observations (T ) using 100,000 simula-
tions, assuming that the returns are generated from a multivariate normal distribution with means and
covariance matrix calibrated to the 25 size and book-to-market Fama-French portfolio returns, the 17
Fama-French industry portfolio returns, and the one-month T-bill rate for the period 1959:2–2012:12.
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Table 2
Empirical size of the t-tests in a model with a useful and an unpriced (possibly
weak) factor

Panel A: Correctly specified model

γ1 = γ∗1 γ1 = 0 γ2 = 0

t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%

tc 200 0.096 0.047 0.008 0.605 0.475 0.235 0.124 0.063 0.012
600 0.099 0.048 0.009 0.956 0.918 0.776 0.099 0.048 0.008
1000 0.100 0.049 0.010 0.996 0.992 0.960 0.099 0.047 0.008
3600 0.100 0.051 0.010 1.000 1.000 1.000 0.098 0.048 0.009

tm 200 0.093 0.045 0.008 0.600 0.468 0.227 0.043 0.015 0.001
600 0.097 0.047 0.009 0.955 0.916 0.772 0.041 0.015 0.001
1000 0.099 0.049 0.010 0.996 0.991 0.959 0.048 0.018 0.002
3600 0.099 0.051 0.010 1.000 1.000 1.000 0.073 0.033 0.005

Panel B: Misspecified model

γ1 = γ∗1 γ1 = 0 γ2 = 0

t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%

tc 200 0.096 0.047 0.008 0.597 0.466 0.228 0.288 0.199 0.078
600 0.099 0.049 0.010 0.950 0.908 0.758 0.368 0.279 0.145
1000 0.101 0.050 0.010 0.995 0.988 0.952 0.405 0.318 0.183
3600 0.104 0.053 0.011 1.000 1.000 1.000 0.472 0.390 0.255

tm 200 0.090 0.042 0.007 0.583 0.450 0.212 0.080 0.036 0.005
600 0.090 0.044 0.008 0.945 0.898 0.736 0.084 0.039 0.006
1000 0.093 0.045 0.009 0.994 0.986 0.943 0.088 0.042 0.007
3600 0.096 0.048 0.009 1.000 1.000 1.000 0.097 0.047 0.009

The table presents the empirical rejection rates of the t-tests of H0 : γ1 = γ∗1, H0 : γ1 = 0, and H0 : γ2 = 0
in a model with a constant, a useful, and an unpriced factor. The useful and unpriced factors are calibrated
to the properties of vw and cnd · cay, respectively. γ1 is the coefficient on the useful factor, and γ2 is the
coefficient on the unpriced factor. tc denotes the t-test constructed under the assumption of correct model
specification, and tm denotes the misspecification-robust t-test. For the misspecified model case, the implied
HJ-distance is 0.522. We report results for different levels of significance (10%, 5%, and 1%) and for different
values of the number of time-series observations (T ) using 100,000 simulations, assuming that the returns
are generated from a multivariate normal distribution with means and covariance matrix calibrated to the
25 size and book-to-market Fama-French portfolio returns, the 17 Fama-French industry portfolio returns,
and the one-month T-bill rate for the period 1959:2–2012:12. The various t-tests are compared with the
critical values from a standard normal distribution.
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Table 3
Empirical size of the t-tests in a model with a useful and an unpriced (possibly
weak) factor

Panel A: Correctly specified model

γ1 = γ∗1 γ1 = 0 γ2 = 0

t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%

tc 200 0.099 0.048 0.009 0.584 0.452 0.220 0.121 0.062 0.012
600 0.096 0.048 0.009 0.935 0.885 0.715 0.102 0.049 0.009
1000 0.098 0.049 0.010 0.991 0.980 0.926 0.100 0.049 0.009
3600 0.100 0.049 0.010 1.000 1.000 1.000 0.102 0.050 0.010

tm 200 0.091 0.043 0.007 0.565 0.430 0.199 0.047 0.018 0.002
600 0.088 0.043 0.008 0.929 0.874 0.691 0.052 0.020 0.002
1000 0.091 0.045 0.008 0.990 0.978 0.918 0.062 0.026 0.003
3600 0.097 0.048 0.009 1.000 1.000 1.000 0.086 0.040 0.007

Panel B: Misspecified model

γ1 = γ∗1 γ1 = 0 γ2 = 0

t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%

tc 200 0.108 0.054 0.011 0.576 0.450 0.222 0.262 0.177 0.066
600 0.124 0.067 0.016 0.913 0.857 0.692 0.310 0.223 0.103
1000 0.137 0.077 0.019 0.980 0.963 0.897 0.333 0.247 0.123
3600 0.160 0.095 0.028 1.000 1.000 1.000 0.371 0.285 0.160

tm 200 0.089 0.042 0.007 0.539 0.407 0.183 0.080 0.035 0.005
600 0.088 0.042 0.007 0.878 0.802 0.590 0.084 0.039 0.006
1000 0.092 0.044 0.008 0.966 0.936 0.822 0.088 0.042 0.008
3600 0.097 0.048 0.009 1.000 1.000 1.000 0.098 0.049 0.009

The table presents the empirical rejection rates of the t-tests of H0 : γ1 = γ∗1, H0 : γ1 = 0, and H0 : γ2 = 0 in
a model with a constant, a useful, and an unpriced factor. The useful and unpriced factors are calibrated to
the properties of vw and cnd, respectively. γ1 is the coefficient on the useful factor, and γ2 is the coefficient
on the unpriced factor. tc denotes the t-test constructed under the assumption of correct model specification,
and tm denotes the misspecification-robust t-test. For the misspecified model case, the implied HJ-distance
is 0.510. We report results for different levels of significance (10%, 5%, and 1%) and for different values of the
number of time-series observations (T ) using 100,000 simulations, assuming that the returns are generated
from a multivariate normal distribution with means and covariance matrix calibrated to the 25 size and
book-to-market Fama-French portfolio returns, the 17 Fama-French industry portfolio returns, and the one-
month T-bill rate for the period 1959:2–2012:12. The various t-tests are compared with the critical values
from a standard normal distribution.
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Table 4
Empirical size of the t-tests in a model with a useful and an unpriced (possibly
weak) factor

Panel A: Correctly specified model

γ1 = γ∗1 γ1 = 0 γ2 = 0

t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%

tc 200 0.100 0.049 0.009 0.580 0.449 0.216 0.100 0.049 0.009
600 0.098 0.049 0.010 0.941 0.894 0.731 0.099 0.049 0.010
1000 0.099 0.050 0.010 0.994 0.986 0.941 0.099 0.049 0.009
3600 0.099 0.050 0.010 1.000 1.000 1.000 0.099 0.050 0.010

tm 200 0.098 0.049 0.009 0.577 0.445 0.212 0.090 0.042 0.007
600 0.098 0.048 0.010 0.941 0.894 0.730 0.095 0.047 0.009
1000 0.098 0.050 0.010 0.994 0.986 0.940 0.098 0.050 0.009
3600 0.099 0.050 0.010 1.000 1.000 1.000 0.100 0.049 0.010

Panel B: Misspecified model

γ1 = γ∗1 γ1 = 0 γ2 = 0

t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%

tc 200 0.100 0.049 0.009 0.577 0.448 0.217 0.101 0.050 0.009
600 0.101 0.050 0.010 0.940 0.893 0.727 0.099 0.050 0.010
1000 0.101 0.052 0.010 0.993 0.985 0.939 0.101 0.051 0.010
3600 0.102 0.051 0.010 1.000 1.000 1.000 0.101 0.050 0.011

tm 200 0.098 0.048 0.009 0.574 0.444 0.213 0.090 0.042 0.007
600 0.100 0.050 0.010 0.940 0.892 0.725 0.095 0.047 0.009
1000 0.101 0.051 0.010 0.993 0.984 0.939 0.098 0.050 0.009
3600 0.102 0.051 0.010 1.000 1.000 1.000 0.100 0.049 0.010

The table presents the empirical rejection rates of the t-tests of H0 : γ1 = γ∗1, H0 : γ1 = 0, and H0 : γ2 = 0
in a model with a constant, a useful, and an unpriced factor. The useful and unpriced factors are calibrated
to the properties of vw and smb, respectively. γ1 is the coefficient on the useful factor, and γ2 is the
coefficient on the unpriced factor. tc denotes the t-test constructed under the assumption of correct model
specification, and tm denotes the misspecification-robust t-test. For the misspecified model case, the implied
HJ-distance is 0.522. We report results for different levels of significance (10%, 5%, and 1%) and for different
values of the number of time-series observations (T ) using 100,000 simulations, assuming that the returns
are generated from a multivariate normal distribution with means and covariance matrix calibrated to the
25 size and book-to-market Fama-French portfolio returns, the 17 Fama-French industry portfolio returns,
and the one-month T-bill rate for the period 1959:2–2012:12. The various t-tests are compared with the
critical values from a standard normal distribution.
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Table 5
Empirical size of the t-tests (modified HJ-distance case)

Panel A: Model with a useful factor

Correctly specified model Misspecified model

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.098 0.049 0.009 0.098 0.049 0.009
600 0.100 0.050 0.009 0.099 0.048 0.009
1000 0.097 0.048 0.010 0.099 0.049 0.009
∞ 0.100 0.050 0.010 0.100 0.050 0.010

tm 200 0.098 0.049 0.009 0.098 0.048 0.009
600 0.100 0.050 0.009 0.098 0.048 0.009
1000 0.097 0.048 0.010 0.099 0.049 0.009
∞ 0.100 0.050 0.010 0.100 0.050 0.010

Panel B: Model with a useless factor

Correctly specified model Misspecified model

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.129 0.067 0.013 0.327 0.235 0.101
600 0.101 0.046 0.007 0.472 0.384 0.231
1000 0.095 0.044 0.006 0.556 0.477 0.328
∞ 0.088 0.039 0.005 1.000 1.000 1.000

tm 200 0.037 0.012 0.001 0.080 0.036 0.005
600 0.022 0.006 0.000 0.082 0.038 0.006
1000 0.021 0.006 0.000 0.088 0.041 0.007
∞ 0.018 0.004 0.000 0.100 0.050 0.010

The table presents the empirical size of the t-tests of H0 : γ1 = γ∗1 in a model with a useful factor (Panel A)
and in a model with a useless factor (Panel B). Each panel considers the case in which the model is correctly
specified and the case in which the model is misspecified. tc denotes the t-test constructed under the
assumption of correct model specification, and tm denotes the misspecification-robust t-test. We report
results for different levels of significance (10%, 5%, and 1%) and for different values of the number of
time-series observations (T ) using 100,000 simulations, assuming that the returns are generated from a
multivariate normal distribution with means and covariance matrix calibrated to the excess returns on
the 25 Fama-French size and book-to-market portfolios and the 17 Fama-French industry portfolios for
the period 1959:2–2012:12. The various t-statistics are compared with the critical values from a standard
normal distribution. In Panel B, the rejection rates for the limiting case (T =∞) are based on the asymptotic
distributions given in Theorem 5.
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Table 6
Empirical size of the t-tests (modified HJ-distance case)

Panel A: Correctly specified model

γ̂1 γ̂2

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.094 0.045 0.008 0.130 0.066 0.012
600 0.095 0.047 0.009 0.100 0.047 0.007
1000 0.097 0.048 0.009 0.095 0.043 0.006
∞ 0.092 0.045 0.008 0.088 0.039 0.005

tm 200 0.090 0.042 0.008 0.036 0.012 0.001
600 0.091 0.044 0.008 0.023 0.006 0.000
1000 0.093 0.046 0.008 0.020 0.005 0.000
∞ 0.088 0.042 0.008 0.018 0.004 0.000

Panel B: Misspecified model

γ̂1 γ̂2

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.094 0.046 0.008 0.321 0.230 0.098
600 0.095 0.047 0.008 0.464 0.374 0.223
1000 0.094 0.046 0.008 0.553 0.471 0.321
∞ 0.088 0.039 0.005 1.000 1.000 1.000

tm 200 0.086 0.041 0.007 0.080 0.036 0.005
600 0.079 0.036 0.006 0.081 0.038 0.006
1000 0.072 0.032 0.005 0.088 0.041 0.007
∞ 0.001 0.000 0.000 0.100 0.050 0.010

The table presents the empirical size of the t-tests of H0 : γi = γ∗i (i = 1, 2) in a model with a useful and
a useless factor. γ1 is the coefficient on the useful factor, and γ2 is the coefficient on the useless factor.
tc denotes the t-test constructed under the assumption of correct model specification, and tm denotes the
misspecification-robust t-test. We report results for different levels of significance (10%, 5%, and 1%) and for
different values of the number of time-series observations (T ) using 100,000 simulations, assuming that the
returns are generated from a multivariate normal distribution with means and covariance matrix calibrated
to the excess returns on the 25 Fama-French size and book-to-market portfolios and the 17 Fama-French
industry portfolios for the period 1959:2–2012:12. The various t-tests are compared with the critical values
from a standard normal distribution. The rejection rates for the limiting case (T = ∞) are based on the
asymptotic distributions given in Theorem 5.
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Table 7
Survival rates of risk factors: Two useful and two irrelevant factors (modified
HJ-distance case)

Panel A: Correctly specified model

Useful (γ∗1 6= 0) Useful (γ∗2 6= 0) Useful (γ∗3 = 0) Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.253 0.239 0.380 0.355 0.010 0.008 0.013 0.001 0.023 0.008
600 0.862 0.852 0.962 0.958 0.010 0.009 0.008 0.000 0.018 0.009
1000 0.986 0.984 0.999 0.999 0.010 0.009 0.006 0.000 0.016 0.009

Useful (γ∗1 6= 0) Useful (γ∗2 6= 0) Useless Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.272 0.254 0.375 0.344 0.012 0.001 0.012 0.001 0.024 0.001
600 0.891 0.877 0.959 0.951 0.007 0.000 0.007 0.000 0.014 0.001
1000 0.991 0.989 0.999 0.998 0.006 0.000 0.006 0.000 0.012 0.000

Panel B: Misspecified model

Useful (γ∗1 6= 0) Useful (γ∗2 6= 0) Useful (γ∗3 = 0) Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.242 0.213 0.368 0.320 0.013 0.007 0.084 0.005 0.096 0.012
600 0.818 0.776 0.930 0.908 0.013 0.007 0.201 0.006 0.211 0.013
1000 0.958 0.934 0.989 0.983 0.013 0.007 0.295 0.008 0.304 0.015

Useful (γ∗1 6= 0) Useful (γ∗2 6= 0) Useless Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.252 0.218 0.352 0.294 0.075 0.004 0.075 0.004 0.147 0.008
600 0.812 0.751 0.900 0.857 0.178 0.005 0.179 0.005 0.340 0.010
1000 0.947 0.908 0.976 0.957 0.263 0.006 0.261 0.006 0.482 0.013

The table presents the survival rates of the factors in a model with two useful factors (with γ∗1 6= 0 and γ∗2 6= 0)
and two irrelevant factors. The first irrelevant factor is either a useful factor that does not contribute to pricing
(with γ∗3 = 0) or a useless factor (with γ∗3 unidentified), and the second irrelevant factor is a useless factor (with γ∗4
unidentified). The sequential procedure is implemented by using the misspecification-robust t-tests (tm(γ̂i) column)
as well as the t-tests under correctly specified models (tc(γ̂i) column). The false discovery rate of the multiple testing
procedure is controlled using the Bonferroni method. The last two columns of the table report the probability that
at least one useless or unpriced useful factor survives using the t-tests under correctly specified models (MSc) and
misspecification-robust t-tests (MSm). The nominal level of the sequential testing procedure is set equal to 5%. We
report results for different values of the number of time-series observations (T ) using 100,000 simulations, assuming
that the returns are generated from a multivariate normal distribution with means and covariance matrix calibrated
to the excess returns on the 25 Fama-French size and book-to-market portfolios and the 17 Fama-French industry
portfolios for the period 1959:2–2012:12.
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Table 8
Survival rates when a linear combination of the factors is useless (modified HJ-
distance case)

Panel A: Correctly specified model

Both factors survive One factor survives No factor survives

T tc tm tc tm tc tm

200 0.026 0.003 0.247 0.250 0.727 0.747
600 0.015 0.001 0.677 0.685 0.308 0.313
1000 0.013 0.001 0.889 0.900 0.097 0.099

Panel B: Misspecified model

Both factors survive One factor survives No factor survives

T tc tm tc tm tc tm

200 0.140 0.013 0.228 0.255 0.631 0.733
600 0.275 0.015 0.505 0.684 0.219 0.301
1000 0.377 0.016 0.563 0.890 0.060 0.094

The table presents the probability that both factors survive, only one factor survives, and no factor
survives in a model in which a linear combination of two useful factors is useless. The sequential proce-
dure is implemented by using the misspecification-robust t-test (tm column) as well as the t-test under
correctly specified models (tc column). The false discovery rate of the multiple testing procedure is
controlled using the Bonferroni method. The nominal level of the sequential testing procedure is set
equal to 5%. Panels A and B are for correctly specified and misspecified models, respectively. We
report results for different values of the number of time-series observations (T ) using 100,000 simu-
lations, assuming that the returns are generated from a multivariate normal distribution with means
and covariance matrix calibrated to the excess returns on the 25 Fama-French size and book-to-market
portfolios and the 17 Fama-French industry portfolios for the period 1959:2–2012:12.
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Table 9
Empirical size of the t-tests in a model with a useful factor (optimal GMM case)

Panel A: Correctly specified model

γ̂0 γ̂1

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.176 0.142 0.108 0.114 0.061 0.015
600 0.140 0.100 0.063 0.103 0.052 0.011
1000 0.125 0.082 0.043 0.102 0.051 0.010
∞ 0.100 0.050 0.010 0.100 0.050 0.010

tm 200 0.173 0.141 0.108 0.107 0.055 0.012
600 0.139 0.100 0.063 0.102 0.051 0.010
1000 0.125 0.081 0.043 0.101 0.050 0.010
∞ 0.100 0.050 0.010 0.100 0.050 0.010

Panel B: Misspecified model

γ̂0 γ̂1

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.182 0.147 0.110 0.122 0.067 0.018
600 0.143 0.103 0.065 0.110 0.057 0.013
1000 0.128 0.085 0.044 0.107 0.055 0.012
∞ 0.100 0.050 0.010 0.100 0.050 0.010

tm 200 0.175 0.144 0.110 0.109 0.056 0.012
600 0.140 0.101 0.064 0.103 0.052 0.011
1000 0.125 0.083 0.044 0.101 0.051 0.010
∞ 0.100 0.050 0.010 0.100 0.050 0.010

The table presents the empirical size of the t-tests of H0 : γi = γ∗i (i = 0, 1) in a model with a constant
and a useful factor estimated by optimal (3-step) GMM. γ0 is the coefficient on the constant term, and
γ1 is the coefficient on the useful factor. tc denotes the t-test constructed under the assumption of correct
model specification, and tm denotes the misspecification-robust t-test. We report results for different levels
of significance (10%, 5%, and 1%) and for different values of the number of time-series observations (T ) using
100,000 simulations, assuming that the returns are generated from a multivariate normal distribution with
means and covariance matrix calibrated to the 25 size and book-to-market Fama-French portfolio returns,
the 17 Fama-French industry portfolio returns, and the one-month T-bill rate for the period 1959:2–2012:12.
The various t-statistics are compared with the critical values from a standard normal distribution.
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Table 10
Empirical size of the t-tests in a model with a useless factor (optimal GMM
case)

Panel A: Correctly specified model

γ̂0 γ̂1

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.012 0.004 0.000 0.150 0.088 0.026
600 0.003 0.000 0.000 0.107 0.053 0.009
1000 0.002 0.000 0.000 0.100 0.047 0.007
∞ 0.001 0.000 0.000 0.088 0.039 0.005

tm 200 0.002 0.000 0.000 0.038 0.015 0.002
600 0.000 0.000 0.000 0.024 0.007 0.000
1000 0.000 0.000 0.000 0.018 0.004 0.000
∞ 0.000 0.000 0.000 0.016 0.004 0.000

Panel B: Misspecified model

γ̂0 γ̂1

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.043 0.020 0.004 0.350 0.267 0.146
600 0.035 0.013 0.002 0.475 0.391 0.248
1000 0.040 0.015 0.002 0.559 0.481 0.336
∞ 0.088 0.039 0.005 1.000 1.000 1.000

tm 200 0.007 0.002 0.000 0.079 0.039 0.009
600 0.003 0.001 0.000 0.083 0.040 0.007
1000 0.003 0.000 0.000 0.088 0.043 0.008
∞ 0.001 0.000 0.000 0.100 0.050 0.010

The table presents the empirical size of the t-tests of H0 : γi = γ∗i (i = 0, 1) in a model with a constant
and a useless factor estimated by optimal (3-step) GMM. γ0 is the coefficient on the constant term, and
γ1 is the coefficient on the useless factor. tc denotes the t-test constructed under the assumption of correct
model specification, and tm denotes the misspecification-robust t-test. We report results for different levels
of significance (10%, 5%, and 1%) and for different values of the number of time-series observations (T ) using
100,000 simulations, assuming that the returns are generated from a multivariate normal distribution with
means and covariance matrix calibrated to the 25 size and book-to-market Fama-French portfolio returns,
the 17 Fama-French industry portfolio returns, and the one-month T-bill rate for the period 1959:2–2012:12.
The various t-statistics are compared with the critical values from a standard normal distribution. The
rejection rates for the limiting case (T = ∞) are equivalent to those based on the asymptotic distributions
given in Theorem 2.
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Table 11
Empirical size of the t-tests in a model with a useful and a useless factor (optimal
GMM case)

Panel A: Correctly specified model

γ̂0 γ̂1 γ̂2

t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%

tc 200 0.064 0.029 0.008 0.118 0.064 0.015 0.153 0.091 0.028
600 0.061 0.029 0.008 0.101 0.051 0.010 0.108 0.054 0.009
1000 0.058 0.025 0.006 0.097 0.049 0.009 0.099 0.048 0.007
∞ 0.052 0.020 0.002 0.096 0.047 0.009 0.088 0.039 0.005

tm 200 0.031 0.013 0.004 0.103 0.052 0.011 0.040 0.016 0.002
600 0.038 0.017 0.006 0.095 0.047 0.009 0.024 0.006 0.000
1000 0.037 0.016 0.004 0.092 0.045 0.008 0.021 0.006 0.000
∞ 0.037 0.014 0.002 0.092 0.045 0.008 0.018 0.004 0.000

Panel B: Misspecified model

γ̂0 γ̂1 γ̂2

t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%

tc 200 0.086 0.041 0.010 0.144 0.084 0.026 0.350 0.266 0.144
600 0.077 0.034 0.007 0.124 0.067 0.016 0.471 0.385 0.241
1000 0.076 0.032 0.006 0.120 0.065 0.015 0.552 0.473 0.330
∞ 0.088 0.039 0.005 0.088 0.039 0.005 1.000 1.000 1.000

tm 200 0.026 0.010 0.003 0.106 0.056 0.012 0.081 0.040 0.008
600 0.018 0.006 0.002 0.089 0.042 0.008 0.082 0.040 0.008
1000 0.013 0.005 0.001 0.080 0.037 0.006 0.089 0.042 0.008
∞ 0.001 0.000 0.000 0.001 0.000 0.000 0.100 0.050 0.010

The table presents the empirical size of the t-tests of H0 : γi = γ∗i (i = 0, 1, 2) in a model with a constant, a
useful, and a useless factor estimated by optimal (3-step) GMM. γ0 is the coefficient on the constant term,
γ1 is the coefficient on the useful factor, and γ2 is the coefficient on the useless factor. tc denotes the t-test
constructed under the assumption of correct model specification, and tm denotes the misspecification-
robust t-test. We report results for different levels of significance (10%, 5%, and 1%) and for different
values of the number of time-series observations (T ) using 100,000 simulations, assuming that the returns
are generated from a multivariate normal distribution with means and covariance matrix calibrated to the
25 size and book-to-market Fama-French portfolio returns, the 17 Fama-French industry portfolio returns,
and the one-month T-bill rate for the period 1959:2–2012:12. The various t-tests are compared with the
critical values from a standard normal distribution. The rejection rates for the limiting case (T =∞) are
equivalent to those based on the asymptotic distributions given in Theorem 2.
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Table 12
Survival rates of risk factors: Two useful and two irrelevant factors (optimal
GMM case)

Panel A: Correctly specified model

Useful (γ∗1 6= 0) Useful (γ∗2 6= 0) Useful (γ∗3 = 0) Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.744 0.708 0.812 0.770 0.042 0.030 0.048 0.004 0.087 0.034
600 0.999 0.999 1.000 1.000 0.016 0.014 0.014 0.001 0.029 0.014
1000 1.000 1.000 1.000 1.000 0.015 0.014 0.011 0.000 0.026 0.014

Useful (γ∗1 6= 0) Useful (γ∗2 6= 0) Useless Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.749 0.715 0.807 0.768 0.048 0.005 0.047 0.005 0.092 0.009
600 0.999 0.999 1.000 1.000 0.014 0.001 0.014 0.001 0.028 0.001
1000 1.000 1.000 1.000 1.000 0.011 0.000 0.010 0.000 0.021 0.001

Panel B: Misspecified model

Useful (γ∗1 6= 0) Useful (γ∗2 6= 0) Useful (γ∗3 = 0) Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.713 0.639 0.785 0.697 0.062 0.033 0.157 0.013 0.207 0.045
600 0.994 0.995 0.997 0.998 0.026 0.014 0.219 0.009 0.237 0.023
1000 0.999 0.999 1.000 1.000 0.023 0.013 0.299 0.009 0.314 0.022

Useful (γ∗1 6= 0) Useful (γ∗2 6= 0) Useless Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.356 0.283 0.453 0.359 0.153 0.012 0.152 0.011 0.284 0.023
600 0.843 0.873 0.915 0.935 0.224 0.011 0.222 0.011 0.415 0.022
1000 0.951 0.973 0.977 0.987 0.295 0.012 0.292 0.011 0.533 0.023

The table presents the survival rates of the factors in a model with a constant, two useful factors (with γ∗1 6= 0 and
γ∗2 6= 0), and two irrelevant factors estimated by optimal (3-step) GMM. The first irrelevant factor is either a useful
factor that does not contribute to pricing (with γ∗3 = 0) or a useless factor (with γ∗3 unidentified), and the second
irrelevant factor is a useless factor (with γ∗4 unidentified). The sequential procedure is implemented by using the
misspecification-robust t-tests (tm(γ̂i) column) as well as the t-tests under correctly specified models (tc(γ̂i) column).
The false discovery rate of the multiple testing procedure is controlled using the Bonferroni method. The last two
columns of the table report the probability that at least one useless or unpriced useful factor survives using the
t-tests under correctly specified models (MSc) and misspecification-robust t-tests (MSm). The nominal level of the
sequential testing procedure is set equal to 5%. We report results for different values of the number of time-series
observations (T ) using 100,000 simulations, assuming that the returns are generated from a multivariate normal
distribution with means and covariance matrix calibrated to the 25 size and book-to-market Fama-French portfolio
returns, the 17 Fama-French industry portfolio returns, and the one-month T-bill rate for the period 1959:2–2012:12.

43



Table 13
Survival rates when a linear combination of the factors is useless (optimal GMM
case)

Panel A: Correctly specified model

Both factors survive One factor survives No factor survives

T tc tm tc tm tc tm

200 0.046 0.006 0.259 0.253 0.695 0.741
600 0.020 0.002 0.673 0.683 0.306 0.315
1000 0.016 0.001 0.887 0.899 0.097 0.099

Panel B: Misspecified model

Both factors survive One factor survives No factor survives

T tc tm tc tm tc tm

200 0.186 0.017 0.228 0.240 0.586 0.743
600 0.295 0.017 0.489 0.670 0.216 0.313
1000 0.389 0.019 0.552 0.882 0.059 0.099

The table presents the probability that both factors survive, only one factor survives, and no factor
survives in a model estimated by optimal (3-step) GMM in which a linear combination of two useful
factors is useless. The sequential procedure is implemented by using the misspecification-robust t-test
(tm column) as well as the t-test under correctly specified models (tc column). The false discovery
rate of the multiple testing procedure is controlled using the Bonferroni method. The nominal level
of the sequential testing procedure is set equal to 5%. Panels A and B are for correctly specified and
misspecified models, respectively. We report results for different values of the number of time-series
observations (T ) using 100,000 simulations, assuming that the returns are generated from a multivariate
normal distribution with means and covariance matrix calibrated to the 25 size and book-to-market
Fama-French portfolio returns, the 17 Fama-French industry portfolio returns, and the one-month T-bill
rate for the period 1959:2–2012:12.
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Figure 1
Limiting probabilities of rejection of the HJ-distance test
The figure presents the limiting probabilities of rejection of the HJ-distance test under correctly
specified and misspecified models when one of the factors is useless.
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