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1. PROOF THAT (8) REDUCES TO (6) IF X AND Y FORM A DEFINITE PAIR

To see that

1

π2

∫ ∞
0

∫ ∞
−∞

Re {ϕ2(s,−t− rs)}ds
dt

t
=

∣∣∣∣ 1π
∫ ∞

0
Im {ϕ2(s,−rs)} ds

∣∣∣∣
when X and Y form a definite pair, assume that r 6= β and rewrite the left hand side as

− 1

π2
Re

∫ ∞
0

∮
0
ϕ2(s, t− rs)dt

t
ds.

We consider the case with δ = 1 and β <∞; the other cases can be treated anal-
ogously. Make the change of variables s 7→ s+ t, t 7→ (r − β)t, so that the inner in-
tegrand becomes fs(t) ≡ sgn(r − β)ϕ2(s+ t,−sr − βt). Observe that ϕX,Y (s+ t,−sr −
βt) = E {exp(isWr + itWβ)}, where Wβ < 0 almost surely. This implies that for real s and
as a function of t, ϕX,Y (s+ t,−sr − βt), and hence fs(t), is analytic for Im t < 0. Consider a
contour that consists of a line segment from −T to −1/T , a small counterclockwise loop half
way around the origin, another line segment from 1/T to T , and a large semicircle in the lower
half of the complex plane back to −T . The contour encloses no singularities, hence the integral
along it is zero. As T →∞, the integral along the large semicircle converges to zero. The inte-
gral along the half loop around the origin is equal to minus one half the residue at the origin, and
hence ∮

0
fs(t)

dt

t
= iπfs(0).

2. EXACTNESS OF THE DENSITY APPROXIMATION IN THE GAUSSIAN CASE

Suppose that X and Y are jointly Gaussian with respective means µX and µY , variances
σ2
X and σ2

Y , and correlation ρ. The density of R = X/Y has been found in Fieller (1932); see
also Hinkley (1969). The cumulant generating function of X and Y is K(s, t) = sµX + tµY +
(s2σ2

X + 2stρσXσY + t2σ2
Y )/2. Applying Theorem 3 with n = 1, it is found that both saddle-
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points are explicit in terms of the parameters. Defining

a ≡
(
r2

σ2
X

− 2rρ

σXσY
+

1

σ2
Y

)1/2

, b ≡ rµX
σ2
X

− ρ(µX + rµY )

σXσY
+
µY
σ2
Y

,

they are given by

s̃0 =
rµY − µX
a2σ2

Xσ
2
Y

, ŝ =
µY ρσX − µXσY
σ2
XσY (1− ρ2)

, t̂ =
µXρσY − µY σX
σ2
Y σX(1− ρ2)

.

The other relevant quantities are

g̃0 =
b

a3σXσY
, w̃0 =

rµY − µX
aσXσY

, ŵ = − b

(1− ρ2)1/2a
.

Plugging in and rearranging, this is exactly the expression given in Fieller (1932) and Hinkley
(1969); in other words, the saddlepoint approximation is exact in this case.

3. NON-NEGATIVITY OF THE DENSITY APPROXIMATION

We first show that g̃0 and ŵ in (17) have opposite signs. As a function of r, both ŵ and
K2(s̃0,−rs̃0) switch sign only at r = r0. It is immediate that ŵ crosses the abscissa from below
if ŝ > 0 and from above otherwise. Regarding K2(s̃0,−rs̃0), differentiate (16) with respect to r
to obtain

s̃′0 ≡
d

dr
s̃0 =

s̃0 {K12(s̃0,−rs̃0)− rK22(s̃0,−rs̃0)}+ K2(s̃0,−rs̃0)

cTrK′′(s̃0,−rs̃0)cr
.

Using that limr→r0 s̃
′
0 = ŝ{K̂12(ŝ, t̂)− r0K̂22(ŝ, t̂)}/{cTr0K̂

′′(ŝ, t̂)cr0} and simplifying,

d

dr
K2(s̃0,−rs̃0)

∣∣∣∣
r=r0

= −ŝ |K′′(ŝ, t̂)|
cTr0K̂′′(ŝ, t̂)cr0

,

so that K2(s̃0,−rs̃0) crosses the axis in the opposite direction as ŵ and consequently has the
opposite sign. The non-negativity of (17) is then seen as follows. Consider the function f : R→
R, x 7→ Φ(x) + φ(x)/x. Then f(x) < 0, x < 0 and f(x) > 1, x > 0. This follows directly from
Gordon (1941, Eq. 7), who shows that for x > 0, Φ(−x)/φ(−x) < 1/x. Thus the term in square
brackets in (17) is greater than one if ŵ < 0 and smaller than minus one if ŵ > 0. The result
follows because g̃0 and ŵ have opposite signs.

4. HIGHER ORDER TERMS FOR THE DENSITY APPROXIMATION

Let s̃ = s̃(t) be the inner saddlepoint, that is, the solution to the equation

K1(s̃, t− rs̃) = rK2(s̃, t− rs̃).

Applying a standard Laplace approximation to I1(t) in (10) yields

n

2πi

∫ i∞

−i∞
enK(s,t−rs)K2(s, t− rs)ds =

√
n

(2π)1/2
enh(t)


m−1∑
j=0

gj(t)

nj
+O(n−m)

 , (S1)
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where h(t) ≡ K(s̃, t− rs̃). An explicit expression for gj(t) can be obtained using Eq. (103) of
Rice (1968). It is

gj(t) =

2j∑
k=0

J̃k(t)

k!h̃2(t)
k+1
2

ãj,2j−k(t), (S2)

where

h̃k(t) ≡
∂kK(s, t− rs)

∂sk

∣∣∣∣
s=s̃

=

k∑
j=0

(
k

j

)
(−r)jK1k−j2j (s̃, t− rs̃),

J̃k(t) ≡
∂kK2(s, t− rs)

∂sk

∣∣∣∣
s=s̃

=

k∑
j=0

(
k

j

)
(−r)jK1k−j2j+1(s̃, t− rs̃),

K1i2j (s, t) ≡ ∂i+jK(s, t)/(∂si∂tj), the coefficients ãi,j(t) are given by

ãi,j(t) ≡
j∑

k=0

d̃k,j(t)(−2)i+k
(

1

2

)
i+k

,

(x)k denotes the rising factorial, the d̃i,j(t) are obtained from the recurrence relation d̃0,0(t) = 1,
d̃0,j(t) = 0 (j ≥ 1), and

d̃i,j(t) =
1

i

j−i+1∑
k=1

h̃k+2(t)

(k + 2)!h̃2(t)
k+2
2

d̃i−1,j−k(t) (j ≥ i ≥ 1).

Using (S1), one has

I2 =

√
n

(2π)1/2

1

2πi

∫ c2+i∞

c2−i∞
enh(t)


m−1∑
j=0

gj(t)

nj
+O(n−m)

 dt

t
.

Denote a typical term in the integral as

I2,j ≡
√
n

(2π)1/2

1

2πi

∫ c2+i∞

c2−i∞
enh(t)gj(t)

dt

t
.

Using the result from Bleistein (1966) and Rice (1968, Appendix F, by setting λ = 0), I2,j can
be approximated as

I2,j =

√
n

(2π)1/2
enh(0)

[
{1c2>0 − Φ(ŵ

√
n)} gj(0) +

φ(ŵ
√
n)√

n

{
m−1∑
k=0

pj,k
nk

+O(n−m)

}]
,

where t̂r ≡ t̂+ rŝ, ŵ ≡ sgn(t̂r)
[
2
{
h(0)− h(t̂r)

}]1/2, û ≡ t̂r{h′′(t̂r)}1/2,

pj,k =
2k∑
l=0

l∑
q=0

(−1)lg
(q)
j (t̂r)

q!h′′(t̂r)
q
2 û2k+1−l

ak,l−q −
gj(0)(−2)k

(
1
2

)
k

ŵ2k+1
, (S3)

and the coefficients ai,j are given by

ai,j ≡
j∑

k=0

dk,j(−2)i+k
(

1

2

)
i+k

,
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with di,j obtained from the recurrence relation

d0,0 = 1, d0,j = 0, j ≥ 1, di,j =
1

i

j−i+1∑
k=1

θk+2di−1,j−k (j ≥ i ≥ 1).

Here θk ≡ h(k)(t̂r)/{k!h′′(t̂r)
k/2}. Details of the derivation of this formula are available upon

request. Collecting the terms with like power of n, the mth order approximation for I2 is

I2 =
√
nφ(w̃0

√
n)

[
{1c2>0 − Φ(ŵ

√
n)}

m−1∑
j=0

gj(0)

nj
+
φ(ŵ
√
n)√

n

m−1∑
j=0

1

nj

j∑
k=0

pj−k,k +O(n−m)

]
.

Similarly, the mth order approximation for I1(0) is

I1(0) =
n

2πi

∫ i∞

−i∞
enK(s,−rs)K2(s,−rs)ds =

√
nφ(w̃0

√
n)

m−1∑
j=0

gj(0)

nj
+O(n−m)

 .
It follows that the mth order saddlepoint approximation for the density is

f̂ (m)
n (r) =

√
nφ(w̃0

√
n)

{1− 2Φ(ŵ
√
n)}

m−1∑
j=0

gj(0)

nj
+

2φ(ŵ
√
n)√

n

m−1∑
j=0

Aj
nj

 ,
where

Aj ≡
j∑

k=0

pj−k,k

=

j∑
k=0

2k∑
l=0

l∑
q=0

(−1)lg
(q)
j−k(t̂r)

q!h′′(t̂r)
q
2 û2k+1−l

ak,l−q −
j∑

k=0

gj−k(0)(−2)k
(

1
2

)
k

ŵ2k+1

=

j∑
k=0

2k∑
l=0

(−1)l

û2k+1−l bj,k,l −
j∑

k=0

gj−k(0)(−2)k
(

1
2

)
k

ŵ2k+1
,

and

bj,k,l ≡
l∑

q=0

g
(q)
j−k(t̂r)ak,l−q

q!h′′(t̂r)
q
2

.

The above expression for Aj is undefined when t̂r = 0, i.e., when t̂ = −rŝ. In order to obtain its
limit as t̂r → 0, expand h in a Taylor series about t̂r. This yields

h(0)− h(t̂r) = −t̂rh′(t̂r) +
t̂2r
2
h′′(t̂r)−

t̂3r
3!
h′′′(t̂r) +

t̂4r
4!
h(4)(t̂r)− · · · .
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Using the fact that h′(t̂r) = 0, one has

ŵ2 = 2
{
K(s̃0,−rs̃0)−K(ŝ, t̂)

}
= 2

{
h(0)− h(t̂r)

}
= 2

{
t̂2r
2!
h′′(t̂r)−

t̂3r
3!
h′′′(t̂r) +

t̂4r
4!
h(4)(t̂r)− · · ·

}
= 2

∞∑
j=2

(−1)jθj û
j .

Letting

Bj,k ≡
gj(0)(−2)k

(
1
2

)
k

ŵ2k+1

and using (S3),

Bj,k =
2k∑
l=0

l∑
q=0

(−1)lg
(q)
j (t̂r)

q!h′′(t̂r)
q
2 û2k+1−l

ak,l−q − pj,k,

Bj,k+1 =
2k+2∑
l=0

l∑
q=0

(−1)lg
(q)
j (t̂r)

q!h′′(t̂r)
q
2 û2k+3−l

ak+1,l−q − pj,k+1.

Using the fact that ŵ2Bj,k+1 = −(2k + 1)Bj,k, it follows that2
∞∑
j=2

(−1)jθj û
j




2k+2∑
l=0

l∑
q=0

(−1)lg
(q)
j (t̂r)

q!h′′(t̂r)
q
2 û2k+3−l

ak+1,l−q − pj,k+1


= −(2k + 1)


2k∑
l=0

l∑
q=0

(−1)rg
(q)
j (t̂r)

q!h′′(t̂r)
q
2 û2k+1−l

ak,l−q − pj,k

 .

Comparing the constant term on both sides, pj,k can be expressed as

pj,k = − 2

2k + 1

2k+1∑
l=0

θ2k+3−l

l∑
q=0

g
(q)
j (t̂r)ak+1,l−q

q!h′′(t̂r)
q
2

.

Taking the limit,

lim
t̂r→0

pj,k = − 2

2k + 1

2k+1∑
l=0

θ̄2k+3−l

l∑
q=0

g
(q)
j (0)āk+1,l−q

q!h′′(0)
q
2

,

where θ̄j and āi,j are the values of θj and ai,j evaluated at t̂r = 0. It follows that at r = r0 ≡
−t̂/ŝ where t̂r = 0,

f̂ (m)
n (r0) = (2/π)1/2φ(w̃0

√
n)

m−1∑
j=0

Āj
nj
,
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where

Āj ≡ lim
t̂r→0

Aj

= lim
t̂r→0

j∑
k=0

pj−k,k

= −
j∑

k=0

2

2k + 1

2k+1∑
l=0

θ̄2k+3−l

l∑
q=0

g
(q)
j−k(0)āk+1,l−q

q!h′′(0)
q
2

= −
j∑

k=0

2

2k + 1

2k+1∑
l=0

θ̄2k+3−lb̄j+1,k+1,l,

and b̄j+1,k+1,l is the value of bj+1,k+1,l evaluated at t̂r = 0. The following subsections provide
explicit expressions obtained by specializing these results to the first, second, and third order
cases.

4·1. First Order Approximation
For m = 1 and t̂r 6= 0, using that g0(t̂r) = 0 yields

A0 = p0,0 =
g0(t̂r)

û
− g0(0)

ŵ
= −g0(0)

ŵ
.

It follows that when r 6= r0 so that t̂r 6= 0,

f̂ (1)
n (r) =

√
nφ(w̃0

√
n)g0(0)

[
1− 2Φ(ŵ

√
n)− 2φ(ŵ

√
n)

ŵ
√
n

]
,

which yields (17). Regarding the limit at t̂r = 0,

Ā0 = −θ̄3g0(0) +
g′0(0)

h′′(0)
1
2

=
g′0(0)

h′′(0)
1
2

=
h′′(0)

1
2

h̃2(0)
1
2

=
|K′′(ŝ, t̂)|

1
2

cTr0K′′(ŝ, t̂)cr0
.

It follows that at r = r0,

f̂ (1)
n (r0) = (2/π)1/2φ(w̃0

√
n)
|K′′(ŝ, t̂)|

1
2

cTr0K′′(ŝ, t̂)cr0
,

which proves (18).

4·2. Second Order Approximation
For m = 2 and t̂r 6= 0, one has

f̂ (2)
n (r) = f̂ (1)

n (r) +
φ(w̃0

√
n)g1(0)√
n

{1− 2Φ(ŵ
√
n)}+

2φ(w̃0
√
n)φ(ŵ

√
n)

n
A1,

where

A1 = p0,1 + p1,0

=
g1(t̂r)

û
− g′′0(t̂r)

2h′′(t̂r)û
+

3θ3g
′
0(t̂r)

h′′(t̂r)
1
2 û

+
g′0(t̂r)

h′′(t̂r)
1
2 û2

+
g0(0)

ŵ3
− g1(0)

ŵ
.
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Writing g0(t) ≡ h′(t)/h̃2(t)1/2, it is easy to see that

g′0(t̂r) =
h′′(t̂r)

h̃2(t̂r)
1
2

, g′′0(t̂r) =
h′′′(t̂r)

h̃2(t̂r)
1
2

− h′′(t̂r)h̃
′
2(t̂r)

h̃2(t̂r)
3
2

=
6θ3h

′′(t̂r)
3
2

h̃2(t̂r)
1
2

− h′′(t̂r)h̃
′
2(t̂r)

h̃2(t̂r)
3
2

.

Using these expressions, one has that

g′′0(t̂r)

2h′′(t̂r)
− 3θ3g

′
0(t̂r)

h′′(t̂r)
1
2

= − h̃′2(t̂r)

2h̃2(t̂r)
3
2

. (S4)

Using (S2) and the fact that J̃0(t) = h′(t), g1(t) can be written as

g1(t) =

{
h̃4(t)

8h̃2(t)2
− 5h̃3(t)2

24h̃2(t)3

}
h′(t)

h̃2(t)
1
2

+
1

2h̃2(t)
3
2

{
h̃3(t)J̃1(t)

h̃2(t)
− J̃2(t)

}

=

{
h̃4(t)

8h̃2(t)2
− 5h̃3(t)2

24h̃2(t)3

}
h′(t)

h̃2(t)
1
2

− h̃′2(t)

2h̃2(t)
3
2

, (S5)

where the last equality follows from the identity

h̃′k(t) = h̃k+1(t)s̃′(t) + J̃k(t) = − h̃k+1(t)J̃1(t)

h̃2(t)
+ J̃k(t) (k ≥ 1). (S6)

As h′(t̂r) = 0, g1(t̂r) reduces to

g1(t̂r) = − h̃′2(t̂r)

2h̃2(t̂r)
3
2

. (S7)

Using (S4) and (S7), A1 can be simplified to

A1 =
g′0(t̂r)

h′′(t̂r)
1
2 û2

+
g0(0)

ŵ3
− g1(0)

ŵ
=

1

t̂2r |K′′(ŝ, t̂)|
1
2

+
g0(0)

ŵ3
− g1(0)

ŵ
.

Regarding the limit at t̂r = 0,

f̂ (2)
n (r0) = (2/π)1/2φ(w̃0

√
n)

{
|K(ŝ, t̂)|

1
2

cTr0K′′(ŝ, t̂)cr0
+
Ā1

n

}
,

where

Ā1 =

(
3θ̄4 −

15θ̄2
3

2

)
g′0(0)

h′′(0)
1
2

+
3θ̄3g

′′
0(0)

2h′′(0)
− g′′′0 (0)

6h′′(0)
3
2

− θ̄3g1(0) +
g′1(0)

h′′(0)
1
2

.

Evaluating Ā1 requires explicit expressions for g′′′0 (t̂r), g′1(t̂r), h′′′(t̂r) and h(4)(t̂r). It is straight-
forward to show that

g′′′0 (t) =
h(4)(t)

h̃2(t)
1
2

− 3h′′′(t)h̃′2(t)

2h̃2(t)
3
2

+
9h′′(t)h̃′2(t)2

4h̃2(t)
5
2

− 3h′′(t)h̃′′2(t)

2h̃2(t)
3
2

+ h′(t)

{
−15h̃′2(t)3

8h̃2(t)
7
2

+
9h̃′2(t)h̃′′2(t)

4h̃2(t)
5
2

− h̃′′′2 (t)

2h̃2(t)
3
2

}
.
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Thus, again using the fact that h′(t̂r) = 0,

g′′′0 (t̂r) =
h(4)(t̂r)

h̃2(t̂r)
1
2

− 3h′′′(t̂r)h̃
′
2(t̂r)

2h̃2(t̂r)
3
2

+
9h′′(t̂r)h̃

′
2(t̂r)

2

4h̃2(t̂r)
5
2

− 3h′′(t̂r)h̃
′′
2(t̂r)

2h̃2(t̂r)
3
2

=
24θ4h

′′(t̂r)
2

h̃2(t̂r)
1
2

− 9θ3h
′′(t̂r)

3
2 h̃′2(t̂r)

h̃2(t̂r)
3
2

+
9h′′(t̂r)h̃

′
2(t̂r)

2

4h̃2(t̂r)
5
2

− 3h′′(t̂r)h̃
′′
2(t̂r)

2h̃2(t̂r)
3
2

,

where h̃′2(t̂r) and h̃′′2(t̂r) are obtained from (S6) and given by

h̃′2(t̂r) = J̃2(t̂r)−
h̃3(t̂r)J̃1(t̂r)

h̃2(t̂r)
,

h̃′′2(t̂r) = J̃ ′2(t̂r)−
h̃′3(t̂r)J̃1(t̂r)

h̃2(t̂r)
− h̃3(t̂r)J̃

′
1(t̂r)

h̃2(t̂r)
+
h̃3(t̂r)J̃1(t̂r)h̃

′
2(t̂r)

h̃2(t̂r)2
,

h̃′3(t̂r) can be obtained from (S6), and the general expression for J̃ ′k(t) is

J̃ ′k(t) = − J̃k+1(t)J̃1(t)

h̃2(t)
+

k∑
j=0

(
k

j

)
(−r)jK1k−j2j+2(s̃, t− rs̃).

Differentiating (S5) and using the fact that h′(t̂r) = 0 once more, it is found that

g′1(t̂r) =

{
h̃4(t̂r)

8h̃2(t̂r)2
− 5h̃3(t̂r)

2

24h̃2(t̂r)3

}
h′′(t̂r)

h̃2(t̂r)
1
2

− h̃′′2(t̂r)

2h̃2(t̂r)
3
2

+
3h̃′2(t̂r)

2

4h̃2(t̂r)
5
2

.

Regarding h′′′(t) and h(4)(t), using that h′′(t) = K22(s̃, t− rs̃)− {J̃1(t)2/h̃2(t)} yields

h′′′(t) = K222(s̃, t− rs̃) + {K122(s̃, t− rs̃)− rK222(s̃, t− rs̃)} s̃′(t)

− 2J̃1(t)J̃ ′1(t)

h̃2(t)
+
J̃1(t)2h̃′2(t)

h̃2(t)2

= K222(s̃, t− rs̃)− 3 {K122(s̃, t− rs̃)− rK222(s̃, t− rs̃)} J̃1(t)

h̃2(t)

+
3J̃1(t)2J̃2(t)

h̃2(t)2
− J̃1(t)3h̃3(t)

h̃2(t)3
,

h(4)(t) = K24(s̃, t− rs̃)− 4 {K123(s̃, t− rs̃)− rK24(s̃, t− rs̃)} J̃1(t)

h̃2(t)

+ 6
{
K1222(s̃, t− rs̃)− 2rK123(s̃, t− rs̃) + r2K24(s̃, t− rs̃)

} J̃1(t)2

h̃2(t)2

−
3
{
J̃ ′1(t)h̃2(t)− J̃1(t)h̃′2(t)

}2

h̃2(t)3
− 4J̃1(t)3J̃3(t)

h̃2(t)3
+
J̃1(t)4h̃4(t)

h̃2(t)4
.
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Setting t̂r = 0 yields

Ā1 =

{
3θ̄2

3 − 2θ̄4

2
+

h̃4(0)

8h̃2(0)2
− 5h̃3(0)2

24h̃2(0)3

}
|K(ŝ, t̂)|

1
2

cTr0K′′(ŝ, t̂)cr0
+
θ̄3h̃
′
2(0)

2h̃2(0)
3
2

− h̃′′2(0)

4h̃2(0)
3
2h′′(0)

1
2

+
3h̃′2(0)2

8h̃2(0)
5
2h′′(0)

1
2

.

4·3. Third Order Approximation
For m = 3 and t̂r 6= 0, one has

f̂ (3)
n (r) = f̂ (2)

n (r) +
φ(w̃0

√
n)g2(0)

n
3
2

{1− 2Φ(ŵ
√
n)}+

2φ(w̃0
√
n)φ(ŵ

√
n)

n2
A2,

where

A2 = p2,0 + p1,1 + p0,2

=
g2(t̂r)

û
− g2(0)

ŵ
+
(a1,0

û3
− a1,1

û2
+
a1,2

û

)
g1(t̂r)

−
(a1,0

û2
− a1,1

û

) g′1(t̂r)

h′′(t̂r)
1
2

+
a1,0

û

g′′1(t̂r)

2h′′(t̂r)
+
g1(0)

ŵ3

−
(a2,0

û4
− a2,1

û3
+
a2,2

û2
− a2,3

û

) g′0(t̂r)

h′′(t̂r)
1
2

+
(a2,0

û3
− a2,1

û2
+
a2,2

û

) g′′0(t̂r)

2h′′(t̂r)
−
(a2,0

û2
− a2,1

û

) g′′′0 (t̂r)

6h′′(t̂r)
3
2

+
a2,0

û

g
(4)
0 (t̂r)

24h′′(t̂r)2
− 3g0(0)

ŵ5
.

Using (S6) and the identity

2j∑
k=1

h̃k+1(t)

k!h̃2(t)
k+1
2

ãj,2j−k(t) = 0,

gj(t̂r) can be written as

gj(t̂r) =

2j∑
k=2

h̃′k(t̂r)

k!h̃2(t̂r)
k+1
2

ãj,2j−k(t̂r).

Specifically,

g2(t̂r) =
ã2,2(t̂r)h̃

′
2(t̂r)

2h̃2(t̂r)
3
2

+
ã2,1(t̂r)h̃

′
3(t̂r)

6h̃2(t̂r)2
+
ã2,0(t̂r)h̃

′
4(t̂r)

24h̃2(t̂r)
5
2

=
35h̃3(t̂r)

2h̃′2(t̂r)− 20h̃2(t̂r)h3(t̂r)h̃
′
3(t̂r)

48h̃2(t̂r)
9
2

− 15h̃2(t̂r)h̃4(t̂r)h̃
′
2(t̂r) + 6h̃2(t̂r)

2h̃′4(t̂r)

48h̃2(t̂r)
9
2

.
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After some simplification, it can be verified that the coefficient associated with 1/û inA2 is zero.
Therefore, A2 can be written as

A2 =
1

û2

[{
3θ4 −

15θ2
3

2
+

h̃4(t̂r)

8h̃2(t̂r)2
− 5h̃3(t̂r)

2

24h̃2(t̂r)2

}
h′′(t̂r)

1
2

h̃2(t̂r)
1
2

−3θ3h̃
′
2(t̂r)

2h̃2(t̂r)
3
2

+
h̃′′2(t̂r)

4h̃2(t̂r)
3
2h′′(t̂r)

1
2

− 3h̃′2(t̂r)
2

8h̃2(t̂r)
5
2h′′(t̂r)

1
2

]

− 1

û3

{
h̃′2(t̂r)

h̃2(t̂r)
3
2

+
6θ3h

′′(t̂r)
1
2

h̃2(t̂r)
1
2

}
− 3h̃′′2(t̂r)

1
2

û4h̃2(t̂r)
1
2

− g2(0)

ŵ
+
g1(0)

ŵ3
− 3g0(0)

ŵ5
.

Regarding the limit at t̂r = 0,

f̂ (3)
n (r0) = (2/π)1/2φ(w̃0

√
n)

{
|K(ŝ, t̂)|

1
2

cTr0K′′(ŝ, t̂)cr0
+
Ā1

n
+
Ā2

n2

}
,

where

Ā2 =
g

(5)
0 (0)

40h′′(0)
5
2

− 5θ̄3g
(4)
0 (0)

8h′′(0)2
+

5(7θ̄2
3 − 2θ̄4)g′′′0 (0)

4h′′(0)
3
2

− 15(21θ̄3
3 − 14θ̄3θ̄4 + 2θ̄5)g′′0(0)

4h′′(0)

+
15(231θ̄4

3 − 252θ̄2
3 θ̄4 + 28θ̄2

4 + 56θ̄3θ̄5 − 8θ̄6)g′0(0)

8h′′(0)
1
2

+

(
3θ̄4 −

15θ̄2
3

2

)
g′1(0)

h′′(0)
1
2

+
3θ̄3g

′′
1(0)

2h′′(0)
− g′′′1 (0)

6h′′(0)
3
2

− θ̄3g2(0) +
g′2(0)

h′′(0)
1
2

.

Evaluating Ā2 requires explicit expressions for h(5)(t) and h(6)(t). These can be obtained by
differentiating h(4)(t), but they are lengthy and hence omitted here.

5. FAILURE OF THE METHOD OF PROOF USED FOR THE DENSITY WHEN APPLIED TO
TAIL PROBABILITIES

We briefly discuss why the method of proof used in the derivation of the density approximation
fails for the distribution function. Consider Equation (11). For the two univariate probabilities,
obtaining a uniform asymptotic expansion is a simple task. All that is required is an application of
Lemma 4 to the relevant inversion integrals. Doing so leads to the tail probability approximation
of Lugannani & Rice (1980). Approximating the bivariate probability is less straightforward.
The relevant inversion formula reads, for c1, c2 < 0,

FnW̄ ,Ȳ (0, 0) =

(
1

2πi

)2 ∫ c2+i∞

c2−i∞

∫ c1+i∞

c1−i∞
enK(s,t−rs) ds

s

dt

t
. (S8)

In order to appreciate the difficulties involved in approximating (S8), it is useful to compare
it to the double integral I2 in (10) whose uniform asymptotic expansion formed the basis for
the density approximation (17). The essential difference is the presence of the pole in the inner
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integrand. Applying a standard Laplace approximation as in (13) would therefore result in an
expansion which is nonuniform in r as the saddlepoint crosses the pole. Instead, the inner integral
could be approximated by another application of Lemma 4; this is the approach taken by Wang
(1990) in deriving a saddlepoint approximation for bivariate distributions. Unfortunately, when
applied to the present problem, the approximation contains a term K(0, t̂+ rŝ), orwu0 in Wang’s
notation. Depending on K(·, ·), (0, t̂+ rŝ) may fall outside the convergence region T for some
values of r, rendering the approximation invalid. Although not discussed by Wang, this problem
occurs not only in the present context, but more generally in the approximation of a bivariate
distribution function, the subject of his paper. Kolassa & Li (2010) develop an alternative to
Wang’s approximation which is also applicable in higher dimensional problems, but it suffers
from the same deficiency (see also Li, 2009, in particular Eq. 3.2.3).

6. JOINT MOMENT GENERATING FUNCTION FOR THE APPLICATION IN SECTION 5·1
6·1. Derivation

Let Z1, Z2 ∼ N(0, 1) and Xi ∼ χ2
νi , i ∈ {1, 2}, with respective density

fνi(x) =
e−x/2x(νi−2)/2

2νi/2Γ (νi/2)
,

all independent. The joint moment generating function of

X ≡ [a{X1X2/(ν1ν2)}1/2 + bZ1(X2/ν2)1/2], Y ≡ [c{X1X2/(ν1ν2)}1/2 + dZ2(X1/ν1)1/2]

is, after integrating Z1, Z2,

M(s, t) =

∫ ∞
0

∫ ∞
0

exp

{
d2t2x1

2ν1
+

(as+ ct)(x1x2)1/2

(ν1ν2)1/2
+
b2s2x2

2ν2

}
fν2(x2)fν1(x1)dx2dx1,

defined for all (s, t) such that

−
√
ν2/|b| < s <

√
ν2/|b|, max

[
−
√
ν1/|d|,M−

]
< t < min

[√
ν1/|d|,M+

]
,

where

M± ≡ −acs± {(c
2 + d2ω2)ν1ω2 − a2d2s2ω2}1/2

c2 + d2ω2
.

From Gradshteyn & Ryzhik (2007, 3.462.1), one has that for α < 1 and with y = −β(1−
α)−1/2, ∫ ∞

0
eαu/2+β

√
ufν(u)du =

Γ(ν)ey
2/4

Γ (ν/2) (1− α)ν/22(ν−2)/2
D−ν(y),

where

D−ν(y) ≡ e−y
2/4

Γ(ν)

∫ ∞
0

xν−1e−x
2/2−xydx

is the parabolic cylinder function. Hence, with ω2 ≡= ν2 − b2s2 and y ≡ −(as+
ct){x1/(ν1ω2)}1/2,

M(s, t) =

(
ν2

ω2

)ν2/2 Γ(ν2)

2(ν2−2)/2Γ (ν2/2)

∫ ∞
0

exp

(
d2t2x1

2ν1

)
ey

2/4D−ν2(y)fν1(x1)dx1.
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Using the identity

D−ν(y) = 2−ν/2e−y
2/4√π

[
1

Γ {(1 + ν)/2}1F1

(
ν

2
;
1

2
;
y2

2

)
− y

√
2

Γ (ν/2)
1F1

(
1 + ν

2
;
3

2
;
y2

2

)]
(Gradshteyn & Ryzhik, 2007, 9·240), where 1F1 is the confluent hypergeometric function, one
obtains

M(s, t) =
(ν2/ω2)ν2/2

2ν1/2Γ (ν1/2) Γ (ν2/2)

∫ ∞
0

x
(ν1−2)/2
1 e−ω1x1/(2ν1)

×
{

Γ
(ν2

2

)
1F1

(
ν2

2
;
1

2
;
y2

2

)
− y
√

2Γ

(
ν2 + 1

2

)
1F1

(
ν2 + 1

2
;
3

2
;
y2

2

)}
dx1,

where ω1 ≡ ν1 − d2t2. Next, for |s| > |k|, Reβ > 0, Re s > max(0,Re k), one has∫ ∞
0

e−sttβ−1
1F1(α; γ; kt) = Γ(b)s−b2F1(α, β; γ; k/s),

(Gradshteyn & Ryzhik, 2007, 7.621.4), so that

M(s, t) =

(
ν1

ω1

)ν1/2( ν2

ω2

)ν2/2 [
2F1

(
ν1

2
,
ν2

2
;
1

2
; z2

)
+

2zΓ {(ν1 + 1)/2}Γ {(ν2 + 1)/2}
Γ (ν1/2) Γ (ν2/2)

2F1

(
ν1 + 1

2
,
ν2 + 1

2
;
3

2
; z2

)]
,

where z ≡ (as+ ct)(ω1ω2)−1/2. Using Gradshteyn & Ryzhik (2007, 9.136.2), this can be sim-
plified to

M(s, t) =

(
ν1

ω1

)ν1/2( ν2

ω2

)ν2/2 Γ {(ν1 + 1)/2}Γ {(ν2 + 1)/2}
Γ (1/2) Γ {(ν1 + ν2 + 1)/2}

× 2F1

(
ν1, ν2;

ν1 + ν2 + 1

2
;
1 + z

2

)
.

6·2. Evaluation
The Gauss hypergeometric function is defined by the power series

2F1(a, b; c; z) ≡
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, z ∈ C, |z| < 1, −c /∈ N, (S9)

where (x)n denotes the rising factorial. The power series converges for |z| < 1, but the function
can be analytically continued beyond this disk. In the special case required here where a = ν1

and b = ν2 are nonnegative integers and c = (ν1 + ν2 + 1)/2, the function can be evaluated as a
finite sum, but numerical issues arise in certain cases.

Let ν ≡ min(ν1, ν2) and 2n ≡ max(ν1, ν2)− ν. As 2F1(a, b; c; z) = 2F1(b, a; c; z),

2F1

(
ν1, ν2;

ν1 + ν2 + 1

2
;
1 + z

2

)
= 2F1

(
ν + 2n, ν; ν + n+ 1/2;

1 + z

2

)
≡ fnν (z).

In the special case z = 0, one has

fnν (z) =
√
π

Γ (ν + n+ 1/2) Γ {(ν + 1)/2 + n}
Γ {(ν + 1)/2}

.
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In general, if n is a half integer, then

fnν (z) =

(
2

1− z

) ν1+ν2−1

2
m∑
k=0

(−m)k(m+ 1)k
(

1+z
2

)k(
ν1+ν2+1

2

)
k
k!

(S10)

=

(
2

1− z

)ν2 m∑
k=0

(−m)k(ν2)k

(
z+1
z−1

)k(
ν1+ν2+1

2

)
k
k!

, (S11)

where m ≡ n− 1/2. These follow from the transformation formulae

2F1(a, b; c;x) = (1− x)c−a−b2F1(c− a, c− b; c;x)

= (1− x)−b2F1

(
c− a, b; c; x

x− 1

)
.

The first identity is numerically stable for z ≤ −1, and the second for−1 < z < 1. When z → 1,
fnν (z) diverges to infinity. When z > 1, both (S10) and (S11) are numerically unstable, but this
region is irrelevant for our application. For completeness, the following recursive expression can
be used in that case. Let

gk ≡ 2F1

(
−k,m+ 1; ν2 +m+ 1;

1 + z

2

)
,

so that

fnν (z) =

(
2

1− z

)ν2+m

gm.

The recurrence relations for the Gauss hypergeometric function imply that

gk =
1

ν2 +m+ k

[{
m+ ν2 + 2k − 1− (m+ k)(1 + z)

2

}
gk−1 +

k(z − 1)

z + 1
gk−2

]
,

with boundary conditions

g0 = 1, g1 = 1− (m+ 1)(1 + z)

2(ν2 +m+ 1)
.

If n is an integer, let

gk ≡ 2F1

(
k + 2n, k; k + n+

1

2
;
1 + z

2

)
,

so that fnν (z) = gν . The differential equation defining the Gauss hypergeometric function implies
the recursive relationship

gk =
(2n+ 2k − 1)(2n+ 2k − 3)

(2n+ k − 1)(k − 1)(1− z2)
(zgk−1 + gk−2), (S12)

where g0 = 1 and g1 = hn, with hk ≡ 2F1 {2k + 1, 1; k + 3/2; (1 + z)/2} given by the recur-
sion

hk =

(
k + 1

2

)
(z + hk−1)

k(1− z2)
, h0 =

arccos(−z)
(1− z2)1/2

.

Recursion (S12) is numerically stable if 0 < z < 1. Outside of this interval, fnν (z) can be
computed by summation of power series. When −1 ≤ z < 0, (S9) can be used directly, as
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0 ≤ (1 + z)/2 < 1/2 implies that the series converges rapidly. In all other cases, the transfor-
mation theory of Forrey (1997) should be applied. Specifically, when −3 ≤ z < −1, one uses
the transformation

fnν (z) =

(
2

1− z

)ν1
2F1

(
ν1, n+

1

2
;
ν1 + ν2 + 1

2
;w

)
, (S13)

where w = (z + 1)/(z − 1). When z < −3, one uses

fnν (z) =
Γ
(
ν + n+ 1

2

)
Γ(ν1)

2n−1∑
k=0

Γ(2n− k)(ν)kw
ν+k

Γ
(
n+ 1

2 − k
)
k!

+
Γ
(
ν + n+ 1

2

)
Γ(ν)Γ

(
1
2 − n

) ∞∑
k=0

(ν1)k
(
n+ 1

2

)
k
wν+2n+k

(2n+ k)!k!
gk, (S14)

where w = 2/(1− z),

gk = − log(w) + ψ(k + 1) + ψ(2n+ k + 1)− ψ(ν1 + k)− ψ (n+ k + 1/2) ,

ψ(k) is the digamma function, and gk satisfies the recurrence relation

gk = gk−1 +
1

k
+

1

2n+ k
− 1

ν + 2n+ k − 1
− 1

n+ 1
2 + k − 1

.

Expression (S14) is numerically stable if z ≤ z0 ≡ min {−3, (w0 − 2)/w0} , where w0 ≡
exp {ψ(1) + ψ(2n+ 1)− ψ(ν1)− ψ (n+ 1/2)}. When z0 < z < −1, one reverts to (S13).

For z = 1, ones has fnν (1) = (−1)v. The case with z > 1 is not relevant in our setting, but we
discuss it for completeness. When 1 < z ≤ 3, one uses the transformation

fnν (z) = (−1)ν(1− w)ν12F1

(
ν1, n+

1

2
; ν + n+

1

2
;w

)
+

Γ
(
ν + n+ 1

2

)
Γ
(
ν + n− 1

2

)
Γ(ν1)Γ(ν)

i(−1)ν+n(1− w)ν1w
1
2
−ν−n

ν−1∑
k=0

(1− ν)k
(
n+ 1

2

)
k
wk(

−ν − n+ 3
2

)
k
k!

, (S15)

where w = (z − 1)/(z + 1). The first term corresponds to the real part of fnν (z) and the second
term to the imaginary part.

Finally when z > 3, one uses the transformation

fnν (z) =
(−1)νΓ

(
ν + n+ 1

2

)
Γ(ν1)

2n−1∑
k=0

Γ(2n− k)(ν)kw
ν+k

Γ
(
n+ 1

2 − k
)
k!

+
(−1)νΓ

(
ν + n+ 1

2

)
Γ(ν)Γ

(
1
2 − n

) ∞∑
k=0

(ν1)k
(
n+ 1

2

)
k
wν+2n+k

(2n+ k)!k!
gk,

where w = 2/(1 + z),

gk = ln(−w−1) + ψ(k + 1) + ψ(2n+ k + 1)− ψ(ν1 + k)− ψ
(
n+ k +

1

2

)
= πi− ln(w) + ψ(k + 1) + ψ(2n+ k + 1)− ψ(ν1 + k)− ψ

(
n+ k +

1

2

)
,
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and gk follows the same recurrence relation as in (6·2). The imaginary part Im{fnν (z)} can be
simplified to

(−1)n+νΓ
(
ν + n+ 1

2

)
Γ
(
n+ 1

2

)
wν1(1− w)−n−

1
2

Γ(ν)Γ(2n+ 1)

ν−1∑
k=0

(1− ν)k
(
n+ 1

2

)
k

(2n+ 1)kk!

(
2

1− z

)k
,

but the real part of gk can change sign when k increases if z < −z0, which leads to cancellation
error, so one falls back to (S15) in that case.

7. EXTENSION OF THE APPLICATION IN SECTION 5·2: BOOTSTRAP INFERENCE IN A
SIMULTANEOUS EQUATIONS MODEL

Section 5·2 of the paper showed how the saddlepoint approximation can be used to construct
bootstrap inferences in the Fieller–Creasy problem. A closely related question concerns inference
for structural parameters in a system of simultaneous equations; see Forchini & Hillier (2003) for
a discussion of the relation between the two situations. Simultaneous equation models are useful
for obtaining causal inferences when randomized controlled trials cannot be conducted, as is of-
ten the case in econometrics. They have also gained some notoriety in epidemiology, specifally
in the context of Mendelian randomization, as evidenced by the recent textbook of Burgess &
Thompson (2015). Here, we consider a system containing just one endogenous regressor and
one external instrument. In this setting, the results of the paper can be used to evaluate the distri-
bution function of the two stage least squares estimator, on which inference can then be based.
The finite sample distribution of the estimator under normality has been studied intensively; see,
e.g., Richardson (1968), Sawa (1969), Anderson & Sawa (1973), Holly & Phillips (1979), Nel-
son & Startz (1990a,b), and Maddala & Jeong (1992), or more recently Woglom (2001), Hillier
(2006), Forchini (2006), and Phillips (2006). Few authors have considered the distribution un-
der non-Gaussianity. Knight (1986) assumes that the error distribution permits an Edgeworth
expansion. Forchini (2007) considers spherically distributed errors, and Broda (2013) assumes
a multivariate generalized hyperbolic distribution. The results derived herein allow us to evalu-
ate the distribution function for a large class of error distributions. Here we follow Davidson &
MacKinnon (2010) and focus on the bootstrap, extending the example in Section 5·2.

Consider the just identified model with one endogenous regressor,

y1 = y2β +Xγ + u, (S16)
y2 = z1π +Xδ + v, (S17)

where y1 ≡ (y1,1, . . . , y1,T )T, y2 ≡ (y2,1, . . . , y2,T )T, u ≡ (u1, . . . , uT )T, v ≡ (v1, . . . , vT )T,X
is a T × k matrix of exogenous regressors, the T × 1 vector z1 ≡ (z1,1, . . . , z1,T )T represents an
external instrument, (z1 X) has full column rank, and (ui, vi) is independent across i and identi-
cally distributed with mean zero, E(u2

i ) = σ2
u, E(v2

i ) = σ2
v , and E(uivi) = ρσuσv, σu, σv > 0,

|ρ| < 1. The parameter of interest is β. If ρ 6= 0, then y2 is endogenous in (S16) and ordinary
least squares will be inconsistent for β.

Let MX ≡ I −X(XTX)−1XT and define z ≡MXz1. The instrumental variables, or two
stage least squares, estimator for β is

β̂ = β +
zTu

πzTz + zTv
.

The estimator is invariant with respect to γ and δ. Its distribution is largely determined by the
so-called concentration parameter µ2 ≡ π2zTz/σ2

v , and hence by π. The concentration parame-
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ter measures the strength of the instruments. If π 6= 0 is constant, then the instruments are called
strong, and the large T asymptotic distribution of β̂ is Gaussian, centered around the true param-
eter. Different asymptotic results are obtained if π is modelled as local to zero. Specifically, if π
is O(n−1/2), then the instruments are termed weak, and the asymptotic distribution is that of a
ratio of normals (Staiger & Stock, 1997).

Davidson & MacKinnon (2010) discuss several bootstrap schemes for the null distribution
of β̂. We consider what they refer to as the wild restricted efficient residual bootstrap, which
they found to perform most favorably. Generating bootstrap samples for y2 from resampled
residuals requires an estimate for π, but no consistent estimator exists if the instruments are
weak. Davidson & MacKinnon attempt to mitigate this by using an estimator π̂ that is asymp-
totically equivalent to three stage least squares applied to the system (S16) and (S17) un-
der the null, and hence more efficient than the ordinary least squares estimator from the first
stage regression (S17). A bootstrap replication is then constructed from the resampled residuals
[û{T/(T − k)}1/2 � r, v̂{T/(T − k − 1)}1/2 � r], where r is a T × 1 vector of independent
Rademacher random variables, � denotes elementwise multiplication, and û and v̂ are the resid-
uals from efficient estimation under the null. Davidson & MacKinnon studentize the estimator
with a heteroskedasticity consistent standard error. We do not pursue this here and resample the
estimator directly. The studentized statistic is not asymptotically pivotal if the instruments are
weak (Dufour, 1997), so is not clear that studentization is beneficial. This has been demonstrated
by Hirschberg & Lye (2005) for the Fieller–Creasy problem and by Kilian (1999) in a different
setting, and is borne out in the Monte Carlo experiment reported below.

Under H0 : β = β0, β̂ − β0 = X/Y , where X = zTu and Y = πzTz + zTv, and the joint
bootstrap cumulant generating function of (X,Y ) is

K(s, t) = tπ̂zTz − T log(2) +

T∑
j=1

zj(sûj + tv̂j) + log
{

1 + e−2zj(sûj+tv̂j)
}
.

The sample size T plays a similar role as n in Theorems 3 and 5, but the summands constituting
X and Y , while independent, are not identically distributed. Therefore, we apply the saddlepoint
approximation formally with n = 1. Conditions under which Theorem 4 continues to hold in
this case are discussed in Kolassa (2006, Sec. 5·2) for d = 1; see also Robinson et al. (1990, Sec.
2·2). The essential requirement is that µ2/T → C > 0 as T →∞, implying strong instruments.

We conducted a small Monte Carlo experiment to assess whether eschewing studentization
affects the size of the bootstrap test. The data generating process is the same as Davidson &
MacKinnon’s. Specifically, the instrument z1 in (S17) is drawn from a standard Gaussian and
normalized to have unit Euclidian norm. The structural innovation in (S16) is generated by the
heteroskedastic process ut = |z1,t|ε1,t

√
T , and the reduced form error is modeled as vt = ρut +

(1− ρ2)1/2ε2,t. Here ε1,t and ε1,t are independent standard normal. These choices ensure that
the concentration parameter µ2 = π2. An intercept is included as the only exogenous regressor.
We fix π ∈ {2, 8} and ρ ∈ {0·1, 0·9} and vary T between 25 and 400, essentially replicating
Davidson & MacKinnon’s Table 7. The only difference is that we consider an exactly identified
model, whereas Davidson & MacKinnon include ten irrelevant instruments along with z1. As
discussed below, our approach does not carry over to that setting. Like Davidson & MacKinnon
we use B = 399 bootstrap replications, as the sample sizes are too large to compute the exact
bootstrap distribution. The α% equal tail bootstrap p-value is 2 min(f, 1− f), where f is the
fraction of bootstrapped values of β̂ not exceeding the observed estimator.

The results of 100,000 Monte Carlo draws are shown in Figure S1. The nominal size is 5%. It is
seen that using the saddlepoint approximation instead of sampling from the empirical distribution
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Fig. S1. Sizes of nominal 5% equal tail bootstrap tests of H0 : β = 0. Solid, Monte Carlo without studentization;
dashes, first order saddlepoint approximation without studentization; dots, Monte Carlo with heteroskedasticity

consistent studentization.

function of the residuals makes little difference for the empirical size of the test. Regarding
the relative performance of the studentized and unstudentized tests, the former appears to be
undersized when the instruments are very weak, and the latter when the endogeneity is weak.
Neither is clearly preferred in this experiment.

As mentioned, we briefly discuss the possibility of extending the method to the overidentified
case. Let Z ≡MX(z1 Z2), where Z2 has dimension T × l and l is the degree of overidentifica-
tion. The two stage least squares estimator for β is now

β̂ =
yT

2PZy1

yT
2PZy2

= β +
πTZTu+ vTPZu

πTZTZπ + 2πTZTv + vTPZv
, (S18)

where PZ ≡ ZT(ZTZ)−1Z and π contains the coefficients on Z in the reduced form equa-
tion. The matrix PZ is positive semidefinite, so that the denominators of the fractions in (S18)
are almost surely positive, and the bootstrap distribution could be approximated by the stan-
dard result of Daniels (1954) if the joint cumulant generating function of πTZTu+ vTPZu
and πTZTZπ + 2πTZTv + vTPZv were tractable. Unfortunately this is not the case. To see
this, consider E{exp(vTPZv)}. Unlike in the Gaussian case, one cannot use the spectral the-
orem to reduce vTPzv to a sum of independent random variables. Consequently, computing
E{exp(vTPZv)} requires enumerating all 2T possible realizations for v, which becomes infea-
sible quickly and renders the use of the approximation moot.
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