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SUMMARY

Inversion formulae are derived that express the density and distribution function of a ratio
of random variables in terms of the joint characteristic function of numerator and denominator.
The resulting expressions are amenable to numerical evaluation and lead to simple asymptotic
expansions. The expansions reduce to known results when the denominator is almost surely
positive. Their accuracy is demonstrated with numerical examples.
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1. INTRODUCTION

The distribution functions of many random variables do not permit an analytic representation.
By contrast, the characteristic and moment generating functions are often more tractable. Results
which express the distribution or density function in terms of these are commonly referred to as
inversion formulae.

In many cases, even the characteristic function is intractable, but the statistic may have a
stochastic representation in terms of random variables whose joint characteristic function is read-
ily available. The most common case, and the subject of this paper, is that of a ratio. Many test
statistics and estimators are of this form. The denominator of such ratios is often related to some
form of sample variance and therefore positive. This situation is quite fortunate, because there
exist inversion formulae that express the density and distribution function of such a statistic in
terms of the joint characteristic function of numerator and denominator. There are, however, im-
portant situations that require tail probabilities for ratios of two random variables that both take
values on the entire real line. For example, such probabilities arise in certain inferential proce-
dures for ratios of means or regression coefficients. Known as the Fieller–Creasy problem, this
type of inference is required in a variety of contexts, such as the inverse regression problem,
slope ratio assay, parallel line assay, bioequivalence, and the estimation of long-run multipliers
in econometrics. The present manuscript derives inversion formulae for these tail probabilities
and the associated densities. We first show that the standard results for ratios with positive de-
nominator continue to apply in a certain special case, even if both numerator and denominator
may take values on the entire real line. Our second result is fully general, but involves a double
integral that must typically be evaluated numerically, potentially hampering use of the result in
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applications. We therefore expand the integral in a uniform asymptotic series. The first few terms
in the series, commonly referred to as saddlepoint approximations, are given explicitly. Saddle-
point approximations were introduced to statistics by Daniels (1954) and have found numerous
applications. We do not attempt to provide a full bibliography here, but refer to Butler (2007).
Daniels (1954, 1983) had already considered ratios of random variables, but his result is limited
to the case with positive denominator. Inferential procedures that violate this assumption and
hence require the results of the present paper include Bayesian methods (Press, 1969; Kappen-
man et al., 1970; Hunter & Lamboy, 1981), the unstudentized percentile bootstrap (Wu, 1986,
Sec. 10; Davison & Hinkley, 1997, Sec. 5·7), and generalized confidence intervals (Lee & Lin,
2004; Bebu et al., 2009). The latter two will be considered as numerical examples below.

2. INVERSION FORMULAE

Consider a random variable X and let FX(x) and ϕX(s) denote the associated distribution
and characteristic functions. Gurland (1948) and Gil-Pelaez (1951) show that at every point of
continuity of FX ,

FX(x) = H(c)− 1

2πi

∮
c
ϕX(s)e−isxds

s
= H(c)− 1

π

∫ −ci+∞
−ci

Im

{
ϕX(s)

s
e−isx

}
ds, (1)

where c = 0, i ≡
√
−1,
∮
c ≡ limε↓0

(∫ −ci−ε
−ci−∞+

∫ −ci+∞
−ci+ε

)
, and H(x) ≡ {1 + sgn(x)}/2 is the

Heaviside function. Care must be taken in interpreting the integral sign in (1). Wendel (1961)
has shown that depending on ϕX , the integral may fail to converge absolutely at either limit
of integration. The weakest known condition for absolute convergence is E {log(1 + |X|)} <
∞ (Rosén, 1961). Consequently, Gil-Pelaez relied on Riemann integrals in his derivation, and
Gurland employed principal value integrals. If ϕX is analytic in a horizontal strip S containing,
possibly as its boundary, the real axis, then one may choose c ∈ R such that s− ci ∈ S, s ∈ R.
A judicious choice will improve the convergence of the integral at the lower limit of integration.
Shephard (1991) provides a multivariate generalization of (1). In the bivariate case, if (X,Y ) has
a finite mean and ϕX,Y (s, t) is absolutely integrable, Shephard shows that

FX,Y (x, y) = Gx,y(c1, c2)− 1

(2π)2

∮
c2

∮
c1

χ(s, t)dsdt (2)

= Gx,y(c1, c2)− 1

2π2

∫ −c2i+∞

−c2i

∫ −c1i+∞

−c1i
Re {χ(s, t) + χ(s,−t∗)}dsdt, (3)

where c1 = c2 = 0, t∗ is the complex conjugate of t, Gx,y(c1, c2) ≡ H(c1)FY (y) +
H(c2)FX(x)−H(c1)H(c2), and χ(s, t) ≡ ϕX,Y (s, t) exp(−isx− ity)/(st). The assumption
of a finite mean ensures that the integral in (3) converges absolutely, thus removing the need for
principal value integrals as in the similar result of Gurland (1948). For analytic characteristic
functions, the properties of the integral can be improved by an appropriate choice of c1 and c2 as
in the univariate case. We will not assume analyticity of the characteristic function until Section
4 below, so we set c1 = c2 = 0 but provide a derivation of (3) in Appendix B.

Our interest is in the density and and distribution function of R ≡ X/Y . If Y is almost surely
positive and r is not an atom of R, then

FR(r) = pr (R < r) = pr (X < rY ) = pr (X − rY < 0) = pr (Wr < 0) ,
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where Wr ≡ X − rY and the subscript r in Wr will be suppressed below. Provided that
E {log(1 + |X − rY |)} <∞, an application of (1) then shows that

FR(r) =
1

2
− 1

π

∫ ∞
0

Im {ϕX,Y (s,−rs)}ds

s
.

If in addition, the mean of Y is finite, then ϕX,Y is differentiable with respect to its second ar-
gument (e.g., Cramér, 1946, p. 101). Let ϕ2(s, t) ≡ ∂/∂t ϕX,Y (s, t). If ϕ2(s,−rs) is absolutely
integrable, then the dominated convergence theorem implies that one may differentiate under the
integral sign (e.g., Cramér, 1946, pp. 67f.), so that the density of R is

fR(r) =
1

π

∫ ∞
0

Im {ϕ2(s,−rs)} ds. (4)

Equation (4) was first established in Geary (1944).
A more general expression is needed when both X and Y can take values on the entire real

line. One such result is given in Theorem 2 of Gurland (1948), which shows that if 0 is not an
atom of Y and FR is continuous at r, then with 1A denoting the indicator function of the set A,

FR(r) =
1

2
− 1

2π

∫ ∞
−∞

Im
{
ϕ+(s,−rs) + ϕ−(s,−rs)

}ds

s
, ϕ±(s, t) ≡ E

(
eisX+itY 1±Y >0

)
,

and principal values are to be taken if the integral fails to converge absolutely. The problem with
this result is that explicit expressions for ϕ+ and ϕ− are typically not available. It is therefore
preferable to express the density and distribution function of R in terms of ϕX,Y directly. Two
such results will be derived in the next section.

3. TWO INVERSION THEOREMS FOR RATIOS

Our first result shows that (4) remains valid if some linear combination of X and Y is almost
surely positive or negative, that is, if X and Y form a definite pair, defined as follows.

DEFINITION 1 (DEFINITE PAIR). We call two real-valued random variables a definite pair if
there exists β ∈ {R ∪∞} such that pr (X − βY < 0) = δ, for δ ∈ {0, 1}.

If X is positive with probability one, then X − βY is almost surely positive for β = 0, but it
is less apparent that two random variables can form a definite pair even if both can take positive
and negative values. As a simple example, let X = 2Z2

1 − Z2
2 and Y = Z2

1 − 2Z2
2 , where Z1

and Z2 are independent standard Gaussian, so that W = X − rY = (2− r)Z2
1 + (2r − 1)Z2

2 .
Then pr (W < 0) = 0 for 1/2 ≤ r ≤ 2. Our result is based on the following identity.

LEMMA 1. If X and Y form a definite pair such that pr (X − βY < 0) = δ for δ ∈ {0, 1},
and if 0 is not an atom of Y , then

pr (R < r) = 2δH(r − β) + (1− 2δ)
{

pr (Y < 0) + sgn(r − β) pr (W < 0)
}
,

where R ≡ X/Y and H(x) ≡ {1 + sgn(x)}/2 is the Heaviside function.

Proof. Appendix B. �

The following result follows at once.

THEOREM 1. IfX and Y form a definite pair such that pr (X − βY < 0) = δ for δ ∈ {0, 1},
0 is an atom of neither Y nor W ≡ X − rY , E {log(1 + |Y |)} <∞, and E {log(1 + |W |)} <
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∞, then

FR(r) = H(r − β)− (1− 2δ)

π

∫ ∞
0

Im
{
ϕX,Y (0, s) + sgn(r − β)ϕX,Y (s,−rs)

}ds

s
. (5)

If in addition, Y has a finite mean and ϕ2(s,−rs) is absolutely integrable, then R has density

fR(r) =
sgn(r − β)

π(2δ − 1)

∫ ∞
0

Im {ϕ2(s,−rs)}ds =

∣∣∣∣ 1π
∫ ∞

0
Im {ϕ2(s,−rs)} ds

∣∣∣∣ . (6)

Proof. Observe that r is an atom of R if and only if 0 is an atom of W . For the distribu-
tion function, use (1) in Lemma 1, together with ϕW,Y (s, t) = ϕX,Y (s, t− rs). For the density,
finiteness of the mean guarantees the existence of ϕ2. The dominated convergence theorem im-
plies that one may differentiate under the integral sign if ϕ2(s,−rs) is absolutely integrable. �

Our second result provides general inversion formulae for ratios that remain valid when (5)
and (6) fail. We start from the following observation.

LEMMA 2. If 0 is an atom of neither Y nor W ≡ X − rY , then

FR(r) = pr (W < 0) + pr (Y < 0)− 2 pr (W < 0, Y < 0) . (7)

Proof. Observe that r is an atom of R if and only if 0 is an atom of W . Hence

FR(r) = pr (X > rY, Y < 0) + pr (X < rY, Y > 0)

= pr (W < 0) + pr (Y < 0)− 2 pr (W < 0, Y < 0) . �

We then have the following result.

THEOREM 2. If (X,Y ) has a finite mean, ϕX,Y is absolutely integrable, and 0 is not an atom
of W ≡ X − rY , then for |r| <∞,

FR(r) =
1

2
+

1

π2

∫ ∞
0

∫ ∞
0

Re {ϕX,Y (s, t− rs)− ϕX,Y (s,−t− rs)}ds

s

dt

t

and

fR(r) =
1

π2

∫ ∞
0

∫ ∞
−∞

Re {ϕ2(s,−t− rs)} ds
dt

t
(8)

whenever this integral converges absolutely.

Proof. The assumptions imply that (W,Y ) has a finite mean, and that its characteristic func-
tion ϕW,Y = ϕX,Y (s, t− rs) is absolutely integrable. Hence (3) applies. Combining it with (7)
completes the proof for the distribution function. Integrability of ϕW,Y (s, t) ensures that R has
a density. By dominated convergence,

fR(r) =
1

π2

∫ ∞
0

∫ ∞
0

Re {ϕ2(s,−t− rs)− ϕ2(s, t− rs)}dsdt

t

whenever the integral is absolutely convergent. The result follows upon noting that
ϕX,Y (s, t) and ϕX,Y (−s,−t) are complex conjugates, so that −Re {ϕ2(s, t− rs)} =
Re {ϕ2(−s,−t+ rs)}. �
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4. SADDLEPOINT APPROXIMATION

4·1. Density Approximation
The first step in deriving a saddlepoint approximation to the density is to rewrite (8) in a form

amenable to saddlepoint methods, as follows.

LEMMA 3. Suppose that X and Y have a joint density, and that their joint cumulant gener-
ating function K(s, t) ≡ logE {exp(sX + tY )} converges on the open set T 3 (0, 0). Let X̄
and Ȳ denote the mean of n independent copies of X and Y , respectively. Then the density of
R ≡ X̄/Ȳ is

fnR(r) = 2I2 − sgn(c)I1(0), (0, c) ∈ T \ (0, 0), (9)

where

I1(t) ≡ n

2πi

∫ i∞

−i∞
enK(s,t−rs)K2(s, t− rs)ds, I2 ≡

1

2πi

∫ c+i∞

c−i∞
I1(t)

dt

t
, (10)

and Ki(·, ·) denotes the derivative of K(s, t) with respect to its ith argument.

Proof. From (7), the distribution function of R is, in obvious notation,

FnR(r) = FnW̄ (0) + FnȲ (0)− 2FnW̄ ,Ȳ (0, 0), (11)

where W̄ ≡ X̄ − rȲ . The joint characteristic function of (W̄ , Ȳ ) is exp{nK(is, it− irs)}. Us-
ing it in (2) with c1, c2 < 0 such that (c1, c2 − rc1) ∈ T and changing variables,

FnW̄ ,Ȳ (0, 0) =

(
1

2πi

)2 ∫ c2+i∞

c2−i∞

∫ c1+i∞

c1−i∞
enK(s,t−rs) ds

s

dt

t
.

Similarly, using the left member of (1) with c3 < 0 such that (c3,−rc3) ∈ T ,

FnW̄ (0) = − 1

2πi

∫ c3+∞

c3−∞
enK(s,−rs) ds

s
,

and a similar expression for Fn
Ȳ

(0). Differentiating (11), the density of R is obtained as
fnR(r) = I1(0) + 2I2 with c = c2, and where we have set c1 = c3 = 0, which is permissible
because differentiation has removed the pole at s = 0. If c2 > 0, then the residue at the origin
must be subtracted, which is precisely I1(0). �

The plan is to apply a standard Laplace approximation to I1(t), and then approximate I2 by
a saddlepoint approximation, modified as in Bleistein (1966) to accommodate the pole at the
origin. Let cr ≡ (1,−r)T. For any r such that a solution s̃, called the inner sadddlepoint, to

K1(s̃, t− rs̃)− rK2(s̃, t− rs̃) = 0 (12)

exists, applying a standard Laplace approximation to I1(t) yields

I1(t) =
( n

2π

)1/2
enh(t)g0(t)

{
1 +O

(
n−1

)}
, (13)

where h(t) ≡ K(s̃, t− rs̃), g0(t) = K2(s̃, t− rs̃)/{cTrK′′(s̃, t− rs̃)cr}
1/2, and K′′(·, ·) =

{Kij(·, ·)} denotes the Hessian of K. To approximate I2, we will need the following result.

LEMMA 4 (BLEISTEIN, 1966). If g0(t) and h(t) are real functions of t, analytic in a strip
containing c 6= 0 and the imaginary axis, and h(t) has a unique saddle point t̂r 6= 0 on the real
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axis in the interior of this strip, then

1

2πi

∫ c+i∞

c−i∞
g0(t)enh(t) dt

t
= enh(0)g0(0)

{
1c>0 − Φ(ŵ

√
n)
}

+
enh(t̂r)

(2πn)1/2

{
g0(t̂r)

û
− g0(0)

ŵ
+O

(
n−1

)}
,

where Φ(·) is the standard normal distribution function, ŵ ≡ sgn(t̂r)
[
−2
{
h(t̂r)− h(0)

}]1/2,
û ≡ t̂r{h′′(t̂r)}1/2, and for each r, the saddlepoint t̂r solves h′(t̂r) = 0.

To apply the result, we require the first and second derivatives of h(t). By virtue of (12),

h′(t) = s̃′(t) {K1(s̃, t− rs̃)− rK2(s̃, t− rs̃)}+ K2(s̃, t− rs̃) = K2(s̃, t− rs̃), (14)

where s̃′(t) denotes the derivative of s̃ with respect to t. This is found by differentiating (12),
which yields s̃′(t) = −{K12(s̃, t− rs̃)− rK22(s̃, t− rs̃)} /{cTrK′′(s̃, t− rs̃)cr}. With this, the
second derivative evaluates to h′′(t) = |K′′(s̃, t− rs̃)|/{cTrK′′(s̃, t− rs̃)cr}. The saddlepoint t̂r
is found by equating (14) to zero. Equivalently, t̂r = t̂+ rŝ, where the outer saddlepoint (ŝ, t̂)
solves the system

K′
(
ŝ, t̂
)
≡
{
K1(ŝ, t̂) K2(ŝ, t̂)

}T
= 0. (15)

To apply the lemma, we assume that t̂r 6= 0 so that t̂ 6= −rŝ for the remainder of the proof;
the other case will be dealt with separately. It is further observed that (ŝ, t̂) is independent of r
so that this system needs only be solved once for any given cumulant generating function, and
that (15) implies that g0(t̂r) = K2(ŝ, t̂)/{cTrK′′(ŝ, t̂)cr}1/2 = 0. Let s̃0 ≡ s̃(0), i.e., the inner
saddlepoint corresponding to t = 0, and define w̃0 ≡ sgn (s̃0) {−2K (s̃0,−rs̃0)}1/2 and g̃0 ≡
g0(0) = K2(s̃0,−rs̃0)/{cTrK′′(s̃0,−rs̃0)cr}1/2. Then

I2 =
√
nφ(w̃0

√
n)g̃0

{
1c>0 − Φ(ŵ

√
n)− φ(ŵ

√
n)/(ŵ

√
n) +O

(
n−1

)}
,

where φ is the standard normal density. Combining the two approximations according to (9)
produces the desired result.

THEOREM 3. Suppose that X and Y have a joint density with respect to Lebesgue measure
onR2, and that their joint cumulant generating function K(s, t) ≡ logE {exp(sX + tY )} con-
verges on the open set T 3 (0, 0), with gradient K′(s, t) and Hessian K′′(s, t). Let X̄ and Ȳ
denote the mean of n independent copies of X and Y , respectively. If there exists a solution
(ŝ, t̂) to K′

(
ŝ, t̂
)

= 0 such that t̂ 6= −rŝ, and a solution s̃0 to

cTrK′ (s̃0,−rs̃0) = 0, cr ≡ (1,−r)T, (16)

then the density of the ratio R ≡ X̄/Ȳ is fnR(r) = f̂
(1)
n (r)

{
1 +O

(
n−1

)}
, where

f̂ (1)
n (r) ≡

√
nφ(w̃0

√
n)g̃0 [1− 2 {Φ(ŵ

√
n) + φ(ŵ

√
n)/(ŵ

√
n)}] , (17)

g̃0 ≡ K2(s̃0,−rs̃0)/
{
cTrK′′(s̃0,−rs̃0)cr

}1/2
, w̃0 ≡ sgn (s̃0) {−2K (s̃0,−rs̃0)}1/2 ,

ŵ ≡ sgn
(
t̂+ rŝ

) [
−2
{
K
(
ŝ, t̂
)
−K (s̃0,−rs̃0)

}]1/2
.

Higher order approximations are provided in the Supplementary Material.

A few remarks are in order. First, it can be verified that the approximation is exact when
X and Y are jointly Gaussian. Second, the approximate density is always non-negative. These
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two statements are proven in the Supplementary Material. Third, the term in front of the square
brackets, and thus the approximation for I1, is the standard saddlepoint approximation derived
in Daniels (1954) for the case with pr (Y < 0) = 0. One may therefore interpret the term in
curly braces as a correction for cases in which this requirement fails. Indeed, if X and Y form
a definite pair, then ŵ diverges to ±∞, and the two approximations coincide in absolute value.
Since the term in square brackets is always greater than unity, the correction is, in general, up-
wards; hence using the absolute value of Daniels’s approximation when it is not applicable will
tend to underestimate the density. Fourth, it is seen that (17) is undefined when ŵ = 0, which
happens whenever t̂ = −rŝ. This singularity is, however, removable. Two cases can be distin-
guished: (i) µX ≡ E (X) 6= 0 or µY ≡ E (Y ) 6= 0 or both, so that (ŝ, t̂) 6= (0, 0). Then fn(r)
has a removable singularity at r0 ≡ −t̂/ŝ, and the limiting value is

f̂ (1)
n (r0) = (2/π)1/2φ(w̃0

√
n)|K′′(ŝ, t̂)|1/2/{cTr0K

′′(ŝ, t̂)cr0}. (18)

If, on the other hand, (ii) µX = µY = 0, then ŝ = t̂ = 0. Consequently (17) is undefined for all
r and should be replaced by the limit

f̂ (1)
n (r) = π−1|Σ|1/2/(cTrΣcr), (19)

where Σ ≡ K′′(0, 0) is the covariance matrix of (X,Y ). The accuracy of the approximation
is reduced to fnR(r) = f̂

(1)
n (r){1 +O(n−1/2)} in this case, because in (17), the O(1) term

1− 2Φ(ŵ
√
n) vanishes between the square brackets. Furthermore, the right hand side of (19) is

the density of a ratio of two correlated Gaussians, so that the density of X̄/Ȳ is approximated by
that of a ratio of Gaussians with matching first and second moments, which is correct to the or-
der stated. The asymptotic distribution in the non-zero mean case is quite different: suppose that
µY 6= 0 and let λ ≡ µX/µY . It is a standard result (see, e.g., Fuller, 1990, Theorem 1·3·7) that√
nµY (R− λ)→ N(0, cTλΣcλ) in distribution. In approximation (17), the term in curly braces

tends to unity as n→∞ for fixed r, so that the approximation will converge to that derived in
Daniels (1954), and hence ultimately to a Gaussian density. The case with µY = 0, µX 6= 0 can
be treated by considering R−1. It can be verified longhand that the saddlepoint approximation to
the density of R−1, ĝ(1)

n (r), say, obeys the symmetry relation ĝ(1)
n (r) = f̂

(1)
n

(
r−1
)
/r2.

4·2. Tail Probability Approximation
As discussed in the Supplementary Material, the method of proof used for the density approx-

imation does not extend to tail probabilities. Instead, we rely on a result from Kolassa (2003)
to approximate each probability in (11) separately. Kolassa’s result is a multivariate version of
the approximation of Hauschildt (1969) and Robinson (1982). After correcting a typographical
error, it reads as follows.

THEOREM 4 (KOLASSA, 2003). Suppose the d-dimensional random vector X has a density
and a joint cumulant generating function K(τ) ≡ logE {exp(τTX)} with gradient K′(τ), Hes-
sian K′′(τ), and third order derivatives Kijk(τ) ≡ ∂3/(∂τi∂τj∂τk)K(τ), i, j, k ∈ {1, . . . , d}.
Choose a compact subset C of the range of K′(τ). Denote by X̄ the mean of n independent
copies of X , and for fixed x̄ ∈ C, let the saddlepoint τ̂ solve K′(τ̂) = x̄. Then, provided that
τ̂ > 0,
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pr
(
X̄ > x̄

)
= en(K̂−τ̂Tx̄)

[
enτ̂

TK̂′′τ̂ /2
{
I(0, nK̂′′, τ̂)

+
n

6

d∑
i=1

d∑
j=1

d∑
k=1

Kijk(τ̂)I(ei + ej + ek, nK̂′′, τ̂)

}
+O(n−1)

]
.

Here, K̂ and K̂′′ denote the cumulant generating function and its Hessian evaluated at τ̂ , ej is a
1× d vector with all components zero except for a 1 at position j, and, for Σ a positive definite
matrix and m = (m1, . . . ,md),

I(m,Σ, τ̂) ≡ 1

(2πi)d

∫ τ̂+i∞

τ̂−i∞
eτ

TΣτ/2−τTΣτ̂
d∏
j=1

(τj − τ̂j)mj

τj
dτ. (20)

In Theorem 4 and below, vector inequalities are to be interpreted as holding elementwise.
Applying the theorem requires a means of evaluating the function I . Kolassa provides a recursive
algorithm for this purpose, which expresses I in terms of the multivariate normal distribution and
its derivatives. Appendix A presents explicit expressions for the relevant cases when d = 1 and
d = 2. Kolassa defines the function I only for τ̂ > 0; when some elements of τ̂ are zero, it can be
defined as the appropriate limit. For our purposes, it will prove convenient to also allow τ̂j < 0
for some or all j. Let D denote a diagonal matrix, with elements djj = 1 if τ̂j ≥ 0 and djj = −1
if τ̂j < 0. Then the following relationship holds.

I(m,Σ, τ̂) = I(m,DΣD,Dτ̂)
∏d
j=1 d

mj+1
jj . (21)

All elements of Dτ̂ are nonnegative, so the expressions in Appendix A apply. When applied to
the present problem, the following result is obtained.

THEOREM 5. Under the conditions of Theorem 3, and if there exists ť0 such that K2(0, ť0) =

0, then FnR(r) = F̂
(1)
n (r) +O

(
n−1

)
, where

F̂ (1)
n (r) ≡ sgn0(t̂r) {P1 −H0(s̃0)}+ sgn0(ŝ)

{
P2 −H0(ť0)

}
− 2

{
P3 −H0(t̂r)H0(ŝ)

}
,

P1 ≡ e
n

(
κ̃
(0)
0 +s̃20κ̃

(2)
0 /2

) {
I(0, nκ̃

(2)
0 , s̃0) + nκ̃

(3)
0 I(3, nκ̃

(2)
0 , s̃0)/6

}
,

P2 ≡ e
n

(
κ̌
(0)
0 +ť20κ̌

(2)
0 /2

) {
I(0, nκ̌

(2)
0 , ť0) + nκ̌

(3)
0 I(3, nκ̌

(2)
0 , ť0)/6

}
,

P3 ≡ en
(
κ̂(0,0)+τ̂TK̂′′τ̂/2

){
Î0,0 +

n

6

3∑
j=0

(
3

j

)
κ̂(3−j,j)Î3−j,j

}
,

H0(s) ≡ 1s≥0, sgn0(s) ≡ 2H0(s)− 1, s̃0 is as in (16), (ŝ, t̂) is as in (15), t̂r ≡ t̂+ rŝ, τ̂r ≡
(ŝ, t̂r), τ̂ = (ŝ, t̂), K̂ ≡ [(κ̂(2,0), κ̂(1,1))T, (κ̂(1,1), κ̂(0,2))T], K̂′′ ≡ K′′(ŝ, t̂), κ̌(j)

0 ≡ K2j (0, ť0),

κ̃
(i)
0 ≡

i∑
k=0

(
i

k

)
(−r)kK1i−k2k(s̃0,−rs̃0), κ̂(i,j) ≡

i∑
k=0

(
i

k

)
(−r)kK1i−k2j+k(ŝ, t̂),

K1i2j (s, t) ≡ ∂i+jK(s, t)/∂si∂tj , Îi,j ≡ I{(i, j), nK̂, τ̂r}, and explicit expressions for evaluat-
ing the function I are given in Appendix A.

Proof. See Appendix B. �
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Similar to the density approximation, it can be verified that the tail probability approximation in
Theorem 5 is exact if X and Y are jointly Gaussian.

5. APPLICATIONS

5·1. Generalized Confidence Intervals for Ratios of Normal Means and Regression
Coefficients

Let {ui}nU
i=1 and {vi}nV

i=1 denote unpaired samples from two normal populations with un-
known means µU and µV and unknown variances. Inference is desired for θ ≡ µU/µV . This
situation arises in direct assays. Lee & Lin (2004) derive a generalized confidence inter-
val, in the sense of Weerahandi (1993), for θ. Unlike Fieller’s (1940) procedure, their ap-
proach allows for heteroskedasticity. A 100(1− α)% equi-tailed interval is (rα/2, r1−α/2), with
rα the α quantile of R ≡ (a+ bT1)/(c+ dT2), where a = ū ≡ n−1

U

∑nU
i=1 ui, b = −sU/

√
ν1,

c = v̄ ≡ n−1
V

∑nV
i=1 vi, d = −sV /

√
ν2, s2

U ≡ n
−1
U

∑nU
i=1(ui − ū)2, s2

V ≡ n
−1
V

∑nV
i=1(vi − v̄)2,

T1 ≡ Z1(X1/ν1)−1/2, T2 ≡ Z2(X2/ν2)−1/2, ν1 ≡ nU − 1, ν2 ≡ nV − 1, Z1, Z2 are inde-
pendent standard normal variates, and X1, X2 are distributed as χ2

ν1 and χ2
ν2 respec-

tively, independently from each other and the Zi. Thus T1 and T2 are independently
distributed as Student’s t with respective degrees of freedom ν1 and ν2. The Student’s
t distribution does not admit a moment generating function, but we may write R =
X/Y , where X ≡ [a{X1X2/(ν1ν2)}1/2 + bZ1(X2/ν2)1/2] and Y ≡ [c{X1X2/(ν1ν2)}1/2 +
dZ2(X1/ν1)1/2]. As shown in the Supplementary Material, the joint moment generating func-
tion of X and Y is M(s, t) ≡ exp{K(s, t)} = (ν1/ω1)ν1/2(ν2/ω2)ν2/2Γ{(ν1 + 1)/2}Γ{(ν2 +
1)/2}2F1(ν1, ν2; {ν1 + ν2 + 1}/2; z)/[Γ(1/2)Γ{(ν1 + ν2 + 1)/2}], where ω1 ≡ ν1 − d2t2,
ω2 ≡ ν2 − b2s2, and z ≡ (as+ ct)/(4ω1ω2)1/2 + 1/2, defined for all (s, t) such that ω1, ω2 > 0
and z < 1. Here 2F1(·, ·; ·; ·) denotes the Gauss hypergeometric function. This can be evaluated
efficiently based on the algorithm given in the Supplementary Material. It is not clear how (X,Y )
could be written as a mean of independent copies of identically distributed random variables, so
we apply the approximations formally with n = 1. Nevertheless, and as demonstrated in Figure
1, the accuracy of the approximation improves as ν1, ν2 −→∞ and the distribution of (X,Y )
tends to a Gaussian, for which the saddlepoint approximation is exact. The second order approx-
imation offers little improvement here and is hence not shown.

For illustration, we consider the data given in Finney (1978, Table 2.3.1), for which ū = 19·9,
s2
U = 68·15, v̄ = 16·8, s2

V = 75·87, and nU = nV = 7, so that pr(Y < 0) = 0·162%. Note that
pr(Y < 0) is the p-value of a t-test for H0 : µV = 0 against H1 : µV > 0. In this direct assay,
the data represent fatal doses, in microlitres per kilogram of cats’ body weight, of two tinctures
of strophanthus. The generalized confidence intervals for µU/µV based on exact calculations
and the saddlepoint approximation are, respectively, (0·597, 2·574) and (0·614, 2·490).

Bebu et al. (2009) provide an extension of the method to ratios of regression coefficients,
as required in slope ratio and parallel line assays. Let β̂i and σ̂i, i ∈ {1, . . . , p}, denote the or-
dinary least squares estimates and associated standard errors from a linear regression with er-
rors (u1, . . . , un)T distributed as N(0, σ2In). Bebu et al. show that a 100(1− α)% equi-tailed
generalized confidence interval for βi/βj can be constructed as above, but with rα now rep-
resenting the α quantile of R ≡ (β̂i − σ̂iT̃1)/(β̂j − σ̂j T̃2), where (T̃1, T̃2) is distributed as bi-
variate Student’s t with ν ≡ n− p degrees of freedom and correlation ρ equal to the usual
least squares estimate of corr(β̂i, β̂j). The assumption of elliptical, rather than independent,
random variables simplifies the analysis considerably. The exact density of R has been ob-
tained in Press (1969) in the context of Bayesian analysis of the same problem. As shown
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there, it suffices to consider the case with ρ = 0, as the distribution of R is the same as that
of R̃+ q, where R̃ ≡ {ã+ b̃Z1(X/ν)−1/2}/{c̃+ d̃Z2(X/ν)−1/2}, q ≡ ρσ̂i/σ̂j , ã ≡ β̂i − qβ̂j ,
b̃ ≡ −σ̂i(1− ρ2)1/2, c̃ ≡ β̂j , d̃ ≡ −σ̂j , and X is distributed as χ2

ν , independently of Z1, Z2.
Next, using the same argument as above, R̃ = X̃/Ỹ , where X̃ ≡ ãX/ν + b̃Z1(X/ν)1/2 and
Ỹ ≡ c̃X/ν + d̃Z2(X/ν)1/2. The joint cumulant generating function of (X̃, Ỹ ) is −ν log[1−
{b̃2s2 + d̃2t2 + 2(ãs+ c̃t)}/ν]/2, defined for all (s, t) such that the argument to the logarithm
is positive. The saddlepoints for approximating pr(R̃ < r̃) can be stated explicitly as ŝ = −ã/b̃2,
t̂ = ť0 = −c̃/d̃2, and s̃0 = (c̃r̃ − ã)/(b̃2 + d̃2r̃2), so that the entire approximation can be com-
puted analytically. Bebu et al. (2009) illustrate their procedure for a parallel line essay of es-
trogen. Inference is desired for γ ≡ exp(β3/β2), where β2 and β3 are respectively the coeffi-
cients on the log dose and the test substance dummy. In this example, β̂2 = 21·86, β̂3 = −34·84,
σ̂2 = 5·93, σ̂3 = 11·40, ρ = −0·93, n = 33, and p = 3, so that pr(Y < 0) = 0·045%. Bebu
et al. (2009) obtain the generalized confidence interval (0·132, 0·367) by simulation. Exact calcu-
lations lead to the interval (0·133, 0·364). The saddlepoint approximation yields (0·133, 0·363).

Cox (1985) gives an example in which inference is desired for the ratio of the average percent-
ages of fine gravel in two kinds of surface soil. If one is willing to assume independence between
the samples, then the problem fits Bebu et al.’s framework. The quantity of interest is the ratio
β1/β2 of two dummy regressors. For Cox’ data, β̂1 = 10·91, β̂2 = 3·94, σ̂1 = σ̂2 = 1·83, n =
7, p = 2, and ρ = 0. In this case pr(Y < 0) = 2·63%, so that the denominator is not significantly
different from zero at the 5% level, implying that Fieller’s (1940) solution does not produce a
proper interval when 1− α = 0·95. A 95% generalized confidence interval is (−3·310, 15·680).
The saddlepoint approximation yields (−2·240, 15·370). A researcher might choose to truncate
the interval from below at zero, as the regressand in this example is strictly positive.

5·2. Bootstrap Inference for a Ratio of Sample Means
As in Davison & Hinkley (1988, Sec. 4; 1997, Sec. 9·5·2), we consider the problem of approx-

imating the bootstrap distribution of the ratio of sample means λ ≡ µX/µY in a paired sample
{(xi, yi)}ni=1 drawn from an absolutely continuous distribution; an extension to structural infer-
ence in simultaneous equation models is discussed in the Supplementary Material. The bootstrap
distribution is discrete, whereas our saddlepoint approximation is continuous. The validity of us-
ing the saddlepoint approximation in this fashion follows from arguments in the appendix of Jing
et al. (1994); however, a continuity-corrected version of the saddlepoint approximation might be
warranted. We do not pursue this here because the improvements afforded by such a modifi-
cation are typically small in bootstrap applications (Davison & Hinkley, 1988, Sec. 8; 1997, p.
468). The data considered by Davison & Hinkley are strictly positive, allowing them to rely on
the saddlepoint approximation of Daniels (1954, 1983), and to which our approximation (17)
reduces in that case. Here, we consider the Cushny–Peebles data (Cushny & Peebles, 1905), see
Table 1. The data describe the additional hours of sleep gained by 10 patients using two different
sleep-inducing drugs.

Table 1. Additional hours of sleep gained by 10 patients using sleep-
inducing drugs A and B

Drug
A (yi) 1·9 0·8 1·1 0·1 −0·1 4·4 5·5 1·6 4·6 3·4
B (xi) 0·7 −1·6 −0·2 −1·2 −0·1 3·4 3·7 0·8 0·0 2·0

Source: Cushny & Peebles (1905, Table I.)
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Fig. 1. Density and distribution of a ratio of independent Student’s t variates, a = 3, c = 2, b = 1, and d chosen
such that pr(Y < 0) = 25%. From top to bottom, d = 2.0, d = 2.61, and d = 2.75. Solid, exact density and

distribution functions; broken lines, saddlepoint approximation.

The discreteness of the bootstrap distribution implies that we cannot rely on Theorem 2 to eval-
uate it, but the small sample size allows us to obtain it by enumerating all (2n− 1)!/{n!(n− 1)!}
possible realizations. Table 2 shows the exact distribution function, the saddlepoint approxi-
mation from Theorem 5, and the approximation obtained from a ratio of correlated Gaussians
with fitted moments. The saddlepoint approximation tracks the exact bootstrap distribution ac-
curately, including in the extreme tails. The percentile bootstrap confidence intervals for λ based
on exact calculations and the saddlepoint approximation are, respectively, (−0·1812, 0·5866)
and (−0·1815, 0·5867). For completeness, the exact and saddlepoint basic bootstrap confidence
intervals are respectively given by (0·0572, 0·8250) and (0·0571, 0·8253). The marginal proba-
bility of the denominator becoming negative is quite small for the data at hand (0·05648%), but
this is irrelevant because the numerator and denominator of R form a definite pair for this data
set.
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Table 2. Approximations to the bootstrap distribution
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes mathematical proofs, the
higher order terms for Theorem 3, an algorithm for evaluating the joint moment generating func-
tion in Section 5·1, and an extension of the application in Section 5·2. Matlab code for evaluating
all expressions presented in the paper is available from the authors.

APPENDICES

A. Explicit Expressions for I in (20) for d = 1 and d = 2

The expressions below are valid if all elements of τ̂ are nonnegative, which can be achieved by an ap-
plication of (21). For d = 1, I(0,Σ, τ̂) = Φ(−û) and I(3,Σ, τ̂) =

{
(û2 − 1)φ(û)− û3Φ(−û)

}
Σ−3/2,

where û ≡ τ̂Σ1/2. For d = 2, let ρ ≡ Σ12/(Σ11Σ22)1/2, τ̃1 ≡ Σ11
1/2τ̂1 + ρΣ22

1/2τ̂2, τ̃2 ≡ Σ22
1/2τ̂2 +

ρΣ11
1/2τ̂1, and define J0 ≡ Φ2(−τ̃1,−τ̃2; ρ),

J1 ≡
φ(τ̃2)

Σ
1/2
22

Φ

{
− τ̃1 − ρτ̃2

(1− ρ2)1/2

}
, J2 ≡

φ(τ̃1)

Σ
1/2
11

Φ

{
− τ̃2 − ρτ̃1

(1− ρ2)1/2

}
, J3 ≡

φ2(τ̃1, τ̃2; ρ)

(Σ11Σ22)1/2
,

where φ2(·, ·; ρ) and Φ2(·, ·; ρ) denote, respectively, the density and distribution function of a standard
bivariate Gaussian with correlation ρ. The relevant functions can now be expressed as

I{(0, 0) ,Σ, τ̂} = J0, I{(3, 0) ,Σ, τ̂} = τ̂2
1 (J2 − τ̂1J0)− (J2 + Σ12k1)/Σ11,

I{(2, 1) ,Σ, τ̂} = k1 + τ̂2
1 (J1 − τ̂2J0), I{(1, 2) ,Σ, τ̂} = k2 + τ̂2

2 (J2 − τ̂1J0),

I{(0, 3) ,Σ, τ̂} = τ̂2
2 (J1 − τ̂2J0)− (J1 + Σ12k2)/Σ22,

where k1 ≡ (τ̂1 − τ̂2Σ12/Σ11) (τ̂2J2 − J3) and k2 ≡ (τ̂2 − τ̂1Σ12/Σ22) (τ̂1J1 − J3).

B. Proofs
Proof of (3). Denote by T the convergence region of the joint moment generating function of X and

Y , so that ϕX,Y (−is,−it) is analytic for (s, t) ∈ T . The inversion formula for the joint density is

fX,Y (x, y) =
1

(2π)2

∫ −c2i+∞

−c2i−∞

∫ −c1i+∞

−c1i−∞
ϕX,Y (s, t)e−isx−itydsdt.
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If c1, c2 < 0, integrate between −∞ and x and between −∞ and y, to yield

FX,Y (x, y) =
1

(2πi)2

∫ −c2i+∞

−c2i−∞

∫ −c1i+∞

−c1i−∞
ϕX,Y (s, t)e−isx−ity ds

s

dt

t
.

If c1 > 0, then integration is from x to∞, yielding pr(X > x, Y < y), and so on. This proves the result
for c1c2 6= 0. To prove it for c1 → 0, assume for simplicity that we may pick c1, c2 > 0; the other cases
are treated similarly. By Cauchy’s integral theorem, the path of integration in s can be deformed into one
consisting of the ray (−∞;−ε], a small semicircle in the upper half of the complex plane centered at the
origin with radius ε < c1 traversed clockwise, and the ray [ε;∞). As ε ↓ 0, the integral along the semicircle
converges to−πiϕX,Y (0, t)e−ity/t by the residue theorem. The integral in t can be dealt with in the same
manner. Combining the expressions and simplifying yields (2), from which (3) follows because χ(s, t)
and χ(−s∗,−t∗) are complex conjugates. �

Proof of Lemma 1. Consider the case with pr (X − βY < 0) = 0 first. The result is trivial if β =∞,
i.e., if pr(Y < 0) = 1. For the remainder of the proof, assume that β is finite. Writing R = X/Y = R1 +
β, whereR1 ≡ (X − βY )/Y , it is seen thatR < β, or equivalentlyR1 < 0, if and only if Y < 0, asX −
βY > 0. If r < β, then R < r, or equivalently R1 < r − β, if and only if (X − βY )/(r − β) < Y <
0. Thus pr (R < r) = pr (Y < 0)− pr {Y < (X − βY )/(r − β)} = pr (Y < 0)− pr (X − rY < 0).
Similarly, if r > β, then R < r, or equivalently R1 < r − β, if and only if Y < 0 or Y >
(X − βY )/(r − β). Hence pr (R < r) = pr (Y < 0) + pr {Y > (X − βY )/(r − β)} = pr (Y < 0) +
pr (X − rY < 0). If pr (X − βY < 0) = 1, define R = (−X)/(−Y ) and proceed as above. �

Proof of Theorem 5. We begin by approximating Fn
W̄

(0). The cumulant generating function of W is

K(s,−rs). Define s̃0 as in (16) and let κ̃(i)
0 ≡ ∂i/∂siK(s,−rs)

∣∣
s=s̃0

as given in Theorem 5. By Theo-
rem 4, if s̃0 > 0, then pr(W̄ > 0) = P1 +O(n−1). If s̃0 < 0, the approximation is applied to −W̄ . The
cumulant generating function of −W̄ is K(−s, rs), so that the signs on s̃0 and κ̃(3)

0 are reversed, whereas
κ̃

(0)
0 and κ̃(2)

0 remain unaltered. Thus pr(−W̄ > 0) = pr(W̄ < 0) = −P1 +O(n−1). Combining the two
approximations yields

pr
(
W̄ < 0

)
= H0(s̃0)− P1 +O

(
n−1

)
, (B1)

which can be verified to remain valid if s̃0 = 0. A similar derivation shows that

pr
(
Ȳ < 0

)
= H0(ť0)− P2 +O

(
n−1

)
, (B2)

where ť0 solves K2(0, ť0) = 0. Finally, define (ŝ, t̂) as in (15) and let t̂r ≡ t̂+ rŝ as before. As-
sume for the moment that ŝ > 0 and t̂r > 0. The joint cumulant generating function of (W,Y ) is
K(s, t− rs). The saddlepoint is τ̂r ≡ (ŝ, t̂r). Let τ̂ ≡ (ŝ, t̂), K̂′′ ≡ K′′(ŝ, t̂), and K̂ ≡ K′′W,Y (ŝ, t̂r) =

[(κ̂(2,0), κ̂(1,1))T, (κ̂(1,1), κ̂(0,2))T], where κ̂(i,j) ≡ ∂i+j/∂si∂tjK(s, t− rs)
∣∣
s=ŝ, t=t̂r

as given in Theo-

rem 5. Simplification shows that τ̂T
r K̂τ̂r = τ̂TK̂′′τ̂ . By Theorem 4, pr

(
W̄ > 0, Ȳ > 0

)
= P3 +O

(
n−1

)
,

so

pr
(
W̄ < 0, Ȳ < 0

)
= pr

(
W̄ < 0

)
+ pr

(
Ȳ < 0

)
+ P3 − 1 +O

(
n−1

)
, ŝ, t̂r > 0. (B3)

Next, assume that ŝ > 0 and t̂r < 0. Applying Theorem 4 to (W,−Y ) switches the sign on t̂r, the off-
diagonal elements of K̂, κ̂(3−j,j) for odd j, and, by equation (21), on Îi,j for even j, but leaves κ̂(0,0) and
τ̂TK̂′′τ̂ unaltered. Consequently, pr

(
W̄ > 0,−Ȳ > 0

)
= pr

(
W̄ > 0, Ȳ < 0

)
= −P3 +O

(
n−1

)
, so

pr
(
W̄ < 0, Ȳ < 0

)
= pr

(
Ȳ < 0

)
+ P3, ŝ > 0, t̂r < 0. (B4)

Now assume that ŝ < 0 and t̂r > 0. Applying Theorem 4 to (−W,Y ) switches the sign on ŝ, the off-
diagonal elements of K̂, κ̂(3−j,j) for even j, and Îi,j for even i, but leaves κ̂(0,0) and τ̂TK̂′′τ̂ unaltered.
Consequently, pr

(
W̄ > 0, Ȳ > 0

)
= pr

(
W̄ < 0, Ȳ > 0

)
= −P3 +O

(
n−1

)
, so that

pr
(
W̄ < 0, Ȳ < 0

)
= pr

(
W̄ < 0

)
+ P3, ŝ < 0, t̂r > 0. (B5)
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Finally, if both ŝ < 0 and t̂r < 0, applying Theorem 4 to (−W,−Y ) switches the sign on both ŝ and t̂r,
κ̂(3−j,j) for all j, and Îi,j if i+ j is odd, but leaves κ̂(0,0), K̂, and τ̂TK̂′′τ̂ unaltered. Thus

pr
(
−W̄ > 0,−Ȳ > 0

)
= pr

(
W̄ < 0, Ȳ < 0

)
= P3 +O

(
n−1

)
, ŝ, t̂r < 0. (B6)

Combining (B3)–(B6) yields

pr
(
W̄ < 0, Ȳ < 0

)
= H0(t̂r) pr

(
W̄ < 0

)
+H0(ŝ) pr

(
Ȳ < 0

)
+ P3 −H0(t̂r)H0(ŝ) +O

(
n−1

)
,

which, together with (11) and the univariate approximations (B1) and (B2), gives the result. �
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