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Abstract

The inverse of a noncentral Wishart matrix occurs in a variety of contexts in
multivariate statistical work, including instrumental variables (IV) regression,
but there has been very little work on its properties. In this paper we first
provide an expression for the expectation of the inverse of a noncentral Wishart
matrix, and then go on to do the same for a number of scalar-valued functions
of the inverse. The main result is obtained by exploiting simple but powerful
group-equivariance properties of the expectation map involved. Subsequent
results exploit the consequences of other invariance properties.

1. INTRODUCTION

Many inference problems in multivariate analysis, and in econometrics, involve var-
ious properties of the noncentral Wishart distribution. For example, all of the es-
timators for the parameters in structural equation models (LIML, FIML, OLS, IV,
etc.) are functions of a noncentral Wishart matrix, and the distribution theory for
them derives directly from this fact. See, for instance, Phillips (1983), and the many
references therein. Recent work on partially identified models (Phillips, (1989)) and
weak instruments (e.g., Andrews and Stock (2005)) involves the same structure. In
some applications, however, the relevant matrix is the inverse of a noncentral Wishart
matrix, rather than the matrix itself, and this makes the problem considerably more
difficult. That is the motivation for the present paper.

If the rows of the n×m matrix Z are independent normal with covariance matrix
Σ, and E[Z] = M , then, if n ≥ m, the density of W = Z ′Z is given by (Muirhead
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(1982), p.442)
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where etr(A) denotes exp(tr(A)), tr(A) is the trace of A, |A| is the determinant of A,
and

Γm(t) = π
m(m−1)

4

m∏
i=1

Γ

(
t− i− 1

2

)
(3)

is the multivariate gamma function, with Γ(t) the univariate gamma function. Here
and throughout we use the usual notation for the hypergeometric functions of matrix
argument (see Constantine (1966), or Muirhead (1982)):

pFq(a1, . . . , ap; c1, . . . , cq;A) =
∞∑
j=0

1

j!

∑
α`j

∏p
i=1(ai)α∏q
r=1(cr)α

Cα(A). (4)

Here, α = (j1, j2, . . . , jm) is a partition of j with at most m parts (i.e., j1 ≥ j2 ≥ · · · ≥
jm ≥ 0, and Σm

s=1js = j), this being denoted by α ` j. The numerical coefficients (c)a
are defined by

(c)α =
m∏
s=1

(
c− s− 1

2

)
js

, (5)

where (c)r = c(c + 1) · · · (c + r − 1). Finally, Cα(·) denotes the zonal polynomial in
the elements of the indicated matrix corresponding to the partition α ` j (see Muir-
head (1982), Chapter 7, or Macdonald (1995)). The important properties of these
polynomials for our purposes are their invariance under orthogonal transformations,
i.e., Cα(HAH ′) = Cα(A), H ∈ O(m), where O(m) is the group of m×m orthogonal
matrices, and the integral identity (Constantine (1966), Equation (5)):∫

O(m)

Cα(HAH ′B)(dH) =
Cα(A)Cα(B)

Cα(Im)
. (6)

Here, (dH) denotes the normalized invariant (Haar) measure on O(m). We will also
use the averaged hypergeometric functions based on this integral, and defined by:

pF
(m)
q (a1, . . . , ap; c1, . . . , cq;A,B) =

∫
O(m)

pFq (a1, . . . , ap; c1, . . . , cq;HAH
′B) (dH),

(7)

1The noncentrality matrix is usually defined as Ω = Σ−1Λ. Here we shall use the more symmetric
notation. Also, n in this definition need not be an integer: the expression given is a density for the
positive definite symmetric matrix W for any real number n > m− 1.
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see Muirhead (1982), p.259.
We abbreviate the fact that W has this density by W ∼ Wm(n,Σ,Λ), or W ∼

Wm(n,Σ) when Λ = 0. Expectations of functions of W when W has this density will
be denoted by expressions like EΣ,Λ[·], with Σ omitted in the subscript when Σ = Im,
and Λ omitted in the central case Λ = 0. When Λ = 0 and Σ = Im both subscripts
are omitted. Analogous notation will also be used for other random variables.

In this paper we examine some of the properties of the inverse of such a matrix W ,
beginning with the expectation of W−1. For the problem of evaluating the expectation
of W−1 we may assume that Σ = Im, so that the density of W depends only on Λ. For
other functions of W−1 discussed later this assumption is restrictive, but the more
general case of arbitrary Σ is more complicated. So, later, we will discuss both of the
cases Σ = Im and Σ arbitrary. We first seek an expression for the mean, EΛ[W−1]. In
the central case where W ∼ Wm(n,Σ) the result is easily obtained (Muirhead (1982),
p.97), and is:

EΣ[W−1] = (n−m− 1)−1Σ−1. (8)

In the (noncentral) scalar case (m = 1) the result is also well-known, since W ∼ χ2
n(λ)

(i.e., noncentral chi-square with noncentrality parameter λ) and we have, for n > 2,
(Krishnan (1967))

E
[
χ2
n(λ)−1

]
= (n− 2)−1

1F1

(
1;
n

2
;−λ

2

)
, (9)

where 1F1(a, b; z) is the confluent hypergeometric function. However, as far as we
know, no explicit results are available for the noncentral case when m > 1, although
some attempts on the problem have been made (Ullah (1994), Letac and Massam
(2008)). These known results are not explicit, but are expressed in terms of unre-
solved integrals and/or differential operators.2 The expressions obtained below are,
in contrast, explicit, and relatively simple.

After evaluating EΛ[W−1] itself, we then go on to discuss the expectations of
certain scalar functions of W−1. Here we confine attention to orthogonally invariant
functions (i.e., functions f(W−1) invariant under W → HWH ′, H ∈ O(m)). In
particular, we evaluate the expectations of the elements of a particular basis for the
vector space of such functions, the zonal polynomials. The expectations of functions
such as (tr(W−1))k and tr(W−k) naturally have expansions in terms of expectations
of zonal polynomials.

We denote by Pm the space of m ×m symmetric matrices. The notation A > 0
denotes the set of matrices A ∈ Pm that are positive-definite symmetric. Short proofs
are given in the text, and more elaborate ones are given in Appendixes A–C.

2The expression given by Ullah (1994) is deceptively simple. However, the differential operator
in fact needs to be applied to an infinite series of zonal polynomials in the variables involved in
the differential operator (equation (62) below). More seriously, the action of the operator on zonal
polynomials is completely unknown.
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1.1. Application: IV Regression

In an IV regression with known reduced form covariance matrix we have (after suitable
standardising transformations),3 the system

y = Xβ + u, (10)

X = ZΠ + U, (11)

with y (n × 1) independent of X (n × k) and Z (n × p) fixed (exogenous). The IV
estimator for β is the OLS estimator

b = (X ′X)−1X ′y, (12)

and, assuming standard normality for the rows of (u, U), we have that, conditionally,
given X, (b− β)|X ∼ N(0, (X ′X)−1). Here, W = X ′X ∼ Wk(n, Ik,Λ), with

Λ = Π′Z ′ZΠ. (13)

Thus, the conditional covariance matrix of (b − β) is W−1, and the unconditional
covariance matrix its expectation.4

1.2. A Useful Representation

The IV regression example just discussed is useful for expository purposes. Thus,
we introduce a vector x whose conditional distribution, given W, is N(0,W−1). That
is, the conditional covariance matrix of x, given W, is Ex|W [xx′] = W−1, and its
unconditional covariance matrix is the object of our desire. But, confining attention
to the case Σ = Im,

EΛ[W−1] = EΛEx|W [xx′] = Ex,W [xx′] = EΛ[xx′], (14)

3Briefly: we start from an equation involving T × (k + 1) variables (ỹ, Ỹ ), say. The IV equation
is ỹ = Ỹ β+u, and in the background is a reduced form for Ỹ , Ỹ = Z̃Π +U, with Z̃ T × p. Since we
are assuming a known covariance matrix for the rows of (u, U), we may assume that standardising
transformations have reduced this to an identity matrix. Also, if the IV equation involves other
variables, say Z1 (including a constant term), we assume these have been partialled out (i.e, (ỹ, Ỹ )
are actually residuals after regression on Z1).

The IV estimators are of the form b = (Ỹ ′PỸ )−1Ỹ ′P ỹ, where P is an idempotent of rank n ≥ k. It
therefore has the form V (V ′V )−1V ′ for some choice of instruments V (n×k). Both n and V depend

on the choice of estimator. Now define X = (V ′V )−
1
2V ′Ỹ , y = (V ′V )−

1
2V ′ỹ, (n × k and n × 1

respectively), and Z = (V ′V )−
1
2V ′Z̃. The estimator is then, as defined in the text, b = (X ′X)−1X ′y.

Further details can be found in Hillier et. al. (1984).
4The result we obtain below for this expectation, although reasonably complex, is considerably

simpler than that given in Hillier et. al. (1984) for the second moment matrix of the IV estimator.
That is because we are here assuming that the covariance matrix of (u, U) is known (and so can
be taken to be the identity). That assumption was not made in the earlier paper, and both the
mean and covariance matrix of the conditional distribution of b, given X, there depend on X. This
complicates matters considerably.
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where the final expectation is now with respect to the marginal density of x:

pdf(x; Λ) =

∫
W>0

pdf(x|W )pdf(W ; Λ)(dW ). (15)

Using a standard result on Laplace transforms of zonal polynomials (see Constantine
(1963), equation (1), for example), the marginal density of x is easily seen to be

pdf(x; Λ) =
Γm
(
n+1

2

)
etr
(
−Λ

2

)
π
m
2 Γm

(
n
2

)
×(1 + x′x)−

n+1
2 1F1

(
n+ 1

2
;
n

2
;
1

2
Λ(Im + xx′)−1

)
. (16)

In the IV regression example, this equation (with m = k and Λ = Π′Z ′ZΠ) is simply
the unconditional density of the recentered IV estimator b− β.

We note, for later use, the fact that, when evaluating the expectation of any
function of x that is invariant under x → Hx, H ∈ O(m), the density (16) may be
replaced by its average over O(m) under the transformation x → Hx, H ∈ O(m).
Using (6), this is:

pdf (m)(x; Λ) =
Γm
(
n+1

2

)
etr
(
−Λ

2

)
π
m
2 Γm

(
n
2

)
×(1 + x′x)−

n+1
2 1F

(m)
1

(
n+ 1

2
;
n

2
;
Λ

2
, (Im + xx′)−1

)
. (17)

An exactly analogous argument applies, of course, to the density of W itself, see
equation (37) below.

Remark 1. This argument can easily be generalized to the case of an m× r matrix
X whose columns are independent N(0,W−1) vectors. See Section 4.2.2 below.

2. PRELIMINARIES

In the representation in terms of x, note that, since the conditional mean Ex|W [x]
is zero, so is the unconditional mean. The required covariance matrix EΛ[W−1] =
EΛ[xx′] will be a matrix-valued function of Λ, say Φ(Λ). The expectation operator
EΛ[W−1] = EΛ[xx′] thus defines a mapping from the space of symmetric matrices,
Pm, to itself. This map has the following simple but important property:

LEMMA 1. The map Λ→ Φ(Λ) : Pm → Pm defined by Φ(Λ) = EΛ[W−1] = EΛ[xx′]
is equivariant under the conjugate action of the orthogonal group O(m) on Λ. That
is, for all H ∈ O(m),

Φ(HΛH ′) = HΦ(Λ)H ′. (18)
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Proof. On making the transformation Λ → HΛH ′, in the integral defining Φ, we
may then transform x→ x̃ = H ′x, leaving the density of x̃ as was. Thus Φ(HΛH ′) =
EHΛH′ [xx

′] = EΛ[Hx̃x̃′H ′] = HΦ(Λ)H ′.
Lemma 1 has several valuable implications for our problem, gathered in the fol-

lowing corollary.

Corollary 1. (i) If Λ = LDL′, L ∈ O(m), D = diag(ω1, . . . , ωm), is the spectral
decomposition of Λ, then

Φ(Λ) = Φ(LDL′) = LΦ(D)L′. (19)

(ii) If Λ = αIm, then Φ(Λ) = ψ̄(α)Im, for some scalar function ψ̄(α) of α.
(iii) For D diagonal, Φ(D) is also diagonal.

Proof. (i) is just the equivariance property. (ii) Equivariance implies that Φ(αIm) =
Φ(αHImH

′) = HΦ(αIm)H ′ for all H ∈ O(m), which implies that Φ(αIm) is propor-
tional to an identity matrix. (iii) If T is the subgroup of O(m) consisting of the 2m

diagonal matrices T = diag{±1,±1, . . . ,±1} (i.e., the group of sign changes), it is
easy to see that A ∈ Pm is invariant under the action of T if and only if A is diagonal.
But, by equivariance, for every T in this subgroup, Φ(D) = Φ(TDT ′) = TΦ(D)T ′,
which implies that Φ(D) is diagonal.

Translated into conclusions about the problem of interest, these results say: (i)
only pdf(x;D), with D the diagonal matrix of eigenvalues of Λ, needs to be considered:
Φ(Λ) = EΛ[xx′] can be recovered from ED[xx′]. (ii) The matrices Λ and Φ(Λ) have
common eigenvectors. (iii) When Λ is spherical (proportional to the identity matrix),
so is Φ(Λ), and (iv) variables with density pdf(x;D), D diagonal, are uncorrelated
(though manifestly not independent). Thus, only the variances of the xi are needed
to determine Φ(D). When D = αIm, tr(Φ(D)) = EΛ[x′x] = mψ̄(α), so in this case
only the expectation EΛ[x′x] is needed.

The fact that Φ(D) is diagonal, coupled with its equivariance, means that the
m diagonal elements of Φ(D), together with the eigenvectors of Λ in L, completely
determine Φ(Λ). However, even more can be said about these diagonal elements, as
follows. Let Pr, r = 2, . . . ,m, denote the permutation (transposition) matrix that
interchanges the first and r-th elements of a vector in Rm. Note that the Pr are
elements of O(m). We have the following lemma.

LEMMA 2. Let ψi(D), i = 1, . . . ,m denote the diagonal elements of Ψ = Φ(D).
Then, for each r = 2, . . . ,m, ψr(D) = ψ1(PrDP

′
r). That is, each of the ψr(D) can be

obtained from ψ1(D) by simply exchanging the roles of ω1 and ωr, r = 2, . . . ,m.

Proof. By Lemma 1, Φ(PrDP
′
r) = PrΦ(D)P ′r for each r = 2, . . . ,m. The (1, 1)

element of the matrix on the left is ψ1(PrDP
′
r). On the right, the (1, 1) element is

ψr(D), establishing the result.5

5In fact, for every permutation matrix Pσ, with σ ∈ Sm (the symmetric group on m objects), we
have Φ(PσDP

′
σ) = PσΦ(D)P ′σ. This imposes more structure on Φ(D), but the result in Lemma 2 is

sufficient for our purposes.
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This result means that we need only determine one of the elements ψi(D) of
Ψ = Φ(D), say ψ1(D), since this determines all remaining elements. We will see the
properties described in Lemma 2 directly in Section 3 (Theorem 1).

2.1. A Useful Lemma

We will make use of the following result:

LEMMA 3. Let ρ be a partition of an integer r > 0, Cρ(·) the zonal polynomial
associated with ρ, and n > m− 1 a positive real number. We have∫

Rm
(1 + x′x)−

n+1
2 Cρ((Im + xx′)−1)(dx) =

π
m
2 Γ
(
n−m+1

2

)
Γ
(
n+1

2

) (
n
2

)
ρ(

n+1
2

)
ρ

Cρ(Im), (20)

and∫ ∞
0

q
m
2
−1(1 + q)−

n+1
2 Cρ

(
(Im + qe1e

′
1)−1

)
dq = B

(
m

2
,
n−m+ 1

2

) (
n
2

)
ρ(

n+1
2

)
ρ

Cρ(Im),

(21)
where B(a, c) = Γ(a)Γ(c)/Γ(a+ c) is the beta coefficient.

The proof is in Appendix A. Using Lemma 3, the following corollary, which will
be useful later, is easily established:

Corollary 2. For x with density (17) or (16), and any s < n−m+1
2

,

EΛ[(1 + x′x)s] =
Γ
(
n+1

2

)
Γ
(
n−m+1

2
− s
)

Γ
(
n−m+1

2

)
Γ
(
n+1

2
− s
)

× etr

(
−Λ

2

)
2F2

(
n+ 1

2
,
n

2
− s; n

2
,
n+ 1

2
− s; Λ

2

)
. (22)

Proof. Multiply (17) by (1 + x′x)s and integrate using Lemma 3 with n replaced by
n − 2s. This produces (22). Since x′x is invariant under transformations x → Hx,
H ∈ O(m), (22) also holds when x has density (16).

3. RESULTS FOR E[W−1]

3.1. Special Cases

In the central case (Λ = 0) we have already noted the result in equation (8). In the
spherical case with Λ = αIm, Σ = Im, part (ii) of Corollary 1 says that we only need
to find ψ̄(α), and this can be deduced from the fact that tr(Φ) = EΛ[x′x] = mψ̄(α).
Thus, we need simply to evaluate EΛ[x′x] for this case. The result is easily obtained
as an application of Corollary 2:
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PROPOSITION 1. When Λ = αIm we have Φ(αIm) = ψ̄(α)Im, with

ψ̄(α) =
1

m

[(
n− 1

n−m− 1

)
e−

mα
2 2F2

(
n+ 1

2
,
n− 2

2
;
n

2
,
n− 1

2
;
α

2
Im

)
− 1

]
. (23)

Proof. Using Corollary 2, we have when Λ = αIm,

EΛ[1 + x′x] =

(
n− 1

n−m− 1

)
e−

mα
2 2F2

(
n+ 1

2
,
n− 2

2
;
n

2
,
n− 1

2
;
α

2
Im

)
. (24)

This gives the result stated.
When Λ is of rank r < m it can easily be shown that diagonal elements of Φ(D)

corresponding to zero eigenvalues of Λ are all equal to (n−m− 1)−1. The remaining
elements will follow from the main result, the proof of which applies whatever the
rank of Λ.

3.2. Main Result

According to Lemma 2 we need only consider the case Λ = D, and also need only
evaluate ψ1(D) = Var[x1], the remaining terms being obtained by transpositions (1, r)
of the diagonal elements of D. We prove the following theorem.

THEOREM 1. If W ∼ Wm(n, Im,Λ), and Λ = LDL′, L ∈ O(m), D = diag(ω1, . . . , ωm)
is the spectral decomposition of Λ, then EΛ[W−1] = Φ(Λ) = LΨL′, with Ψ =
diag(ψi(D)). When n > m + 1, the elements on the diagonal of Ψ = Φ(D) are
given by

ψi(D) =
etr
(
−Di

2

)
n−m− 1

∞∑
k=0

(
−ωi

2

)k(
n
2

)
k

2F2

(
n

2
,
n− 1

2
+ k;

n− 1

2
,
n

2
+ k;

Di

2

)
, (25)

i = 1, . . . ,m, where Di is D with its i-th row and column removed. The ψi(D) are
the eigenvalues of Φ(Λ), and Φ(Λ) = LΨL′ is the spectral decomposition of Φ(Λ).

The proof can be found in Appendix B. It is straightforward to check that this
result agrees with the known result for the case m = 1, i.e., the case E [(χ2

n(ω))−1]. As
expected (because Φ(Λ) is the (unconditional) covariance matrix of x, and W−1 > 0
almost surely), we have the following corollary.

Corollary 3. The matrix Φ(Λ) = EΛ[W−1] is positive definite whatever the rank of
Λ. The ψi(D) corresponding to zero eigenvalues of Λ are (n−m− 1)−1.

Remark 2. When W ∼ Wm(n,Σ,Λ), W̃ = Σ−
1
2WΣ−

1
2 ∼ Wm(n, Im,Σ

− 1
2 ΛΣ−

1
2 ),

Thus, for the case W ∼ Wm(n,Σ,Λ) we have

EΣ,Λ[W−1] = Σ−
1
2EΛ1 [W̃

−1]Σ−
1
2 , (26)

where Λ1 = Σ−
1
2 ΛΣ−

1
2 , with EΛ1 [W̃

−1] as given in Theorem 1 with Λ replaced by Λ1.
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Remark 3. Note that for n large, the term µk(D1) as defined in the proof of Theo-
rem 1 is approximately equal to

(
n−m+1

2

)
k
/
(
n
2

)
k
, so that

Var[x1] ' 1

n−m− 1

∞∑
k=0

(
−ω1

2

)k(
n
2

)
k

=
1

n−m− 1
1F1

(
1;
n

2
;−ω1

2

)
. (27)

Thus, for large n,

Ψ ' 1

n−m− 1
diag

{
1F1

(
1,
n

2
;−ωi

2

)}
, (28)

with diagonal elements approximately equal to

ψi(D) ' n− 2

n−m− 1
E
[
χ2
n(ωi)

−1
]
, i = 1, . . . ,m. (29)

Remark 4. Theorem 1 evidently enables the evaluation of the expectation of any
linear function of the elements of W−1. For instance, for any fixed matrix A,

EΛ

[
tr(AW−1)

]
= tr(AEΛ[W−1]) = tr(ALΨL′). (30)

3.3. Estimation of the Precision Matrix Σ−1

In the central case equation (8) means that (n−m− 1)W−1 is an unbiased estimator
of the precision matrix Σ−1. In the noncentral case this is no longer the case. Instead,
as noted above,

EΣ,Λ[(n−m− 1)W−1] = (n−m− 1)Σ−
1
2 Φ(Λ1)Σ−

1
2 (31)

= Σ−1 − Σ−
1
2 [Im − (n−m− 1)Φ(Λ1)] Σ−

1
2 . (32)

To the extent that (n −m − 1)Φ(Λ1) differs from an identity matrix, the estimator
is biased by the second factor in this expression. In the case Λ1 = αIm, for instance,
Im − (n−m− 1)Φ(Λ1) = (1− (n−m− 1)ψ̄(α))Im and

EΣ,Λ[(n−m− 1)W−1] = (n−m− 1)ψ̄(α)Σ−1, (33)

with ψ̄(α) as in equation (23). For n large (n−m−1)ψ̄(α) is near 1, but the estimator
is in general biased for moderate n even in this simple case.

4. EXPECTATION OF THE ZONAL POLYNO-

MIALS Cκ(W
−1)

The zonal polynomials Cκ(A), κ ` k, form a basis for the space of orthogonally
invariant homogeneous polynomials of degree k in the elements of a symmetric matrix
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A (see, for instance, Macdonald (1995)). That is, any scalar function of W−1 that
is homogeneous and invariant under W → HWH ′, H ∈ O(m) can, in principle, be
expressed as a linear combination of the corresponding zonal polynomials. Scalar
functions of W−1 of potential interest in this class include the following three cases:6

powers of the determinant,

δk(Σ,Λ) = EΣ,Λ

[
|W−1|k

]
, k = 1, 2, . . . , (34)

powers of the trace,

τ k(Σ,Λ) = EΣ,Λ[(tr(W−1))k], k = 1, 2, . . . , (35)

and the power-sums

πk(Σ,Λ) = EΣ,Λ[tr(W−k)], k = 1, 2, . . . . (36)

Other examples include fv(W ) =
∏s

i=1 tr(W−i)νi , with ν1 + 2ν2 + · · · + sνs = k,
which can be written as linear combination of the Cκ(W

−1) for κ ` k. The cases
(tr(W−1))k = Σκ`kCκ(W

−1) and tr(W−k) (i.e., τ k and πk) are both in this class, with
s = 1 and v1 = k in the first case, and s = k, vi = 0 for i = 1, . . . , k− 1, vk = 1 in the
second. Hence, if the expectations of the Cκ(W

−1) for all κ ` k are known, so are the
expectations of all other functions of W−1 in this class. This fact is the motivation
for this section. The computation of the functions appearing in the results in this
section is discussed in Section 5. below.

For orthogonally invariant functions f(W ) (including the zonal polynomials) the
following results hold:

LEMMA 4. Let f(W ) satisfy f(HWH ′) = f(W ) for all H ∈ O(m). Then,

1. In the case Σ = Im, EΛ[f(W )] is invariant under Λ→ HΛH ′, H ∈ O(m), and
when Λ = 0 EΣ[f(W )] is invariant under Σ→ HΣH ′, H ∈ O(m).

2. In the case of general Σ ∈ Pm, and Λ 6= 0, EΣ,Λ[f(W )] is invariant under the
simultaneous transformations Λ→ HΛH ′, Σ→ HΣH ′, H ∈ O(m).

The proofs are trivial and omitted. Evidently, in the general case the expectations
EΣ,Λ[f(W )] will involve a class of functions of (Σ,Λ) more general than symmetric
polynomials in either argument. We will see this directly below. However, when
Σ = Im the expectations of functions in the class referred to in the Lemma depend

6Of course, for k = 1
τ1(Σ,Λ) = π1(Σ,Λ) = EΣ,Λ[tr(W−1)],

and the result follows immediately from Corollary 2 (with s = 1) when Σ = Im since EΛ[tr(W−1)] =
tr(Φ(Λ)) = EΛ[x′x].
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only on the eigenvalues of Λ, i.e., D, and may be computed from the averaged density
of W,

pdf (m)(W ; Λ) =

∫
O(m)

pdf(W ;HΛH ′)(dH)

= cm,netr

(
−Λ +W

2

)
|W |

n
2
−m+1

2 0F
(m)
1

(
n

2
;
Λ

2
,
W

2

)
. (37)

We begin with the simplest case, the top-order zonal polynomials, with Σ = Im.

4.1. Expectations of Top-order Zonal Polynomials

The case of top-order zonal polynomials can be dealt with by exploiting the condi-
tioning argument explained in Section 1.2.7 When x|W ∼ N(0,W−1), it is straight-
forward to see (using the moment generating function of q = x′x) that the conditional
moments of q are given by

Ex|W [qk|W ] = 2k
(

1

2

)
k

Ck(W
−1), (38)

and therefore

EΛ[Ck(W
−1)] =

1

2k
(

1
2

)
k

EΛ[qk], (39)

with the latter expectation evaluated in the density given in equation (17).
We may evaluate the expectations EΛ[(1 + q)k] first, using Corollary 2, then use

the (binomial) expansion

qk =
k∑
l=0

(
k

l

)
(−1)l(1 + q)k−l (40)

to recover EΛ[qk]. Defining ϕk(Λ) := EΛ[(1 + q)k], ϕ0 = 1, we will then have

EΛ[qk] =
k∑
l=0

(
k

l

)
(−1)lϕk−l(Λ). (41)

Thus, directly from Corollary 2., we have the following theorem.

7The conditioning argument used here can evidently be applied to any function of x, say g(x),
which, when x ∼ N(0,Σ), has known expectation G(Σ). In particular, for any g(·) that is orthog-
onally invariant (g(Hx) = g(x) ∀H ∈ O(m)), g depends on x only through q = x′x, g(x) = ḡ(q)
(since q = x′x is a maximal invariant under this action). In such cases we will then have

EΛ[G(W−1)] = EΛ[ḡ(q)],

with the expectation on the right evaluated in the density in equation (17). The usefulness of this
fact depends, of course, on whether the expectation of the function G(W−1) is itself of interest.
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THEOREM 2. For W ∼ Wm(n, Im,Λ) and k < n−m+1
2

, the expectation of the top-
order zonal polynomial Ck(W

−1) is given by

EΛ[Ck(W
−1)] =

1

2k
(

1
2

)
k

k∑
l=0

(
k

l

)
(−1)lϕk−l(Λ), (42)

where, for r < n−m+1
2

,

ϕr(Λ) =
Γ
(
n+1

2

)
Γ
(
n−m+1

2

) Γ
(
n−m+1

2
− r
)

Γ
(
n+1

2
− r
)

×etr

(
−Λ

2

)
2F2

(
n

2
− r, n+ 1

2
;
n+ 1

2
− r, n

2
;
Λ

2

)
. (43)

4.2. General Zonal Polynomials

4.2.1. The Central Case

Before tackling the noncentral case we record here the results for the central case, for
ease of reference later. The following result for Cκ(W ) is standard:

EΣ[Cκ(W )] = 2k
(n

2

)
κ
Cκ(Σ). (44)

For Cκ(W
−1) the result is essentially given by Constantine (1966), equation (10), and

(in different notation) Khatri (1966), Lemma 4, which we repeat here for complete-
ness:8

LEMMA 5. For Z a complex symmetric matrix with Re[Z] > 0, T complex sym-
metric, and t > k1 + m−1

2
,∫

W>0

etr(−ZW )|W |t−
m+1

2 Cκ(TW
−1)(dW ) = Γm(t,−κ)|Z|−tCκ(TZ), (45)

where, for κ = (k1, k2, . . . , km) ` k,

Γm(t,−κ) = π
m(m−1)

4

m∏
i=1

Γ

(
t− ki −

m− i
2

)
. (46)

Hence, for κ ` k, with k < n−m+1
2

, and W ∼ Wm(n,Σ), we have (taking T = Im),

EΣ[Cκ(W
−1)] =

Γm
(
n
2
,−κ

)
2kΓm

(
n
2

) Cκ(Σ−1). (47)

8The formulae (44) and (47) reflect the fact that both Cκ(W ) and Cκ(W−1) are eigenfunctions of
the family of Wm(n,Σ) distributions (n ≥ m), i.e., that EW [f(W )] = λf,nf(Σ), with λf,n a constant
(eigenvalue) (cf. Kushner et. al. (1981), Theorem 3.6).
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4.2.2. The Noncentral Case

For the general case, the conditioning device used in the previous sub-section for the
top-order polynomials is one possible route. For, from Kushner and Meisner (1984),
Equation (2.12), we have an integral expression for a zonal polynomial Cκ(W

−1):

Cκ(W
−1) =

1

2k
(
m
2

)
κ

Cκ(Im)EX|W [Ξκ(X
′X)] , (48)

where X is m × r with independent columns each distributed as N(0,W−1). Here
r ≤ m is the number of non-zero parts of κ, and the function Ξκ(·), for κ =
(k1, k2, . . . , km) ` k, is defined, for a symmetric matrix A, by

Ξκ(A) = |A1|k1−k2|A2|k2−k3 · · · |Am−1|km−1−km|Am|km , (49)

where Ai is the upper-left i× i principal submatrix of A (so A1 = a11, and Am = A).
The expectation can, in principle, therefore be evaluated, as before, in the uncondi-
tional density of X by interchanging the expectation operations. In the case r = 1
(i.e., Cκ(·) is the top-order polynomial) this yields the results given in the previous
subsection, since Ξ(k)(X

′X) = x′1x1, where x1 is the first column of X. In general,
however, this approach produces an integral that seems difficult to evaluate. We
therefore adopt a different, but closely related, direct approach.

4.3. Direct Approach, Non-central Case

Consider first the case Σ = Im. Direct computation using the averaged density for W
in equation (37) means that we can write

EΛ[Cκ(W
−1)] = etr

(
−Λ

2

) ∞∑
j=0

1

j!

∑
α`j

cκ,αCα

(
Λ

2

)
, (50)

with numerical coefficients

cκ,α =
1

2j
(
n
2

)
α
Cα(Im)

E
[
Cκ(W

−1)Cα(W )
]
. (51)

Recall that the absence of subsripts on E[·] means that W ∼ Wm(n, Im). The problem
thus reduces to the evaluation of the expectations of the products Cκ(W

−1)Cα(W )
when W ∼ Wm(n, Im). We will give an explicit expression for these coefficients.

The key to the results given below is the following simple Lemma, expressing the
zonal polynomial Cκ(W

−1) in terms of a power of the determinant of W , multiplied
by a zonal polynomial with argument W itself:

LEMMA 6. For κ = (k1, . . . , km) ` k and r any integer ≥ k1, the zonal polynomial
Cκ(W

−1) satisfies

Cκ(W
−1) = [Cκ(Im)/Cκr(Im)] |W |−rCκr(W ), (52)

where κr is given by κr = (r − km, r − km−1, . . . , r − k1), a partition of rm− k.
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Constantine (1966), p.217, mentions this relationship without proof (there the par-
tition κr is denoted by κ∗). Takemura (1984), states the result in Lemma 2, p.54,
and gives a detailed proof. Another statement and short proof may be found in
Macdonald’s (2013) notes.9

Lemma 6 enables a direct evaluation of the cκ,α, but we also require the following
result on the so-called linearization of a product of zonal polynomials (Constantine
(1966), Kushner (1988), Macdonald (1995)). This says that, for α ` j, λ ` l, and
certain coefficients gδα,λ, we have

Cα(W )Cλ(W ) =
∑
δ`j+l

gδα,λCδ(W ). (53)

The existence of such coefficients follows from the fact that the left-hand side is a
homogeneous invariant polynomial of degree j + l, and the zonal polynomials span
the space of such functions. The coefficients gδα,λ may not all be non-zero as δ varies
over the partitions of j+ l; they can be related to the transition matrices between the
various bases of symmetric functions, and are discussed further in Section 5 below.

We also use the following easy consequence of the result in equation (44) and the
linearization just given:

LEMMA 7. If W ∼ Wm(n,Σ), α ` j, and λ ` l,

EΣ[Cα(W )Cλ(W )] = 2j+l
∑
δ`j+l

gδα,λ

(n
2

)
δ
Cδ(Σ). (54)

Combining the previous two Lemmas, we have the following lemma.10

LEMMA 8. For α ` j and κ = (k1, . . . , km) ` k, and r an integer satisfying k1 ≤
r < n−m+1

2
,

EΣ

[
Cκ(W

−1)Cα(W )
]

=

[
2j−kΓm

(
n
2
− r
)
Cκ(Im)

Γm
(
n
2

)
Cκr(Im)

]
×|Σ|−r

∑
δ`rm−k+j

gδα,κr

(n
2
− r
)
δ
Cδ(Σ), (55)

where κr = (r − km, r − km−1, . . . , r − k1) ` rm− k.
9When m = 2 the problem simplifies because, in that case, we can take r = k in Lemma 6, and

observe that κk = κ, so that Cκ(W−1) = |W |−kCκ(W ), generalizing the fact that (tr(W−1))k =
|W |−k(tr(W ))k when m = 2.

10Note that Lemma 8 implies that, unlike its two components, the function fκ,α(W ) =
Cκ(W−1)Cα(W ) is not an eigenfunction of the Wm(n,Σ) distribution, i.e., (regrettably)
EΣ[Cκ(W−1)Cα(W )] is not a multiple of Cκ(Σ−1)Cα(Σ). The latter is, instead,

Cα(Σ)Cκ(Σ−1) =
Cκ(Im)

Cκr
(Im)

|Σ|−r
∑

δ`rm+j−k

gδα,κr
Cδ(Σ).
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Remark 5. In the central case the term Cα(W ) is missing and the above result be-
comes,

EΣ

[
Cκ(W

−1)
]

=
Γm
(
n
2
− r, κr

)
2kΓm

(
n
2

) Cκ(Σ
−1).

This agrees with the result in equation (47), because, for any k1 ≤ r < n−m+1
2

, it is
easy to see that Γm

(
n
2
− r, κr

)
= Γm

(
n
2
,−κ

)
.

Applying Lemma 8 with Σ = Im, we have

cκ,α =
Γm
(
n
2
− r
)
Cκ(Im)

2k
(
n
2

)
α

Γm
(
n
2

)
Cα(Im)Cκr(Im)

∑
δ`rm−k+j

gδα,κr

(n
2
− r
)
δ
Cδ(Im), (56)

which produces the following theorem.

THEOREM 3. For κ = (k1, . . . , km) ` k with k1 <
n−m+1

2
and W ∼ Wm(n, Im,Λ),

we have

EΛ[Cκ(W
−1)] = etr

(
−Λ

2

) ∞∑
j=0

1

j!

∑
α`j

cκ,αCα

(
Λ

2

)
, (57)

with coefficients cκ,α defined as in equation (56). Here, κr = (r−km, r−km−1, . . . , r−
k1) ` rm− k, with k1 ≤ r < n−m+1

2
, and the coefficients gδα,κr are those appearing in

the linearization (53).

4.4. General Σ

When Σ is not proportional to Im, the above argument using the averaged density
(37) is not available, and an alternative approach is needed. Instead we have:

EΣ,Λ[Cκ(W
−1)] = etr

(
−Σ−1Λ

2

) ∞∑
j=0

1

22jj!

∑
α`j

1(
n
2

)
α

EΣ

[
Cκ(W

−1)Cα(Σ−1ΛΣ−1W )
]
.

(58)
The expectation term on the right-hand side is, on using Lemma 6 and Davis (1979),
Equation (2.6),

cm,nCκ(Im)

cm,n−2rCκr(Im)
|Σ|−rEW∼Wm(n−2r,Σ)

[
Cκr(W )Cα(Σ−1ΛΣ−1W )

]
=

[
2j−kΓm

(
n
2
− r
)
Cκ(Im)

Γm
(
n
2

)
Cκr(Im)

]
|Σ|−r

∑
φ∈κr.α

(n
2
− r
)
φ
θκr,αφ Cκr,α

φ (Σ,Σ−1Λ), (59)

where θκr,αφ = Cκr,α
φ (Im, Im)/Cφ(Im). The somewhat elaborate notation needed here

is explained in Davis (1979). The polynomials Cλ,α
φ (A,B) are Davis’ (1980, 1981)

invariant polynomials with two matrix arguments, invariant under the simultaneous
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transformations A → HAH ′, B → HBH ′, H ∈ O(m). As anticipated in Lemma 4,
therefore, EΣ,Λ[Cκ(W

−1)] is invariant under the simultaneous transformations Σ →
HΣH ′, Λ → HΛH ′, H ∈ O(m). Using this result we obtain the most general
expression for the expectation of Cκ(W

−1):11

THEOREM 4. For κ ` k and any r satisfying k1 ≤ r < n−m+1
2

, and W ∼
Wm(n,Σ,Λ),

EΣ,Λ[Cκ(W
−1)] =

Γm
(
n
2
− r
)
Cκ(Im)

2kΓm
(
n
2

)
Cκr(Im)

etr

(
−Σ−1Λ

2

)
|Σ|−r

∞∑
j=0

1

2jj!

×
∑
α`j

1(
n
2

)
α

∑
φ∈κr.α

(n
2
− r
)
φ
θκr,αφ Cκr,α

φ (Σ,Σ−1Λ). (60)

4.5. Applications: the Functions δk(Σ,Λ), τ k(Σ,Λ), and πk(Σ,Λ)

First observe that, in the case m = 1, the three functions coincide, being just the
expected value of a negative power of a noncentral χ2

n(λ) variate. Hence, for m = 1
we have, for all k < n

2
,

τ k(λ) = πk(λ) = δk(λ) =
Γ
(
n
2
− k
)

2kΓ
(
n
2

) 1F1

(
k;
n

2
;−λ

2

)
. (61)

Note, in particular, that (unlike the expression for positive powers), this involves an
infinite series in λ. It follows that, for general m, we cannot expect to obtain finite
expansions for the expectations of these functions. Indeed, the simplest example is
δk(Σ,Λ) = EΣ,Λ

[
|W |−k

]
, for which the result is given in Muirhead (1982), Theo-

rem 10.3.7, with r replaced by −k, and is a generalization of the result just given for
m = 1: for k < n−m+1

2
,

δk(Σ,Λ) =
Γm
(
n
2
− k
)

2kmΓm
(
n
2

) |Σ|−k1F1

(
k;
n

2
;−Σ−1Λ

2

)
. (62)

In contrast to the case EΣ,Λ

[
|W |k

]
, which is a polynomial of degree km, the series

expansion for EΣ,Λ

[
|W |−k

]
does not terminate. We do not need to consider this case

further.

11The analogous (infinite series) result for EΣ,Λ[Cκ(W )] is given as Corollary 4.1 in Dı́az-Garćıa
and Gutiérrez-Jáimez (2001). However, we are able to show that it is possible to obtain an expression
for the expectation of Cκ(W ) as a finite sum of invariant polynomials in the matrices (Σ,Λ). The
derivation is beyond the scope of the present paper.
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4.5.1. τ k and πk in the Central Case

Since (tr(W−1))
k

=
∑

κ`k Cκ(W
−1), we can set r = k in Lemma 6 and, using

Lemma 5, obtain at once:

EΣ[(tr(W−1))k] =
∑
κ`k

Γm
(
n
2
,−κ

)
2kΓm

(
n
2

) Cκ(Σ−1). (63)

The corresponding result for the power sums πk is less straightforward. However,
being a homogeneous and invariant function of W, the power sum tr(W−k) has an
expansion in terms of zonal polynomials of the form:

tr(W−k) =
∑
κ`k

dk,κCκ(W
−1), (64)

with coefficients dk,κ that, we show in Appendix C, are given by:

dk,κ =
1

(k1)k−k1

m∏
i=2

(
−i− 1

2

)
ki

. (65)

for κ = (k1, k2, . . . , km) ` k, and (c)0 = 1 by convention.12

Given this expansion, the result in Lemma 5 can again be invoked to yield, for
the central case,

EΣ[tr(W−k)] =
1

2k

∑
κ`k

dk,κΓm
(
n
2
,−κ

)
Γm
(
n
2

) Cκ(Σ
−1). (66)

4.5.2. τ k and πk in the Noncentral Case

In the noncentral case, for τ k, we use the expansion (tr(W−1))
k

=
∑

κ`k Cκ(W
−1),

and then set r = k in Lemma 6 to obtain the immediate consequence:

Corollary 4. For k < n−m+1
2

, and Σ = Im,

EΛ

[(
tr(W−1)

)k]
= etr

(
−Λ

2

) ∞∑
j=0

1

j!

∑
α`j

bk,αCα

(
Λ

2

)
, (67)

with coefficients

bk,α =

[
Γm
(
n
2
− k
)

2kΓm
(
n
2

) (
n
2

)
α
Cα(Im)

]∑
κ`k

Cκ(Im)

Cκk(Im)

∑
δ`km+j−k

gδα,κk

(n
2
− k
)
δ
Cδ(Im). (68)

12The coefficients dk,κ are the elements in the first row of the transition matrix Dk, say, that
maps the zonal polynomials into the power-sum symmetric functions. The matrix Dk is not known
explicitly, and equation (65) does not seem to be widely known in the literature. See Section 5 and
Appendix C for further discussion.
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Finally, for πk(Σ,Λ) = EΣ,Λ[tr(W−k)] we may use equation (64), and, combining
this with Lemma 6, we have the expansion

tr(W−k) =
∑
κ`k

dk,κCκ(W
−1) = |W |−k

∑
κ`k

dk,κ
Cκ(Im)

Cκk(Im)
Cκk(W ). (69)

The coefficients dk,κ are those given earlier in equation (65). Multiplying the above
expansion by Cα(W ) and taking the expectation using Lemma 8 produces the follow-
ing proposition.

PROPOSITION 2. For α ` j and k < n−m+1
2

,

EΣ

[
tr(W−k)Cα(W )

]
= |Σ|−k

∑
δ`km−k+j

f δk,α

(n
2
− k
)
δ
Cδ(Σ), (70)

with

f δk,α =
2j−kΓm

(
n
2
− k
)

Γm
(
n
2

) ∑
κ`k

dk,κg
δ
α,κk

Cκ(Im)

Cκk(Im)
. (71)

We therefore have, for the case Σ = Im, the following theorem.

THEOREM 5. For k < n−m+1
2

, and W ∼ Wm(n, Im,Λ),

EΛ[tr(W−k)] = etr

(
−Λ

2

) ∞∑
j=0

1

j!

∑
α`j

vk,αCα

(
Λ

2

)
, (72)

with

vk,α =
1

2j
(
n
2

)
α
Cα(Im)

∑
δ`km−k+j

f δk,α

(n
2
− k
)
δ
Cδ(Im), (73)

where f δk,α is defined in Proposition 2.

In the case where Σ is not proportional to Im the density-averaging device is
again unavailable, and we need to rely on the Davis two-matrix-argument polynomials
again. The result (really a corollary of Theorem 4) is the following theorem.

THEOREM 6. For k < n−m+1
2

, and W ∼ Wm(n,Σ,Λ),

EΣ,Λ[tr(W−k)] =
Γm
(
n
2
− k
)

2kΓm
(
n
2

) etr

(
−Σ−1Λ

2

)
|Σ|−k

∞∑
j=0

1

2jj!

∑
α`j

∑
κ`k

dk,κ(
n
2

)
α

Cκ(Im)

Cκk(Im)

×
∑
φ∈κk.α

(n
2
− k
)
φ
θκk,αφ Cκk,α

φ (Σ,Σ−1Λ). (74)
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5. TRANSITION MATRICES AND COMPUTA-

TION ISSUES

In order to compute E[W−1] in Theorem 1, and expectations of the scalar functions
of W−1 discussed in Section 4, we need to compute zonal polynomials and hyperge-
ometric functions with matrix argument. The fastest algorithms for computing the
Jack polynomials (of which zonal polynomials are a special case) and hypergeometric
functions with matrix arguments are those available in Koev and Edelmen (2006) and
Chan et. al. (2019).

For the results in Section 4, we need to compute the transition matrices between
the different bases for the space of homogeneous symmetric functions in the eigen-
values of W . If w1, . . . , wm are the eigenvalues of W , the three bases that we are
interested in are (1) the monomial symmetric functions, (2) the power-sum symmet-
ric functions, and (3) the zonal polynomials. For κ = (k1, . . . , km) ` k, the monomial
symmetric function is defined as

mκ(W ) =
∑

1≤i1<i2<···<im≤m

wk1i1 w
k2
i2
· · ·wkmim . (75)

The power-sum symmetric functions are defined as

pκ(W ) = pk1pk2 · · · pkm , (76)

where pi =
∑m

j=1w
i
j = tr(W i). For a given value of k, we arrange these symmetric

functions in reverse lexicographical order and define the corresponding basis vectors
as

m(k) =


m(k)(W )

m(k−1,1)(W )
...

m(1k)(W )

 , p(k) =


p(k)(W )

p(k−1,1)(W )
...

p(1k)(W )

 , C(k) =


C(k)(W )

C(k−1,1)(W )
...

C(1k)(W )

 . (77)

Our particular objective is to compute the transition matrix Dk between C(k) and
p(k), defined by

p(k) = DkC(k). (78)

The matrix Dk (and other analogous transition matrices) is universal, i.e., its ele-
ments do not depend on the argument matrix W, so, once computed, it is known.
Its dimension, though – being the number of partitions of k – grows rapidly with k.
For k ≤ 5, Dk is available from James (1961), and it is obviously desirable to be able
to compute Dk for arbitrary k. This task has hitherto been regarded as prohibitively
time consuming. For example, Gutiérrez et. al. (2000) spent about 8 days to compute
the transition matrix that transforms C(k)into m(k) for k = 20 using double precision.
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However, we have recently written programs that are vastly more efficient when com-
pared with existing alternatives.13 Programs to implement the calculation of Dk, as
well as other results in the paper, are available from the authors upon request. We
shall briefly outline how these are obtained.

We first compute the inverse of Dk. We do this in two steps, first computing the
transition matrix Ck that expands C(k) in terms of m(k), then the transition matrix
Tk that expands m(k) in terms of p(k),

C(k) = Ckm(k), (79)

m(k) = Tkp(k). (80)

We can then compute D−1
k = CkTk. The most efficient method for computing Ck was

developed by James (1968), and implemented by Dumitriu et. al. (2007) and Jiu
and Koutschan (2020). The matrix Tk can be computed using a recursive algorithm
suggested by Merca (2015).

After obtaining D−1
k , we can take its inverse to obtain Dk, but a more efficient

method is to rely on the orthogonality property of the coefficients of zonal polynomials
to obtain Dk. Let dκ,λ be a typical element of Dk, where κ ` k and λ ` k. We can
use James (1961) Equation (15) to show that

dκ,λ =
dλ,κdk,(1

k)

dk,κdλ,(1k)
, (81)

where dλ,κ is a typical element of D−1
k .

For the most general results obtained in the paper, the ability to compute the
expressions obtained depends on the availability of transition matrices for the Davis
invariant polynomials. These are matrices Dk,l, say, that map a vector of polynomials

Cκ,λ
φ (A,B) with κ ` k, λ ` l, φ ` k + l, suitably ordered, into a vector of distinct

products of traces like(
tr(Aa1Bb1Ac1 · · · )

)r1 (
tr(Aa2Bb2Ac2 · · · )

)r2 · · · (82)

of total degree k in A, l in B. Davis (1979) gives these matrices up to degree k+l = 5,
and explains their construction in Davis (1981). We have so far not been able to
extend these beyond that degree.

Finally, we need to compute the linearization coefficients gδα,λ as defined in (53).
These coefficients have been extensively studied (see, e.g., Kushner (1988)), and there
are combinatorial formulae available for the linearization coefficients for products of
the more general class of Jack polynomials (Stanley (1989) and Macdonald (1995)),
of which the zonal polynomials are a special case. However, when D−1

j , D−1
l and Dj+l

13For example, on an Intel i7-4790K CPU, our SageMath program can compute D20 exactly (i.e.,
symbolically) in less than 10 seconds. Using double precision in Matlab, the same algorithm can
compute D20 in less than 1.1 seconds. The details of our algorithm will be reported elsewhere.
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are available, we can simply use Theorem 3.1 of Richards (1982) to compute gδα,λ with
α ` j, λ ` l, and δ ` j + l as

gδα,λ =
∑
µ`j+l

dµδ
∑
ν`j

∑
ρ`l

ν+ρ=µ

dανdλρ. (83)

6. CONCLUDING COMMENT

The key to the main result of this paper is the equivariance property in Lemma 1,
and it seems likely that this type of argument may well be useful in other contexts. It
appears to be novel in the econometric literature. Although very technical, the results
obtained for the expectations of zonal polynomials provide the basis for solving a large
class of moment problems that are potentially of interest. These also seem to be new.
Finally, it may be noted that all of the results presented here can easily be generalized
to the complex noncentral Wishart case. This distribution has important applications
in physics and electronics.

APPENDIX A: PROOF OF LEMMA 3

The functions in the integrand on the left are invariant under x→ Hx, H ∈ O(m).
We may therefore use the density (17) in evaluating them. Integrating over x ∈ Rm,
the coefficients of the polynomials Cρ(Λ) in the expansion of the hypergeometric
function with two matrix arguments are the numerical coefficients multiplied by the
expressions

1

Cρ(Im)

∫
Rm

(1 + x′x)−
n+1
2 Cρ((Im + xx′)−1)(dx). (84)

Since the integral must evaluate to unity, we can equate coefficients of the polynomials
Cρ(Λ) in this expression and in the expansion of etr(Λ/2) to obtain equation (20).
The second expression arises by transforming x → (q, h) in the first integral with

q = x′x and h = x(x′x)−
1
2 . The integrand is constant on the unit sphere h′h = 1, so

integrating over h′h = 1 produces the result.14

APPENDIX B: PROOF OF THEOREM 1

In this Appendix we use the following notation: for any n × k matrix A with
rank(A) = k (so n ≥ k), we define MA = IT − A(A′A)−1A′. Also, we denote by e1

the unit vector (e1 = (1, 0, . . . , 0)′), whatever its dimension. According to Lemma 2

14An alternative proof of (21) can be based on the generalized binomial expansion for zonal
polynomials (Constantine (1966), Bingham (1974), Muirhead (1982), p.267).
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we need only consider the case Λ = D, i.e., W ∼ Wm(n, Im, D). The conditional
variance of x1 given W is the (1, 1) element of W−1:

Var[x1|W ] = e′1W
−1e1 =

|W22|
|W |

, (85)

where W22 is a submatrix of W without its first row and column. We need the
expectation of this with respect to the distribution of W. Writing W = Z ′Z, we can
assume that

Z ∼ N

((
D

1
2

0

)
, In ⊗ Im

)
.

We also write Z = (z1, Z2), with z1 n× 1 and Z2 n× (m− 1). In this notation,

Var[x1|Z] = (z′1MZ2z1)−1. (86)

Here, z1 is independent of Z2, and z1 ∼ N(
√
ω1e1, In), so that, conditionally,

z′1MZ2z1|Z2 ∼ χ2
n−m+1(ω1e

′
1MZ2e1). (87)

Therefore, as in equation (9) in the text ( with n replaced by n−m+ 1) :

E
[
(z′1MZ2z1)−1|Z2

]
=

1

n−m− 1
1F1

(
1;
n−m+ 1

2
;−ω1e

′
1MZ2e1

2

)
. (88)

When ω1 > 0, the unconditional variance of x1 is the expectation of this with
respect to the distribution of Z2 :

Var[x1] =
1

n−m− 1

∞∑
k=0

(
−ω1

2

)k(
n−m+1

2

)
k

µk(D1), (89)

where
µk(D1) = EZ2 [(e

′
1MZ2e1)

k
]. (90)

Now let

Z2 =

(
z̃′21

Z22

)
, (91)

with Z22 ∼ N

((
D

1
2
1

0

)
, In−1 ⊗ Im−1

)
, and z̃21 ∼ N(0, Im−1) independent of Z22.

Then, using the properties of partitioned determinants, we have

e′1MZ2e1 =
|(e1, Z2)′(e1, Z2)|

|Z ′2Z2|
=

|Z ′22Z22|
|Z ′22Z22 + z̃21z̃′21|

=
(
1 + z̃′21R

−1z̃21

)−1
, (92)

whereR = Z ′22Z22 ∼ Wm−1(n−1, Im−1, D1) is independent of z̃21.Writing z = R−
1
2 z̃21,

we have z|R ∼ N(0, R−1). That is, the joint distribution properties of (z, R) are
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exactly as above for (x,W ), but with (n,m) replaced by (n−1,m−1) and D replaced
by D1. Since e′1MZ2e1 = (1 + z′z)−1, we need to evaluate the expectations

µk(D1) = Ez[(1 + z′z)−k] (93)

when z has density pdf (m−1)(z;D1). These clearly exist for all k ≥ 0 and we can use
Corollary 2, with (n,m) replaced by (n− 1,m− 1) and s replaced by −k to obtain

µk(D1) =

(
n−m+1

2

)
k(

n
2

)
k

etr

(
−D1

2

)
2F2

(
k +

n− 1

2
,
n

2
; k +

n

2
,
n− 1

2
;
D1

2

)
. (94)

Substituting this into equation (89) gives ψ1(D), and Lemma 2 then implies the result
stated. Note that, because the hypergeometric function is symmetric in the elements
of its argument, the order of the terms in Di is irrelevant.

APPENDIX C: OTHER PROOFS

Proof of (65)

Consider the alternative normalization of Cκ, denoted by Zκ by James (1961). The
expansion of Zκ in terms of power-sum symmetric polynomials is given by

Zκ =
∑
λ`k

θκ,λpλ. (95)

Writing equation (81) in terms of the θκ,λ, we can write dk,κ as

dk,κ =
θκ,kθk,(1k)

θk,kθκ,(1k)

=
θκ,k
θk,k

, (96)

because θκ,(1k) = 1 for κ ` k (see Macdonald (1995), p.382, Eq.10.29). An explicit
expression for θκ,k is given in Macdonald (1995), p.383, Example 6.10.1(b). Setting
α = 2 in that expression and simplifying, we obtain

θκ,k = 2k−1(k1 − 1)!
m∏
i=2

(
−i− 1

2

)
ki

. (97)

For the special case of κ = (k), we have

θk,k = 2k−1(k − 1)!. (98)

It follows that

dk,κ =
1

(k1)k−k1

m∏
i=2

(
−i− 1

2

)
ki

. (99)
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Proof of Lemma 8

For any integer k1 ≤ r < n−m+1
2

,

EΣ

[
Cκ(W

−1)Cα(W )
]

=
cm,nCκ(Im)

cm,n−2rCκr(Im)
|Σ|−rEW∼Wm(n−2r,Σ) [Cα(W )Cκr(W )] .

(100)
Thus, replacing n with n− 2r and λ with κr in Lemma 7, we have

EΣ

[
Cκ(W

−1)Cα(W )
]

= 2j+rm−k
cm,nCκ(Im)

cm,n−2rCκr(Im)
|Σ|−r

∑
δ`rm+j−k

gδα,κr

(n
2
− r
)
δ
Cδ(Σ)

=
2j−kΓm

(
n
2
− r
)
Cκ(Im)

Γm
(
n
2

)
Cκr(Im)

|Σ|−r
∑

δ`rm+j−k

gδα,κr

(n
2
− r
)
δ
Cδ(Σ).

(101)
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