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PROPOSED RUNNING HEAD: Generating Functions and Short Recursions

Abstract

Recursive relations for objects of statistical interest have long been important for computation, and

remain so even with hugely improved computing power. Such recursions are frequently derived by

exploiting relations between generating functions. For example, the top-order zonal polynomials

that occur in much distribution theory under normality can be recursively related to other (easily

computed) symmetric functions (power-sum and elementary symmetric functions, Ruben, 1962,

Annals of Mathematical Statistics 33, 542–570), Hillier, Kan, and Wang, 2009, Econometric Theory

25, 211–242). Typically, in a recursion of this type the k-th object of interest, dk say, is expressed

in terms of all lower-order dj ’s. In Hillier et al. (2009) we pointed out that, in the case of top-

order zonal polynomials and other invariant polynomials of multiple matrix argument, a fixed

length recursion can be deduced. We refer to this as a short recursion. The present paper shows

that the main results in Hillier et al. (2009) can be generalized, and that short recursions can

be obtained for a much larger class of objects/generating functions. As applications, we show

that short recursions can be obtained for various problems involving quadratic forms in noncentral

normal vectors, including moments, product moments, and expectations of ratios of powers of

quadratic forms. For this class of problems, we also show that the length of the recursion can be

further reduced by an application of a generalization of Horner’s method (c.f. Brown, 1986, SIAM

Journal on Scientific and Statistical Computing 7, 689–695), producing a super-short recursion that

is significantly more efficient than even the short recursion.



1. INTRODUCTION

Relations between the generating functions for different mathematical objects can yield useful re-

currence relations between those objects. This has long been appreciated in the theory of symmetric

functions. In statistics, these relations can be exploited to yield recurrence relations between mo-

ments and cumulants (Smith, 1995). In addition, the top-order zonal polynomials that occur in

much statistical distribution theory under normality can, by this device, be recursively related

to other symmetric functions, in particular, the power-sum and elementary symmetric functions

(Ruben, 1962; Hillier, Kan, and Wang, 2009 [henceforth HKW]).

Such results greatly facilitate the efficient computation of these functions, and hence our ability

to compute moments, densities, distribution functions, etc., that are expressed in terms of the

objects of interest dk, say. However, such recursions typically express dk in terms of all lower-

order dj ’s, and in HKW we pointed out that, in the case of top-order zonal polynomials (and

invariant polynomials with several matrix arguments), a shorter (i.e., fixed length) recursion can

also be deduced by exploiting the relations between several generating functions. In this paper we

show that the argument in HKW applies much more generally. We first show that any generating

function may be used to define an associated function that induces a recurrence relation of exactly

the same form as holds between the top-order zonal polynomials and the power-sum symmetric

functions. Then, we show that, under certain conditions on the associated function, there is a short

recursion that can considerably improve the efficiency of the recursion for computational purposes.

These results evidently have very general applicability, and in the present paper we apply them

to various problems involving quadratic forms in noncentral normal vectors, including: moments,

product moments, and expectations of ratios of powers of quadratic forms.

While the short recursion for the top-order zonal and invariant polynomials given in HKW is

significantly more efficient than the traditional long recursion, the length of the short recursion

can still be quite long when the dimension of the matrix involved is large. In addition, unlike

the long recursion, the short recursion is often numerically unstable because the coefficients in the

short recursion often have different signs that lead to cancellation error in the summation. In order

to overcome these problems, we draw our inspiration from Brown (1986), and introduce in this

paper what we call a “super-short” recursion algorithm for problems that involve quadratic forms
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in noncentral normal vectors. Our super-short recursion is essentially a multivariate generalization

of Horner’s method for evaluating polynomials. The most important feature of this new recursion is

that the length of recursion depends only on the number of matrices involved and is independent of

the dimension of the matrices. When only one matrix is involved, the super-short recursion allows

us to update dk from dk−1. When r matrices are involved, the length of recursion is at most r.

Another attractive feature of the super-short recursion is that it retains the numerical stability of the

long recursion, making it perfectly suitable for numerical evaluation of top-order zonal polynomials

and top-order invariant polynomials, among other problems that involve quadratic forms in normal

random variables.

The rest of the paper is organized as follows. We begin in Section 2 with an extension of the

results in HKW, first for univariate generating functions, then for the general multivariate case.

In Section 3, we consider the problem of computing the moments of quadratic form in noncentral

normal random variables. In particular, we introduce the super-short recursion and contrast it

with the long and short recursions that were introduced in Section 2. Section 4 presents some

analogous results for the product moments of several quadratic forms. Finally in Section 5, we

study the expectation of a ratio of powers of two quadratic forms in noncentral normal vectors.

Section 6 concludes. Throughout the paper we use the notation in Wilf (2005) for coefficients in

generating functions: the expression [tk]f(t) denotes the coefficient of tk in the formal expansion

of the function f(t) in powers of t.

2. GENERATING FUNCTIONS AND RECURSIONS

2.1 Background

The top-order zonal polynomials of a symmetric matrix A, Ck(A), and the top-order invariant poly-

nomials with several matrix arguments introduced by Davis (1979) (1981), Ck1,k2,...,kr(A1, . . . , Ar),

occur sufficiently frequently in multivariate calculations as to deserve special attention. For exam-

ple, if z ∼ N(0n, In), the moments of the quadratic form q = z′Az are given by

µk = E[qk] = 2k
(

1

2

)
k

Ck(A), (1)
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and the product-moments of the several quadratic forms qi = z′Aiz, i = 1, . . . , r, are given by

µκ = E[qk1
1 q

k2
2 · · · q

kr
r ] = 2k

(
1

2

)
k

Cκ(A1, · · · , Ar), (2)

where κ = (k1, . . . , kr), k = Σr
i=1ki, and (c)k = c(c + 1) · · · (c + k − 1) is the usual Pochhammer

symbol. These expressions follow easily from the moment generating function (MGF) of q, and

the joint moment generating function of the qi, both of which have expansions in terms of these

polynomials (see below). Ruben (1962) and James (1961) essentially give (1), while Chikuse (1987)

gives (2). The density function of q may also be expressed as an infinite series in the Ck(A); see

James (1961) and Ruben (1962).

Many alternative expressions for these polynomials (or, equivalently, moments) have appeared

in the literature, but for computation purposes the most efficient expressions have, until recently,

been the recurrence relations due to Ruben (1962) for the Ck(A), and Chikuse (1987) for the

Cκ(A1, · · · , Ar). These recursions involve the power-sum symmetric functions, pk say, in the eigen-

values of A, and, in the multivariate case, generalizations of them defined in terms of a multivariate

generating function. Although superior to the explicit formulae for the polynomials, these recur-

rence relations have length k, and hence have computation complexity of order O(k2), which means

that the recursions are computationally quite inefficient. However, in HKW, we have given new

recurrence relations for both cases that involve, instead, the elementary symmetric functions, and

appropriate generalizations of them for the multivariate case. These have length at most equal

to n, the dimension of the matrix (or matrices) involved, and so do not increase with k. These

new recursions therefore improve computational complexity to O(k), and the fact that they involve

only a fixed number of terms, whatever the degree of the polynomial, means that there is also a

substantial saving on storage requirements.

The new recurrence relations in HKW were derived by exploiting properties of, and relations

between, the various generating functions for the polynomials that are involved. If we normalize

the top-order zonal polynomial Ck(A) by writing

dk(A) =

(
1
2

)
k
Ck(A)

k!
,

the (ordinary) generating function for the dk is:

D(t) = |In − tA|−
1
2 =

∞∑
k=0

dkt
k,
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while the power sums pk and elementary symmetric functions ek have generating functions P (t) =

tr(tA(In − tA)−1) and E(t) = |In − tA|, respectively,1 where tr(·) is the trace operator. Here,

d0 = e0 = 1, and, crucially, ek = 0 for k > n. Note that, in terms of the dk, µk = 2kk!dk(A).

These generating functions may easily be shown to satisfy the differential equations:

tE′(t) = −E(t)P (t),

and

tD′(t) =
1

2
D(t)P (t).

The second of these immediately yields (on equating coefficients of like powers of t on both sides)

the recursion in Ruben (1962):

dk =
1

2k

k∑
j=1

pjdk−j , (3)

while combining the two leads to the alternative recursion in terms of the ek given in HKW:

dk =

min[k,n]∑
j=1

(
j

2k
− 1

)
ejdk−j .

In HKW, we show that these relations generalize in the obvious way to the multivariate case. For

brevity we refer to the recursions involving the ej as the “short” recursions, and those involving

the pj as the “long” recursions.

In Sections 2.2 and 2.3, we show that the generating function relationships that underpin the

short recursions given in HKW for the polynomials dk and dκ can be extended to a larger class of

problems, provided certain conditions are satisfied.

2.2 Generating Functions with a Single Variable

Let D(t) be an arbitrary generating function for the objects dk, which themselves will in general

be functions of other variables,

D(t) =
∞∑
k=0

dkt
k.

In applications D(t) will typically be the MGF of some random variable of interest or a more general

generating function for moment-like quantities associated with one or more random variables.2
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We define a second generating function P (t) by the formula:

P (t) = t
∂ lnD(t)

∂t
=
tD′(t)

D(t)
=

∞∑
k=1

pkt
k, (4)

so that

tD′(t) = D(t)P (t). (5)

Equating coefficients of powers of t on both sides of this identity yields the recursion in (3), except

for the factor 1/2:

dk =
1

k

k∑
j=1

pjdk−j =
1

k

k−1∑
j=0

djpk−j . (6)

With the initial condition d0 = D(0), this recurrence relation allows us to recursively obtain the dk

from the pk. The usefulness of this type of result depends, of course, on whether the functions pk

are significantly easier to compute than are the dk themselves. And, unless P (t) is a finite order

polynomial, the length of the recursion increases with k, so it may be computationally inefficient

to use this recurrence relation when k is large. In the case D(t) = |In − tA|−
1
2 (the MGF of

q/2 = z′Az/2 when z ∼ N(0n, In)), P (t) = tr(tA(In − tA)−1)/2, so that the pj = tr(Aj)/2 are

essentially the power-sum symmetric functions, and these are indeed easily computed. However, it

is now clear that this same recursion applies for any generating functions D(t) and P (t) related by

(5).

Remark 1. If D(t) =
∑∞

r=0 µrt
r/r!, say, is the moment generating function for a random variable

with cumulant generating function K(t) = lnD(t) =
∑∞

r=1 κrt
r/r!, say, then dk = µk/k! and

P (t) = tK ′(t) =
∑∞

r=1 κrt
r/(r − 1)!, so that pr = κr/(r − 1)!. Thus, (6) gives the well-known

recursion for moments in terms of cumulants:

µk =
k∑
j=1

(
k − 1

j − 1

)
κjµk−j =

k−1∑
j=0

(
k − 1

j

)
µjκk−j .

See, e.g., Smith (1995).

Now, suppose that P (t), as defined in (4), is a rational function of t and can be written as

P (t) =
G(t)

E(t)
,
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where G(t) =
∑m1

k=1 gkt
k and E(t) =

∑m2
k=0 ekt

k are both finite order polynomials in t. Note that

g0 = 0 because p0 = 0, and that gk can be obtained by using the fact that gk =
∑k−1

i=0 eipk−i,

which follows from the identity G(t) = E(t)P (t). Without loss of generality, we normalize the two

polynomials G(t) and E(t) so that e0 = 1. The following result generalizes the result given in

equation (24) in HKW:

LEMMA 1. Suppose that the generating function P (t) defined in (4) can be written as

P (t) =
G(t)

E(t)
,

with both G(t) and E(t) polynomials of finite order, say m1 and m2 respectively, and e0 = 1. Then

the dk may be determined recursively from the relation

dk =

min[k,m]∑
j=1

(cj
k
− ej

)
dk−j , (7)

together with the initial condition d0 = D(0), where m = max[m1,m2] and cj = jej + gj.

Proof. Define

F (t) = E(t)D(t) =

∞∑
k=0

fkt
k,

with

fk =

min[k,m2]∑
j=0

ejdk−j . (8)

Differentiating F (t), and making use of the relationship in (5),

F ′(t) = E′(t)D(t) + E(t)D′(t) = E′(t)D(t) +
1

t
E(t)P (t)D(t) =

[
E′(t) +

G(t)

t

]
D(t).

Thus,
∞∑
k=1

kfkt
k−1 =

 m∑
j=1

(jej + gj)t
j−1

( ∞∑
i=0

dit
i

)
,

where m = max[m1,m2]. Equating coefficients of like powers of t on both sides and using (8) we

obtain:

k

min[k,m2]∑
j=0

ejdk−j = kfk =

min[k,m]∑
j=1

(jej + gj)dk−j .

Rearranging this and using the fact that e0 = 1 gives the stated relation.
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The key advantage of (7) over (6) is that at most m terms are needed to compute dk. As a

result, the computation time for the dk does not increase with k, and there is no need to store all

previous values of the cj , so the memory requirement also does not increase with k. Again, though,

the usefulness of the result depends on whether or not the cj are significantly easier to compute

than the dk themselves. As we shall see, this is certainly the case in the applications involving

quadratic forms in normal variates that we discuss below.

Remark 2. For the case D(t) = |In − tA|−
1
2 , P (t) = tr(tA(In − tA)−1)/2 and P(t) can be written

as G(t)/E(t), where G(t) = tr((tA)adj(In − tA))/2 with adj(In − tA) denoting the adjoint matrix

of In− tA, and E(t) = |In− tA|. Since the elements of adj(In− tA) are polynomials of degree n−1

in t, both G(t) and E(t) are polynomials of degree n in t. Thus, P (t) satisfies the hypotheses of the

Lemma.

A number of known results that have statistical applications are simple consequences of Lemma

1. For example, well-known recurrence relations for both the Hermite and generalized Laguerre

polynomials are easily deduced from the result given in Lemma 1.

2.3 Multivariate Generating Functions

We now extend the results in the previous subsection to deal with generating functions of more

than one variable. Special cases of these results were given in Section 3 of HKW. For the rest of

the paper, we shall adopt the following notation: t = (t1, . . . , tr), κ = (k1, . . . , kr), the ki being

nonnegative integers, |κ| will denote the sum of the parts of κ, i.e., |κ| =
∑r

i=1 ki, t
κ =

∏r
i=1t

ki
i ,

and κ! =
∏r
i=1ki!.

With this notation, we can also extend Wilf’s notation for the coefficients in a generating

function

G(t) =

∞∑
k=0

∑
|κ|=k

gκt
κ,

say, by writing

gκ = [tκ]G(t).

Also, generalizing the familiar relation between the coefficients in the product of two (formal) power

series with those of the two constituent series, we have that, if G(t) = P (t)E(t), say, where P (t)

7



and E(t) are at this stage arbitrary, then,

gκ = [tκ]P (t)E(t) =

|κ|∑
j=0

∑
|ν|=j
ν≤κ

eνpκ−ν ,

where the notation ν ≤ κ means that ν = (ν1, . . . , νr) is a sequence of nonnegative integers

satisfying 0 ≤ νi ≤ ki for all i.

Next, for a given (ordinary) generating function

f(t) =
∞∑
k=0

∑
|κ|=k

fκt
κ,

we define

ḟ(t) =

r∑
i=1

ti
∂f(t)

∂ti
=

∞∑
k=1

k
∑
|κ|=k

fκt
κ

as a generalization of tf ′(t) for the single variable case.

Assume given, as in the univariate case, an arbitrary multivariate generating function D(t) for

objects dκ, i.e.,

D(t) =
∞∑
k=0

∑
|κ|=k

dκt
κ.

Then, exactly as in the case with single variable, we define P (t) by the equation

P (t) =
Ḋ(t)

D(t)
=

r∑
i=1

ti
∂ lnD(t)

∂ti
, (9)

so that

Ḋ(t) = P (t)D(t). (10)

Since P (0) = 0, we can write P (t) as

P (t) =

∞∑
k=1

∑
|κ|=k

pκt
κ

and rewrite (10) as

∞∑
k=1

∑
|κ|=k

kdκt
κ =

 ∞∑
i=1

∑
|ν|=i

pνt
ν

 ∞∑
j=0

∑
|λ|=j

dλt
λ

 .
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Comparing the coefficients of tκ on both sides, we obtain the multivariate version of the recurrence

relation (6):

dκ =
1

k

k∑
j=1

∑
|ν|=j
ν≤κ

pνdκ−ν , (11)

where k = |κ|. Together with the initial condition d0 = D(0), this result provides a (long) recursive

algorithm for computing the dκ, given the pν ’s, and is a generalization of (6) for the single variable

case. However, (11) expresses dκ as a linear combination of
∏r
i=1(ki + 1)− 1 different dν ’s, so it is

extremely inefficient when any of the ki’s are large.

Before presenting the generalized version of (7), we note that a different and potentially slightly

shorter recursive algorithm for the dκ can be obtained by using a different generalization of the

expression tf ′(t). Instead of computing Ḋ(t), we can pick an l such that kl > 0 and consider just

the derivative of D(t) with respect to tl. This gives us

tl
∂D(t)

∂tl
= tl

∂ ln(D(t))

∂tl
D(t),

which implies:
∞∑
k=1

∑
|κ|=k

kldκt
κ =

 ∞∑
k=1

∑
|κ|=k

kl
k
pκt

κ

 ∞∑
k=0

∑
|κ|=k

dκt
κ

 ,

because the coefficient of tκ in ln(D(t)) is pκ/k. Comparing the coefficients of tκ on both sides,

we obtain a second recursive algorithm for the dκ:

dκ =
1

kl

k∑
j=1

∑
|ν|=j
ν≤κ

νl
j
pνdκ−ν , (12)

which can also be considered as a multivariate generalization of (6).

Equation (12) expresses dκ as a linear combination of [kl/(kl + 1)]
∏r
i=1(ki + 1) different dν ’s

with ν < κ. While (12) works for any l with kl > 0, it is best to pick the l with the smallest

nonzero kl in order to achieve the shortest recursion. When kl = 1, the length of recursion in (12)

is only half of that of (11). Nevertheless, there is no substantial computational advantage of using

(12) over (11). This is because, while (12) requires summing fewer terms than (11), each term in

the recursion entails an extra multiplication by νl/j.
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As in the single variable case, we can obtain a shorter recurrence relation for the dκ if P (t) is

a rational function of t and can be expressed as

P (t) =
G(t)

E(t)
, (13)

where both

G(t) =

m1∑
k=1

∑
|κ|=k

gκt
κ

and

E(t) =

m2∑
k=0

∑
|κ|=k

eκt
κ

are finite-order polynomials in t and e0 = 1. Note that g0 = G(0) = 0 because P (0) = 0, and that

the coefficients gκ in G(t) can be obtained from

gκ =
k−1∑
j=0

∑
|ν|=j,
ν≤κ

eνpκ−ν

as in the single variable case. We have, in generalization of Lemma 1, the following result.

LEMMA 2. Given an arbitrary multivariate generating function D(t), defining P (t) as in (9),

and assuming that P (t) is a rational function of t as in (13), with both G(t) and E(t) are finite-

order polynomials of degrees m1 and m2, respectively, then the dκ can be determined recursively

from the short recurrence relation:

dκ =

min[k,m]∑
j=1

∑
|ν|=j,
ν≤κ

(cν
k
− eν

)
dκ−ν , (14)

where m = max[m1,m2] and cν = |ν|eν + gν .

Proof. Defining, as in the single variable case,

F (t) = E(t)D(t) =
∞∑
k=0

∑
|κ|=k

fκt
κ,

where

fκ =

min[k,m2]∑
j=0

∑
|ν|=j
ν≤κ

eνdκ−ν . (15)
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Then

Ḟ (t) = Ė(t)D(t) + E(t)Ḋ(t) = [Ė(t) +G(t)]D(t)

on using (10) and (13). Hence

∞∑
k=1

∑
|κ|=k

kfκt
κ =

 m∑
j=1

∑
|ν|=j

(jeν + gν) tκ

 ∞∑
k=0

∑
|κ|=k

dκt
κ

 ,

where m = max[m1,m2]. Equating the coefficients of tκ on both sides gives us

kfκ =

min[k,m]∑
j=1

∑
|ν|=j,
ν≤κ

(jeν + gν)dκ−ν .

Finally, using (15) and rearranging terms gives the stated result for the dκ.

As before — and in contrast to (11) and (12) — the short recurrence relation never uses at

most (m + r)!/(m!r!) − 1 terms and so significantly reduces the computation time and memory

requirement when compared with the long recurrence relation. In the remainder of the paper

we present a variety of applications of these results to problems involving properties of quadratic

forms in normal random variables. However, for many of these problems, the short recurrence

relation is often numerically unstable. This is because unlike pν in the long recurrence relation,

the coefficients cν/k − eν in the short recurrence relation often have different signs, which lead

to serious cancellation errors especially when |κ| is large. In order to overcome this problem, we

introduce in the following sections a new recurrence relation that is even shorter than the short

recurrence relation, yet retains the numerical stability of the long recurrence relation.

From now on we reserve the notation D(t) for the multivariate generating function for the

top-order invariant polynomials dκ

D(t) = |In −A(t)|−
1
2 =

∞∑
k=0

∑
|κ|=k

dκt
κ, (16)

where A(t) = t1A1 + ... + trAr, and P (t) for the generalized power-sum generating function asso-

ciated with it:

P (t) = tr(A(t)(In −A(t))−1) =
∞∑
k=1

∑
|κ|=k

pκt
κ.

Also, we reserve E(t) for the determinant |In −A(t)|. In all other applications of the results given

in this Section we add a tilde to D, P , and E, and their associated coefficients dκ, pκ, and eκ, to
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indicate that these are not the basic forms. Beware, though, that this means that the same symbol

will appear in different places with different meanings.

Remark 3. P (t) can be written as G(t)/E(t), where G(t) = tr (A(t)adj (In −A(t))). Since the

elements of adj (In −A(t)) are polynomials of degree n− 1, both E(t) and G(t) are polynomials of

degree n. Therefore, P (t) satisfies the hypotheses of Lemma 2.

3. FIRST APPLICATION: MOMENTS OF QUADRATIC FORMS

3.1 Long and Short Recursions for the Noncentral Case

When z ∼ N(0n, In) we have already noted that the moments of q = z′Az are given by

µk = E[(z′Az)k] = 2kk!dk(A).

Ruben (1962) provides the long recursion for computing the µk and HKW provide the corresponding

short recursion. For the noncentral case with z ∼ N(µ, In), it is easy to show that the MGF of q

is given by

Mq(τ) = |In − 2τA|−
1
2 exp

(
µ′(In − 2τA)−1µ− µ′µ

2

)
.

Letting

D̃(t) = |In − tA|−
1
2 exp

(
µ′(In − tA)−1µ− µ′µ

2

)
=

∞∑
k=0

d̃kt
k, (17)

the moments of q are given by

µk = E[qk] = 2kk!d̃k,

an exact anolgue of the result for the central case, and we can use the results in Section 2 to derive

recurrence relations for these moments.3

Using the fact that when t is sufficiently small, (In − tA)−1 =
∑∞

k=0A
ktk, and ln |In − tA| =

−
∑∞

k=1
1
k tr(Ak)tk, we can write ln(D̃(t)) as

ln(D̃(t)) = −1

2
ln |In − tA|+

1

2
µ′[(In − tA)−1 − In]µ =

1

2

∞∑
k=1

[
µ′Akµ+

tr(Ak)

k

]
tk.

Defining P̃ (t) as in (4), we therefore have

P̃ (t) = t
∂ ln(D̃(t))

∂t
=

1

2

∞∑
k=1

[
kµ′Akµ+ tr(Ak)

]
tk, (18)
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so that, for this noncentral case,

p̃k =
1

2

[
kµ′Akµ+ tr(Ak)

]
.

Obviously, p̃k reduces to pk/2 when µ = 0n.

To see that P̃ (t) is a rational polynomial with both numerator and denominator of finite degree,

so that the result in Lemma 1 also applies, first note that, by definition,

P̃ (t) = t
∂ ln |In − tA|−

1
2

∂t
+

1

2
t
∂

∂t
µ′(In − tA)−1µ

=
1

2
tr
(
tA(In − tA)−1

)
+

1

2
µ′(In − tA)−1(tA)(In − tA)−1µ. (19)

Writing (In − tA)−1 = adj(In − tA)/|In − tA| we have P̃ (t) = G̃(t)/Ẽ(t), where

G̃(t) =
1

2
|In − tA|tr(tA[adj(In − tA)]) +

1

2
µ′[adj(In − tA)](tA)[adj(In − tA)]µ, (20)

a polynomial of degree 2n, and

Ẽ(t) = |In − tA|2, (21)

also of degree 2n. We therefore have the following Theorem, which gives long and short recursions

for the moments of a quadratic form in noncentral normal variates:

THEOREM 1. The moments of a quadratic form q = z′Az, with z ∼ N(µ, In), satisfy exactly

the same recurrence relations — those given in (6) and (7) — whether µ is zero or not. In the

central case D̃(t) = D(t), P̃ (t) = P (t)/2, and Ẽ(t) = E(t), while in the noncentral case D̃(t), P̃ (t),

and Ẽ(t) are as in (17), (19) and (21), respectively. That is, the d̃k satisfy both the long recursion

d̃k =
1

k

k∑
j=1

p̃j d̃k−j , (22)

and the short recursion

d̃k =

min[k,2n]∑
j=1

(
c̃j
k
− ẽj

)
d̃k−j , (23)

where c̃j = jẽj + g̃j.

Note again that the g̃k may be computed indirectly from the p̃k and ẽk by using the identity

G̃(t) = P̃ (t)Ẽ(t) (rather than directly from the expansion of G̃(t) in (20)), and, since Ẽ(t) =

13



E(t)E(t), the ẽk may be computed from

ẽk =

min[k,n]∑
j=0

ejek−j ,

where the ek are the elementary symmetric functions of the eigenvalues of −A.

These results provide recursive procedures for computing moments in the noncentral case. To

end this section, though, we note that a second expression for the moments of q that also leads to

a simple recursion may be obtained from the MGF, as follows. Let

φ(t) = µ′(In − tA)−1µ− µ′µ =

∞∑
i=1

ηit
i,

where ηi = µ′Aiµ, and define functions ar,l by the equation

ar,l = [tr]D(t)φ(t)l. (24)

Note that ar,0 = dr(A), and that the lowest-order term in φ(t)l is tl, so that ar,l = 0 for l > r.

From equation (17) we have the following expression for the µk:

µk = 2kk![tk]D(t) exp

(
φ(t)

2

)
= 2kk!

k∑
l=0

ak,l
l!2l

.

That is,

d̃k =
k∑
l=0

ak,l
l!2l

. (25)

Now, it is easy to see that the ak,l themselves satisfy a very simple recurrence relation, which

induces a simple recursion for the moments. To see this, simply note that

D(t)φ(t)l =
[
D(t)φ(t)l−1

]
φ(t) =

 ∞∑
j=0

aj,l−1t
j

( ∞∑
i=1

ηit
i

)
.

Equating coefficients of like powers of t on both sides, and taking account of the fact that ar,l = 0

for r < l, gives the following recursion for the ar,l.

LEMMA 3. For l ≥ 1, the functions ar,l defined by (24) satisfy the recursion:

ar,l =
r−l+1∑
j=1

ηjar−j,l−1, (26)

where ηj = µ′Ajµ and we have the initial conditions ar,0 = dr(A).
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These results provide an alternative procedure for the calculation of the noncentral moments. The

functions ar,l will also be useful later in Section 5 where some low-order cases are given explicitly.

3.2 Super-short Recursion

While the short recursion for computing d̃k is numerically efficient, it is not numerically stable

because the coefficients in the short recursion have different signs. In contrast, the long recursion

is given by

d̃k =
1

2k

k∑
j=1

[tr(Aj) + jµ′Ajµ]d̃k−j =
1

2k

k∑
j=1

n∑
i=1

(λji + jδiλ
j
i )d̃k−j , (27)

where λi’s are the eigenvalues of A and δi = (h′iµ)2, with hi being the eigenvector of A corresponding

to the eigenvalue λi. It can be seen that when A is positive semi-definite, the coefficients in the

long recursion are always positive and hence the long recursion is numerically stable.

We now present a new recursive algorithm on d̃k that is even shorter than the short recursion

yet retains the numerical stability of the long recursion. The new algorithm is motivated by the

work of Brown (1986), which provides an efficient method for computing the weights in an infinite

series representation of the cumulative distribution function of q. It is obtained by exchanging the

two summations in (27)

d̃k =
1

2k

n∑
i=1

k∑
j=1

(λji + jδiλ
j
i )d̃k−j =

1

2k

n∑
i=1

(uk,i + vk,i), (28)

where

uk,i =

k∑
j=1

λji d̃k−j ,

vk,i = δi

k∑
j=1

jλji d̃k−j .

It can be readily verified that uk,i and vk,i have the following recursions of length one:

uk,i = λi

d̃k−1 +
k∑
j=2

λj−1i d̃k−j

 = λi(d̃k−1 + uk−1,i), (29)

vk,i = δi

k∑
j=1

λji d̃k−j + λiδi

k∑
j=2

(j − 1)λj−1i d̃k−j = δiuk,i + λivk−1,i, (30)
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with the initial conditions u0,i = 0 and v0,i = 0.

We call (28) and the corresponding recursions in (29) and (30) the super-short recursion for

d̃k. This is because in order to compute d̃k using this new recurrence algorithm, we only need to

store d̃k−1. There is no need to store d̃0 to d̃k−1 as in the long recursion or d̃k−2n to d̃k−1 as in the

short recursion. While we need 2n auxiliary variables uk,i and vk,i for the super-short recursion to

proceed, they can be updated with a recursion of length one, so we only need 2n elements of memory

space. This compares favorably even with the short recursion which requires 6n elements of memory

space (2n elements of p̃i, 2n elements for ẽi and 2n elements for d̃k−2n to d̃k−1). As far as efficiency

is concerned, each update of d̃k in the short recursion requires 8n arithmetic operations whereas

only 7n + 1 arithmetic operations are required for the super-short recursion. Finally, in terms of

numerical stability, uk,i, vk,i as well as their corresponding updating coefficients are all positive

when λi > 0. As a result, the super-short recursion has no cancellation error and it is numerically

just as stable as the long recursion. In summary, the super-short recursion either dominates or

is comparable with the long and short recursions along every aspect (memory space, speed, and

numerical stability), so we strongly recommend the super-short recursion for the computation of

d̃k.

Similarly, a super-short recursion can be obtained for the ar,l’s defined in Lemma 3. In order

to do that, we rewrite (26) as

ar,l =

r−l+1∑
j=1

n∑
i=1

δiλ
j
iar−j,l−1 =

n∑
i=1

δi

r−l+1∑
j=1

λjiar−j,l−1 =

n∑
i=1

δiwr,i, (31)

where

wr,i =
r−l+1∑
j=1

λjiar−j,l−1 = λi(ar−1,l−1 + wr−1,i) (32)

has a recursion of length one with initial conditions w0,i = 0.

3.3 Special Cases: Repeated Eigenvalues and the Partially Central Case

The recurrence relations for moments given so far hold for any values of the eigenvalues of A, and

any value of µ. However, some further improvement is possible if either some eigenvalues of A occur

with multiplicity greater than one, and/or the noncentrality present is of dimension lower than n.

To see this, first let A = HΛH ′, where Λ = Diag(λ1, · · · , λn) is a diagonal matrix containing the

16



eigenvalues of A, and H = [h1, . . . , hn] is a matrix of the corresponding eigenvectors. Using this

decomposition, we can write

q = z′Az = z′HΛH ′z = z̃′Λz̃,

where z̃ = H ′z ∼ N(H ′µ, In) = N(µ̃, In), say.

Now, suppose that the eigenvalues λi are not distinct, but that the s ≤ n distinct eigenvalues

λi occur with multiplicities ni, where n = Σs
i=1ni. Letting z̃i ∼ N(µ̃i, Ini) denote the sub-vector

of z̃ associated with λi, we set δi = µ̃′iµ̃i for i = 1, . . . , s (generalizing the earlier definition). This

setup occurs naturally in the context of much-studied statistics of the form

q = λ1q1 + · · ·+ λsqs,

where the qi are independent noncentral χ2
ni(δi) random variables (see Ruben, 1962; Press, 1966).

We wish to consider the case where, in addition to the possibility of repeated eigenvalues, some of

the noncentrality parameters δi may also vanish. Without loss of generality, we assume that δi 6= 0

for i = 1, . . . , r, and δi = 0 for i = r + 1, . . . , s.

With these assumptions and notation the MGF of q/2 in (17) becomes:

D̃(t) =

[
s∏
i=1

(1− tλi)−
ni
2

]
exp

(
1

2

r∑
i=1

tδiλi
1− tλi

)
.

Thus, defining P̃ (t) as in (18), we have

P̃ (t) =
1

2

[
s∑
i=1

tniλi
1− tλi

+
r∑
i=1

tδiλi
(1− tλi)2

]
=

1

2

∞∑
k=1

(
s∑
i=1

niλ
k
i + k

r∑
i=1

δiλ
k
i

)
tk.

Hence, in this case,

p̃k =
1

2

(
s∑
i=1

niλ
k
i + k

r∑
i=1

δiλ
k
i

)
, (33)

and the recursion (22) applies with these p̃k. However, as before, P̃ (t) is a rational polynomial with

both denominator polynomial

Ẽ(t) =

(
r∏
i=1

(1− tλi)2
)(

s∏
i=r+1

(1− tλi)

)
=

r+s∑
k=0

ẽkt
k, (34)

say, and numerator polynomial

G̃(t) =
1

2


(

r∏
i=1

(1− tλi)

) s∑
i=1

tniλi

s∏
j=1
j 6=i

(1− tλj)

+

(
s∏

i=r+1

(1− tλi)

) r∑
i=1

tδiλi

r∏
j=1
j 6=i

(1− tλj)2



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of finite degree. Applying Lemma 1, d̃k can then be computed from the short recursion given in

(7), with the p̃k as given in (33), and the ẽk as defined by (34). The recursion has length at most

r + s (rather than 2n as in the case where r = s = n).

Remark 4. To illustrate the improvement afforded by the short recursion, we consider an example

with A = In, so that q = z′z ∼ χ2
n(δ) is a noncentral chi-square variate. Using (22), we obtain the

following recurrence relation for the µk ≡ E[qk]:

µk =
1

2k

k∑
i=1

(k − i+ 1)i2
i(n+ iδ)µk−i for k > 0.

However, applying the shorter recursion (with r = s = 1), we obtain the following two-term recur-

rence relation:

µk = (4k + δ + n− 4)µk−1 − 2(k − 1)(2k + n− 4)µk−2 for k > 1,

with the initial conditions µ0 = 1 and µ1 = n+ δ. This recurrence relation is also shorter than the

one provided by Withers and Nadarajah (2007).4

Similarly, the super-short recursion of d̃k can also be improved when there are repeated eigen-

values and/or some of the noncentrality parameters are zero. Using p̃k in (33), we can easily show

that

d̃k =
1

2k

(
s∑
i=1

niuk,i +
r∑
i=1

vk,i

)
,

with uk,i and vk,i as defined in (29) and (30) respectively. Unlike the general case, which requires

n elements of uk,i’s and n elements of vk,i’s, we now only need s of the uk,i’s and r of the vk,i’s.

4. SECOND APPLICATION: PRODUCT MOMENTS OF SEV-
ERAL QUADRATIC FORMS

Let A1 to Ar be r n×n real symmetric matrices, and let qi = z′Aiz, i = 1, . . . , r, denote the variates

of interest, with z ∼ N(µ, In). Explicit expressions for the product moments µκ have, at least for

low-order cases, long been available in the statistics literature. However, most of the existing work

expresses µκ as a sum of various products of the traces of |κ| matrices related to Ai’s and are

extremely inefficient for computational purposes. Kan (2008) provides a review of this literature,
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and a discussion of why current methods are impractical for computing µκ even for moderately

large |κ|. See also Mathai and Provost (1992) for an excellent review of quadratic forms in random

variables.

For the central normal case, i.e., z ∼ N(0n, In), µκ can be expressed in terms of the normalized

Davis polynomials dκ as follows:

µκ = 2kκ!dκ(A1, . . . , Ar),

and the results in Section 2.3 give both long and short recursions for their computation.

For both the central and noncentral normal case, Kan (2008) presents an efficient method for

computing µκ. Proposition 4 of Kan (2008) shows that

µκ =
1

k!

∑
0≤ν≤κ

(−1)|ν|
(
κ

ν

)
E[(z′Bνz)

k], (35)

where Bν =
∑r

i=1

(
ki
2 − νi

)
Ai, k = |κ|, and(

κ

ν

)
=

κ!

ν!(κ− ν)!
.

As noted in Kan (2008), half of the terms on the right hand side of (35) are repeated, so one can

compute µκ by computing the k-th moments of b
∏r
i=1(ki + 1)/2c different quadratic forms in z,

where bxc stands for the integral part of x. Kan (2008) suggests using the recurrence relation

(22) to compute E[(z′Bνz)
k]. With the super-short recurrence algorithm given in (28)–(30), we

can now significantly improve the computation speed of E[(z′Bνz)
k], especially when k is large.

Although, with the super-short recurrence relation on E[(z′Bνz)
k], (35) is quite efficient, there are

circumstances where we still prefer to use a recurrence relation on µκ. This is particularly so if we

need to compute not just a single µκ but all µν with 0 ≤ ν ≤ κ.

4.1 Long and Short Recursions for the Noncentral Case

The joint MGF of (q1, . . . , qr) is given by:

Mq1,...,qr(τ ) = |In − 2A(τ )|−
1
2 exp

(
µ′(In − 2A(τ ))−1µ

2
− µ′µ

2

)
=

∞∑
k=0

∑
|κ|=k

µκ
κ!
τκ,

where A(τ ) = τ1A1 + · · ·+ τ rAr (see, e.g., Phillips, 1980, eqn. (30)).
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Let

D̃(t) = |In −A(t)|−
1
2 exp

(
µ′(In −A(t))−1µ

2
− µ′µ

2

)
=

∞∑
k=0

∑
|κ|=k

d̃κt
κ, (36)

where A(t) = t1A1 + · · ·+ trAr. The product moments themselves are given by:

µκ = E[qk1
1 q

k2
2 · · · q

kr
r ] = 2|κ|κ!d̃κ.

Defining P̃ (t) as in (9), we have

P̃ (t) =
1

2

∞∑
k=1

[tr(A(t)k) + kµ′A(t)kµ] =
∞∑
k=1

∑
|κ|=k

p̃κt
κ, (37)

where, for k = |κ|,

p̃κ =
1

2
[tκ][tr(A(t)k) + kµ′A(t)kµ].

We can also write P̃ (t) in the form

P̃ (t) =
1

2
tr(A(t)(In −A(t))−1) +

1

2
µ′(In −A(t))−1A(t)(In −A(t))−1µ,

so it is clear that this satisfies the hypotheses of Lemma 2, with m = 2n. Defining

Ẽ(t) = |In −A(t)|2 =
2n∑
k=0

∑
|κ|=k

ẽκt
κ, (38)

we see that both Ẽ(t) and

G̃(t) = Ẽ(t)P̃ (t) =
2n∑
k=1

∑
|κ|=k

g̃κt
κ (39)

are polynomials of degree 2n in t.

In view of the results in Section 2.3, we can use (11), (12), and (14) to obtain the following

three apparently new recurrence relations for the functions d̃κ defined by (36).

THEOREM 2. Using p̃κ, ẽκ and g̃κ as defined by (37), (38) and (39), the d̃κ in (36) can be
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recursively obtained from any of the following recurrence relations:

d̃κ =
1

k

k∑
j=1

∑
|ν|=j,
ν≤κ

p̃ν d̃κ−ν , (40)

d̃κ =
1

kl

k∑
j=1

∑
|ν|=j,
ν≤κ

νl
j
p̃ν d̃κ−ν when kl > 0, (41)

d̃κ =

min[k,2n]∑
j=1

∑
|ν|=j,
ν≤κ

(cν
k
− ẽν

)
d̃κ−ν , (42)

where cν = |ν|ẽν + g̃ν , and we have the initial condition d̃0 = 1.

Remark 5. (41) can also be obtained by using the recurrence relation between moments and cumu-

lants for multivariate distributions (see, for example, Smith (1995, Eq.10)). Bao and Ullah (2010)

use a different method to obtain a recurrence relation on µκ, and their formula can also be obtained

by using (41).

To use the above recursive algorithms to compute d̃κ, we need to first obtain the coefficients p̃κ

and ẽκ. When n is very small, we can use a symbolic mathematics program to compute p̃κ and

ẽκ. However, this is extremely time consuming even when n is only moderately large. Therefore, it

is crucial that we have efficient numerical algorithms for computing the p̃κ and ẽκ. HKW provide

an efficient method for computing the coefficients of tκ in the expansion of tr(A(t)|κ|), which then

allows us to easily obtain the ẽκ. In addition, their algorithm can be extended in a straightforward

manner to compute the coefficients of tκ in the expansion of µ′A(t)|κ|µ. Therefore, both the ẽκ

and p̃κ can be efficiently computed by the methods described in HKW.5

Compared with the long recurrence relations (40) and (41) which are in terms of the p̃κ, the short

recurrence relation (42) only involves the ẽκ and g̃κ, and these vanish for |κ| > 2n. Regardless

of the value of κ, (42) suggests that d̃κ can be expressed as a linear combination of at most

(2n+r)!/[(2n)!r!]−1 other d̃ν ’s with ν < κ. Therefore, (42) can provide a significant improvement

over (40) and (41) when ki’s are large.
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4.2 Super-short Recursion

Similar to the univariate case, the short recursion is numerically unstable for computing d̃κ even

though it is efficient. This is because the coefficients cν/k − ẽν in (42) generally take different

signs, leading to cancellation error. In contrast, the following Lemma shows that when A1 to Ar

are positive semi-definite, then p̃ν for the long recursions in (40) and (41) are nonnegative, and

hence the long recursions are numerically stable.

LEMMA 4. Suppose A1 to Ar are positive semi-definite. We have

p̃κ =
1

2
[tκ][tr(A(t)k) + kµ′A(t)kµ] ≥ 0.

The proof of Lemma 4 is given in the Appendix.

To overcome the numerical stability issue, we provide a multivariate generalization of the super-

short recursion of d̃k in Section 3.2 for d̃κ. We first introduce a matrix Gκ and a vector hκ, defined

as

Gκ =

k∑
j=1

∑
|ν|=j,
ν≤κ

[tν ]A(t)jdκ−ν , (43)

hκ =

 k∑
j=1

j
∑
|ν|=j,
ν≤κ

[tν ]A(t)jdκ−ν

µ. (44)

With Gκ and hκ defined, we can now write (40) as

d̃κ =
1

k

k∑
j=1

∑
|ν|=j,
ν≤κ

p̃ν d̃κ−ν =
1

2k
[tr(Gκ) + µ′hκ]. (45)

The key is to derive super-short recursions for Gκ and hκ. For Gκ, we break it into two terms:

Gκ =
∑
|ν|=1,
ν≤κ

[tν ]A(t)d̃κ−ν +

k∑
j=2

∑
|ν|=j,
ν≤κ

[tν ]A(t)j d̃κ−ν . (46)

Writing κ(i) = [k1, . . . , ki−1, ki − 1, ki+1, . . . , kr], the first term can be written as∑
|ν|=1,
ν≤κ

[tν ]A(t)d̃κ−ν =
∑

1≤i≤r,
ki>0

Aid̃κ(i)
,
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and the second term can be written as

k∑
j=2

∑
|ν|=j,
ν≤κ

[tν ]A(t)j d̃κ−ν =

k−1∑
j=1

∑
|ν|=j+1,

ν≤κ

[tν ]A(t)j+1d̃κ−ν

=
∑

1≤i≤r,
ki>0

Ai

k−1∑
j=1

∑
|ν|=j,
ν≤κ(i)

[tν ]A(t)j d̃κ(i)−ν

=
∑

1≤i≤r,
ki>0

AiGκ(i)
.

Combining the two terms, we have the following super-short recursion for Gκ:

Gκ =
∑

1≤i≤r,
ki>0

Ai[d̃κ(i)
In +Gκ(i)

], (47)

with the initial condition of G0 = 0n×n. Similarly, a super-short recursion for hκ can be obtained

as follows:

hκ =

 k∑
j=1

∑
|ν|=j,
ν≤κ

[tν ]A(t)jdκ−ν

µ+

 k∑
j=2

(j − 1)
∑
|ν|=j,
ν≤κ

[tν ]A(t)jdκ−ν

µ

= Gκµ+

k−1∑
j=1

j
∑

|ν|=j+1,
ν≤κ

[tν ]A(t)j+1dκ−ν

µ

= Gκµ+
∑

1≤i≤r,
ki>0

Ai


k−1∑
j=1

j
∑
|ν|=j,
ν≤κ(i)

[tν ]A(t)jdκ(i)−ν

µ

= Gκµ+
∑

1≤i≤r,
ki>0

Aihκ(i)
, (48)

with the initial condition of h0 = 0n. Since (45), (47), and (48) allow us to compute dκ from

dκ(i)
, i = 1, . . . , r, and the length of recursion only depends on r but not n or |κ|, we call this the

super-short recursion for d̃κ.6

Note that regardless of κ, the super-short recursion requires only at most r matrix-matrix

multiplications and r + 1 matrix-vector multiplications to compute d̃κ from dκ(i)
. Therefore, it

takes rn3 + O(n2) arithmetic operations for the super-short recursion to compute a new d̃κ. In
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contrast, the short recursion typically requires 4(2n+r)!/[r!(2n)!] arithmetic operations to compute

a new d̃κ. When r ≥ 3, the super-short recursion is far more efficient than the short recursion.

Even for r = 2, the short recursion tends to be less efficient than the super-short recursion because

we need to pre-compute p̃ν and g̃ν for |ν| ≤ 2n for the short recursion to start, and this can be very

time consuming. In terms of memory space, the super-short recursion requires storing Gν , hν and

d̃ν for |ν| = k−1 in order to compute d̃κ with |κ| = k. In contrast, the short recursion only requires

storing cν , ẽν and d̃κ−ν for |ν| ≤ 2n, and it can have an advantage over the super-short recursion,

especially when |κ| is large. However, the memory space requirement for the super-short recursion

can be substantially reduced in many situations. For example, if we wish to compute d̃5,100, then

we only need to have six G matrices and six h vectors for the recursion to finish.7 There is no need

to have 106 G’s and 106 h’s unless we need to compute all d̃i,j ’s with i+ j = 105. Finally, in terms

of numerical stability, we can easily show that when A1 to Ar are positive semi-definite, Gκ and

the matrix in hκ are also positive semi-definite. As a result, there is no cancellation error in the

super-short recursion and it is numerically just as stable as the long recursion. In summary, the

super-short recursion may require more memory space than the short recursion in the multivariate

case, but for numerical stability and efficiency, we still recommend its use for the computation of

d̃κ.

5. FINAL APPLICATION: RATIOS OF POWERS OF QUADRATIC
FORMS

In this section we give results for the more complicated problem of evaluating expectations of the

form

µrs = E
[

(z′Az)r

(z′Bz)s

]
, (49)

where A is a symmetric n × n matrix, B is a positive definite n × n matrix, z ∼ N(µ, In), r is a

nonnegative integer and s is a positive real number. We shall assume throughout that the largest

eigenvalue of A is positive (i.e., A is not negative definite). If A is negative definite the results to

follow can be applied to (−1)rµrs, rather than µrs itself. It is easy to show that the expectation in

(49) exists if and only if n
2 + r > s, and we shall assume that this condition is satisfied throughout

this section.

Many estimators in statistics take the form of ratio of quadratic form in normal random vari-
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ables. As a result, the problem of computing expectations of the form given in (49) has attracted

the attention of many researchers. Most of the results in this literature are based on a lemma due

to Sawa (1972), and present formulae that take the form of a one-dimensional integral that must

be evaluated numerically.8 For the development of this type of formula, see the excellent papers

of Magnus (1986) and Meng (2005) and the references therein. We shall briefly describe the result

here before presenting our own results.

Let B = PΛP ′, where Λ is a diagonal matrix of the eigenvalues of B, and P is a matrix of the

corresponding eigenvectors. By combining the results of Theorem 6 of Magnus (1986) and Lemma 1

of Meng (2005), we obtain

µrs =
1

Γ(s)

∫ ∞
0

ts−1|∆| exp

(
µ′P [(In + 2tΛ)−1 − In]P ′µ

2

)
E[(w′Rw)r]dt, (50)

where ∆ = (In + 2tΛ)−
1
2 , R = ∆P ′AP∆, and w ∼ N(∆P ′µ, In). Currently, this is the only

practical method that can be used for numerical evaluation of µrs. However, there are two problems

associated with the use of this formula. The first is in the computation of E[(w′Rw)r], which we

have discussed in Section 3.1 above. As we have seen, both explicit formulae for this term, and

efficient recursions for evaluating it, are available. However, because R is a function of t, this

expectation must be evaluated many times. The second problem is that it is difficult to control the

accuracy of the numerical integration: there is no general result in the literature that allows us to

analyze and control the errors in the numerical integration of (50). For these reasons, we seek here

a more efficient method for evaluating the µrs based on the results in Section 2. Before doing so,

we briefly describe the exact formulae that are available.

5.1 Explicit Formulae

Smith (1989) provides a very different expression for the µrs. He shows that µrs can be expressed

as a doubly infinite series involving the top-order invariant polynomials dκ. In our notation, his

expression is:

µrs =
2r−sβsr!Γ

(
n
2 + r − s

)
e−

δ
2

Γ
(
n
2 + r

) ∞∑
j=0

∞∑
k=0

(s)j
(
n
2 + r − s

)
k

2k
(
1
2

)
k

(
n
2 + r

)
j+k

dr,j,k
(
A, In − βB, µµ′

)
, (51)

reducing to

µrs =
2r−sβsr!Γ

(
n
2 + r − s

)
Γ
(
n
2 + r

) ∞∑
j=0

(s)j(
n
2 + r

)
j

dr,j (A, In − βB) , (52)
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when µ = 0n. Here, δ = µ′µ, and β is a constant that satisfies 0 < β < 2/bmax, with bmax the

largest eigenvalue of B.9 When B = In we may choose β = 1, so that the sum on j in (51) vanishes,

and we have the simpler result

µrs =
2r−sr!Γ

(
n
2 + r − s

)
e−

δ
2

Γ
(
n
2 + r

) ∞∑
k=0

(
n
2 + r − s

)
k

2k
(
1
2

)
k

(
n
2 + r

)
k

dr,k
(
A,µµ′

)
. (53)

Finally, when both B = In and µ = 0n we have

µrs =
2r−sr!Γ(n2 + r − s)

Γ(n2 + r)
dr (A) ,

a multiple of the corresponding moment of q dealt with in Section 3.1 above. Smith (1993) makes

an attempt to use these formulae to compute the moments for the case r = 1, and with either

µ = 0n or B = In, but there has been great difficulty in using (51) for the general case.

Recently, HKW have given an efficient recursive algorithm for computing the top-order invariant

polynomials. In principle, their algorithm can be used to compute the dr,j,k(A, In−βB, µµ′), and the

moments approximated by truncating the double series in (51) at some suitable point. However, this

process is extremely inefficient. As a result, HKW focus only on the simpler special case of µ = 0n,

when only a singly infinite series of top-order invariant polynomials with two matrix arguments is

involved. In addition, for the case µ = 0n, HKW give an upper bound on the approximation error

when truncating the infinite series at j = M . For the general case of µ 6= 0n, it is a significant

challenge to bound this truncation error.

5.2 New Formula for µrs

To address these difficulties, in this section we provide a new formula that greatly simplifies the

evaluation of the µrs for the general case when µ 6= 0n. Unlike Smith’s formula, our new expression

involves only a singly infinite series, and the coefficients are easily obtained using various recurrence

relations. In addition, we also provide error control, so we can compute the expectation up to any

desired level of accuracy.

The results we develop are based on the following formal representation for µrs — which is also

the basis of the formula (50) (see Sawa (1972) or Cressie, Davis, Folks, and Policello (1981)):

µrs =
r![tr]

Γ(s)

∫ ∞
0

xs−1Mq1,q2(t,−x)dx,

26



where Mq1,q2(t1, t2) is the joint moment generating function of q1 = z′Az and q2 = z′Bz when

z ∼ N(µ, In), i.e.,

Mq1,q2(t1, t2) = |In − 2t1A− 2t2B|−
1
2 exp

(
µ′(In − 2t1A− 2t2B)−1µ

2
− δ

2

)
,

where δ = µ′µ. Our starting point is thus the following integral expression for µrs:

µrs =
r![tr]

Γ(s)

∫ ∞
0

xs−1|In − 2tA+ 2xB|−
1
2 exp

(
µ′(In − 2tA+ 2xB)−1µ

2
− δ

2

)
dx.

We discuss the existence of the integral as necessary below. For convenience later we transform

to y = x/β in the integral, with β a positive constant to be chosen. This leads to the following

expression for µrs:

µrs =
βsr![tr]

Γ(s)

∫ ∞
0

ys−1|In − 2tA+ 2yβB|−
1
2 exp

(
µ′(In − 2tA+ 2yβB)−1µ

2
− δ

2

)
dy. (54)

Our results are obtained by rewriting the matrix In − 2tA+ 2yβB as:

In − 2tA+ 2yβB = (1 + 2y)

(
In −

2t

1 + 2y
A− 2y

1 + 2y
B̃

)
, (55)

where B̃ = In − βB. Define, for fixed µ, functions hi,j(A1, A2) by the generating function10

HA1,A2(t1, t2) = |In − t1A1 − t2A2|−
1
2 exp

(
(1− t2)µ′(In − t1A1 − t2A2)

−1µ

2
− µ′µ

2

)
=

∞∑
i=0

∞∑
j=0

hi,j(A1, A2)t
i
1t
j
2, (56)

Transforming now to b = 2y/(1 + 2y) in (55), the integrand in (54) has the form

2−sbs−1(1− b)
n
2
−s−1

∞∑
i=0

∞∑
j=0

[2t(1− b)]ibjhi,j(A, B̃),

so that the coefficient of tr in the expansion of the integrand is

2r−sbs−1(1− b)
n
2
+r−s−1

∞∑
j=0

bjhr,j(A, B̃).

We show in the Appendix that term-by-term integration can be justified when n
2 + r > s and

0 < β < 2/bmax. We may therefore state the result that follows.
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THEOREM 3. For (r, s) satisfying n
2 + r > s, and any choice of β satisfying 0 < β < 2/bmax,

where bmax is the largest eigenvalue of B, we have the following expression for the moments µrs :

µrs =
2r−sβsr!Γ

(
n
2 + r − s

)
Γ
(
n
2 + r

) ∞∑
j=0

(s)j(
n
2 + r

)
j

hr,j(A, In − βB). (57)

Note that when µ = 0n, hr,j(A, In − βB) = dr,j(A, In − βB), and (57) specializes to (52).

The expression for µrs given in Theorem 3 seems superficially similar to Smith’s expression (51)

given above. However, there are two important simplifications that make (57) much more efficient

for computation purposes than is (51). The first is simply that these new expressions involve only

a singly infinite series, rather than the doubly infinite series present in (51). The second, and more

important, aspect of the results is that the generating function HA1,A2(t1, t2) satisfies the hypotheses

of Lemma 2, so that a short recursion is available for the hr,j . In addition, a super-short recursion

can also be derived for hr,j . We describe these in more detail below, but first give some additional

results for the special case in which B = In, when the above results simplify considerably.

5.3 The Special Case: B = In

The moments µrs simplify considerably when B = In. Clearly, like the moments µk of q = z′Az,

they depend only upon the matricesA and µµ′, and in fact, like the µk, they can be concisely

expressed in terms of the functions ar,l introduced in Section 3.1. To obtain this result we make

use of the following independently useful Lemma:

LEMMA 5. With the functions ar,l as defined by (24),

dr,k(A,µµ
′) =

(
1
2

)
k

k!

k∑
l=0

(
k

l

)
δk−lar,l,

where δ = η0 = µ′µ.

The proof of Lemma 5 is given in the Appendix. Inserting this result into (53) we obtain

µrs =
2r−sr!Γ

(
n
2 + r − s

)
e−

δ
2

Γ
(
n
2 + r

) ∞∑
k=0

(
n
2 + r − s

)
k

2kk!
(
n
2 + r

)
k

k∑
l=0

(
k

l

)
δk−lar,l

=
2r−sr!Γ

(
n
2 + r − s

)
e−

δ
2

Γ
(
n
2 + r

) ∞∑
l=0

∞∑
k=0

(
n
2 + r − s

)
k+l

δk

2k+lk!l!
(
n
2 + r

)
k+l

ar,l
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=
2r−sr!Γ

(
n
2 + r − s

)
e−

δ
2

Γ
(
n
2 + r

) r∑
l=0

(
n
2 + r − s

)
l

2ll!
(
n
2 + r

)
l

1F1

(
n

2
+ r − s+ l,

n

2
+ r + l;

δ

2

)
ar,l

= 2r−sr!

r∑
l=0

Γ
(
n
2 + r − s+ l

)
2ll!Γ

(
n
2 + r + l

) 1F1

(
s,
n

2
+ r + l;−δ

2

)
ar,l,

where the third equality follows from the fact that ar,l = 0 for l > r, and the last step follows from

the Kummer formula for the confluent hypergeometric function: e−z1F1(a, c; z) = 1F1(c−a, c;−z).

We may therefore state the theorem that follows.

THEOREM 4. When B = In,

µrs = 2r−sr!

r∑
l=0

Γ
(
n
2 + r − s+ l

)
2ll!Γ

(
n
2 + r + l

) 1F1

(
s,
n

2
+ r + l;−δ

2

)
ar,l, (58)

where the functions ar,l are defined by (24), and satisfy the recursion (26) or (31)–(32).

Remark 6. For r = 0, (58) is the inverse moment of a noncentral chi-squared distribution (see

Krishnan, 1967). For r = 1, Smith (1993) uses a different approach to obtain the same expression

as ours. For the case that r = s, Ghazal (1994) presents the results for r = 1 to 4. Our results

are more general in that s can be an arbitrary positive real number and r can be any nonnegative

integer.

Although it is straightforward to evaluate the ar,l numerically, we present the explicit expressions

of ar,l for r = 1 to 4 here for easy reference. Setting τ i = tr(Ai) and ηi = µ′Aiµ, we have:

Table 1: The ar,l for 1 ≤ r ≤ 4

r@
@
@

l 1 2 3 4

0 τ1
2

τ2
1
8 + τ2

4
τ3

1
48 + τ1τ2

8 + τ3
6

τ4
1

384 +
τ2

1τ2

32 +
τ2

2
32 + τ1τ3

12 + τ4
8

1 η1
τ1η1
2 + η2

τ2
1η1

8 + τ2η1
4 + τ1η2

2 + η3
τ3

1η1

48 + τ1τ2η1
8 +

τ2
1η2

8 + τ3η1
6 + τ2η2

4 + τ1η3
2 + η4

2 · η21
τ1η2

1
2 + 2η1η2

τ2
1η

2
1

8 +
τ2η2

1
4 + τ1η1η2 + η22 + 2η1η3

3 · · η31
τ1η3

1
2 + 3η21η2

4 · · · η41
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5.4 Recursions for the hr,j

We now show that the results in Section 2.3 provide both long and short recursions for the functions

hr,j and give the details for implementing these. Defining P̃ (t1, t2) as

P̃ (t1, t2) = t1
∂ lnH(t1, t2)

∂t1
+ t2

∂ lnH(t1, t2)

∂t2

=
1

2
P (t) +

1

2
(1− t2)µ′(In − t1A1 − t2A2)

−2µ− 1

2
µ′(In − t1A1 − t2A2)

−1µ,

where

P (t) = tr
(
(t1A1 + t2A2)(In − t1A1 − t2A2)

−1) =
∞∑
j=0

∞∑
k=0

j+k>0

pj,kt
j
1t
k
2.

This clearly satisfies the hypotheses of Lemma 2, with

Ẽ(t) = |In − t1A1 − t2A2|2 =
2n∑
i=0

2n−i∑
j=0

ẽi,jt
i
1t
j
2, (59)

and G̃(t) both of degree 2n. Now, for fixed µ, define functions ηj,k of matrices A1, A2 by

µ′(In − t1A1 − t2A2)
−1µ =

∞∑
j=0

∞∑
k=0

ηj,kt
j
1t
k
2.

Then,

p̃j,k =
1

2
pj,k +

1

2
(j + k)(ηj,k − ηj,k−1). (60)

We may therefore state the following result

THEOREM 5. With the initial condition h0,0 = 1, the functions hi,j defined by the generating

function (56) may be generated by the long recursion given in (11), which has the form:

hi,j =
1

i+ j

i∑
k1=0

j∑
k2=0

k1+k2>0

p̃k1,k2hi−k1,j−k2 , (61)

where p̃k1,k2 are as in (60). Or, they may be more efficiently generated using the short recursion

given in Lemma 2, which has the form:

hi,j =

i∑
k1=0

j∑
k2=0

0<k1+k2≤2n

(
ck1,k2

i+ j
− ẽk1,k2

)
hi−k1,j−k2 , (62)
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with

ck1,k2 = (k1 + k2)ẽk1,k2 + g̃k1,k2 ,

and with the ẽk1,k2 as in (59) and the g̃k1,k2 determined by

g̃k1,k2 =

k1∑
ν1=0

k2∑
ν2=0

ν1+ν2>0

p̃ν1,ν2 ẽk1−ν1,k2−ν2 .

To apply Theorem 5, we need to have an efficient method for computing pi,j , ẽi,j , and ηi,j . This

can be easily accomplished by using the algorithm (with a slight modification) given in HKW.

Although the short recursion in Theorem 5 is efficient, it is not numerically stable. In contrast,

the long recursion is inefficient but it is often numerically more stable than the short recursion

(especially when p̃k1,k2 are positive). To improve the efficiency of the long recursion, we provide a

super-short recursion for hr,j by following the same approach as in Section 4.2.

THEOREM 6. Let

Gi,j =
i∑

ν1=0

j∑
ν2=0

ν1+ν2>0

[tν1
1 t

ν2
2 ]A(t)ν1+ν2hi−ν1,j−ν2 ,

gi,j =

 i∑
ν1=0

j∑
ν2=0

ν1+ν2>0

(ν1 + ν2)
(

[tν1
1 t

ν2
2 ]A(t)ν1+ν2 − [tν1

1 t
ν2−1
2 ]A(t)ν1+ν2−1

)
hi−ν1,j−ν2

µ,
where A(t) = t1A1 + t2A2, we have

hi,j =
tr(Gi,j) + µ′gi,j

2(i+ j)
.

Using the initial conditions of G0,0 = 0n×n, g0,0 = 0n, and h0,0 = 1, we can recursively obtain Gi,j

and gi,j using the following super-short recursions:

Gi,j = A1(hi−1,jIn +Gi−1,j) +A2(hi,j−1In +Gi,j−1),

gi,j = Gi,jµ−Gi,j−1µ− hi,j−1µ+A1gi−1,j +A2gi,j−1.

In the preceding equations, we adopt a convention that Gi,j = 0n×n, gi,j = 0n, and hi,j = 0 when

either i or j is negative.
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5.5 Truncation Errors

When using (57) to evaluate µrs, we must in practice truncate the infinite series at j = M for

some value of M . In order to control the accuracy of the computation, we need to obtain an upper

bound on the truncation error. For the presentation of our error bounds, we introduce the following

notation. Suppose A is a symmetric matrix. We define A+ = A when A is positive semidefinite

or when r is even, and A+ = PΛ+P ′ otherwise, where Λ+ is a diagonal matrix of the absolute

eigenvalues of A, and P is a matrix of the corresponding eigenvectors of A. With this notation, we

now present an upper bound on the truncation error for (57).

THEOREM 7. For any choice of β satisfying 0 < β ≤ 1/bmax, where bmax is the largest eigen-

value of B, an upper bound on the approximation error of µrs when truncating the infinite series in

(57) at j = M is given by∣∣∣∣∣∣µrs − 2r−sβsr!Γ
(
n
2 + r − s

)
Γ
(
n
2 + r

) M∑
j=0

(s)j(
n
2 + r

)
j

hr,j(A, In − βB)

∣∣∣∣∣∣
≤

2r−sβsr!Γ
(
n
2 + r − s

)
Γ
(
n
2 + r

) (s)M+1(
n
2 + r

)
M+1

e δ̄−δ2 d̃r(Ā, µ̄)

|βB|
1
2

−
M∑
j=0

ĥr,j(A
+, In − βB)

 ,
where µ̄ =

√
2(βB)−

1
2µ, δ̄ = µ̄′µ̄, Ā = B−

1
2A+B−

1
2 /β, d̃r is defined as in (17), and the generating

function of ĥi,j(A1, A2) is given by

ĤA1,A2(t1, t2) = |In − t1A1 − t2A2|−
1
2 exp

(
(1 + t2)µ

′(In − t1A1 − t2A2)
−1µ

2
− δ

2

)
.

With the results in Theorem 7, we can now approximate µrs to any desired level of accuracy.11

5.6 An Example

For illustrative purpose, we consider an example with n = 20, A a Toeplitz matrix with (i, j)th

element given by (|i− j| − 1)/n2, B a diagonal matrix with i-th diagonal element bii = i/n2, and µ

is set to be a vector of µi = i/n for i = 1, . . . , n. Using the choice of β = 1/bmax for (57), Table 2

reports the value of µrs for various combinations of r and s, with approximation errors less than

10−5. The table also reports the number of required terms (M) to achieve the desired level of

accuracy in parentheses.

32



Table 2: Expectation of Ratio of Quadratic Forms in Noncentral Normal Vectors

The table presents E[(z′Az)r/(z′Bz)s] for various values of r and s, where z ∼ N(µ, In), n = 20, A is
a Toeplitz matrix with its (i, j)th element as aij = (|i− j| − 1)/n2, B is a diagonal matrix with its ith
diagonal element as bii = i/n2 and µi = i/n. The approximation error is set to be less than 10−5 and
the number of terms required to achieve this level of accuracy is reported in the parentheses.

s = 1 s = 2 s = 3 s = 4 s = 5 s = 10

r = 0 1.42721 2.36909 4.67693 11.30111 34.72798 n/a
(63) (91) (128) (176) (236)

r = 1 1.40950 1.91118 2.96700 5.36157 11.50669 7638.94030
(69) (98) (135) (181) (239) (726)

r = 2 4.19497 5.18942 7.28829 11.80941 22.53012 27925.79115
(74) (102) (137) (179) (232) (660)

r = 3 13.34410 14.79819 18.34967 25.75133 41.50710 8655.50979
(86) (118) (156) (202) (256) (678)

r = 4 59.03048 60.36432 68.43545 86.92433 125.28018 10856.79180
(89) (118) (152) (192) (240) (606)

r = 5 295.93344 279.52112 290.15474 333.89538 430.35843 14607.30704
(108) (143) (183) (229) (282) (668)

r = 10 6425021.47108 4505458.62224 3383790.18983 2734240.84284 2389287.33517 5009200.42040
(151) (185) (220) (258) (300) (579)

From Table 2, we can observe that for a fixed r, the number of required terms (M) increases

with s, but even for s = 10, the computation of µrs is very fast and efficient. Using a computer with

an Intel i7-920 CPU, it takes less than 0.7 second for our Matlab program to generate the entire

Table 2 using the super-short recursion.

6. CONCLUDING REMARKS

We have shown in this paper that, given a generating function for some objects of interest (moments,

the coefficients in a series expansion, etc.), an associated generating function may be defined that

induces a recurrence relation between the original objects of interest and a set of associated objects.

This generalizes some known results relating moments and cumulants, and also results relating

top-order zonal polynomials and power-sum symmetric functions. We then showed that, when the

associated generating function is a ratio of two generating functions of finite order, more efficient

recurrence relations of fixed length can be deduced.
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These general results have been applied here to a number of problems involving quadratic forms

in noncentral normal vectors, including the following much-studied problems: the moments of a

single quadratic form, product-moments for several quadratic forms, and the expectation of a ratio

of powers of two quadratic forms. For all these examples, we draw our inspiration from the work of

Brown (1986) and introduce a new super-short recursive algorithm that is both numerically stable

and efficient. In addition to their intrinsic interest, these examples show that the methodology is

certainly useful for a number of different distribution-theoretic problems in statistics.

Many other distribution problems share many of the features present in the examples treated

here. For example, the density and the distribution of a quadratic form of noncentral normal

random variables have various series expansions (see Ruben, 1962; Shah and Khatri, 1961, 1963;

and Kotz, Johnson, and Boyd, 1967), and the coefficients in these series expansions can be easily

shown to have a short and super-short recurrence relations. In addition, many multivariate tests

in statistics and econometrics (for example, the Wald statistic of testing linear restrictions on

coefficients of multivariate linear model; see Phillips, 1986) have finite sample distributions that

can be expressed as multiple infinite series involving the Davis-Chikuse invariant polynomials. It

seems highly likely that our methodology will prove useful there, and we are confident many other

new applications of the results will follow.
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Notes

1Note here that, for convenience, we define E(t) in such a way that the ek are the elementary
symmetric functions of the eigenvalues of −A, rather than of A.

2Note that we treat D(t) as a formal power series, without using any of the function-theoretic
properties of the function that may be represented by the series, and without worrying about
whether such a series converges or not.

3Note that the coefficients d̃k are functions of both A and µ, but we omit this dependence in
the notation when A and µ are clear from the context.

4A two term recurrence relation for the moments of noncentral gamma distribution can be
similarly derived.

5A set of Matlab programs for implementing various recursive algorithms discussed in the paper
is available at http://www.rotman.utoronto.ca/∼kan/research.htm.

6It can be easily shown that when r = 1, tr(Gκ) =
∑n

i=1 uk,i and µ′hκ =
∑n

i=1 vk,i, where uk,i
and vk,i are defined in (29) and (30).

7This is because we can first compute d̃i,0 for i = 0, . . . , 5, and then compute d̃i,1 for i = 0, . . . , 5,
and keep going until finally we compute d̃i,200 for i = 0, . . . , 5. Throughout this process, we only
need to have six G’s and six h’s for the updating to continue.

8There are alternative formulae that express the moment of ratio of quadratic forms as integrals
of the joint moment generating function of two quadratic forms (see, for instance, Williams (1941),
White (1961), and Shenton and Johnson (1965)). However, these formulae either involve high
dimensional integrals or work only for some special cases.

9This condition is needed to ensure that the expansion of [1 − v′(In − βB)v]−s as a power
series in v′(In − βB)v (from which (51) is derived) actually converges uniformly over the region of
integration. This is so if and only if |1− βbmax| < 1, the condition stated.

10We include the term exp(−µ′µ/2) in the generating function to ensure that h0,0(A1, A2) = 1.

11The recurrence relations for ĥr,j are very similar to the ones for hr,j , so we do not present these
results separately.
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Appendix

Proof of Lemma 4. We first establish that if A and B are positive semi-definite matrices, then

AB is also a positive semi-definite matrix. Suppose not, let λ < 0 be a negative eigenvalue of AB,

and x be the corresponding eigenvector. We have

ABx = λx.

Note that y ≡ Bx 6= 0n because otherwise the above equality cannot hold. Pre-multiplying both

sides by x′B′, we obtain

y′Ay = x′B′ABx = λx′B′x = λx′Bx < 0.

Since A is a positive semi-definite matrix, we have y′Ay ≥ 0 for all y 6= 0n, so we have a contradic-

tion. Therefore, AB must be a positive semi-definite matrix.

In order to show p̃κ ≥ 0, it suffices to show that for any x 6= 0n, we have [tκ]x′A(t)kx ≥ 0,

where k = |κ|. This requires us to show that
∏k
j=1Aij is a positive semi-definite matrix, where

ij ∈ {1, . . . , r} for j = 1, . . . , k. Since A1 to Ar are positive semi-definite matrices, applying the

above result repeatedly allows us to show that
∏k
j=1Aij is also a positive semi-definite matrix. �

Proof of Lemma 5. From equation (16) we have that

dr,k(A,µµ
′) = [tr1t

k
2]|In − t1A− t2µµ′|−

1
2

= [tr1t
k
2]|In − t1A|−

1
2 [1− t2µ′(In − t1A)−1µ]−

1
2

=

(
1
2

)
k

k!
[tr1]|In − t1A|−

1
2 [µ′(In − t1A)−1µ]k

=

(
1
2

)
k

k!
[tr1]|In − t1A|−

1
2 [δ + φ(t1)]

k

=

(
1
2

)
k

k!

k∑
l=0

(
k

l

)
δk−l[tr1]|In − t1A|−

1
2φ(t1)

l

=

(
1
2

)
k

k!

k∑
l=0

(
k

l

)
δk−lar,l,

by the definition of the ar,l in (24). �

Proof of Convergence in (57). We shall show that, if β is chosen so that 0 < β < 2/bmax, the

series in (57) converges, justifying the term-by-term integration. We shall make use here of the

following two lemmas:

39



LEMMA 6. The functions hi,j(A1, A2) defined by (56) can be expressed in terms of the invariant

polynomials di,j,l(A1, A2, µµ
′) as follows:

hi,j(A1, A2) = e−
δ
2

∞∑
m=0

1

2mm!

j∑
l=0

(−1)l

2ll!

(l +m)!(
1
2

)
l+m

di,j−l,l+m(A1, A2, µµ
′).

Proof of Lemma 6. Since

HA1,A2(t1, t2) = e−
δ
2 |In − t1A1 − t2A2|−

1
2

∞∑
m=0

(1− t2)m

2mm!
[µ′(In − t1A1 − t2A2)

−1µ]m

= e−
δ
2 |In − t1A1 − t2A2|−

1
2

∞∑
l=0

∞∑
m=0

(−t2)l

2m+ll!m!
[µ′(In − t1A1 − t2A2)

−1µ]l+m,

we have

hi,j(A1, A2)

= [ti1t
j
2]HA1,A2(t1, t2)

= e−
δ
2

∞∑
m=0

1

2mm!

j∑
l=0

(−1)l

2ll!
[ti1t

j−l
2 ]|In − t1A1 − t2A2|−

1
2 [µ′(In − t1A1 − t2A2)

−1µ]l+m

= e−
δ
2

∞∑
m=0

1

2mm!

j∑
l=0

(−1)l

2ll!

(l +m)!(
1
2

)
l+m

di,j−l,l+m(A1, A2, µµ
′),

where the last equality follows because

di,j,k(A1, A2, µµ
′) = [ti1t

j
2t
k
3]|In − t1A1 − t2A2 − t3µµ′|−

1
2

= [ti1t
j
2t
k
3]|In − t1A1 − t2A2|−

1
2 [1− t3µ′(In − t1A1 − t2A2)

−1µ]−
1
2

=

(
1
2

)
k

k!
[ti1t

j
2]|In − t1A1 − t2A2|−

1
2
[
µ′(In − t1A1 − t2A2)

−1µ
]k
.

�

LEMMA 7. If ai is the largest absolute eigenvalue of Ai for each i, then

|dκ(A1, . . . , Ar)| ≤
1

κ!

(n
2

)
k

r∏
i=1

akii .

Proof of Lemma 7. From equation (81) in HKW,

|dκ(A1, . . . , Ar)| =
1

κ!

(n
2

)
k

∣∣∣∣∣
∫
v′v=1

(
r∏
i=1

(v′Aiv)ki

)
(dv)

∣∣∣∣∣ ≤ 1

κ!

(n
2

)
k

∫
v′v=1

r∏
i=1

|v′Aiv|ki(dv).
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But, it is well-known that

sup
v′v=1

|v′Aiv| = ai.

This immediately yields the stated inequality. �

Let a and b̃ be the largest absolute eigenvalue of A and B̃, respectively. Using Lemmas 6 and

7, we can bound |hr,j(A, B̃)| by

∣∣∣hr,j(A, B̃)
∣∣∣ ≤ e−

δ
2

∞∑
m=0

1

2mm!

j∑
l=0

(l +m)!

2ll!
(
1
2

)
l+m

∣∣∣dr,j−l,l+m(A, B̃, µµ′)
∣∣∣

≤ e−
δ
2

∞∑
m=0

1

2mm!

j∑
l=0

(l +m)!

2ll!
(
1
2

)
l+m

(
n
2

)
r+j+m

ar b̃j−lδl+m

r!(j − l)!(l +m)!

=
e−

δ
2ar

(
n
2

)
r

r!

∞∑
m=0

j∑
l=0

(
n
2 + r

)
j+m

(
δ
2

)l+m
b̃j−l

m!l!(j − l)!
(
1
2

)
l+m

.

Under the condition 0 < β < 2/bmax, we have 0 ≤ b̃ < 1. Together with the condition n
2 + r > s,

we can bound the absolute value of the terms in the infinite series in (57) by

∞∑
j=0

(s)j(
n
2 + r

)
j

|hr,j(A, B̃)| ≤
∞∑
j=0

|hr,j(A, B̃)|
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δ
2ar
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2

)
r
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where the fourth line is obtained by using the identity

∞∑
j=0

(
n
2 + r + l +m

)
j
b̃j

j!
= (1− b̃)−

n
2
−r−l−m
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when 0 ≤ b̃ < 1, and the fifth line is obtained by using the identity
∑k

l=0
k!

l!(k−l)! = 2k and setting

k = l+m. Since the 1F1 converges uniformly for all values of its argument, this confirms the claim

that term-by-term integration in (54) is justified. �

Proof of Theorem 7. Following the proof of Lemma 6, we can show that

ĥr,j(A1, A2) = e−
δ
2

∞∑
m=0

j∑
l=0

(
l +m

l

)
dr,j−l,l+m(A1, A2, µµ

′)

2l+m
(
1
2

)
l+m

.

Under the assumption 0 < β ≤ 1/bmax, In − βB is positive semidefinite. Therefore, dr,j,k(A, In −

βB, µµ′) is nonnegative when A is positive semidefinite or r is even. When A is not positive

semidefinite and r is odd, we have |z′Az| = |z′PΛP ′z| ≤ z′PΛ+P ′z = z′A+z. Using the fact that

z′(In − βB)z ≥ 0 and z′µµ′z ≥ 0, we have |(z′Az)r(z′(In − βB)z)j(z′µµ′z)k| ≤ (z′A+z)r(z′(In −

βB)z)j(z′µµ′z)k, which implies∣∣dr,j,k(A, In − βB, µµ′)∣∣ ≤ dr,j,k(A+, In − βB, µµ′).

Using Lemma 6, we have

|hr,j(A, In − βB)| ≤ e−
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Using this result and the fact that n
2 + r > s, we obtain∣∣∣∣∣∣
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The last inequality holds because
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