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Abstract

We provide an identity that relates the moment of a product of random variables
to the moments of different linear combinations of the random variables. Applying
this identity, we obtain new formulae for the expectation of the product of normally
distributed random variables and the product of quadratic forms in normally dis-
tributed random variables. In addition, we generalize the formulae to the case of
multivariate elliptically distributed random variables. Unlike existing formulae in
the literature, our new formulae are extremely efficient for computational purposes.
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1 Introduction

Let z = [z1, . . . , zn]
′ ∼ N(µ,Σ) be a normal random vector, where Σ = (σij) is a positive

semidefinite matrix. For nonnegative integers si, we are interested in obtaining analytical and
computationally efficient expressions for (1) the expectation of a product of the elements of
z,

µs1,s2,...,sn = E[zs11 z
s2
2 · · · zsnn ],
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and (2) the expectation of a product of quadratic forms in z,

Qs1,s2,...,sp = E[(z′A1z)
s1(z′A2z)

s2 · · · (z′Apz)
sp ],

where A1 to Ap are symmetric matrices.

Explicit expressions of these expectations have long been available in the statistics literature.
For the expectation of a product of central normal random variables, its formula is available
since Isserlis [8]. In physics literature, Isserlis’s formula is often written as the hafnian of Σ
and it is known as the Wick’s formula. However, for even s = s1 + · · · + sn, this formula
requires summing up (s−1)!! = 1×3×· · ·×(s−1) terms of product of s/2 elements of the Σ
matrix. Even for moderately large s, the number of calculations is astronomical. For example,
if one wishes to calculate E[(z1z2z3z4z5)

4], then one would need to sum up 19!! = 654,729,075
number of terms to obtain the answer, which is clearly impractical. Holmquist [6] provides an
elegant formula for all the higher order product moments of z. However, his formula requires
one to construct a large symmetric matrix of dimension ns × ns. For n = 5 and s = 20 as in
the previous example, one needs to construct a matrix with 9.0949× 1027 elements, which is
infeasible even with the use of sparse matrix. Schott [19] also provides a compact formula for
the moment matrices of the normal distribution. Similar to Holmquist’s formula, Schott’s
formula requires the construction of a permutation matrix of size n

s
2 × n

s
2 , which is also

impractical for computational purpose. Recently, Blacher [3] provides another formula for
µs1,s2,...,sn . His formula requires one only to sum up ([s1/2]+1)×· · ·× ([sn/2]+1) terms, but
within each of the term, one needs to enumerate all the possible symmetric n × n matrices
with zero diagonal elements that satisfies n constraints. Unless n is very small, it is very time
consuming to enumerate all these symmetric matrices. For the case that s1 = · · · = sn = 1,
Blacher’s formula is in fact the same as Isserlis’s formula, so again it requires summing up
the same large number of terms.

The situation for the product of quadratic forms is even worse. Most of the existing work
express Qs1,...,sp as a sum of various products of the traces of s = s1+ . . .+sp matrices related
to Ai’s and Σ (see Kumar [11], Magnus [12,13], Don [4], Tracy and Jindasa [21], Jindasa and
Tracy [9], Tracy and Sultan [22] for the development of this type of formulae, see also Mathai
and Provost [16] for an excellent review of quadratic forms in random variables). While
explicit expressions of Qs1,...,sp are available when s is small (s ≤ 4), current methods are
impractical for computing Qs1,...,sp even for moderately large s. This is because the number
of terms grows exponentially as s increases. For s = 4, we only have 17 terms but even for
s = 12, there are 171,453,343 terms (see Don [4] and Magnus [12] for a method of counting
the number of terms). For s = 20, there are 6.6337×1017 terms, so computing something like
E[(z′A1z)

4(z′A2z)
4(z′A3z)

4(z′A4z)
4(z′A5z)

4] is simply impossible. Holmquist [7] provides a
compact expression of Qs1,...,sp but again his formula requires the construction of an ns × ns

symmetric matrix, which is impractical even for fairly small n and s.

In this paper, we take a different approach in dealing with these problems. At the heart of
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our derivation is an identity that is motivated by a lemma in Magnus [12]. This identity
allows us to express a product of random variables as a polynomial of various sums of the
random variables. In many cases, moments of a sum of random variables are readily available
but expectation of a product of random variables is relatively difficult to obtain, especially
when the random variables are not independent of each other. With the help of this identity,
we present new analytical expressions for µs1,...,sn and Qs1,...,sp that are computationally far
more efficient than existing formulae.

The rest of the paper is organized as follows. Section 2 presents the key identity that allows
us to compute the expectation of a product of random variables by using the moments of
various sums of the random variables. Section 3 applies our identity to obtain an explicit
formula for the expectation of the product of normal random variables. It also generalizes
the results to the case of multivariate elliptical distribution. Section 4 presents an expression
for the product of quadratic forms in multivariate elliptical random variables. Section 5
concludes the paper.

2 An Identity

The identity in this section is motivated by Lemma 4.1 of Magnus [12]. His lemma expresses
the product of n real numbers as a polynomial of different linear combinations of these n
numbers. Our identity serves the same purpose as Magnus’s lemma but with fewer terms.

Let a, b, and c be real variables. After observing the following relations,

4ab = (a+ b)2 − (a− b)2

and

24abc = (a+ b+ c)3 − (a+ b− c)3 − (a− b+ c)3 + (a− b− c)3,

it is natural to conjecture that a product of n real numbers x1x2 · · ·xn can be expressed
as the sum of 2n−1 terms, with each term taking the form of (x1 ± x2 ± x3 · · · ± xn)

n. The
following lemma presents a more general version of this identity by allowing the variables in
the product to be raised to a different power.

Lemma 1. Let x1 to xn be real numbers, s1 to sn be nonnegative integers, and s = s1+ s2+
· · ·+ sn. Then,

xs11 x
s2
2 · · ·xsnn =

1

s!

s1∑
ν1=0

· · ·
sn∑

νn=0

(−1)
∑n

i=1
νi

(
s1
ν1

)
· · ·

(
sn
νn

)(
n∑

i=1

hixi

)s

, (1)

where hi = si/2− νi.
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The proof of Lemma 1 is given in Appendix A. For actual calculations, half of the terms on
the right hand side of (1) are repeated, so we only need to sum up half of the terms and
multiply the result by two. To illustrate this, we first assume at least one of the si is odd.
Without loss of generality, we assume s1 is odd. Then, it is easy to verify that for ν1 = 0 to
(s1 − 1)/2, we have

s2∑
ν2=0

· · ·
sn∑

νn=0

(−1)ν1+
∑n

i=2
νi

(
s1
ν1

)(
s2
ν2

)
· · ·

(
sn
νn

)[(
s1
2
− ν1

)
x1 +

n∑
i=2

hixi

]s

=
s2∑

ν2=0

· · ·
sn∑

νn=0

(−1)(s1−ν1)+
∑n

i=2
νi

(
s1

s1 − ν1

)(
s2
ν2

)
· · ·

(
sn
νn

)[(
ν1 −

s1
2

)
x1 +

n∑
i=2

hixi

]s
.

The equality is obtained by replacing νi with si − ν ′i for i = 2, . . . , n and using the fact that(
s

s−ν

)
=
(
s
ν

)
. This implies that we can obtain xs11 x

s2
2 · · ·xsnn using

xs11 · · ·xsnn =
2

s!

(s1−1)/2∑
ν1=0

s2∑
ν2=0

· · ·
sn∑

νn=0

(−1)
∑n

i=1
νi

(
s1
ν1

)
· · ·

(
sn
νn

)(
n∑

i=1

hixi

)s

,

which involves only (s1 + 1)(s2 + 1) · · · (sn + 1)/2 terms. For the case when all the si’s are
even, we can repeat the above exercise for ν2 to νn to obtain

xs11 · · ·xsnn =
2

s!

s1
2
−1∑

ν1=0

s2∑
ν2=0

· · ·
sn∑

νn=0

(−1)
∑n

i=1
νi

(
s1
ν1

)
· · ·

(
sn
νn

)(
n∑

i=1

hixi

)s

+ (−1)
s1
2

(
s1
s1
2

)
1

s!

s2∑
ν2=0

· · ·
sn∑

νn=0

(−1)
∑n

i=2
νi

(
s2
ν2

)
· · ·

(
sn
νn

)(
n∑

i=2

hixi

)s

=
2

s!

s1
2
−1∑

ν1=0

s2∑
ν2=0

· · ·
sn∑

νn=0

(−1)
∑n

i=1
νi

(
s1
ν1

)
· · ·

(
sn
νn

)(
n∑

i=1

hixi

)s

+ (−1)
s1
2

(
s1
s1
2

)
2

s!

s2
2
−1∑

ν2=0

s3∑
ν3=0

· · ·
sn∑

νn=0

(−1)
∑n

i=2
νi

(
s2
ν2

)
· · ·

(
sn
νn

)(
n∑

i=2

hixi

)s

+ · · ·

+ (−1)
s1+s2+sn−1

2

(
s1
s1
2

)(
s2
s2
2

)(
sn−1
sn−1

2

)
2

s!

sn
2
−1∑

νn=0

(−1)νn
(
sn
νn

)
(hnxn)

s ,

which has only [(s1 + 1)(s2 + 1) · · · (sn + 1)− 1]/2 terms. Therefore, for both cases, we only
need to sum up [(s1 + 1)(s2 + 1) · · · (sn + 1)/2] terms to obtain the right hand side of (1).

Suppose x1 to xn are random variables. Then taking expectation of both sides of (1) gives
us

E

[
n∏

i=1

xsii

]
=

1

s!

s1∑
ν1=0

· · ·
sn∑

νn=0

(−1)
∑n

i=1
νi

(
s1
ν1

)
· · ·

(
sn
νn

)
E

[(
n∑

i=1

hixi

)s]
, (2)
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provided that the expectation exists. At first glance, this identity is of little use because
instead of computing one expectation, we now need to compute [(s1+1)(s2+1) · · · (sn+1)/2]
expectations, with each term being the s-th moment of a linear combination of xi’s. However,
it is often the case that direct evaluation of the expectation of a product of random variables
is difficult but yet simple analytical expression for the s-th moment of the linear combination
of the random variables is readily available. In such cases, (2) allows us to provide a significant
simplification for the computation of the moment of the product. 1 We illustrate the use of
this identity with different applications in the rest of the paper.

3 Expectation of a Product of Normal Random Variables

We focus on the central normal case first by assuming µ = 0. The noncentral normal case
will be dealt with later. For n = 1 or 2, all moments of the normal distribution can be easily
computed. For n = 1, it is well known that

µs =

0 if s is odd,

(s− 1)!!σs if s is even.

For the case that n = 2 (i.e., z is bivariate normal), a simple closed-form solution of µs1,s2 is
available from Isserlis [8] and Kendall and Stuart [10] (p.94), which is given by

µs1,s2 =



0 if s1 + s2 is odd,

σs1
1 σ

s2
2

s1!s2!

2s/2

t∑
j=0

(2ρ)2j(
s1
2
− j

)
!
(
s2
2
− j

)
!(2j)!

if s1 and s2 are even,

σs1
1 σ

s2
2

s1!s2!

2s/2

t∑
j=0

(2ρ)2j+1(
s1−1
2

− j
)
!
(
s2−1
2

− j
)
!(2j + 1)!

if s1 and s2 are odd,

where ρ is the correlation coefficient between z1 and z2 and t = [min[s1, s2]/2].

For n > 2, the most popular expression for µs1,...,sn is due to Isserlis [8]. In the physics
literature, this formula is known as the Wick’s formula. In order to use this formula to
compute µs1,...,sn , we let z∗ = [z11

′
s1
, z21

′
s2
. . . , zn1

′
sn ]

′ be an expanded s-vector formed from
the original normal random vector z and denote Σ∗ as the covariance matrix of z∗. Then the
Wick’s formula suggests that

µs1,...,sn =

0 if s is odd,

Haf(Σ∗) if s is even,

1 Magnus appears to be unaware of the power of his lemma. Instead of computing the s-th moment
of the sum, he proceeds to expand it into many terms which leads to great computational complexity.
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where Haf(Σ∗) is the hafnian of Σ∗ = (σ∗
ij), which is defined as

Haf(Σ∗) =
∑
p∈Πs

s
2∏

i=1

σ∗
p2i−1,p2i

,

and Πs is the set of all permutations p of {1, 2, . . . , s} satisfying the property p1 < p3 <
p5 < · · · < ps−1 and p1 < p2, p3 < p4, . . . , ps−1 < ps. This formula is quite simple and it
is also very easy to program. All it requires is to enumerate all the p’s in Πs and compute
the product of s/2 elements of Σ∗ and then sum them up. However, the set Πs has (s− 1)!!
elements in it, so the number of elements in Πs quickly goes up as s increases, making this
formula impractical to use even when s is moderately large.

When some of the si’s are not equal to one, we can speed up the computation of µs1,...,sn

without actually having to enumerate all the (s−1)!! terms. For the example E[(z1z2z3z4z5)
4]

that we give in the introduction, we only have n = 5 and a large number of the (s − 1)!!
terms are repeated. In order to cut down the computation time, we can use the following
recursive relation

µs1,...,sn = (s1 − 1)σ11µs1−2,...,sn +
n∑

i=2

siσ1iµs1−1,s2,...,si−1,...,sn ,

with the first term vanishes when s1 = 1. 2 Then together with the closed-form solutions for
n = 1 and n = 2 as the boundary conditions, we can numerically solve for µs1,...,sn . However,
for s1 = s2 = · · · = sn = 1, there does not appear to be a faster way other than to enumerate
all the elements of Πs.

Using our identity in Section 2, the following Proposition presents a new formula for µs1,...,sn .

Proposition 1 Suppose z = [z1, . . . , zn]
′ ∼ N(0,Σ), where Σ is an n×n positive semidefinite

matrix. For nonnegative integers s1 to sn, we have

E

[
n∏

i=1

zsii

]
=


0 if s is odd,

1

( s
2)!

s1∑
ν1=0

· · ·
sn∑

νn=0

(−1)
∑n

i=1
νi

(
s1
ν1

)
· · ·

(
sn
νn

)(
h′Σh

2

) s
2

if s is even,

where s = s1 + · · ·+ sn and h =
[
s1
2
− ν1, . . . ,

sn
2
− νn

]′
.

2 This recursive relation can be easily proven by using an induction method as in Triantafyllopoulos
[23]. Our experience suggests that rearranging zi such that si is in ascending order also significantly
reduces the computation time.
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Proof: Putting xi = zi in (2), we have

E

[
n∏

i=1

zsii

]
=

1

s!

s1∑
ν1=0

· · ·
sn∑

νn=0

(−1)
∑n

i=1
νi

(
s1
ν1

)
· · ·

(
sn
νn

)
E

[(
n∑

i=1

hizi

)s]
.

Note that Y =
∑n

i=1 hizi ∼ N(0, h′Σh) and the s-th moment of Y is given by E[Y s] =

(s− 1)!!(h′Σh)
s
2 if s is even and 0 if s is odd. Using the fact that s!/(s− 1)!! = 2

s
2

(
s
2

)
!, we

obtain our expression. 2

In using our expression to compute µs1,...,sn , we need to sum up [(s1+1)(s2+1) · · · (sn+1)/2]
terms and each term only involves computing the variance of a normal random variable. 3

For the example of E[(z1z2z3z4z5)
4], we only need to compute [55/2] = 1,562 terms, which

is far less than the 19!! = 654,729,075 terms required under the Isserlis’s formula. For a
given value of s, the worst case scenario for our method is when s1 = . . . = sn = 1 which
requires us to compute 2s−1 terms. However, even in this worst case scenario, it only requires
computing 524,288 terms for s = 20, which is quite manageable with today’s computers. 4

A small modification of Proposition 1 enables us to compute µs1,...,sn for z ∼ N(µ,Σ), where
µ is not a zero vector. This is because Y = h′z has a distribution of N(h′µ, h′Σh) and its
s-th moment is given by

E[Y s] =E[(Y − h′µ+ h′µ)s]

=
[s/2]∑
r=0

(
s

2r

)
(2r − 1)!!(h′Σh)r(h′µ)s−2r

=
[s/2]∑
r=0

s!

r!(s− 2r)!

(
h′Σh

2

)r

(h′µ)s−2r.

Therefore, we only need to do one more summation to obtain µs1,...,sn for the noncentral
normal case. The results are summarized in the following Proposition.

Proposition 2 Suppose z = [z1, . . . , zn]
′ ∼ N(µ,Σ), where Σ is an n× n positive semidefi-

nite matrix. For nonnegative integers s1 to sn, we have

E

[
n∏

i=1

zsii

]
=

s1∑
ν1=0

· · ·
sn∑

νn=0

[s/2]∑
r=0

(−1)
∑n

i=1
νi

(
s1
ν1

)
· · ·

(
sn
νn

)(h′Σh
2

)r
(h′µ)s−2r

r!(s− 2r)!
,

where s = s1 + · · ·+ sn and h =
[
s1
2
− ν1, . . . ,

sn
2
− νn

]′
.

3 For programming purpose, we only need to update a small part of h′Σh as we loop through ν1
to νn, and there is no need to compute h′Σh from scratch each time.
4 Using the Windows version of Matlab running on an Opteron 165 processor, it takes less than
five seconds to do this calculation.
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Finally, Propositions 2 can be extended to the case that z is multivariate elliptically dis-
tributed with parameters µ and V (note that µ is the mean of z but V is in general not
the covariance matrix of z). We assume z has a characteristic function exp(iµ′t)ψ(t′V t) for
some function ψ. When z is multivariate elliptically distributed, Y = h′z is also elliptically
distributed. From Berkane and Bentler [2], we know the s-th central moment of Y (when it
exists) is given by

E[(Y − h′µ)s] =

0 if s is odd,[
1 + κ

(
s
2

)]
(s− 1)!!(h′Σh)

s
2 if s is even,

where Σ = −2ψ′(0)V is the covariance matrix of z and κ(r) is a moment parameter of the
elliptical distribution, defined as 5

κ(r) =
ψ(r)(0)

ψ′(0)r
− 1. (3)

Therefore, one only needs to multiply our results for the normal case by some moment
parameters to deal with the elliptical distribution case. The results are summarized in the
following Proposition.

Proposition 3 Suppose z = [z1, . . . , zn]
′ has a multivariate elliptical distribution with mean

µ and covariance matrix Σ, where Σ is an n × n positive semidefinite matrix. Let s =
s1 + . . . + sn, where s1 to sn are nonnegative integers. Assuming the s-th moment of z
exists and its moment parameters are κ(r), r = 1, . . . , [s/2], (with κ(0) defined as 0), the
expectation of a product of s elements of z is given by

E

[
n∏

i=1

zsii

]
=

s1∑
ν1=0

· · ·
sn∑

νn=0

[s/2]∑
r=0

(−1)
∑n

i=1
νi

(
s1
ν1

)
· · ·

(
sn
νn

)
[1 + κ(r)]

(
h′Σh
2

)r
(h′µ)s−2r

r!(s− 2r)!
,

where h =
[
s1
2
− ν1, . . . ,

sn
2
− νn

]′
.

4 Expectation of a Product of Quadratic Forms in Normal Random Variables

In time series analysis, a lot of estimators take the form of quadratic form or ratio of quadratic
forms. Examples of these include the sample autocovariances and the sample autocorrelation
coefficients are discussed in Anderson [1]. In obtaining the joint moments of these estimators,
one needs to come up with a method to compute Qs1,...,sp .

5 For example, under the multivariate t-distribution with k degrees of freedom, we have κ(r) =(
k
2 − 1

)r
/
[(

k
2 − 1

)
· · ·
(
k
2 − r

)]
− 1 for r < k/2.

8



For p = 1, all moments of z′Az can be easily computed. For example, Lemma 2 of Magnus
[14] provides the following expression of Qs

Qs(A) = E[(z′Az)s] = 2ss!
∑
λ

s∏
j=1

[tr(AΣ)j + jµ′(AΣ)j−1Aµ]λj

λj!(2j)λj
, (4)

where the summation is over all s-vector λ = (λ1, . . . , λs) whose elements λj are nonnegative
integers satisfying

∑s
j=1 jλj = s, and tr stands for the trace operator.

Two computational remarks on this equation are in order. The first remark is that this
equation requires an algorithm to enumerate all partitions of the integer s. Such an algorithm
is readily available and can be found in Nijenhuis and Wilf [17]. The second remark is that
when s is moderately large, it is often more efficient to compute the numerator of (4) by first
performing an eigenvalue decomposition. When Σ is positive definite, we let L be a lower
triangular matrix such that LL′ = Σ. Suppose L′AL = PDP ′, where D = Diag(d1, . . . , dm)
is a diagonal matrix of the m ≤ n nonzero eigenvalues of L′AL, and P is an n ×m matrix
of the corresponding eigenvectors. Then, denoting η = P ′L−1µ, we can write

tr(AΣ)j + jµ′(AΣ)j−1Aµ = trDj + jη′Djη =
m∑
i=1

(1 + jη2i )d
j
i .

As it turns out, there exists a recursive expression for Qs that is computationally far more
efficient than (4). Based on the recursive relation between moments and cumulants, we can
compute Qs using (see, for example, Ruben [18] and Mathai and Provost [16] (Eq.3.2b.8))

Qs(A) = s!2sds(A), (5)

where ds(A) is obtained using the following recursive relation

ds(A) =
1

2s

s∑
i=1

[tr(AΣ)i + iµ′(AΣ)i−1Aµ]ds−i(A), d0(A) = 1. (6)

Although (5) is not an explicit expression, it is easier to program than (4) and it also takes
much less time to compute.

Unlike the case of p = 1 where we can compute all the moments of z′Az with relative ease, the
case of p > 1 is far more challenging. For small s (s ≤ 4), explicit expressions for Qs1,...,sp are
widely available (see, for example, Kumar [11], Magnus [12] and Holmquist [6]). For general
s, Magnus [12,13] and Don [4] present an algorithm for computing Qs1,...,sp when µ = 0. 6

They express Qs1,...,sp as an A(s) polynomial, which is a polynomial with terms equal to
various combinations of traces of s matrices. Explicit algorithm for enumerating the terms

6 It is possible to generalize their results to the case of µ ̸= 0.
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and computing the coefficients in this A(s) polynomial was given by Magnus [12,13] and Don
[4]. With some effort, their algorithm can be programmed to enumerate all the terms in the
A(s) polynomial. The main difficulty in applying this algorithm is the large number of terms
involved in the A(s) polynomial. Although there are only 17 terms for s = 4, the number
of terms increases to 73 and 388 for s = 5 and 6. This probably explains why we never see
explicit expression of Qs1,...,sp for s > 4. The number of terms in the A(s) polynomial grows
very quickly as s increases, so it is infeasible even for a computer to perform this exercise.
For example, when s = 12, the A(s) polynomial has 171,453,343 terms and it is a formidable
task even for the fastest computer.

As we remarked earlier, computation of E[(z′Az)s] is relatively easy, so it is an ideal case to
apply our identity on (z′A1z)

s1 · · · (z′Apz)
sp . The following Proposition presents the resulting

new formula for Qs1,...,sp .

Proposition 4 Suppose z = [z1, . . . , zn]
′ ∼ N(µ,Σ), where Σ is an n× n positive semidefi-

nite matrix. For symmetric matrices A1 to Ap, we have

E

[ p∏
i=1

(z′Aiz)
si

]
=

1

s!

s1∑
ν1=0

· · ·
sp∑

νp=0

(−1)
∑p

i=1
νi

(
s1
ν1

)
· · ·

(
sp
νp

)
Qs(Bν),

where s = s1 + · · ·+ sp, Bν =
(
s1
2
− ν1

)
A1 + · · ·+

(
sp
2
− νp

)
Ap, and Qs(Bν) is given by the

recursive equation in (5)–(6).

Proof: Putting xi = z′Aiz in (2), we have

E

[ p∏
i=1

(z′Aiz)
si

]
=

1

s!

s1∑
ν1=0

· · ·
sp∑

νp=0

(−1)
∑p

i=1
νi

(
s1
ν1

)
· · ·

(
sp
νp

)
E

[( p∑
i=1

hiz
′Aiz

)s]
.

As

E

[( p∑
i=1

hiz
′Aiz

)s]
= E

[(
z′
[ p∑
i=1

hiAi

]
z

)s]
= E [(z′Bνz)

s] ,

we can use (5)–(6) to compute its expectation. 2

Similar to the case of the products of normal random variables, there are [(s1 + 1)(s2 +
1) · · · (sp+1)/2] terms in the expression for Qs1,...,sp , and each term involves the computation
of the s-th moment of a quadratic form in normal random variables. The worst case scenario
occurs when s1 = s2 = · · · = sp = 1, in which case we need to evaluate 2s − 1 terms. As the
computation of Qs(Bν) is quite efficient, we can now compute Qs1,...,sp for reasonably large s.
As an example, for n = 60, E[

∏5
i=1(z

′Aiz)
4] takes less than three seconds to compute using

the Windows version of Matlab running on an Opteron 165 processor. Even for the worst
case scenario of E[

∏20
i=1(z

′Aiz)], the answer can be obtained in less than 13 minutes.

Extension of Proposition 4 to the case of multivariate elliptical distribution is possible.
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We start out with the case of µ = 0. For the multivariate normal case, all the terms in
(z′A1z)

s1(z′A1z)
s2 · · · (z′Apz)

sp are just products of 2s central normal random variables. Us-
ing Lemma 2 of Maruyama and Seo [15], it is easy to show that Qs1,...,sp for the multivariate
elliptical distribution case is simply 1 + κ(s) times the value of Qs1,...,sp for the multivariate
normal case, where κ(s) is a moment parameter of the multivariate elliptical distribution
defined in (3). For the case that µ ̸= 0, it takes a bit more work. The key is to obtain an
expression for E[(z′Az)s] where z follows a multivariate elliptical distribution with param-
eters µ and V . This can be accomplished as follows. Let ε = z − µ, then ε has the same
multivariate elliptical distribution as z but with zero mean. Also define u ∼ N(0, V ) as a
vector of normal random variables that has the same covariance as z but has zero mean.
Expanding (z′Az)s using the binomial theorem, we have

E[(z′Az)s] =E[((µ+ ε)′A(µ+ ε))s]

=E[(µ′Aµ+ ε′Aε+ 2µ′Aε)s]

=
s∑

i=0

(
s

i

)
E[(µ′Aµ+ ε′Aε)s−i(2µ′Aε)i]

=
[s/2]∑
r=0

(
s

2r

)
E[(µ′Aµ+ ε′Aε)s−2r(2µ′Aε)2r]

=
[s/2]∑
r=0

(
s

2r

)
s−2r∑
q=0

(
s− 2r

q

)
(µ′Aµ)s−2r−qE[(ε′Aε)q(2µ′Aε)2r]

=
[s/2]∑
r=0

(
s

2r

)
s−2r∑
q=0

(
s− 2r

q

)
(µ′Aµ)s−2r−q[1 + κ(r + q)]E[(u′Au)q(2µ′Au)2r].

The fourth equality follows because the expectation vanishes when i is odd due to symmetry
of the distribution of µ′Aε. The last equality is obtained by applying Lemma 2 of Maruyama
and Seo [15] and noting that the terms in the expectation are products of 2(r + q) random
variables from a central elliptical distribution. With this expression, we can then compute
Qs(A) for the case of elliptical distribution and Qs1,...,sp follows naturally.

5 Conclusion

Expectations of products of random variables are generally difficult to obtain. Even when
explicit expressions are available, they are often impractical for computational purpose when
the number of random variables in the product is moderately large. In contrast, expressions
of moments of sums of random variables are often much simpler and easier to compute,
regardless of the number of random variables in the sum. In this paper, we present an
identity that allows us to evaluate the expectation of a product of random variables by
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computing the moments of various sums of the same random variables. To illustrate the
value of this identity, we apply it to derive expressions for the expectation of a product
of normal random variables and also for the expectation of a product of quadratic forms
in normal random variables. The resulting formulae are computationally far more efficient
than existing formulae. 7 The results are easily generalized to the case that the random
variables have a multivariate elliptical distribution. These results are potentially useful in
many applications. As an example, we can model the residuals in a time series to have
a multivariate Student t distribution. Applying our results, we can then easily compute
the moments and cross-moments of statistical estimators that are quadratic forms of the
residuals. Finally, we anticipate our identity can also be used to provide efficient formulae
for computing expectation of products of other nonnormal random variables.
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Appendix A. Proof of Lemma 1

Define fi(t) = (etxi/2 − e−txi/2)si and f(t) =
∏n

i=1 fi(t). Note that

dpfi(t)

dtp
=

dp

dtp

si∑
r=0

(−1)si−r

(
si
r

)
etxi(r− si

2 ) =
si∑
r=0

(−1)si−r

(
si
r

)
etxi(r− si

2 )
[
xi

(
r − si

2

)]p
,

so we have
dpfi(t)

dtp

∣∣∣∣∣
t=0

= xpi

si∑
r=0

(−1)si−r

(
si
r

)(
r − si

2

)p

.

Using the following identity (see, for example, Feller [5] (p.65))

si∑
r=0

(−1)si−r

(
si
r

)
rp =

0 if p < si,

si! if p = si,

and the fact that (r − si
2
)p is a polynomial in r with the leading term as rp, we have

dpfi(t)

dtp

∣∣∣∣∣
t=0

=

0 if p < si,

xsii si! if p = si.
(7)

7 A set of Matlab programs to implement our formulae is available upon request.
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Differentiating f(t) s times and using the generalized Leibniz rule, 8 we have

dsf(t)

dts
=

∑
ν1+···+νn=s

νi≥0

s!

ν1! · · · νn!

n∏
i=1

dνifi(t)

dtνi
. (8)

When we evaluate the derivative at t = 0, we know from (7) that the right hand side of (8)
is only nonzero when νi = si, i = 1, . . . , n. It follows that

dsf(t)

dts

∣∣∣∣∣
t=0

=
s!

s1! · · · sn!

n∏
i=1

si!x
si
i = s!xs11 · · ·xsnn . (9)

Now, applying the binomial theorem to fi(t), we can also write f(t) as

f(t)= (etx1/2 − e−tx1/2)s1(etx2/2 − e−tx2/2)s2 · · · (etxn/2 − e−txn/2)sn

=

 s1∑
ν1=0

(
s1
ν1

)
(−1)ν1et(

s1
2
−ν1)x1

 · · ·
 sn∑
νn=0

(
sn
νn

)
(−1)νnet(

sn
2
−νn)xn


=

s1∑
ν1=0

· · ·
sn∑

νn=0

(−1)ν1+···+νn

(
s1
ν1

)
· · ·

(
sn
νn

)
e(
∑n

i=1
hixi)t.

Differentiating it s times, we have

dsf(t)

dts
=

s1∑
ν1=0

· · ·
sn∑

νn=0

(−1)
∑n

i=1
νi

(
s1
ν1

)
· · ·

(
sn
νn

)
e(
∑n

i=1
hixi)t

(
n∑

i=1

hixi

)s

.

Evaluating the derivative at t = 0, we obtain

dsf(t)

dts

∣∣∣∣∣
t=0

=
s1∑

ν1=0

· · ·
sn∑

νn=0

(−1)
∑n

i=1
νi

(
s1
ν1

)
· · ·

(
sn
νn

)(
n∑

i=1

hixi

)s

. (10)

Equating (9) with (10), we obtain our identity. 2
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