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1 Introduction

Suppose X = (X1, . . . , Xn)T follows a multivariate normal distribution with mean µ and

positive definite covariance matrix Σ. We are interested in computing E(|Xk1
1 · · ·Xkn

n |) and

E(Xk1
1 · · ·Xkn

n | ai < Xi < bi, i = 1, . . . , n) for ki ≥ 0, i = 1, . . . , n. The first expression

is the moment of a folded multivariate normal distribution |X| = (|X1|, . . . , |Xn|)T. The

second expression is the moment of a truncated multivariate normal distribution, with Xi

truncated at the lower limit ai and upper limit bi. In the second expression, some of the ai’s

can be −∞ and some of the bi’s can be∞. When all the bi’s are∞, the distribution is called

the lower truncated multivariate normal, and when all the ai’s are −∞, the distribution is

called the upper truncated multivariate normal.

The folded univariate normal distribution was first introduced by Leone et al. (1961),

and Elandt (1961) provides expressions for its moments. Psarakis and Panaretos (2001)

generalize the folded distribution to the bivariate normal case and provide the moment

generating function when µ = 0. Recently, Chakraborty and Chatterjee (2013) introduce

the folded multivariate normal distribution. They present the joint density, the moment

generating function, and the mean and covariance matrix of |X|. Unfortunately, as pointed

out by Murthy (2015), the moment generating function as well as the mean and covari-

ance matrix expressions given in Chakraborty and Chatterjee (2013) are incorrect. The

moments of the folded multivariate normal distribution are simply the absolute moments

of the multivariate normal distribution. When µ = 0, there is a literature that provides

explicit formulae for these absolute moments. Nabeya (1951) derives an explicit expression

of the absolute moments for the bivariate normal case. Nabeya (1952) presents explicit

expressions of the absolute moments for the trivariate normal case (up to 12th order, see

also related results in Kamat (1953)). For the 4-variate case, Nabeya (1961) provides ex-
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plicit expressions of some low order absolute moments. However, the computation of higher

order absolute moments has been a challenge for n > 2 even when µ = 0. When µ 6= 0,

we are unaware of any result that enables us to compute arbitrary order absolute moments

of a multivariate normal distribution (except when n = 1).

There is a long and rich literature on truncated normal distributions. For n = 1, Cohen

(1991) provides a comprehensive review of the literature. For the lower truncated univariate

normal, Cohen (1951a) proposes a recursive formula for its moments. In addition, Cohen

(1951b) derives a recursive formula for the moments of the doubly truncated univariate

normal. For n = 2, Rosenbaum (1961) provides the first two moments for the singly

truncated case, and Khatri and Jaiswal (1963) provide a recurrence relation to obtain

all the bivariate moments for the lower truncated case. For the doubly truncated case,

Shah and Parikh (1964) and Dyer (1973) propose recurrence formulae for the bivariate

moments. For the n-dimensional case, Birnbaum and Meyer (1953) derive a recursive

formula for the bivariate moments in the lower truncated case. Gupta and Tracy (1976)

provide a recurrence relation between different product moments of a doubly truncated

multivariate normal. Unfortunately, since their recurrence relation does not express the

product moments in terms of lower order product moments, it has been of little practical

use besides the case of bivariate moments. Lee (1983) also presents a recurrence relation

between product moments of a doubly truncated multivariate normal, but his relation

requires the powers of all but one of the variables to be equal to one. Therefore, his

formula cannot be used when all the variables have powers greater than one. The moment

generating function of the lower truncated multivariate normal distribution is available in

Tallis (1961) and, in principle, it can be used to compute all the product moments for the

lower truncated multivariate normal. Tallis (1961) provides explicit expressions of some low

order moments for the n = 2 and 3 cases. However, differentiating this moment generating
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function to obtain higher order moments involves tedious calculations. Recently, Arismendi

(2013) overcomes this difficulty by providing explicit expressions for computing arbitrary

order product moments. However, the required calculations for this approach can be quite

time consuming. For example, when n = 6, computing all the fourth order moments, i.e.,

k1 + · · · + k6 = 4, for the lower truncated multivariate normal distribution requires more

than 5.4 hours on a PC with an Intel i7-4790K.1 In contrast, the Matlab program based

on our algorithm computes all the product moments with 0 ≤ ki ≤ 4 (i = 1, . . . , 6) in less

than 29 seconds.

Instead of differentiating the moment generating function, we approach the problem by

directly computing the moments of folded and truncated multivariate normal distributions,

which require evaluating n-dimensional integrals that involve the multivariate normal den-

sity. We develop simple and efficient recurrence formulae for these multivariate integrals.

In the most general case, the recurrence formula involves 3n+ 1 terms, but in many cases

the number of terms can be reduced to n + 1. Besides giving us a very efficient approach

for computing the product moments of folded and truncated multivariate normal distribu-

tions, our recurrence formula may also be applicable to other similar problems. The rest

of the paper is organized as follows. Section 2 presents a recurrence formula for an integral

that is essential for the evaluation of moments of folded and truncated multivariate normal

distributions. Section 3 presents the results for the folded multivariate normal distribution.

Section 4 presents the results for the truncated multivariate normal distribution. Besides

providing the numerical algorithm for computing these moments, we also present explicit

expressions for some low order moments of folded and truncated multivariate normal dis-

tributions. Section 5 discusses possible extensions.

1We thank Juan Arismendi for kindly sharing his Matlab programs with us.
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2 A Recurrence Relation for a Multivariate Integral

Suppose X = (X1, . . . , Xn)T ∼ N(µ,Σ), where µ = (µ1, . . . , µn)T is the mean of X,

Σ = (σij) is the covariance matrix of X, and σ2
i ≡ σii stands for the variance of Xi. The

joint density function of X is

φn(x;µ,Σ) =
1

(2π)
n
2 |Σ| 12

e−
1
2
(x−µ)TΣ−1(x−µ).

The cumulative distribution function of X is denoted as

Φn(x;µ,Σ) =

∫ x

−∞
φn(y;µ,Σ)dy,

where we make use of the short-hand notation∫ b

a

f(x)dx ≡
∫ b1

a1

· · ·
∫ bn

an

f(x1, . . . , xn)dxn · · · dx1.

When µ = 0, we suppress the argument µ and simply write φn(x; Σ) and Φn(x; Σ). In

addition, let

Ln(a, b;µ,Σ) =

∫ b

a

φn(y;µ,Σ)dy.

Based on the inclusion-exclusion principle, this probability can be written as a linear com-

bination of 2n different values of Φn(·;µ,Σ), that is,

Ln(a, b;µ,Σ) =
∑

i1,...,in∈{0,1}

(−1)n−
∑n
j=1 ijΦn((yi1 , . . . , yin)T;µ,Σ),

where yij = aj if ij = 0 and yij = bj if ij = 1.

For the special case of univariate standard normal (i.e., n = 1, µ = 0, σ = 1), we use

φ(x) and Φ(x) to denote its density and cumulative distribution functions, respectively.

In addition, for the standard bivariate normal (i.e., n = 2, µ1 = µ2 = 0, σ1 = σ2 = 1),
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we let φ2(x1, x2; ρ) stand for φ2(x; Σ) and Φ2(x1, x2; ρ) stand for Φ2(x; Σ), where ρ is the

correlation coefficient between X1 and X2.

For two n-vectors x = (x1, . . . , xn)T and κ = (k1, . . . , kn)T, let xκ stand for xk11 · · ·xknn .

By a(i) we denote a vector a with its ith element removed. For a matrix A, we let Ai,(j)

stand for the ith row of A with its jth element removed. Similarly, A(i),(j) stands for the

matrix A with its ith row and jth column removed. Finally, we let ei denote an n-vector

with its ith element equal to one and zero otherwise.

The integral that we are interested in evaluating is

F n
κ (a, b;µ,Σ) ≡

∫ b

a

xκφn(x;µ,Σ)dx.

The boundary condition is obviously F n
0 (a, b;µ,Σ) = Ln(a, b;µ,Σ). When n = 1, it

is straightforward to use integration by parts to show that (with the arguments of F 1
k

suppressed)

F 1
0 = Φ(β)− Φ(α),

F 1
k+1 = µF 1

k + kσ2F 1
k−1 + σ{akφ(α)− bkφ(β)} (k ≥ 1),

where α = (a−µ)/σ and β = (b−µ)/σ. When n > 1, we need a similar recurrence relation

in order to compute Fκ(a, b;µ,Σ). The following theorem presents the required result.

Lee (1983) also presents a similar recursive relation but his result can only be applied when

κ is in the form of (1, . . . , 1)T + kiei, whereas our result allows for an arbitrary κ > 0.

Theorem 1 For n > 1,

F n
κ+ei

(a, b;µ,Σ) = µiF
n
κ (a, b;µ,Σ) + eT

i Σcκ (i = 1, . . . , n), (1)

where cκ is an n-vector with jth element

cκ,j = kjF
n
κ−ej(a, b;µ,Σ) + a

kj
j φ1(aj;µj, σ

2
j )F

n−1
κ(j)

(a(j), b(j); µ̃
a
j , Σ̃j)
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− bkjj φ1(bj;µj, σ
2
j )F

n−1
κ(j)

(a(j), b(j); µ̃
b
j , Σ̃j), (2)

and

µ̃aj = µ(j) + Σ(j),j
aj − µj
σ2
j

,

µ̃bj = µ(j) + Σ(j),j
bj − µj
σ2
j

,

Σ̃j = Σ(j),(j) −
1

σ2
j

Σ(j),jΣj,(j).

When kj = 0, the first term in (2) vanishes. When aj = −∞, the second term vanishes,

and when bj =∞, the third term vanishes.

Proof: Taking the derivative of the multivariate normal density, we have

−∂φn(x;µ,Σ)

∂x
= Σ−1(x− µ)φn(x;µ,Σ).

Multiplying each element on both sides by xκ and integrating x from a to b, we have (after

suppressing the arguments of F n
κ )

cκ = Σ−1


F n
κ+e1

− µ1F
n
κ

F n
κ+e2

− µ2F
n
κ

...

F n
κ+en − µnF

n
κ

 , (3)

where the jth element of the left hand side is

cκ,j = −
∫ b

a

xκ
∂φn(x;µ,Σ)

∂xj
dx

= −
∫ b(j)

a(j)

xκφn(x;µ,Σ)

∣∣∣∣∣
bj

xj=aj

dx(j) +

∫ b

a

kjx
κ−ejφn(x;µ,Σ)dx (4)
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by using integration by parts. Using the fact that

φn(x;µ,Σ)|xj=aj = φ1(aj;µj, σ
2
j )φn−1(x(j); µ̃

a
j , Σ̃j),

φn(x;µ,Σ)|xj=bj = φ1(bj;µj, σ
2
j )φn−1(x(j); µ̃

b
j , Σ̃j),

we obtain

cκ,j = kjF
n
κ−ej(a, b;µ,Σ) + a

kj
j φ1(aj;µj, σ

2
j )F

n−1
κ(j)

(a(j), b(j); µ̃
a
j , Σ̃j)

− bkjj φ1(bj;µj, σ
2
j )F

n−1
κ(j)

(a(j), b(j); µ̃
b
j , Σ̃j).

When kj = 0, the last integral in (4) is equal to zero, and the first term of cκ,j drops out.

When aj → −∞, a
kj
j φ1(aj;µj, σ

2
j ) → 0, so the second term of cκ,j drops out. Similarly,

when bj → ∞, the third term of cκ,j drops out. Finally, multiplying both sides of (3) by

Σ, we obtain (1). This concludes the proof of Theorem 1.

It should be emphasized that Gupta and Tracy (1976) present a similar recurrence

relation for the moments of a doubly truncated multivariate normal distribution. Besides

the fact that they are dealing with the special case of a = 0, the main difference is that

their recurrence relation is essentially stated as

cκ,j = eT

jΣ
−1


F n
κ+e1

− µ1F
n
κ

F n
κ+e2

− µ2F
n
κ

...

F n
κ+en − µnF

n
κ

 (j = 1, . . . , n).

In this form, one cannot compute F n
κ by using only lower order terms, and it is difficult

to use this recursion in practice.2 Due to this unfortunate situation, no attempts have

2For example, Manjunath and Wilhelm (2012) comment that “But since except for the mean there are

fewer equations than parameters, these recurrent conditions do not uniquely identify moments of order ≥

2 and are therefore not sufficient for the computation of the variance and other higher order moments.”
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been made to use this recurrence relation to compute higher order moments of a truncated

multivariate normal for n ≥ 3. We overcome this problem in Theorem 1 by multiplying

both sides of (3) by Σ. This delivers a simple way to compute F n
κ (a, b;µ,Σ) based on at

most 3n + 1 lower order terms, with n + 1 of them being n-dimensional integrals and the

rest being (n− 1)-dimensional integrals.

Although Theorem 1 is stated as a recurrence relation, it is better to avoid using a

recursive function to compute F n
κ (a, b;µ,Σ). For speed gains, it is much more efficient to

first compute all the necessary (n − 1)-dimensional integrals (F n−1
ν (a(j), b(j), µ̃

a
j , Σ̃j) and

F n−1
ν (a(j), b(j), µ̃

b
j , Σ̃j) for 0 ≤ ν ≤ κ(j), j = 1, . . . , n) and then build up the entire table

of F n
ν (a, b;µ,Σ) for 0 ≤ ν ≤ κ.3

When all the ai’s are −∞ or all the bi’s are ∞, the length of the recurrence relation is

reduced to 2n+ 1. When all the ai’s are −∞ and all the bi’s are ∞, we have

F n
κ (−∞,∞;µ,Σ) = E(Xκ),

which is the product moments of X. In this case, the recurrence relation is

E(Xκ+ei) = µiE(Xκ) +
n∑
j=1

σijkjE(Xκ−ej) (i = 1, . . . , n),

and it is of length n+ 1. This recurrence relation was obtained by Takemura and Takeuchi

(1988) and Willink (2005).

Another case of special interest occurs when ai = 0 and bi = ∞, i = 1, . . . , n. For this

scenario, let

Inκ(µ,Σ) ≡ F n
κ (0,∞;µ,Σ).

3A set of Matlab programs to evaluate Fn
κ (a, b;µ,Σ) and other expressions in the paper is available at

http://www-2.rotman.utoronto.ca/~kan/research.htm.
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The recurrence relation for Inκ can be written as

Inκ+ei(µ,Σ) = µiI
n
κ(µ,Σ) +

n∑
j=1

σijdκ,j (i = 1, . . . , n), (5)

where

dκ,j =

kjI
n
κ−ej(µ,Σ) (kj > 0),

φ1(µj;σ
2
j )I

n−1
κ(j)

(µ̃j, Σ̃j) (kj = 0),

with µ̃j = µ(j) − Σ(j),jµj/σ
2
j . The length of this recursion is only n + 1. For n = 1, our

I1k(µ, σ2) function is closely related to the Ik function of Fisher (1931), which is defined as

Ik(ξ) =
1

(2π)
1
2

∫ ∞
0

xk

k!
e−

(x+ξ)2

2 dx.

It can be readily seen that Ik(ξ) = I1k(−ξ, 1)/k!, and it satisfies the recurrence relation

(k + 1)Ik+1(ξ) = −ξIk(ξ) + Ik−1(ξ) (k ≥ 1).

3 Folded Multivariate Normal

The folded multivariate normal distribution is simply the distribution of |X|, where X ∼

N(µ,Σ). In this section, we present the correct expression of the moment generating

function of |X| as well as our approach for computing arbitrary order moments of |X|. In

addition, we present some explicit expressions of some low order moments of |X|, including

the mean and covariance matrix of |X|.

Following Chakraborty and Chatterjee (2013), let

S(n) = {s : s = (s1, . . . , sn), with si = ±1, i = 1, . . . , n}
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be a set of different combinations of n positive and negative signs. By defining Λs =

Diag(s1, . . . , sn), Chakraborty and Chatterjee (2013) show that the joint density of Y =

|X| is

fY (y) =
∑
s∈S(n)

φn(y;µs,Σs) (y ≥ 0),

where µs = Λsµ, Σs = ΛsΣΛs, and the cumulative distribution function of Y is simply

FY (y) = Pr[−y ≤X ≤ y] = Ln(−y,y;µ,Σ) (y ≥ 0).

Using the same derivations as in Tallis (1961), it is easy to show that∫ ∞

0

et
Tyφn(y;µs,Σs)dy =

∫ ∞

0

1

(2π)
n
2 |Σs|

1
2

et
Ty− 1

2
(y−µs)TΣ−1

s (y−µs)dy

= et
Tµs+

tTΣst
2

∫ ∞

0

1

(2π)
n
2 |Σs|

1
2

e−
1
2
(y−µs−Σst)TΣ−1

s (y−µs−Σst)dy

= et
Tµs+

tTΣst
2 Φn(µs + Σst; Σs).

It follows that the moment generating function of Y is

mY (t) = E(et
Ty) =

∑
s∈S(n)

et
Tµs+

tTΣst
2 Φn(µs + Σst; Σs).

While it is possible to differentiate mY (t) to obtain the product moments of Y , it is much

easier to compute the product moments of Y using our Inκ(µ,Σ) function. Specifically, we

have

E(Y κ) =
∑
s∈S(n)

∫ ∞

0

yκφn(y;µs,Σs)dy =
∑
s∈S(n)

Inκ(µs,Σs).

All we need is to evaluate 2n different Inκ(µs,Σs) to obtain E(Y κ). Using our recurrence

relation in (5), these calculations are very fast even for moderately large n. For example,

when running our Matlab program on a PC with an Intel i7-4790K CPU, it takes 3.7

seconds to compute E(Y ν) for 0 ≤ ν ≤ (5, 5, 5, 5)T when n = 4, and 45.2 seconds to

compute E(Y ν) for 0 ≤ ν ≤ (5, 5, 5, 5, 5)T when n = 5.
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3.1 Explicit Expressions for Low Order Moments

The recurrence relation for Inκ(µ,Σ) can be used to obtain explicit expressions for the

product moments of Y . In the following, we provide explicit expressions for E(Y κ) up to

the fourth order, i.e.,
∑n

i=1 ki ≤ 4. In our expressions, we assume σ1 = · · · = σn = 1. This

implies that Σ = R, where R = (ρij) is the correlation matrix of X, with ρij = σij/(σiσj).

For the general Σ case, we just need to replace µi in our expressions with µi/σi, and then

multiply the result by σk11 · · ·σknn .

For univariate moments, Winkelbauer (2012) shows that

E(Y k
i ) =

2
k
2 Γ
(
k+1
2

)
√
π

1F1

(
−k

2
;
1

2
;−µ

2
i

2

)
,

where 1F1(a; b; z) is the confluent hypergeometric function. It follows that the first four

moments of Yi are

E(Yi) = µi erf

(
µi√

2

)
+ 2φ(µi),

E(Y 2
i ) = 1 + µ2

i ,

E(Y 3
i ) = µi(3 + µ2

i )erf

(
µi√

2

)
+ (4 + 2µ2

i )φ(µi),

E(Y 4
i ) = 3 + 6µ2

i + µ4
i ,

where erf(µi/
√

2) = Φ(µi)−Φ(−µi) is the error function. Using the recurrence relation of

confluent hypergeometric functions, higher order moments of Yi can be obtained using4

E(Y k
i ) = (µ2

i + 2k − 3)E(Y k−2
i )− (k − 2)(k − 3)E(Y k−4

i ) (k ≥ 4).

4Elandt (1961) expresses the higher order moments of Yi in terms of Fisher’s Ik functions, and her

expression (Eq. 8) is less efficient than ours.
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For bivariate moments, we define zi·j = (µi − ρijµj)/(1− ρ2ij)1/2 and use (5) repeatedly

to obtain

I2(1,1)((µi, µj)
T, ρij) = (µiµj + ρij)Φ2(µi, µj; ρij) + µiφ(µj)Φ(zi·j)

+ µjφ(µi)Φ(zj·i) + (1− ρ2ij)φ2(µi, µj; ρij),

I2(2,1)((µi, µj)
T, ρij) =

{
(1 + µ2

i )µj + 2ρijµi
}

Φ2(µi, µj; ρij) + (µiµj + 2ρij)φ(µi)Φ(zj·i)

+ (1 + µ2
i + ρ2ij)φ(µj)Φ(zi·j) + µi(1− ρ2ij)φ2(µi, µj; ρij),

I2(3,1)((µi, µj)
T, ρij) =

{
µiµj(3 + µ2

i ) + 3ρij(1 + µ2
i )
}

Φ2(µi, µj; ρij)

+
{

(2 + µ2
i )µj + 3µiρij

}
φ(µi)Φ(zj·i)

+
{
µ3
i + 3µi(1 + ρ2ij)− µjρ3ij

}
φ(µj)Φ(zi·j)

+ (2 + µ2
i + ρ2ij)(1− ρ2ij)φ2(µi, µj; ρij)

for i 6= j. Summing up these terms for the four quadrants, i.e., with (µi, µj, ρij) in the

above expressions replaced by (µi,−µj,−ρij), (−µi, µj,−ρij), and (−µi,−µj, ρij) in the

other three quadrants, we obtain for i 6= j

E(YiYj) = (µiµj + ρij)p2(µi, µj; ρij) + 2µiφ(µj) erf

(
zi·j√

2

)
+ 2µjφ(µi) erf

(
zj·i√

2

)
+ 4(1− ρ2ij)φ2(µi, µj; ρij),

E(Y 2
i Yj) =

{
(1 + µ2

i )µj + 2ρijµi
}

erf

(
µj√

2

)
+ 2(1 + µ2

i + ρ2ij)φ(µj)

E(Y 3
i Yj) =

{
µiµj(3 + µ2

i ) + 3ρij(1 + µ2
i )
}
p2(µi, µj; ρij)

+ 2
{

(2 + µ2
i )µj + 3ρijµi

}
φ(µi) erf

(
zj·i√

2

)
+ 2

{
µ3
i + 3µi(1 + ρ2ij)− µjρ3ij

}
φ(µj) erf

(
zi·j√

2

)
+ 4(2 + µ2

i + ρ2ij)(1− ρ2ij)φ2(µi, µj; ρij),
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E(Y 2
i Y

2
j ) = E(X2

iX
2
j ) = (1 + µ2

i )(1 + µ2
j) + 4µiµjρij + 2ρ2ij,

where

p2(µi, µj; ρij) = 4Φ2(µi, µj; ρij)− 2Φ(µi)− 2Φ(µj) + 1.

With the univariate and bivariate moments of Y available, the expected value and covari-

ance matrix of Y for the general Σ case are

E(Yi) = µi erf

(
µ̃i√

2

)
+ 2σiφ(µ̃i),

var(Yi) = µ2
i + σ2

i − E(Yi)
2,

cov(Yi, Yj) = (µiµj + σij){4Φ2(µ̃i, µ̃j; ρij)− 2Φ(µ̃i)− 2Φ(µ̃j) + 1}

+ 2µiσjφ(µ̃j) erf

(
µ̃i − ρijµ̃j√
2(1− ρ2ij)

1
2

)
+ 2µjσiφ(µ̃i) erf

(
µ̃j − ρijµ̃i√
2(1− ρ2ij)

1
2

)
+ 4σiσj(1− ρ2ij)φ2(µ̃i, µ̃j; ρij)− E(Yi)E(Yj),

where µ̃i = µi/σi.

For trivariate moments, we define zi·jk = (zi·k − ρij·kzj·k)/(1 − ρ2ij·k)1/2, where ρij·k =

(ρij − ρikρjk)/{(1 − ρ2ik)(1 − ρ2jk)}1/2. Let µ̃ = (µi, µj, µk)
T and R̃ be a 3 by 3 submatrix

of R that consists of the (i, j, k)th rows and columns of R. Applying (5) repeatedly, we

obtain

I3(1,1,1)(µ̃, R̃) = (µiµjµk + µiρjk + µjρik + µkρij)Φ3(µ̃; R̃)

+ (µjµk + ρijρik + ρjk)φ(µi)Φ2(zj·i, zk·i; ρjk·i)

+ (µiµk + ρijρjk + ρik)φ(µj)Φ2(zi·j, zk·j; ρik·j)

+ (µiµj + ρikρjk + ρij)φ(µk)Φ2(zi·k, zj·k; ρij·k)

+ µi(1− ρ2jk)φ2(µj, µk; ρjk)Φ(zi·jk)

+ µj(1− ρ2ik)φ2(µi, µk; ρjk)Φ(zj·ik)
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+ µk(1− ρ2ij)φ2(µi, µj; ρij)Φ(zk·ij) + |R̃|φ3(µ̃; R̃),

I3(2,1,1)(µ̃, R̃) = {(1 + µ2
i )(µjµk + ρjk) + 2µi(µjρik + 2µkρij) + 2ρijρik}Φ3(µ̃; R̃)

+ {µi(µjµk + ρjk) + 2µjρik + 2µkρij}φ(µi)Φ2(zj·i, zk·i; ρjk·i)

+ {2µi(ρik + ρijρjk) + µk(1 + µ2
i + ρ2ij)− µjρ2ijρjk)}φ(µj)Φ2(zi·j, zk·j; ρik·j)

+ {2µi(ρij + ρikρjk) + µj(1 + µ2
i + ρ2ik)− µkρ2ikρjk)}φ(µk)Φ2(zi·k, zj·k; ρij·k)

+ (µiµk + 2ρik + ρijρjk)(1− ρ2ij)φ2(µi, µj; ρij)Φ(zk·ij)

+ (µiµj + 2ρij + ρikρjk)(1− ρ2ik)φ2(µi, µk; ρik)Φ(zj·ik)

+ (1 + µ2
i + ρ2ij + ρ2ik)(1− ρ2jk)φ2(µj, µk; ρjk)Φ(zk·ij)

+ µi|R̃|φ3(µ̃; R̃),

where i, j, k are distinct positive integers. Summing up these terms over 8 different values

of (µs,Σs) and after simplification, we obtain for distinct positive integers i, j, k,

E(YiYjYk) = (µiµjµk + µiρjk + µjρik + µkρij)p3(µi, µj, µk; ρij, ρik, ρjk)

+ 2(µjµk + ρijρik + ρjk)φ(µi)p2(zj·i, zk·i; ρjk·i)

+ 2(µiµk + ρijρjk + ρik)φ(µj)p2(zi·j, zk·j; ρik·j)

+ 2(µiµj + ρikρjk + ρij)φ(µk)p2(zi·k, zj·k; ρij·k)

+ 4µi(1− ρ2jk)φ2(µj, µk; ρjk) erf

(
zi·jk√

2

)
+ 4µj(1− ρ2ik)φ2(µi, µk; ρik) erf

(
zj·ik√

2

)
+ 4µk(1− ρ2ij)φ2(µi, µj; ρij) erf

(
zk·ij√

2

)
+ 8|R̃|φ3(µ̃; R̃),

E(Y 2
i YjYk) = {(1 + µ2

i )(µjµk + ρjk)

+ 2µi(µjρik + µkρij) + 2ρijρik}p2(µj, µk; ρjk)
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+ 2{2µi(ρik + ρijρjk) + µk(1 + µ2
i + ρ2ij)− µjρ2ijρjk}φ(µj) erf

(
zk·j√

2

)
+ 2{2µi(ρij + ρikρjk) + µj(1 + µ2

i + ρ2ik)− µkρ2ikρjk}φ(µk) erf

(
zj·k√

2

)
+ 4(1 + µ2

i + ρ2ij + ρ2ik)(1− ρ2jk)φ2(µj, µk; ρjk),

where

p3(µi, µj, µk; ρij, ρik, ρjk)

= 8Φ3



µi

µj

µk

 ;


1 ρij ρik

ρij 1 ρjk

ρik ρjk 1


− 4Φ2(µi, µj; ρij)− 4Φ2(µi, µk; ρik)

− 4Φ2(µj, µk; ρjk) + 2Φ(µi) + 2Φ(µj) + 2Φ(µk)− 1.

For the fourth order product moment, we define zi·jkl = (zi·kl− ρij·klzj·kl)/(1− ρ2ij·kl)1/2,

where ρij·kl = (ρij·l − ρik·lρjk·l)/{(1− ρ2ik·l)(1− ρ2jk·l)}1/2. Let µ̂ = (µi, µj, µk, µl)
T and R̂ be

a 4 by 4 submatrix of R that consists of the (i, j, k, l)th rows and columns of R. Applying

(5) repeatedly to obtain I4(1,1,1,1)(µ̂, R̂) and then summing up the expression for 16 different

values of (µs,Σs), we obtain for distinct positive integers i, j, k, l,

E(YiYjYkYl) = (µiµjµkµl + µiµjρkl + µiµkρjl + µiµlρjk + µjµkρil + µjµlρik + µkµlρij

+ ρijρkl + ρikρjl + ρilρjk)p4(µ̂, R̂)

+ 2{µjµkµl + µj(ρikρil + ρkl) + µk(ρijρil + ρjl) + µl(ρijρik + ρjk)

− µiρijρikρil}φ(µi)p3(zj·i, zk·i, zl·i; ρjk·i, ρjl·i, ρkl·i)

+ 2{µiµkµl + µi(ρjkρjl + ρkl) + µk(ρijρjl + ρil) + µl(ρijρjk + ρik)

− µjρijρjkρjl}φ(µj)p3(zi·j, zk·j, zl·j; ρik·j, ρil·j, ρkl·j)

+ 2{µiµjµl + µi(ρjkρkl + ρjl) + µj(ρikρkl + ρil) + µl(ρikρjk + ρij)
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− µkρikρjkρkl}φ(µk)p3(zi·k, zj·k, zl·k; ρij·k, ρil·k, ρjl·k)

+ 2{µiµjµk + µi(ρjlρkl + ρjk) + µj(ρilρkl + ρik) + µk(ρilρjl + ρij)

− µlρilρjlρkl}φ(µl)p3(zi·l, zj·l, zk·l; ρij·l, ρik·l, ρjk·l)

+ 4(1− ρ2ij)(µkµl + ρikρil + ρjkρjl + ρkl)φ2(µi, µj; ρij)p2(zk·ij, zl·ij; ρkl·ij)

+ 4(1− ρ2ik)(µjµl + ρijρil + ρjkρkl + ρjl)φ2(µi, µk; ρik)p2(zj·ik, zl·ik; ρjl·ik)

+ 4(1− ρ2il)(µjµk + ρijρik + ρjlρkl + ρjk)φ2(µi, µl; ρil)p2(zj·il, zk·il; ρjk·il)

+ 4(1− ρ2jk)(µiµl + ρijρjl + ρikρkl + ρil)φ2(µj, µk; ρjk)p2(zi·jk, zl·jk; ρil·jk)

+ 4(1− ρ2jl)(µiµk + ρijρjk + ρilρkl + ρik)φ2(µj, µl; ρjl)p2(zi·jl, zk·jl; ρik·jl)

+ 4(1− ρ2kl)(µiµj + ρikρjk + ρilρjl + ρij)φ2(µk, µl; ρkl)p2(zi·kl, zj·kl; ρij·kl)

+ 8µi|R̂(1),(1)|φ3(µ̂(1); R̂(1),(1)) erf

(
zi·jkl√

2

)
+ 8µj|R̂(2),(2)|φ3(µ̂(2); R̂(2),(2)) erf

(
zj·ikl√

2

)
+ 8µk|R̂(3),(3)|φ3(µ̂(3); R̂(3),(3)) erf

(
zk·ijl√

2

)
+ 8µl|R̂(4),(4)|φ3(µ̂(4); R̂(4),(4)) erf

(
zl·ijk√

2

)
+ 16|R̂|φ4(µ̂; R̂),

where

p4(µ̂, R̂) = 16Φ4(µ̂; R̂)− 8Φ3(µ̂(1); R̂(1),(1))− 8Φ3(µ̂(2); R̂(2),(2))

− 8Φ3(µ̂(3); R̂(3),(3))− 8Φ3(µ̂(4); R̂(4),(4)) + 4Φ2(µi, µj; ρij) + 4Φ2(µi, µk; ρik)

+ 4Φ2(µi, µl; ρil) + 4Φ2(µj, µk; ρjk) + 4Φ2(µj, µl; ρjl) + 4Φ2(µk, µl; ρkl)

− 2Φ(µi)− 2Φ(µj)− 2Φ(µk)− 2Φ(µl) + 1.
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4 Truncated Multivariate Normal

The doubly truncated multivariate normal distribution is obtained by conditioning on a ≤

X ≤ b, where X ∼ N(µ,Σ). Let Z be the resulting truncated normal random vector

with density function

fZ(z) =
φn(z;µ,Σ)

Ln(a, b;µ,Σ)
(a ≤ z ≤ b).

The cumulative distribution function of Z is

FZ(z) =
1

Ln(a, b;µ,Σ)

∫ z

a

φn(x;µ,Σ)dx =
Ln(a, z;µ,Σ)

Ln(a, b;µ,Σ)
(a ≤ z ≤ b).

Generalizing the results in Tallis (1961), it is easy to show that the moment generating

function of Z is

mZ(t) = E(et
Tz) =

1

Ln(a, b;µ,Σ)
et

Tµ+ tTΣt
2 Ln(a, b;µ+ Σt,Σ).

In principle, one could differentiate this moment generating function to obtain E(Zκ) =

E(Xκ | a ≤ X ≤ b), but for higher order moments, these calculations are extremely

tedious, and the resulting expressions are not computationally efficient. Instead, we express

E(Zκ) in terms of our F n
κ (a, b;µ,Σ) in Section 2 as

E(Zκ) =
1

Ln(a, b;µ,Σ)

∫ b

a

zκφn(z;µ,Σ)dz =
F n
κ (a, b;µ,Σ)

Ln(a, b;µ,Σ)
.

Using our recurrence relation in Theorem 1, the computation of E(Zκ) is very fast even

for moderately large n. For example, when running our Matlab program on a PC with an

Intel i7-4790K CPU, it takes 0.97 second to compute E(Zν) for 0 ≤ ν ≤ (5, 5, 5, 5)T when

n = 4, and 10.1 seconds to compute E(Zν) for 0 ≤ ν ≤ (5, 5, 5, 5, 5)T when n = 5.

Our algorithm allows for the possibility that ai = −∞, bi =∞, or both ai = −∞ and

bi =∞, i.e., no truncation on Xi. When all the ai’s are −∞ (bi’s are∞), we have the upper
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(lower) truncated multivariate normal distributions. For these special cases, we can express

E(Zκ) in terms of the Inκ(µ,Σ) function, which can be computed with a shorter recursion.

We first provide an illustration of this method for the lower truncated multivariate normal

distribution. In this scenario, we can write E(Zκ) as

E(Zκ) =
1

Ln(a,∞;µ,Σ)

∫ ∞

a

zκφn(z;µ,Σ)dz

=
1

Φn(µ− a; Σ)

∫ ∞

0

(y + a)κφn(y;µ− a,Σ)dy

=
1

Φn(µ− a; Σ)

∑
0≤ν≤κ

(
κ

ν

)
aκ−νInν (µ− a,Σ), (6)

where ν = (ν1, . . . , νn)T and (
κ

ν

)
=

n∏
i=1

ki!

νi!(ki − νi)!
.

This alternative expression shows that by using a binomial expansion, we can write E(Zκ)

as a linear combination of
∏n

i=1(ki + 1) different Inν (µ−a,Σ). In computing Inκ(µ−a,Σ),

all the Inν (µ−a,Σ) with 0 ≤ ν ≤ κ have already been computed. Therefore, no additional

work is required besides summing up these terms.

Similarly, for the upper truncated case, we can write

E(Zκ) =
1

Φn(b− µ; Σ)

∑
0≤ν≤κ

(
κ

ν

)
bκ−ν(−1)

∑n
i=1 νiInν (b− µ,Σ).

4.1 Explicit Expressions for Low Order Moments

Using our recurrence relation for F n
κ (a, b;µ,Σ), we present some low order product mo-

ments for the lower truncated multivariate normal. For the upper truncated multivariate

normal,

E(Zκ) = (−1)
∑n
i=1 kiE((−Z)κ) = (−1)

∑n
i=1 kiE((−X)κ | −X > −b).
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Since −X ∼ N(−µ,Σ), we just need to replace µ with −µ and a with −b in the expression

for the product moment of a lower truncated multivariate normal, and then multiply the

result by (−1)
∑n
i=1 ki to obtain the product moment of an upper truncated multivariate

normal.5 In our derivations, we assume σ1 = · · · = σn = 1, i.e., Σ = R. The result for the

general Σ case can be obtained by replacing ai with ai/σi, µi with µi/σi, and multiplying

the result by σk11 · · ·σknn .

Let η = (η1, . . . , ηn)T = µ − a. When n = 1, Cohen (1951a) expresses E(Zk) using

Fisher’s Ik functions, which is essentially equivalent to (6) for the case of n = 1. However,

we can also use the recursion for F 1
k (a,∞;µ, 1) to obtain the more efficient recursion

E(Zk+1) = µE(Zk) + kE(Zk−1) +
akφ(η)

Φ(η)
(k ≥ 1),

with the boundary condition E(Z0) = 1. Using this recurrence relation, we obtain the first

three moments of Z as

E(Z) = µ+
φ(η)

Φ(η)
,

E(Z2) = 1 + µ2 +
(µ+ a)φ(η)

Φ(η)
,

E(Z3) = 3µ+ µ3 +
(µ2 + aµ+ a2 + 2)φ(η)

Φ(η)
.

When n = 2, we use (5) and (6) to obtain E(Zk1
1 Z

k2
2 ) for 1 ≤ k1 + k2 ≤ 3. Specifically,

we have

E(Z1) = µ1 +
φ(η1)Φ(w2·1) + ρ12φ(η2)Φ(w1·2)

Φ2(η1, η2; ρ12)
,

E(Z2
1) = 1 + µ2

1 +
(µ1 + a1)φ(η1)Φ(w2·1)

Φ2(η1, η2; ρ12)

5Although analytically attainable, we do not report the results for the doubly truncated multivariate

normal distribution because the expressions of the product moments can be very lengthy.
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+
ρ12{(2µ1 − ρ12η2)φ(η2)Φ(w1·2) + (1− ρ212)φ2(η1, η2; ρ12)}

Φ2(η1, η2; ρ12)
,

E(Z1Z2) = µ1µ2 + ρ12 +
(µ2 + ρ12a1)φ(η1)Φ(w2·1) + (µ1 + ρ12a2)φ(η2)Φ(w1·2)

Φ2(η1, η2; ρ12)

+
(1− ρ212)φ2(η1, η2; ρ12)

Φ2(η1, η2; ρ12)
,

E(Z3
1) = 3µ1 + µ3

1 +
(η21 + 3a1µ1 + 2)φ(η1)Φ(w2·1)

Φ2(η1, η2; ρ12)

+
ρ12{3 + 3µ2

1 − 3ρ12µ1η2 + ρ212(η
2
2 − 1)}φ(η2)Φ(w1·2)

Φ2(η1, η2; ρ12)

+
ρ12(1− ρ212)(2µ1 + a1 − ρ12η2)φ2(η1, η2; ρ12)

Φ2(η1, η2; ρ12)
,

E(Z2
1Z2) = (1 + µ2

1)µ2 + 2ρ12µ1 +
{(µ1 + a1)µ2 + ρ12(2 + a21)}φ(η1)Φ(w2·1)

Φ2(η1, η2; ρ12)

+
{1 + µ2

1 + 2ρ12a2µ1 + ρ212(1− a2η2)}φ(η2)Φ(w1·2)

Φ2(η1, η2; ρ12)

+
(1− ρ212)(µ1 + a1 + ρ12a2)φ2(η1, η2; ρ12)

Φ2(η1, η2; ρ12)
,

where wi·j = (ηi − ρijηj)/(1− ρ2ij)1/2.

When n = 3, we again use (5) and (6) to obtain E(Zk1
1 Z

k2
2 Z

k3
3 ) for 1 ≤ k1 +k2 +k3 ≤ 3.

Specifically, we have

E(Z1) = µ1 + q1 + ρ12q2 + ρ13q3,

E(Z2
1) = 1 + µ2

1 + (µ1 + a1)q1 + ρ12(2µ1 − ρ12η2)q2 + ρ13(2µ1 − ρ13η3)q3

+ ρ12(1− ρ212)h1 + ρ13(1− ρ213)h2 + gh3,

E(Z1Z2) = µ1µ2 + ρ12 + (µ2 + ρ12a1)q1 + (µ1 + ρ12a2)q2

+ (ρ23µ1 + ρ13µ2 − ρ13ρ23η3)q3 + (1− ρ212)h1 + ρ23(1− ρ213)h2

+ ρ13(1− ρ223)h3,

E(Z3
1) = 3µ1 + µ3

1 + (η21 + 3a1µ1 + 2)q1 + ρ12{3 + 3µ2
1 − 3ρ12µ1η2 + ρ212(η

2
2 − 1)}q2
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+ ρ13{3 + 3µ2
1 − 3ρ13µ1η3 + ρ213(η

2
3 − 1)}q3

+ ρ12(1− ρ212)(2µ1 + a1 − ρ12η2)h1 + ρ13(1− ρ213)(2µ1 + a1 − ρ13η3)h2

+
{

3gµ1 + ρ23(ρ
3
12η2 + ρ313η3)−

ρ212(3ρ13 − ρ12ρ23)w2·3

(1− ρ223)
1
2

− ρ213(3ρ12 − ρ13ρ23)w3·2

(1− ρ223)
1
2

}
h3 +

g|R|φ3(η;R)

(1− ρ223)Φ3(η;R)
,

E(Z2
1Z2) = (1 + µ2

1)µ2 + 2ρ12µ1 + {(µ1 + a1)µ2 + ρ12(2 + a21)}q1

+ {1 + µ2
1 + 2ρ12a2µ1 + ρ212(1− a2η2)}q2

+ [ρ13{2ρ12 + µ2(2µ1 − ρ13η3)}+ ρ23{1− ρ213 + (µ1 − ρ13η3)2}]q3

+ (1− ρ212)(µ1 + a1 + ρ12a2)h1 + (1− ρ213){µ2ρ13 + ρ23(µ1 + a1 − ρ13η3)}h2

+ {ga2 + ρ13(1− ρ223)(2µ1 − ρ13η3)}h3 +
ρ13|R|φ3(η;R)

Φ3(η;R)
,

E(Z1Z2Z3) = µ1µ2µ3 + ρ23µ1 + ρ13µ2 + ρ12µ3

+ {µ2µ3 + ρ12ρ13 + ρ23 + a1(µ2ρ13 + µ3ρ12 − η1ρ12ρ13)}q1

+ {µ1µ3 + ρ12ρ23 + ρ13 + a2(µ1ρ23 + µ3ρ12 − η2ρ12ρ23)}q2

+ {µ1µ2 + ρ13ρ23 + ρ12 + a3(µ1ρ23 + µ2ρ13 − η3ρ13ρ23)}q3

+ (1− ρ212)(µ3 + a1ρ13 + a2ρ23)h1 + (1− ρ213)(µ2 + a1ρ12 + a3ρ23)h2

+ (1− ρ223)(µ1 + a2ρ12 + a3ρ13)h3 +
|R|φ3(η;R)

Φ3(η;R)
,

where

g = 2ρ12ρ13 − ρ23(ρ212 + ρ213),

q1 = φ(η1)Φ2(w2·1, w3·1; ρ23·1)/Φ3(η;R),

q2 = φ(η2)Φ2(w1·2, w3·2; ρ13·2)/Φ3(η;R),

q3 = φ(η3)Φ2(w1·3, w2·3; ρ12·3)/Φ3(η;R),
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h1 = φ2(η1, η2; ρ12)Φ(w3·12)/Φ3(η;R),

h2 = φ2(η1, η3; ρ13)Φ(w2·13)/Φ3(η;R),

h3 = φ2(η2, η3; ρ23)Φ(w1·23)/Φ3(η;R),

and wi·jk = (wi·k − ρij·kwj·k)/(1− ρ2ij·k)1/2.

5 Conclusion

The results in this paper can be easily generalized to the case of multivariate normal

mixtures. Generalizing the results to multivariate elliptical distributions requires a lot

more work. Although the product moments of multivariate elliptical distributions can be

obtained from the product moments of multivariate normal distributions (see, for example,

Berkane and Bentler (1986) and Maruyama and Seo (2003)), it is not clear how to obtain

product moments of folded and truncated multivariate elliptical distributions. We leave

this topic for future research.

SUPPLEMENTARY MATERIAL

Matlab-package: Matlab-package ftnorm contains a set of programs to compute the

moment expressions given in the article.
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