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On the Properties of the Constrained

Hansen-Jagannathan Distance

ABSTRACT

We provide an in-depth analysis of the theoretical properties of the Hansen-Jagannathan (HJ)

distance that incorporates a no-arbitrage constraint. Under a multivariate elliptical distribution

assumption, we present explicit expressions for the HJ-distance with a no-arbitrage constraint, the

associated Lagrange multipliers, and the stochastic discount factor (SDF) parameters in the case

of linear SDFs. This allows us to analyze the benefits and costs of using the HJ-distance with a no-

arbitrage constraint to evaluate and rank models. We also study the asymptotic and finite-sample

properties of the sample constrained HJ-distance. Finally, we demonstrate the practical relevance

of our theoretical findings in an empirical illustration of some popular asset-pricing models.



1. Introduction

Since all asset-pricing models can be viewed as approximations to reality and are likely to be mis-

specified, researchers are often interested in evaluating and comparing their empirical performance.

In order to perform these tasks, one has to take a stand on what measure of model misspecifica-

tion to use. While there are many possible choices, Hansen and Jagannathan (1997, HJ hereafter)

propose two interesting measures of model misspecification. The first one measures the distance

between a proposed stochastic discount factor (SDF) and the set of admissible SDFs (that is, the

set of SDFs that price a given set of test assets correctly). The second one measures the distance

between a proposed SDF and the set of nonnegative admissible SDFs. Since the first measure does

not impose the nonnegativity constraint (no-arbitrage condition) on the set of admissible SDFs

whereas the second one does, we refer to the first measure as the unconstrained HJ-distance and

to the second one as the constrained HJ-distance.

While the unconstrained HJ-distance is analyzed and used in many studies (see, for example,

Bansal, Hsieh, and Viswanathan (1993), Hansen, Heaton, and Luttmer (1995), Jagannathan and

Wang (1996), Jagannathan, Kubota, and Takehara (1998), Campbell and Cochrane (2000), Lettau

and Ludvigson (2001), Hodrick and Zhang (2001), Farnsworth, Ferson, Jackson, and Todd (2002),

Dittmar (2002), Kan and Zhou (2003), and Kan and Robotti (2009), among others), the con-

strained HJ-distance has received only limited attention in the literature. This can be attributed

to some technical difficulties in the analysis of the properties of the population constrained HJ-

distance that arise from explicitly incorporating the possibility of arbitrage in the model evaluation

process. For example, unlike its unconstrained counterpart, a closed-form analytical expression

for the constrained HJ-distance is not currently available even for linear models. As a result, the

literature has focused on the sampling behavior (Hansen, Heaton, and Luttmer (1995) and Li, Xu,

and Zhang (2010)) and the empirical performance of the constrained HJ-distance for evaluating

and comparing asset-pricing models, while a rigorous theoretical analysis of the properties of the

underlying population quantity is still largely missing.

Our paper has two main objectives. The first one is to better understand, in the context of

linear SDFs, the merits and drawbacks of the constrained HJ-distance and the difference between

this measure and its unconstrained counterpart. We point out that when the SDF is perfectly
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correlated with the returns on the test assets, the difference between the squared constrained and

unconstrained HJ-distances is the same as the difference between the constrained and unconstrained

Hansen-Jagannathan bounds (HJ-bounds, see Hansen and Jagannathan (1991)) constructed from

the test assets. This suggests that the difference between the two HJ-distances is identical across

all SDFs that are spanned by the returns. Therefore, for two spanned SDFs, testing the equality

of unconstrained HJ-distances is the same as testing the equality of constrained HJ-distances. For

the more general case in which the SDF is not spanned by the returns on the test assets, we

derive an explicit solution for the constrained HJ-distance under the assumption that the SDF

and the returns are conditionally multivariate elliptically distributed. This allows us to show that

nontrivial differences between the unconstrained and constrained HJ-distances can only arise when

the volatility of the unspanned component of an SDF is large and the Sharpe ratio of the tangency

portfolio of the test assets is very high. In addition, we obtain analytical expressions of the SDF

parameters that minimize the constrained HJ-distance. When there is an unspanned factor in the

SDF, we show that choosing parameters to minimize the constrained HJ-distance instead of the

unconstrained HJ-distance will result in a lower probability for the SDF to take negative values,

but will lead to a serious deterioration in the ability of the SDF to price the test assets.

Our second objective is to provide an improved analysis of the sample constrained HJ-distance

for linear and nonlinear asset-pricing models. We show that the sample constrained HJ-distance

takes on the value of infinity with positive probability. As a result, the expectation of the sample

constrained HJ-distance does not exist. We also show that the sample constrained HJ-distance

takes on the value of infinity if and only if we can identify an in-sample arbitrage portfolio of the

test assets. When an in-sample arbitrage portfolio is identified, it implies that all models will have

a sample constrained HJ-distance of infinity, rendering it impossible to use the sample constrained

HJ-distance for model comparison. Furthermore, we provide some asymptotic results for the sample

constrained HJ-distance and the estimates of the SDF parameters and the Lagrange multipliers

that complement the existing literature.

The main findings of our analysis can be summarized as follows. On the positive side, the

constrained HJ-distance is an effective tool in detecting arbitrage opportunities in the market. This

feature, however, only depends on the properties of the test asset returns and not on the particular

choice of a model. Furthermore, the population constrained HJ-distance and its parameters appear
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to be well defined in the presence of factors that are uncorrelated with the returns on the test assets,

which is not the case for the unconstrained HJ-distance (see, for example, Gospodinov, Kan, and

Robotti, 2014). On the downside, the constrained HJ-distance lacks a clear maximum pricing error

interpretation and using it to compare and rank competing asset-pricing models can be problematic.

Moreover, while the SDF’s probability of taking on negative values can be greatly reduced when

the parameters are chosen to minimize the constrained HJ-distance, this is generally accompanied

by a substantial deterioration in the pricing ability of the model. Intuitively, to reduce the SDF’s

probability of taking on negative values, the optimization problem based on the constrained HJ-

distance forces the candidate SDF to load primarily on the risk-free asset. This, in turn, leads

to a lower SDF’s variability and to a deterioration in the model’s pricing performance. As a

result, the differences in the sample constrained HJ-distances of competing asset-pricing models

mainly arise from the underlying characteristics of the risk factors (traded versus non-traded)

and are often unrelated to their relative pricing performance. Finally, since we are actually not

comparing the same sets of SDFs under the unconstrained and constrained HJ-distances, the choice

of constrained versus unconstrained HJ-distance should depend on which metric is considered to

be more reasonable for model comparison.

The rest of the paper is organized as follows. Section 2 introduces the main setup and notation

for the population unconstrained and constrained HJ-distances. Section 3 derives an analytical

solution for the constrained HJ-distance under the joint ellipticity assumption on the SDF and the

returns on the test assets. Section 4 presents an econometric analysis of the sample constrained

HJ-distance. Section 5 illustrates the relevance of our findings with an empirical analysis of popular

asset-pricing models. Some concluding remarks are provided in Section 6.

2. Setup and Preliminaries

Following HJ, let F be the information that is observed at the date of the asset payoffs. Associated

with F is the space L2 of all random variables with finite second moments that are in the information

set F. This space is used as the collection of hypothetical claims that could be traded. Let

r̃ = [R0, r
′]′, where R0 is the gross return on the risk-free asset and r is a vector of excess returns

(in excess of the risk-free rate) on N risky assets, so that r̃ is of dimension n = N + 1. It can be

readily shown that both the unconstrained and constrained HJ-distances and their SDF parameters
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are invariant to nonsingular transformations of the return data. Therefore, our results are the same

regardless of whether we use excess returns or gross returns on the risky assets. For the case with

no risk-free asset, the analysis is slightly more complicated and is available upon request.

We call m ∈ L2 an admissible SDF if it prices the test assets correctly, that is,

E[r̃m] = q, (1)

where q = [1, 0′N ]′ and 0N is an N -vector of zeros. Let M denote the set of all admissible SDFs.

Although all SDFs in M can price the test assets correctly, some of them can take on negative

values with positive probability and are not consistent with the absence of arbitrage opportunities

on the space of hypothetical derivative claims. To eliminate these SDFs from consideration, HJ

consider M+, which is the set of nonnegative admissible SDFs.

Let y(γ) ∈ L2 be a candidate stochastic discount factor that depends on a k-vector of unknown

parameters γ ∈ Γ, where Γ is the parameter space of γ. If y(γ) prices the n test assets correctly,

then the vector of pricing errors, e(γ), of the test assets is exactly zero:

e(γ) = E[r̃y(γ)]− q = 0n. (2)

However, the pricing errors are nonzero when the asset-pricing model is misspecified. In this case,

we are interested in measuring the degree of model misspecification. HJ suggest using

δ2 = min
γ∈Γ

min
m∈M

E[(y(γ)−m)2] (3)

as a misspecification measure of y(γ). In this paper, we refer to δ2 as the squared unconstrained

HJ-distance.

It is possible for an SDF to price all the test assets correctly and yet to take on negative values

with positive probability. Such an SDF does not necessarily rule out arbitrage opportunities and it

could be problematic to use this SDF to price derivatives on the test assets, for example. To deal

with this issue, HJ provide a second model misspecification measure:

δ2
+ = min

γ∈Γ
min

m∈M+
E[(y(γ)−m)2]. (4)

We refer to δ2
+ as the squared constrained HJ-distance. Since M+ is a subset of M, δ+ cannot be

smaller than δ.
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Instead of solving the above primal problems to obtain δ and δ+, HJ suggest that it is sometimes

more convenient to solve the following dual problems:

δ2 = min
γ∈Γ

max
λ∈<n

E[y(γ)2 − (y(γ)− λ′r̃)2]− 2λ′q, (5)

δ2
+ = min

γ∈Γ
max
λ∈<n

E[y(γ)2 − [(y(γ)− λ′r̃)+]2]− 2λ′q, (6)

where λ is a vector of Lagrange multipliers and (a)+ ≡ max[a, 0].

For a given SDF y(γ), HJ show that the unconstrained distance is equal to the maximum pricing

error of portfolios of r̃ with unit second moment. Let h ∈ L2, where E[h2] = 1. Using Jensen’s

inequality, we have

(E[y(γ)h]− E[mh])2 = (E[(y(γ)−m)h])2 ≤ E[(y(γ)−m)2]E[h2], (7)

where m ∈M+. It follows that

max
h∈L2, E[h2]=1

|E[y(γ)h]− E[mh]| = E[(y(γ)−m)2]
1
2 . (8)

It is easy to verify that the maximum pricing error occurs for h = (y(γ) −m)/E[(y(γ) −m)2]
1
2 .

Unlike the case of the unconstrained HJ-distance, the maximum pricing error expression for the

constrained HJ-distance depends on the choice of m inM+. HJ suggest that we can eliminate this

dependence by computing the minimax bound

min
m∈M+

max
h∈L2, E[h2]=1

|E[y(γ)h]− E[mh]| = min
m∈M+

E[(y(γ)−m)2]
1
2 = E[(y(γ)−m+

y )2]
1
2 = δ+, (9)

where m+
y is the nonnegative admissible SDF that is closest to y(γ).

It is important to emphasize that δ+ generally represents only a lower bound on the maximum

pricing error for payoffs in L2. To see this, assume that m∗ ∈M+ is the true SDF that the economy

uses to price all h ∈ L2. Then, using (8) and (9), we have

max
h∈L2, E[h2]=1

|E[y(γ)h]− E[m∗h]| = E[(y(γ)−m∗)2]
1
2 ≥ E[(y(γ)−m+

y )2]
1
2 = δ+, (10)

and the maximum pricing error is generally larger than δ+. The only case in which we can interpret

δ+ as the maximum pricing error for payoffs in L2 is when m+
y = m∗. However, it is hard to justify

the maximum pricing error interpretation of δ+ when multiple models are considered. The reason

is that m+
y is model dependent and it is not possible that m+

y = m∗ for all models unless M+

contains only a single element.
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From (10), the maximum pricing error of a model is equal to the distance between y and m∗.

However, a model in M+ (that is, δ+ = 0) can actually be further away from m∗ than a model

that is not in M+ (that is, δ+ > 0). This makes it problematic to rank models by δ+ because a

model with a larger δ+ can actually be closer to m∗ and have a smaller maximum pricing error for

payoffs in L2. In particular, a model with a smaller δ+ is not necessarily a better model for pricing

derivatives.1 This is an important point that has been largely ignored in the literature. We further

elaborate on this in the next section, where we derive an analytical expression for the constrained

HJ-distance in linear models under the assumption that the returns and the SDF are multivariate

elliptically distributed.

3. Analytical Solution for the Constrained Hansen-Jagannathan
Distance in Linear Models

While it is desirable to consider SDFs that are strictly positive, most SDFs used in empirical work

are linear. For this reason, in the subsequent analysis we focus on linear SDFs of the form

y(γ) = γ0 + γ′1f, (11)

where f is a vector of K systematic factors, and γ = [γ0, γ
′
1]′ is a k-vector of SDF parameters

(k = K + 1).2 Define µr = E[r], µf = E[f ], Vrf = Cov[r, f ′], Vrr = Var[r], Vff = Var[f ], and

U = E[r̃r̃′]. Throughout the paper, we assume that the matrices Vrr, Vff , U, and V ′rfV
−1
rr Vrf are

nonsingular. Also, let a = µ′rV
−1
rr µr be the squared Sharpe ratio of the tangency portfolio of the N

risky assets, a1 = µ′rV
−1
rr Vrf (V ′rfV

−1
rr Vrf )−1V ′rfV

−1
rr µr be the squared Sharpe ratio of the tangency

portfolio constructed from the K factor mimicking portfolios, and Vff ·r = Vff − V ′rfV −1
rr Vrf be

the covariance matrix of the residuals from projecting the factors onto the returns. Then, the

parameter vector γ = [γ0, γ
′
1]′ that minimizes the unconstrained HJ-distance is given by

γ1 = − 1

R0
(V ′rfV

−1
rr Vrf )−1(V ′rfV

−1
rr µr), γ0 =

1

R0
− γ′1µf . (12)

1The fact that different admissible SDFs can assign different prices to payoffs outside of the test assets is well
known. Boyle, Feng, Tian, and Wang (2008) provide a robust approach for selecting admissible SDFs to price
derivatives.

2Results for the case in which the candidate SDF does not depend on parameters are available from the authors
upon request.
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As a result, the linear SDF that minimizes the unconstrained HJ-distance, the squared uncon-

strained HJ-distance, and the vector of Lagrange multipliers are given by

y =
1

R0
+ γ′1(f − µf ), (13)

δ2 =
a− a1

R2
0

, (14)

and

λ =

 −δ2

V −1
rr

(
Vrfγ1 + µr

R0

)  , (15)

respectively.

Unlike the case of the unconstrained HJ-distance, obtaining an analytical solution for δ+ re-

quires making a joint distributional assumption on the SDF and the returns on the test assets.

More specifically, we assume that the conditional joint distribution of the SDF and the returns

is multivariate elliptical (which includes normal, Student t, Cauchy, Laplace, symmetric stable,

and logistic distributions, among others, as special cases). Since an elliptically distributed SDF

takes on negative values by construction, it cannot belong to M+ and our theoretical analysis

of the constrained HJ-distance is conducted under the assumption that the asset-pricing model

is misspecified. This assumption seems reasonable in light of the widespread evidence of model

misspecification documented in empirical work and our results in Section 5. It is important to

emphasize that while we assume that the conditional joint distribution of the SDF and the returns

is multivariate elliptical, we do not make any assumption on their time series properties. The mean

and the covariance matrix of the SDF and the returns can be time-varying, and many popular time

series models like multivariate GARCH with multivariate normal or Student t errors are allowed

under our framework. While there is strong empirical support for the multivariate elliptical dis-

tribution assumption for the data and the frequency that we use in our empirical application, we

do not argue that this assumption is always a good approximation of the true conditional distri-

bution of the SDF and the returns. Whether ellipticity provides a reasonable approximation or

not depends on the problem at hand. Appendix B provides definitions and notation for elliptically

distributed random variables, including some new results on the moments of truncated elliptically

distributed random variables. These results are of independent interest given the importance of

elliptical distributions for portfolio choice theory, equity and option-pricing theory (see Owen and

Rabinovitch (1983), Zhou (1993), and Hamada and Valdez (2008), among others).
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For the constrained HJ-distance case, the vector of Lagrange multipliers in (6), for a fixed γ, is

given by

λ̃ = argminλE[(y(γ)− λ′r̃)+2] + 2λ′q, (16)

and λ̃ can be obtained by solving the following first-order condition:

E[r̃(y(γ)− λ̃′r̃)+] = q. (17)

In principle, we can solve the n nonlinear equations E[r̃(y(γ)− λ̃′r̃)+] = q to obtain the vector of

Lagrange multipliers λ̃, but this can be very complicated. Instead, we simplify the problem so that

we only need to solve one nonlinear equation to obtain λ̃.

The solution to the first-order condition in (17) depends on the joint distribution of y and r

(or equivalently, f and r). Assuming that conditional on F, y and r have a multivariate elliptical

distribution with finite variance, a linear combination of y and r̃, say v, also has an elliptical

distribution in the same class. We assume that the characteristic function of v can be expressed

as ϕ(t) = exp(itµv)ψ(t2s2
v/2) for some function ψ(·), where µv is the mean of v and c2s2

v is the

variance of v, with c =
√
−ψ′(0).

We denote the density and cumulative distribution functions of v̇ = (v − µv)/sv as ḟ and Ḟ ,

respectively. For a given choice of ḟ , we introduce another elliptically distributed random variable,

w, with density function

f̆(w) =

∫ ∞
w

csḟ(cs)ds, (18)

and denote the cumulative distribution function of w by F̆ . A more complete discussion of the

class of elliptical distributions and an explicit derivation of f̆ is provided in Appendix B.

The following proposition presents explicit expressions for the SDF parameters, Lagrange mul-

tipliers, and the squared constrained HJ-distance under the multivariate elliptical distribution as-

sumption.

Proposition 1. Let η be the unique solution to

g(u) =

a+ α′

[
1

F̆ (u)
IK − V

− 1
2

ff Vff ·rV
− 1

2
ff

]−2

α

− 1
2

, (19)
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where α = V −1
ff V

1
2
ff ·rV

′
rfV

−1
rr µr, 0 < F̆ (u) < 1 is defined above, and

g(u) =
uḞ (cu) + f̆(u)

F̆ (u)
. (20)

Then, the vector of SDF parameters that minimizes the constrained HJ-distance is given by γ̃ =

[γ̃0, γ̃
′
1]′, where

γ̃1 = − 1

R0
[Vff − F̆ (η)Vff ·r]

−1(V ′rfV
−1
rr µr), γ̃0 =

1

R0
− γ̃′1µf , (21)

and the SDF that minimizes the constrained HJ-distance is

ỹ =
1

R0
+ γ̃′1(f − µf ). (22)

Furthermore, the squared constrained HJ-distance has the following expression:

δ2
+ =

a+ η
g(η)

R2
0F̆ (η)

− 1 + ã1

R2
0

, (23)

where ã1 = µ′rV
−1
rr Vrf [Vff − F̆ (η)Vff ·r]

−1V ′rfV
−1
rr µr, and the vector of Lagrange multipliers for the

constrained HJ-distance is given by

λ̃ =

 −δ2
+

V −1
rr

(
Vrf γ̃1 + µr

R0F̆ (η)

)  . (24)

Proof. See Appendix A.

Besides the simplicity of the expressions for γ̃, λ̃, and δ2
+, a few interesting observations emerge

from Proposition 1. First, when the factors are spanned by the returns (that is, Vff ·r = 0K×K),

we have

g(η) =
1√
a

(25)

and

δ2
+ − δ2 =

a+
√
aη

R2
0F̆ (η)

− 1 + a

R2
0

=

[√
a(
√
a+ η)

R2
0F̆ (η)

− 1

R2
0

]
− a

R2
0

= σ2
c − σ2

0, (26)

where σ2
c = minm∈M+ Var[m] and σ2

0 = minm∈MVar[m] are the constrained and unconstrained

bounds of Hansen and Jagannathan (1991).3 It should be noted that both HJ-bounds (and their

difference) only depend on the choice of the test assets and are model independent. Therefore, when

3The equality in (26) is a general result and is not specific to the ellipticity assumption.
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the SDF is spanned, δ2
+ − δ2 is also model independent. This result implies that for two spanned

SDFs, the difference between their unconstrained HJ-distances is the same as the difference between

their constrained HJ-distances, and the constrained and unconstrained HJ-distances will provide

the same ranking of competing asset-pricing models.

Second, when one or more factors are useless, that is, they are uncorrelated with the returns on

the test assets, the SDF parameters that minimize the unconstrained HJ-distance are not identified

since the matrix V ′rfV
−1
rr Vrf is not of full rank and cannot be inverted. In contrast, the SDF

parameters that minimize the constrained HJ-distance are still well defined. For example, when

all factors are useless, we have γ̃ = [1/R0, 0′K ]′ and ỹ = 1/R0. In this case, δ2
+ is equal to the

constrained HJ-bound σ2
c .

Finally, by subtracting δ2 = (a−a1)/R2
0 from both sides of (23) and rearranging, the difference

between the squared constrained and unconstrained HJ-distances is given by

∆ ≡ δ2
+ − δ2 =

a1ω

R2
0

+
a+ η

g(η)

R2
0F̆ (η)

− 1 + a

R2
0

, (27)

where ω = 1 − ã1
a1

can be interpreted as a measure of how unspanned the SDF is. Note that for

a spanned SDF (Vff ·r = 0K×K), we have ω = 0 and the expression for ∆ collapses to the one in

equation (26). The following lemma provides the comparative statics for the difference between

the constrained and unconstrained HJ-distances with respect to its two main determinants: the

squared Sharpe ratio, a, and ω.

Lemma 1.The partial derivative of ∆ with respect to a is given by

∂∆

∂a
=

F̆ (−η)

R2
0F̆ (η)

> 0. (28)

In addition, if Vff ·r is a positive definite matrix, we have ω > 0 and

∂∆

∂ω
=
a1

R2
0

> 0. (29)

Proof. See Appendix A.

Lemma 1 shows that ∆ is an increasing function of ω, which suggests that σ2
c −σ2

0 is a lower bound

for ∆. While a larger ω does not affect the SDF’s ability to price the test assets (and, hence, the

unconstrained HJ-distance), it can affect the SDF’s probability of taking on negative values and
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hence ∆ is an increasing function of ω. This suggests that for two different models, say F and G,

we can expect δ2
F ,+ − δ2

G,+ to differ substantially from δ2
F − δ2

G only when ω is very different across

the two models.

Furthermore, Lemma 1 establishes that ∆ is an increasing function of the squared Sharpe ratio

of the tangency portfolio of the test assets. This result requires some explanation. Consider, for

simplicity, the case in which the SDF is spanned. When this happens, (δ2
+− δ2)→ (σ2

c −σ2
0) — the

difference between the constrained and unconstrained HJ-bounds. Lemma 6 of Kan and Robotti

(2015) shows that, under normality, (σ2
c − σ2

0)→ 0 when a→ 0, (σ2
c − σ2

0)→∞ when a→∞, and

σ2
c−σ2

0 is a strictly increasing function of a. Therefore, when a is small, we should not expect large

differences between the constrained and unconstrained HJ-distances. Intuitively, when a is close

to zero, the weight of the risk-free asset in the minimum second moment portfolio is close to one,

and the gross return on this portfolio has a very small probability of taking on a negative value.

Since the minimum variance admissible SDF is proportional to the gross return on this portfolio,

imposing the nonnegativity constraint on it has almost no effect.4

With the analytical solutions of the linear SDF parameters for the unconstrained and con-

strained HJ-distances, we can now answer two important questions. The first question is whether

the linear SDF ỹ in (22) results in a lower probability of taking on negative values than the linear

SDF y in (13). If this is the case, one can think of this as a potential benefit of using the constrained

HJ-distance. The second question is whether there is a trade-off between getting the linear SDF

closer to M+ and the ability of the SDF to price the test assets. For this purpose, we introduce

an aggregate measure of pricing errors of ỹ as

δ̃
2

= ẽ′U−1ẽ, (31)

where ẽ = E[r̃ỹ]− q is the vector of pricing errors when we use ỹ to price the test assets. Just like

the δ2 measure, δ̃
2

can be interpreted as the maximum squared pricing error of a portfolio of test

assets when one uses ỹ as the SDF. Comparing δ̃
2

with δ2, we gain useful insights of the potential

4The sign of the partial derivative of ∆ with respect to its third determinant R0

∂∆

∂R0
=

2

R3
0

[
1− a1ω −

aF̆ (−η)

F̆ (η)
− η

F̆ (η)g(η)

]
(30)

cannot be established unambiguously. It turns out, however, that ∆ is rather insensitive to changes around the
historically observed values of the gross risk-free rate.
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cost of using ỹ instead of y to price the test assets. The following lemma provides answers to these

two questions.

Lemma 2. Let y and ỹ be the linear SDFs that minimize the unconstrained and constrained

HJ-distances, respectively. Then, we have

P [y < 0]− P [ỹ < 0] = Ḟ

(
− c

R0

√
γ′1Vffγ1

)
− Ḟ

(
− c

R0

√
γ̃′1Vff γ̃1

)
> 0, (32)

where Ḟ and c are defined before Proposition 1. In addition, we have

δ2 ≤ δ̃2 ≤ δ2
+. (33)

Proof. See Appendix A.

As shown in the proof of Lemma 2, (33) is a general result and does not rely on the linearity of the

model and the ellipticity assumption. However, the result that P [y < 0] > P [ỹ < 0] is specific to

linear models under the ellipticity assumption.

Lemma 2 suggests that there are potential benefits and costs in choosing the SDF parameters

to minimize the constrained HJ-distance as opposed to minimizing the unconstrained HJ-distance.

On the one hand, ỹ is less likely than y to take on negative values. On the other hand, ỹ will

price the test assets worse than y. Exactly how large is this cost-benefit trade-off depends on the

parameters.

To gain a better understanding of the results in the previous proposition and lemmas, it proves

useful to consider the one-factor case. In this setting, we can show that

ω =
F̆ (−η)(1− ρ2)

1− F̆ (η)(1− ρ2)
,

where η is the unique solution to

g(u) =

[
a+

a1ρ
2(1− ρ2)F̆ (u)2

[1− F̆ (u)(1− ρ2)]2

]− 1
2

, (34)

and ρ2 = V ′rfV
−1
rr Vrf/Vff is the proportion of variability of the factor that is explained by the

returns on the test assets. Since there is a monotonically decreasing relation between ω and ρ2 (a

12



proof of this claim is available upon request), we can express P [y < 0]− P [ỹ < 0], δ̃
2 − δ2, and ∆

in (27) as functions of ρ2 for different values of the Sharpe ratio of the tangency portfolio of the

risky assets. Specifically, the difference in probabilities of taking on negative values for y and ỹ is

given by

P [y < 0]− P [ỹ < 0] = Ḟ

(
− c|ρ|√

a1

)
− Ḟ

(
−c[1− F̆ (η)(1− ρ2)]√

a1|ρ|

)
. (35)

In addition, we have

δ̃
2 − δ2 =

a1

R2
0

[
F̆ (−η)(1− ρ2)

1− F̆ (η)(1− ρ2)

]2

(36)

and

∆ ≡ δ2
+ − δ2 =

a1(1− ρ2)F̆ (−η)

R2
0[1− F̆ (η)(1− ρ2)]

+
a+ η/g(η)

R2
0F̆ (η)

− 1 + a

R2
0

.

Assuming that the factor and the excess returns on the test assets are multivariate t-distributed

with six degrees of freedom, Figure 1 plots P [y < 0]−P [ỹ < 0] as a function of ρ2 for three different

values of the Sharpe ratio of the tangency portfolio (
√
a = 0.25, 0.5, and 0.75).5 In each case, we

assume a1 = a/2, so that the model explains half of the cross-sectional variation in expected returns.

Figure 1 about here

When ρ2 → 0 (y is not defined when ρ2 = 0), P [y < 0] − P [ỹ < 0] → 0.5. The reason is that

when the unspanned component of the factor increases, y becomes more volatile (because γ1 does

not depend on the unspanned component of the factor) and behaves more like a useless factor. As a

result, P [y < 0]→ 0.5. In contrast, as ρ2 → 0, ỹ converges to 1/R0 and has almost zero probability

of taking on negative values.

When ρ2 → 1, the SDF behaves more like a spanned SDF. For a spanned SDF, the SDF

parameters and hence the probabilities of taking on negative values are the same for y and ỹ.

Finally, Figure 1 shows that the Sharpe ratio is important in determining P [y < 0]−P [ỹ < 0]. For

a given value of ρ2, we can see that the difference between the two probabilities is an increasing

function of a. The reason is that the spanned component of the SDF y is a linear function of the

return on the factor mimicking portfolio. When a is small, a1 is also small, so y assigns relatively

5Although a Sharpe ratio of 0.75 may seem high, this is in line with the sample Sharpe ratio (0.72) of the tangency
portfolio of the 25 Fama-French size and book-to-market portfolios used in the empirical application in Section 5.
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little weight to the factor mimicking portfolio and hence P [y < 0] is small, leaving not much room

for ỹ to improve.

Assuming that R0 = 1.005 (the plot is not sensitive to other reasonable values of the gross

risk-free rate) and using the same parameter values and distributional assumptions as in Figure 1,

Figure 2 plots δ̃
2 − δ2 and ∆ ≡ δ2

+ − δ2 as functions of ρ2.

Figure 2 about here

When ρ2 ≈ 1, the SDF is close to a spanned one. It follows that y ≈ ỹ, so they have roughly

the same aggregate pricing errors and δ̃
2 − δ2 → 0. However, when ρ2 → 0, we have δ̃

2
= a/R2

0

(as ỹ ≈ 1/R0 and ỹ does not explain any cross-sectional difference in expected excess returns).

It follows that δ̃
2 − δ2 → a1/R

2
0. Similar to Figure 1, we also find a to be quite important in

determining δ̃
2− δ2. It is only when a is large (and hence a1 is large) that we should expect a large

difference between the aggregate measures of pricing errors of y and ỹ.

In addition, Figure 2 reveals that ∆ is a decreasing function of ρ2. As for δ̃
2 − δ2, ∆ is also

heavily influenced by the Sharpe ratio of the tangency portfolio. When
√
a = 0.25, the difference

between δ2
+ and δ2 is indistinguishable from zero. For

√
a = 0.5, the difference between δ2

+ and δ2

is still quite small, even for a relatively small ρ2. This suggests that for reasonable Sharpe ratio

values, we should not expect to find a large difference between the constrained and unconstrained

HJ-distances of a model, even if the model contains a large unspanned component.

In summary, we should expect y and ỹ to behave differently if a is large and ρ2 is small. In these

situations, P [ỹ < 0] will be substantially smaller than P [y < 0], but these are also situations in

which ỹ will do substantially worse than y in pricing the test assets. Whether one should sacrifice

the pricing of the test assets in exchange for a smaller SDF’s probability of taking on negative

values is not entirely clear. For example, when ρ2 is small, ỹ ≈ 1/R0 and ỹ is indeed almost always

positive. However, this ỹ is unlikely to be a good SDF even for pricing derivatives since it prices

every asset by discounting the future asset payoffs with the gross risk-free rate.
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4. Sample Constrained Hansen-Jagannathan Distance

Since the population constrained HJ-distance of a model is unobservable, researchers have to esti-

mate it using data. In this section, we discuss issues related to the sample constrained HJ-distance

as well as some of its asymptotic and finite-sample properties. The results in this section no longer

rely on the multivariate ellipticity assumption and unlike Section 3, we cover both linear and non-

linear models. In addition, instead of considering test assets that consist of a gross risk-free rate

and a vector of excess returns on N risky assets as in our theoretical section, here we allow for

a slightly more general setup. We denote the vector of payoffs of n assets at the end of period t

(t = 1, . . . , T ) by xt and the corresponding costs of these n assets at the end of period t − 1 by

qt−1.6 Besides being applicable to gross and excess returns, this setup can accommodate payoffs of

trading strategies that are based on time-varying information.

Let yt(γ) and mt be the realizations of a candidate SDF and an admissible SDF at time t,

respectively. Throughout this section, it is assumed that {yt(γ)}Tt=1 and {xt}Tt=1 are stationary

and ergodic processes with finite fourth moments. We adopt the following definitions of correctly

specified and misspecified models. An asset-pricing model is correctly specified if there exists a

vector of parameters γ ∈ Γ such that yt(γ) ∈ M+, which implies that λ = 0n and δ+ = 0. The

model is misspecified if yt(γ) 6∈ M+ for all γ ∈ Γ, which implies that δ+ > 0.

The sample squared constrained HJ-distance can be obtained as

δ̂
2

+ = min
γ∈Γ

min
{mt, t=1,...,T}

1

T

T∑
t=1

(yt(γ)−mt)
2, (37)

s.t.
1

T

T∑
t=1

mtxt = q̄,

mt ≥ 0, t = 1, . . . , T,

where q̄ = 1
T

∑T
t=1 qt−1. Chernozhukov, Hong, and Tamer (2007) and Chernozhukov, Kocatulum,

and Menzel (2015) develop an approach to conducting inference on parameter sets, characterized

by a smooth inequality constraint, which can be adapted to the setup in (37). Instead, we base our

statistical analysis on the dual (conjugate) problem that gives rise to an unconstrained extremum

6When the SDF depends on some parameters, we assume that E[qt−1] 6= 0n. The reason is that when E[qt−1] =
0n, the mean of the SDF cannot be identified and researchers have to choose some normalization of the SDF (see,
for example, Kan and Robotti (2008)).
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estimator.

Let θ = [γ′ , λ′]′ and denote by θ∗ = [γ∗′ , λ∗′]′ the pseudo-true values that solve the dual

problem:

θ∗ = arg min
γ∈Γ

max
λ∈<n

E[φt(γ, λ)], (38)

where

φt(γ, λ) = yt(γ)2 − [mt(θ)
+]2 − 2λ′qt−1 (39)

and

mt(θ) = yt(γ)− λ′xt. (40)

When yt(γ
∗) ∈M+, we have λ∗ = 0n and we refer to γ∗ as the true value. The estimator of θ∗ can

then be obtained as

θ̂ =

[
γ̂

λ̂

]
= arg min

γ∈Γ
max
λ∈<n

1

T

T∑
t=1

φt(γ, λ), (41)

and the sample squared constrained HJ-distance can be expressed as

δ̂
2

+ =
1

T

T∑
t=1

φt(γ̂, λ̂). (42)

Within this framework, there are two possible ways to proceed with the estimation of the

unknown parameters. The first approach is parametric and hinges upon the linearity of the SDF and

the multivariate elliptical assumption introduced in Section 3. Under this method, the estimates

of γ and λ are obtained by substituting, for a particular member of the class of multivariate

elliptical distributions, the corresponding sample quantities in the analytical expressions presented

in Proposition 1. In what follows, we pursue a semi-parametric approach, which is directly based

on the saddle-point optimization problem described above and does not require any distributional

assumptions on the data or linearity of y(γ).

4.1 Asymptotic Results

Let

S+ =

∞∑
j=−∞

E
[
(xtmt(θ

∗)+ − qt−1)(xt+jmt+j(θ
∗)+ − qt+j−1)′

]
, (43)

G+ = E

[(
yt(γ

∗)−mt(θ
∗)+
) ∂2yt(γ

∗)

∂γ∂γ′
+
∂yt(γ

∗)

∂γ

∂yt(γ
∗)

∂γ′
I{mt(θ∗)≤0}

]
, (44)
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D+ = E

[
xt
∂yt(γ

∗)

∂γ′
I{mt(θ∗)>0}

]
, (45)

and

U+ = E
[
xtx
′
tI{mt(θ∗)>0}

]
, (46)

where I{·} denotes the indicator function. If the model is correctly specified, we have λ∗ = 0n

and yt(γ
∗) = mt(θ

∗)+. Then, it follows that G+ = 0k×k, D+ = D ≡ E
[
xt
∂yt(γ∗)
∂γ′

]
, U+ = U ≡

E [xtx
′
t], and S+ = S ≡ ∑∞

j=−∞E[(xtyt(γ
∗) − qt−1)(xt+jyt+j(γ

∗) − qt+j−1)′]. In addition, let

Z = (Z1, . . . , Zs)
′ be a vector of s independent standard normal random variables, and let ξ =

(ξ1, . . . , ξs)
′ be a vector of s real numbers. Then, Fs(ξ) =

∑s
i=1 ξiZ

2
i denotes a random variable

which is distributed as a weighted sum of chi-squares with parameters (s, ξ). Finally, let
A∼ stand

for “asymptotically distributed as.”

The regularity conditions for establishing the subsequent limiting results are stated in Gospodi-

nov, Kan, and Robotti (2013). More specifically, in addition to Assumptions A, B, and C in

Gospodinov, Kan, and Robotti (2013), we assume that P [yt(γ) = λ′xt] = 0 almost surely in a small

neighborhood of θ∗. The asymptotic distributions of the sample squared constrained HJ-distance,

SDF parameter estimates, and sample Lagrange multipliers are provided in the following lemma.

Lemma 3. Under the above assumptions,

(a) if δ+ = 0,

T δ̂
2

+
A∼ Fn−k(ξ), (47)

where the ξi’s are the eigenvalues of

A = P ′U−
1
2SU−

1
2P, (48)

with P being an n× (n− k) orthonormal matrix whose columns are orthogonal to U−
1
2D.

(b) if δ+ > 0,
√
T (δ̂

2

+ − δ2
+)

A∼ N(0, vδ̂+), (49)

where vδ̂+ =
∑∞

j=−∞E[(φt(θ
∗)− δ2

+)(φt+j(θ
∗)− δ2

+)], and

√
T (θ̂ − θ∗) A∼ N(0n+k,Σθ̂), (50)
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where Σθ̂ =
∑∞

j=−∞E[ltl
′
t+j ] with lt = [l′1t , l

′
2t]
′ and

l1t = (G+ +D′+U
−1
+ D+)−1

[
(yt(γ

∗)−mt(θ
∗)+)

∂yt(γ
∗)

∂γ
+D′+U

−1
+ [xtmt(θ

∗)+ − qt−1]

]
(51)

l2t = U−1
+ [D+l1t − xtmt(θ

∗)+ + qt−1]. (52)

Proof. See Appendix A.

Interestingly, Lemma 3(a) shows the equivalence of the asymptotic distributions of the sample con-

strained and unconstrained HJ-distance tests (for the asymptotic distribution of the unconstrained

HJ-distance test, see, for example, Parker and Julliard (2005)). Hence, the existing specification

test developed for the sample unconstrained HJ-distance is also applicable to the sample constrained

HJ-distance. The intuition behind this result is that, under the null of a correctly specified model,

the constraints are not binding and the two tests should be asymptotically equivalent.7 A similar

result holds for the limiting distributions of the parameter estimates under correctly specified mod-

els which coincide with those for the unconstrained HJ-distance (for their explicit expressions, see

Gospodinov, Kan, and Robotti (2013)). Lemma 3(b) provides the asymptotic distribution of the

estimates of the SDF parameters and the Lagrange multipliers for the case of misspecified models.

Finally, to conduct inference, the matrix in (48), the variance vδ̂+ , and the variance matrix Σθ̂

should be replaced with consistent estimators. Simulation results and extensions to pairwise model

comparison tests are available from the authors upon request.

4.2 Finite-Sample Results

In this section, we discuss some issues related to the finite-sample properties of the constrained HJ-

distance. In particular, we document the surprising and important finding that, in finite samples,

the sample constrained HJ-distance has a nonzero probability of taking on the value of infinity.

This occurrence only depends on the return realizations and not on the choice of the model. There

are two implications of this finding. The first one is that the moments of the sample constrained

HJ-distance do not exist. The second one is that the sample constrained HJ-distance could fail to

7In the case of a linear SDF, δ2+ = −λ∗′E[qt−1] and λ∗ = 0n implies δ2+ = 0. Therefore, testing for correct
model specification can be performed using the asymptotically pivotal Lagrange multiplier (LM) test proposed by
Gospodinov, Kan, and Robotti (2013). In addition to its excellent finite-sample properties, the LM statistic allows us
to test directly the hypothesis of zero pricing errors, which is of primary interest to financial economists. It should be
emphasized that using the LM test as a specification test is valid only in the case of linear models since, in general,
λ∗ = 0n does not always imply that δ2+ = 0.
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provide a ranking of models. Our results can be somewhat anticipated by similar findings related to

the sample constrained HJ-bound. For example, Burnside (1994) finds that the sample constrained

HJ-bound takes on the value of infinity quite frequently in his simulations. Kan and Robotti (2015)

prove that this occurs with nonzero probability in any finite sample. What these studies do not

provide is the underlying reason for such an event to occur, a gap we try to fill in the following

analysis.

To understand why δ̂+ can take on the value of infinity with positive probability, we first

define the set {mt, t = 1, . . . , T} that satisfies the constraints in (37) as M̂+. M̂+ is the sample

counterpart ofM+ and it is the set of T nonnegative random variables that can price the n assets

correctly in sample. However, M̂+ can be an empty set for some realizations of {xt, t = 1, . . . , T}
even when the populationM+ is not an empty set. To understand what are the random payoffs xt

that would lead to M̂+ = ∅, we invoke the Farkas’ lemma, which suggests that the following two

statements are equivalent:

1. There exists no mt ≥ 0, t = 1, . . . , T , such that

1

T

T∑
t=1

xtmt = q̄. (53)

2. There exists an n-vector w such that w′q̄ < 0 and

w′xt ≥ 0, t = 1, . . . , T. (54)

The equivalence of these two statements suggests that if one finds a portfolio w such that it has

negative average cost (that is, w′q̄ < 0) but nonnegative payoffs in every period of the sample, then

M̂+ is an empty set. When such an event (that is, existence of an in-sample arbitrage portfolio)

occurs, we show that δ̂+ = ∞ for all models. Suppose w′q̄ = −ε, where ε > 0. Consider λ = ϑw,

where ϑ is a nonnegative scalar. Since ϑw for ϑ ≥ 0 is only a subset of <n and using the minimax
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inequality, we have

δ̂
2

+ = min
γ∈Γ

max
λ∈<n

1

T

T∑
t=1

[
yt(γ)2 − [(yt(γ)− λ′xt)+]2

]
− 2λ′q̄

≥ max
λ∈<n

min
γ∈Γ

1

T

T∑
t=1

[
yt(γ)2 − [(yt(γ)− λ′xt)+]2

]
− 2λ′q̄

≥ max
ϑ≥0

min
γ∈Γ

1

T

T∑
t=1

[
yt(γ)2 − [(yt(γ)− ϑw′xt)+]2

]
+ 2εϑ. (55)

Note that since ϑw′xt ≥ 0, we have (yt(γ)− ϑw′xt)+ ≤ |yt(γ)| and yt(γ)2− [(yt(γ)− ϑw′xt)+]2 ≥ 0

for all γ ∈ Γ. Hence, it follows that

δ̂
2

+ ≥ max
ϑ≥0

2εϑ =∞. (56)

Knowing that δ̂+ can take on the value of infinity, it is of interest to understand how often such

an event occurs. In general, the probability for an in-sample arbitrage portfolio to exist is nonzero

because, for a finite T , there is always some probability that one asset will outperform another

asset in every period of the sample. The exact probability for δ̂+ =∞ depends on the sample size

as well as on the joint distribution of (xt, qt−1), t = 1, . . . , T . For illustrative purposes, we consider

a case in which xt contains a constant gross risk-free rate and excess returns on N risky assets, that

is, q = [1, 0′N ]′. When the excess returns are i.i.d. multivariate elliptically distributed, we are able

to show that P [δ̂+ =∞] is only a function of N , T , and a, where a is the squared Sharpe ratio of

the tangency portfolio of the risky assets (the proof of this result is available upon request).

Figure 3 about here

In Figure 3, we assume that the excess returns on the N risky assets are i.i.d. multivariate

t-distributed with six degrees of freedom, and plot P [δ̂+ = ∞] as a function of T for N = 5, 10,

25, and 100 based on 10,000 simulations. For each N , we also consider three different values of

the Sharpe ratio of the tangency portfolio of the risky assets:
√
a = 0.25, 0.5, and 0.75. As we

can see from Figure 3, P [δ̂+ = ∞] is close to one when T is close to N . P [δ̂+ = ∞] declines as T

increases, but the probability is still not negligible unless T is large relative to N . For a fixed
√
a,

the probability is an increasing function of N . The reason is that it is easier to find an in-sample

arbitrage opportunity when there are more assets to choose from. Finally, for a given N and T ,
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the probability is an increasing function of a. This suggests that when the tangency portfolio of a

set of assets has a high Sharpe ratio, it is easier to observe an in-sample arbitrage opportunity.

The result P [δ̂+ =∞] > 0 has some implications for the use of the constrained HJ-distance for

model evaluation and multiple model comparison. The positive aspect of this result is that a value

of infinity for the constrained HJ-distance suggests that the model admits arbitrage and should

be rejected. In this respect, the constrained HJ-distance has the added advantage of detecting

arbitrage. However, it should be emphasized that the probability for the sample constrained HJ-

distance to take the value of infinity does not depend on the particular model but only on the

properties of the returns on the test assets. Therefore, in a multiple model comparison, the sample

constrained HJ-distances of all models will be infinity and we cannot use this distance to rank

models. Furthermore, P [δ̂+ =∞] > 0 suggests that the finite-sample moments of δ̂+ do not exist.

Therefore, the asymptotic theory can be inappropriate for finite-sample inference, especially when

N is large relative to T . To deal with this problem, we have two suggestions. The first one is that

we should limit the number of test assets to reduce P [δ̂+ = ∞]. The second one is that before

using the dual problem (42) to obtain δ̂+, we should first find out if the primal problem in (37) is

feasible. An effective way to detect if M̂+ = ∅ is to set up a linear programming problem that has

the same constraints as in (42). We can then use standard linear programming routines (linprog

in Matlab, for example) to determine whether such a problem is feasible.8

5. Empirical Application

In this section, we illustrate the implications of our theoretical results using actual data. We focus

on linear asset-pricing models because of their popularity in the literature and the fact that their

SDFs can potentially take on negative values, making it interesting to study the difference between

the unconstrained and constrained HJ-distances of these models.

5.1 Data and Asset-Pricing Models

The return data are from Kenneth French’s website and consist of the quarterly value-weighted

returns on the 25 Fama-French size and book-to-market ranked portfolios plus the one-month T-

8We implement the numerical procedure for estimating δ+ and other associated parameters in a set of Matlab
programs. The Matlab programs for this paper are available upon request.
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bill. The data span the period from the third quarter of 1953 until the third quarter of 2007, the

onset of the most recent financial crisis (217 quarterly observations). The beginning date of our

sample period is dictated by bond yield data availability.

We analyze seven asset-pricing models that have yielded encouraging results in cross-sectional

asset pricing, starting with a conditional version of the consumption CAPM (CC-CAY) due to

Lettau and Ludvigson (2001). The SDF specification for this model is

yCC−CAYt (γ) = γ0 + γcaycayt−1 + γcndcnd,t + γcnd·caycnd,t ·cayt−1, (57)

where cnd is the growth rate in real per capita nondurable consumption (seasonally adjusted at

annual rates) from the Bureau of Economic Analysis and cay is the consumption-aggregate wealth

ratio of Lettau and Ludvigson (2001) from Martin Lettau’s website. The SDF specification in

Equation (57) is obtained by scaling the constant term and the cnd factor by a constant and cay.

The second model is another conditional version of the consumption CAPM (CC-MY) proposed

by Lustig and Van Nieuwerburgh (LV, 2005) with the housing collateral ratio (my, constructed as

in LV), cnd, and the interaction term cnd ·my as risk factors. The SDF of this model is given by

yCC−MY
t (γ) = γ0 + γmymyt−1 + γcndcnd,t + γcnd·mycnd,t ·myt−1. (58)

The SDF specification in Equation (58) is obtained by scaling the constant term and the cnd factor

by a constant and my.

Next, we consider a conditional version of the CAPM (C-SW) due to Santos and Veronesi (SV,

2006) with an SDF specification

yC−SWt (γ) = γ0 + γrmktrmkt,t + γrmkt·swrmkt,t ·s
w
t−1, (59)

where rmkt is the excess return (in excess of the one-month T-bill rate) on the value-weighted

stock market index (NYSE-AMEX-NASDAQ) from Kenneth French’s website and sw is the labor

income-consumption ratio (constructed as in SV).

Our fourth specification is the investment growth model (IGM) of Li, Vassalou, and Xing (2006).

Its SDF is given by

yIGMt (γ) = γ0 + γihhihh,t + γicorpicorp,t + γincorpincorp,t + γifcorpifcorp,t + γifmifm,t, (60)
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where ihh, icorp, incorp, ifcorp, and ifm represent the log (gross fixed) investment growth rates

for households, non-financial corporations, non-corporate sector, financial corporations, and farm

sector, respectively. All the data for these five series are from the Flow of Funds of the Board of

Governors of the Federal Reserve System.

We also consider an empirical implementation of Merton’s (1973) intertemporal extension of

the CAPM (ICAPM) based on Campbell (1996), who argues that innovations in state variables

that forecast future investment opportunities should serve as factors. The five-factor specification

proposed by Petkova (2006) is

yICAPMt (γ) = γ0 + γrmktrmkt,t + γtermtermt + γdefdeft + γdivdivt + γrfrft, (61)

where term is the difference between the yields of ten-year and one-year government bonds (from

the Board of Governors of the Federal Reserve System), def is the difference between the yields of

long-term corporate Baa bonds (from the Board of Governors of the Federal Reserve System) and

long-term government bonds (from Ibbotson Associates), div is the dividend yield on the Center for

Research in Security Prices (CRSP) value-weighted stock market portfolio, and rf is the one-month

T-bill yield (from CRSP, Fama Risk Free Rates). The actual factors for term, def, div, and rf

are their innovations from a VAR(4) system of seven state variables that also includes the market,

size, and value factors of Fama and French (1993).

The sixth model (D-CCAPM) is due to Yogo (2006) and highlights the cyclical role of durable

consumption in asset pricing. The specification is

yD−CCAPMt (γ) = γ0 + γrmktrmkt,t + γcndcnd,t + γcdcd,t, (62)

where cd is the growth rate in real per capita durable consumption (seasonally adjusted at annual

rates) from the Bureau of Economic Analysis.

Finally, we consider the three-factor model (FF3) of Fama and French (1993). This model

extends the CAPM by including the two empirically motivated factors rsmb and rhml, where rsmb is

the return difference between portfolios of stocks with small and large market capitalizations, and

rhml is the return difference between portfolios of stocks with high and low book-to-market ratios

(“value” and “growth” stocks, respectively) from Kenneth French’s website. The SDF specification

is

yFF3
t (γ) = γ0 + γrmktrmkt,t + γrsmbrsmb,t + γrhmlrhml,t. (63)
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5.2 Results

Table 1 presents the sample unconstrained (δ̂) and constrained (δ̂+) HJ-distances (Panels A and

B, respectively) of the seven linear asset-pricing models considered.9 The table also reports the

standard errors of δ̂ and δ̂+ (assuming δ > 0 and δ+ > 0), the p-values for the tests of H0 : δ = 0

and H0 : δ+ = 0, and the probability that the estimated SDF takes on negative values in the

sample. In addition to the standard deviations of the estimated SDF, each panel also reports the

centered R2 from a linear regression of the estimated SDF on the returns on the test assets. The

second last row of Panel B presents the percentage difference between the sample constrained and

unconstrained HJ-distances of each model. Finally, in the last row of Panel B, we report
ˆ̃
δ for

the SDF that minimizes the constrained HJ-distance, where δ̃, defined in (31), is a measure of the

maximum pricing error on the test assets.

Table 1 about here

In the following, we would like to emphasize and interpret several important findings that

naturally emerge from the predictions of our theoretical analysis in Section 3. First, Table 1

clearly shows that the largest increases in the sample constrained HJ-distance over its unconstrained

counterpart occur for models with high probabilities of taking on negative values (such as CC-MY,

IGM, and ICAPM). For these models, the probability for their SDF to take on negative values

can be greatly reduced when the parameters are chosen to minimize the constrained HJ-distance.

However, as discussed in Section 3, this reduction in probability generally comes at the cost of

higher pricing errors on the test assets (a higher δ̃). For models with large differences between

δ̂+ and δ̂ (such as CC-MY, IGM, and ICAPM), we also see a significant difference between
ˆ̃
δ and

δ̂, indicating a substantial deterioration in the ability of the SDF to price the test assets when

its parameters are chosen to minimize the constrained HJ-distance instead of the unconstrained

HJ-distance. The deterioration in the pricing ability of CC-MY, IGM, and ICAPM is also reflected

in the standard deviations of their SDFs, which significantly drop from 0.920, 1.409, and 1.060 in

Panel A to 0.394, 0.491, and 0.622 in Panel B. This implies that it would be even harder for these

models to satisfy the sample HJ-bounds if their parameters were chosen to minimize the constrained

HJ-distance.

9For the unconstrained HJ-distance and related tests, we refer the readers to Kan and Robotti (2009).
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Second, the variation in the differences between the sample unconstrained and constrained HJ-

distances across models deserves some remarks. As expected from our theoretical analysis, the

differences are relatively small for SDFs that are close to being spanned by the returns on the test

assets. For example, the percentage difference between the sample constrained and unconstrained

HJ-distances of FF3 is only 4.3% since this model has a very high R2 of 0.975. The pattern of the

differences in the parameter estimates reported in Table 2 provides further support to our theoretical

predictions: the largest differences in parameter estimates arise in models with non-traded factors

and almost no differences arise in models with traded factors.10

Table 2 about here

For example, consider the estimated SDF parameters on the interaction variable cnd ·my in CC-

MY. The coefficient estimate goes from 404.75 to 27.49 when using the constrained HJ-distance

measure. In contrast, when the factors are traded, as is the case in FF3, there is no noticeable

difference in the magnitude of the parameter estimates across metrics. As a result, the different

effects of imposing the no-arbitrage constraint across models are driven by the underlying structure

of the problem and characteristics of the factors (traded versus non-traded).

Third, while choosing the SDF parameters to minimize δ̂+ instead of δ̂ leads to a lower prob-

ability for the SDF to take on negative values and yields a less volatile SDF, the standard error

of δ̂+ is not always smaller than the standard error of δ̂. In fact, we find that for four out of

seven models, the standard error of δ̂+ is larger than the standard error of δ̂. This suggests that

the sample unconstrained and constrained HJ-distances are similarly noisy measures of model mis-

specification and that it could be difficult to differentiate between models using either metric. In

unreported empirical experiments (available from the authors upon request), we performed pair-

10Given the strong evidence of model misspecification documented in Table 1, in Table 2 we report misspecification-
robust standard errors of the SDF parameter estimates based on (50) and (51). Interestingly, Table 1 shows that
IGM and ICAPM are not rejected at conventional significance levels when using the unconstrained HJ-distance,
while they are strongly rejected when using the constrained HJ-distance. To understand why IGM and ICAPM are
not rejected by the test based on the unconstrained HJ-distance, it is important to realize that these models are
not properly identified since they contain unspanned factors that exhibit very low correlations with the returns on
the test assets (for example, using the reduced rank test of Kleibergen and Paap (2006), we cannot reject the null
hypothesis of lack of identification for these models at any conventional level). For such models, Gospodinov, Kan,
and Robotti (2014) show that the unconstrained HJ-distance test has low power in detecting misspecification, and
that this test is inconsistent under the alternative of model misspecification in the extreme case in which one or more
factors are useless. In contrast, the test based on the constrained HJ-distance seems to have higher power in rejecting
misspecified and unidentified asset-pricing models.
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wise model comparison tests using the two distance measures. For the unconstrained HJ-distance,

out of 21 pairwise model comparison tests, no model outperforms its competitors at the 5% confi-

dence level. For the constrained HJ-distance, FF3 outperforms C-SW and D-CCAPM.11 The main

reason for our finding is that in this dataset the differences in sample constrained HJ-distances

across models are slightly larger than the corresponding differences in sample unconstrained HJ-

distances. However, trying to determine whether the constrained HJ-distance is more powerful than

the unconstrained HJ-distance in distinguishing models is not a very meaningful exercise. The rea-

son is that the SDF parameters for a given model are in general different under the two metrics.

As a result, we are actually not comparing the same sets of SDFs under the unconstrained and

constrained HJ-distances. Ultimately, the choice of constrained versus unconstrained HJ-distance

should depend on which metric is considered to be more reasonable for model comparison.

Finally, our theoretical results suggest that we can expect some meaningful differences between

the unconstrained and constrained HJ-distances only when the Sharpe ratio of the tangency port-

folio of the risky assets is very high. As it turns out, the tangency portfolio of the 25 Fama-French

size and book-to-market portfolios used here has a relatively high sample Sharpe ratio (0.72). To

understand whether this is an important reason for the difference in results between the two HJ-

distances, we consider another set of test assets with a smaller sample Sharpe ratio. Specifically,

we use quarterly gross returns on the one-month T-bill and 10 size and 12 industry portfolios from

Kenneth French’s website.12 The sample Sharpe ratio of the tangency portfolio of this new set of

risky assets is 0.55. We then perform the same analysis as in Table 1, leaving the sample period

and the models unchanged. The results of this exercise are reported in Table 3.

Table 3 about here

Consistent with our theoretical results, we find that a decrease in the Sharpe ratio of the

tangency portfolio of the risky assets causes the unconstrained and constrained HJ-distances to

behave similarly across different models. In addition, the difference between the constrained and

11It is interesting to note that, while FF3 dominates C-SW and D-CCAPM statistically, ICAPM has the lowest
sample constrained HJ-distance and yet does not outperform any other model in formal pairwise model comparison
tests. Precision appears to play a role in this. The standard error of ICAPM’s δ̂+ is the highest of all the models.
The importance of taking information about sampling variation into account is evident.

12Analyzing the performance of these different models on an alternative set of test assets should be considered as
purely illustrative of our methodological findings, and not as a critique of the use of the 25 Fama-French size and
book-to-market portfolios in empirical work.
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unconstrained HJ-distances of each model is now substantially smaller. As an example, consider

IGM. For this model, the difference between δ̂+ and δ̂ is only 4.1%, a much smaller number than

the 23.9% difference reported in Table 1. When using formal pairwise model comparison tests

as before, we find that only D-CCAPM outperforms CC-CAY at the 5% confidence level for the

unconstrained as well as the constrained HJ-distance measures.

6. Conclusion

This paper fills an important gap in the current literature by examining the population and sampling

properties of the HJ-distance with a no-arbitrage constraint. We first clarify the maximum pricing

error interpretation of the constrained HJ-distance. Unlike the unconstrained HJ-distance which is

a measure of the maximum pricing error of an SDF on the test assets, the constrained HJ-distance

does not represent the maximum pricing error of an SDF on all the tradable assets. In general, the

constrained HJ-distance is only a measure of the lower bound on the maximum pricing error.

Since a model with a smaller lower bound on the maximum pricing error does not necessarily

have a smaller actual maximum pricing error, ranking models using the constrained HJ-distance

can be problematic. However, when the SDF is spanned by the returns on the test assets, we show

that ranking models using the constrained HJ-distance is the same as ranking models using the

unconstrained HJ-distance. The reason is that in the spanned SDF case, the difference between the

constrained and unconstrained HJ-distances becomes model independent and coincides with the

difference between the constrained and unconstrained HJ-bounds. The rankings of models using

the two HJ-distances can differ only when at least one of the SDFs is far from being spanned by

the returns on the test assets.

When the SDF is not spanned by the returns on the test assets, we derive an analytical solution

for the constrained HJ-distance, the associated Lagrange multipliers, and the SDF parameters in

the case of linear SDFs under an ellipticity assumption on the conditional joint distribution of the

SDF and the returns. This allows us to show that nontrivial differences between the constrained

and unconstrained HJ-distances can only arise when the volatility of the unspanned component of

an SDF is large and the Sharpe ratio of the tangency portfolio of the test assets is very high. In

addition, our analysis allows us to quantify the deterioration in the ability of a given linear SDF to
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price the test assets when imposing a no-arbitrage constraint.

In our econometric analysis, which is applicable to linear as well to nonlinear models, we doc-

ument the surprising finding that in finite samples, the sample constrained HJ-distance takes on

the value of infinity with positive probability. In particular, we show that the sample constrained

HJ-distance takes on the value of infinity if and only if we can identify an in-sample arbitrage

portfolio of the test assets. When such a portfolio is identified, the sample constrained HJ-distance

cannot be used to rank models. Finally, we provide a limiting theory for estimation and testing of

SDFs using the constrained HJ-distance measure.
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Appendix A

Proof of Proposition 1. Let ỹ = γ̃′f̃ and mỹ = ỹ − λ̃′r̃, where f̃ = [1, f ′]′. In addition, let

C = E[f̃ f̃ ′] and D = E[r̃f̃ ′]. Differentiating

δ2
+ = E[ỹ2]− E[m+2

ỹ ]− 2λ̃
′
q (A.1)

with respect to γ̃ and λ̃, we obtain the following first-order conditions:

Cγ̃ − E[f̃m+
ỹ ] = 0K+1, (A.2)

E[r̃m+
ỹ ] = q. (A.3)

Let µm = E[mỹ] and σ2
m = Var[mỹ]. Invoking Lemma B.1 in Appendix B, we have

E[f̃m+
ỹ ] = F̆ (η)(Cγ̃ −D′λ̃+ σm[g(η)− η]E[f̃ ]), (A.4)

E[r̃m+
ỹ ] = F̆ (η)(Dγ̃ − Uλ̃+ σm[g(η)− η]E[r̃]), (A.5)

where η = µm/σm. Substituting the above expressions into the first-order conditions, we obtain[
F̆ (−η)C F̆ (η)D′

F̆ (η)D −F̆ (η)U

][
γ̃

λ̃

]
=

[
F̆ (η)σm[g(η)− η]E[f̃ ]

q − F̆ (η)σm[g(η)− η]E[r̃]

]
. (A.6)

Let H = [C + F̆ (η)(D′U−1D − C)]−1. We can use the partitioned matrix inverse formula to

write [
F̆ (−η)C F̆ (η)D′

F̆ (η)D −F̆ (η)U

]−1

=

[
H HD′U−1

U−1DH − 1
F̆ (η)

U−1 + U−1DHD′U−1

]
(A.7)

and

U−1 =

[
R2

0 R0µ
′
r

R0µr Vrr + µrµ
′
r

]−1

=

 1+a
R2

0
−µ′rV

−1
rr

R0

−V −1
rr µr
R0

V −1
rr

 . (A.8)

Using (A.8), we can easily verify that U−1E[r̃] = q/R0 and hence

D′U−1E[r̃] =
1

R0
D′q =

1

R0
E[R0f̃ ] = E[f̃ ]. (A.9)

Using this identity, we can then show that

γ̃ = HD′U−1q. (A.10)

29



From the partitioned matrix inverse formula and after some algebra, we obtain

H =

[
1 + µ′fQµf −µ′fQ
−Qµf Q

]
, (A.11)

where Q = [Vff − F̆ (η)Vff ·r]
−1. Using this expression and (A.8), we can rewrite (A.10) as

γ̃ =

[
1 + µ′fQµf −µ′fQ
−Qµf Q

][
R0 µ′r

µfR0 V ′rf + µfµ
′
r

] (1+a)
R2

0

−V −1
rr µr
R0

 . (A.12)

After some manipulations, we can express γ̃ = [γ̃0, γ̃
′
1]′ as

γ̃1 = − 1

R0
QV ′rfV

−1
rr µr, γ̃0 =

1

R0
− γ̃′1µf . (A.13)

As a result, we can write ỹ = 1
R0

+ γ̃′1(f − µf ).

When the candidate SDF y does not depend on parameters, it can be shown that

λ̃ =

 µy−V ′ryV
−1
rr µr

R0
− a+ η

g(η)

R2
0F̆ (η)

V −1
rr

(
Vry + µr

R0F̆ (η)

)
 , (A.14)

where µy = E[y] and Vry = Cov[r, y]. Since the above expression for λ̃ also works for ỹ, we can use

µỹ = E[ỹ] = 1/R0 and V ′rỹV
−1
rr µr = Cov[r, ỹ]′V −1

rr µr = γ̃′1V
′
rfV

−1
rr µr = −ã1/R0 to obtain

λ̃ =

 1+ã1
R2

0
− a+ η

g(η)

R2
0F̆ (η)

V −1
rr

(
Vrf γ̃1 + µr

R0F̆ (η)

)
 . (A.15)

Note that we only need to solve for η to obtain explicit expressions for γ̃ and λ̃. Defining ε =

(f − µf )− V ′rfV −1
rr (r − µr) as the unspanned components of the factors, we can write

mỹ = γ̃′f̃ − λ̃′r̃ = γ̃′1ε−
µ′rV

−1
rr (r − µr)
R0F̆ (η)

+
η

R0F̆ (η)g(η)
. (A.16)

Using E[ε] = 0K and Var[ε] = Vff ·r, we have

σ2
m = γ̃′1Vff ·rγ̃1 +

a

R2
0F̆ (η)2

. (A.17)

Since m+
ỹ prices the risk-free asset correctly, it follows that

E[m+
ỹ ] = F̆ (η)σmg(η) =

1

R0
. (A.18)
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Then, plugging the expression of σ2
m from (A.17) into (A.18), we obtain

g(η) =
[
a+ γ̃′1Vff ·rγ̃1R

2
0F̆ (η)2

]− 1
2
. (A.19)

Using the expression for γ̃1 in (A.13) and rearranging terms, we can see that η satisfies the following

equation:

g(u) =

a+ α′

[
1

F̆ (u)
IK − V

− 1
2

ff Vff ·rV
− 1

2
ff

]−2

α

− 1
2

. (A.20)

For establishing the uniqueness of the solution to equation (A.20), we need to show that (i)

g(u) > 0, (ii) g(∞) = ∞, (iii) g(−∞) = 0, and (iv) g′(u) > 0. Condition (i) follows from

equation (B.23) in Lemma B.1 of Appendix B. Condition (ii) follows from the definition of g. For

condition (iii), it is convenient to write

g(u) =
uḞ (cu) + f̆(u)

F̆ (u)
=
g1(u)

g2(u)
. (A.21)

Then,

g′1(u) = Ḟ (cu), (A.22)

g′2(u) = f̆(u), (A.23)

g′′1(u) = cḟ(cu), (A.24)

g′′2(u) = −cuḟ(cu). (A.25)

Using L’Hôpital’s rule twice, we have

lim
u→−∞

g(u) = lim
u→−∞

g′′1(u)

g′′2(u)
= lim

u→−∞

cḟ(cu)

−cuḟ(cu)
= lim

u→−∞
−1

u
= 0. (A.26)

For (iv), taking the derivative of g(u), we have

g′(u) =
Ḟ (cu)

F̆ (u)2

[
F̆ (u)− uf̆(u)− f̆(u)2

Ḟ (cu)

]
> 0, (A.27)

where the inequality is obtained by using Lemma B.2 in Appendix B and the fact that Var[x] > 0.

Since the left hand side of (A.20) is positive and increasing in u and the right hand side of (A.20)

is positive and decreasing in u (because all the eigenvalues of V
− 1

2
ff Vff ·rV

− 1
2

ff are less than or equal

to one), (A.20) has a unique solution.
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Using Lemma B.1 in Appendix B, it is straightforward to obtain

E[ỹm+
ỹ ] = Cov[ỹ,mỹ]F̆ (η) +

1

R2
0

=

[
γ̃′1Vff ·rγ̃1 +

ã1

R2
0F̆ (η)

]
F̆ (η) +

1

R2
0

, (A.28)

E[m+2
ỹ ] = E[mỹm

+
ỹ ] = σ2

mF̆ (η) +
µm
R0

. (A.29)

The squared constrained HJ-distance is then given by

δ2
+ = E[(ỹ −m+

ỹ )2]

= E[ỹ2]− 2E[ỹm+
ỹ ] + E[m+2

ỹ ]

=
1

R2
0

+ γ̃′1Vff γ̃1 − 2

[
γ̃′1Vff ·rγ̃1 +

ã1

R2
0F̆ (η)

]
F̆ (η)− 2

R2
0

+ σ2
mF̆ (η) +

µm
R0

= γ̃′1Vff γ̃1 − 2γ̃′1Vff ·rγ̃1F̆ (η)− 1 + 2ã1

R2
0

+

[
γ̃′1Vff ·rγ̃1 +

a

R2
0F̆ (η)2

]
F̆ (η) +

ησm
R0

= γ̃′1[Vff − F̆ (η)Vff ·r]γ̃1 −
1 + 2ã1

R2
0

+
a

R2
0F̆ (η)

+
η

R2
0F̆ (η)g(η)

=
a+ η

g(η)

R2
0F̆ (η)

− 1 + ã1

R2
0

, (A.30)

where the second last equality is obtained by using σm = 1/[R0F̆ (η)g(η)] from (A.18). Finally, we

can easily see that the first element of λ̃ in (A.15) is equal to −δ2
+. This completes the proof.

Proof of Lemma 1. Let b =

(
α′
[
IK − V

− 1
2

ff F̆ (η)Vff ·rV
− 1

2
ff

]−2

α

)
. We first show that ∂∆/∂η =

0. More specifically, the derivative of ã1 with respect to η is

∂ã1

∂η
= f̆(η)µ′rV

−1
rr Vrf [Vff − F̆ (η)Vff.r]

−1Vff.r[Vff − F̆ (η)Vff.r]
−1V ′rfV

−1
rr µr = bf̆(η) (A.31)

as in the proof of Proposition 1. Furthermore,

∂∆

∂η
= −bf̆(η)

R2
0

− af̆(η)

R2
0F̆ (η)2

+
R2

0F̆ (η)g(η)− η[R2
0F̆ (η)g′(η) +R2

0f̆(η)g(η)]

R4
0F̆ (η)2g(η)2

= −bf̆(η)

R2
0

− af̆(η)

R2
0F̆ (η)2

+
1

R2
0g(η)F̆ (η)

− ηg′(η)

R2
0g(η)2F̆ (η)

− ηf̆(η)

R2
0g(η)F̆ (η)2

= − f̆(η)

R2
0F̆ (η)2

(
a+ bF̆ (η)2

)
+

1

R2
0g(η)F̆ (η)

− ηg′(η)

R2
0g(η)2F̆ (η)

− ηf̆(η)

R2
0g(η)F̆ (η)2

= − f̆(η)

R2
0F̆ (η)2g(η)2

+
g(η)F̆ (η)− ηḞ (cη)

R2
0F̆ (η)2g(η)2

= − f̆(η)

R2
0F̆ (η)2g(η)2

+
f̆(η)

R2
0F̆ (η)2g(η)2

= 0. (A.32)

32



The fourth equality follows because

a+ bF̆ (η)2 =

a+ α′

[
1

F̆ (η)
IK − V

− 1
2

ff Vff ·rV
− 1

2
ff

]−2

α

 =
1

g(η)2
(A.33)

and

g′(η) =
Ḟ (cη)− g(η)f̆(η)

F̆ (η)
, (A.34)

which can be easily verified by using g(η) = ηḞ (cη)+f̆(η)

F̆ (η)
(see Lemma B.1 in Appendix B) and (A.27).

This suggests that the partial derivatives of ∆ with respect to the remaining parameters can treat

η as a constant. Thus, it follows that

∂∆

∂a
=

1

R2
0F̆ (η)

− 1

R2
0

=
F̆ (−η)

R2
0F̆ (η)

> 0. (A.35)

Next, we show that ω > 0 if Vff ·r is a positive definite matrix. After substituting for Vff ·r =

Vff − V ′rfV −1
rr Vrf and rearranging, we have

ω =
µ′rV

−1
rr Vrf

(
(V ′rfV

−1
rr Vrf )−1 − [Vff − F̆ (η)Vff ·r]

−1
)
V ′rfV

−1
rr µr

µ′rV
−1
rr Vrf (V ′rfV

−1
rr Vrf )−1V ′rfV

−1
rr µr

=
µ′rV

−1
rr Vrf

(
(V ′rfV

−1
rr Vrf )−1 − [F̆ (η)V ′rfV

−1
rr Vrf + (1− F̆ (η))Vff ]−1

)
V ′rfV

−1
rr µr

µ′rV
−1
rr Vrf (V ′rfV

−1
rr Vrf )−1V ′rfV

−1
rr µr

.(A.36)

Note that the matrix

[F̆ (η)V ′rfV
−1
rr Vrf + (1− F̆ (η))Vff ]− V ′rfV −1

rr Vrf (A.37)

is positive definite since Vff − V ′rfV −1
rr Vrf is positive definite and 0 < F̆ (η) < 1. Then, it follows

that

(V ′rfV
−1
rr Vrf )−1 − [F̆ (η)V ′rfV

−1
rr Vrf + (1− F̆ (η))Vff ]−1 (A.38)

is also positive definite.13 Therefore, 0 < ω < 1 and

∂∆

∂ω
=
a1

R2
0

> 0. (A.39)

This completes the proof.

13From the properties of positive definite matrices, if A−B is positive definite, then (B−1 −A−1) is also positive
definite.
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Proof of Lemma 2. The probability for y to take on negative values is equal to

P [y < 0] = Ḟ

(
−cµy
σy

)
= Ḟ

(
− c

R0σy

)
= Ḟ

(
− c

R0

√
γ′1Vffγ1

)
, (A.40)

where σy is the standard deviation of the SDF y. In contrast, the probability for ỹ to take on

negative values is equal to

P [ỹ < 0] = Ḟ

(
−cµỹ
σỹ

)
= Ḟ

(
− c

R0σỹ

)
= Ḟ

(
− c

R0

√
γ̃′1Vff γ̃1

)
, (A.41)

where σỹ is the standard deviation of the SDF ỹ. The inequality holds because

R2
0γ̃
′
1Vff γ̃1 = µ′rV

−1
rr Vrf (Vff − F̆ (η)Vff ·r)

−1Vff (Vff − F̆ (η)Vff ·r)
−1V ′rfV

−1
rr µr

= µ′rV
−1
rr VrfV

1
2
ff

(
IK − F̆ (η)V

− 1
2

ff Vff ·rV
− 1

2
ff

)−2

V
1
2
ffV

′
rfV

−1
rr µr

≤ µ′rV
−1
rr VrfV

1
2
ff (IK − V

− 1
2

ff Vff ·rV
− 1

2
ff )−2V

1
2
ffV

′
rfV

−1
rr µr

= µ′rV
−1
rr Vrf (V ′rfV

−1
rr Vrf )−1Vff (V ′rfV

−1
rr Vrf )−1V ′rfV

−1
rr µr

= R2
0γ
′
1Vffγ1. (A.42)

For (33), the first inequality, δ2 ≤ δ̃2
, is obvious since γ is chosen to minimize δ2 = e′U−1e but

γ̃ is not. For the second inequality, δ̃
2 ≤ δ2

+, note that for every h ∈ L2 with E[h2] = 1, we have

min
m∈M+

(E[ỹh]− E[mh])2 ≤ δ2
+. (A.43)

Consider a portfolio $ with unit second moment, that is, $′U$ = 1. When ỹ is the SDF, the

squared pricing error of the portfolio is ($′ẽ)2, and it is maximized when $ is chosen to be

$∗ =
U−1ẽ

(ẽ′U−1ẽ)
1
2

. (A.44)

Let h = $∗′r̃. Since h is a linear combination of r̃, E[mh] = $∗′E[mr̃] = $∗′q and the price of h

is the same for every m ∈M+. It follows that

δ2
+ ≥ inf

m∈M+
(E[ỹh]− E[mh])2 = (E[ỹh]− E[mh])2 = ($∗′(E[ỹr̃]− q))2 = ($∗′ẽ)2 = δ̃

2
. (A.45)

This completes the proof.

Proof of Lemma 3. (a) Let

M ≡ lim
T→∞

1

T

T∑
t=1

∂2E[φt(θ
∗)]

∂θ∂θ′
=

[
2G+ 2D+

′

2D+ −2U+

]
. (A.46)
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From the definition of M in (A.46), we can use the partitioned matrix inverse formula to obtain

M−1 =

[
2G+ 2D+

′

2D+ −2U+

]−1

=
1

2

[
M M̃D′+U

−1
+

U−1
+ D+M̃ −U−1

+ + U−1
+ D+M̃D′+U

−1
+

]
, (A.47)

where M̃ = (G+ + D′+U
−1
+ D+)−1. Following similar arguments as in Lemma A.1 in Gospodinov,

Kan, and Robotti (2013), it can be shown that

δ̂
2

+ − δ2
+ =

1

T

T∑
t=1

(φt(θ
∗)− E[φt(θ

∗)])− 1

2
v̄T (θ∗)′M−1v̄T (θ∗) + op

(
1

T

)
, (A.48)

where v̄T (θ) = 1
T

∑T
t=1(∂φt(θ)/∂θ − E[∂φt(θ)/∂θ]). Then, under the null hypothesis H0 : δ+ = 0,

(A.48) becomes

δ̂
2

+ = −1

2
v̄T (θ∗)′M−1v̄T (θ∗) + op

(
1

T

)
(A.49)

since λ∗ = 0n and φt(γ
∗, 0n) = E[φt(γ

∗, 0n)] = 0. Let v̄T (θ∗) = [v̄1,T (θ∗)′ , v̄2,T (θ∗)′]′ , where

v̄1,T (θ∗) denotes the first k elements of v̄T (θ∗). Under the null, v̄1,T (θ∗) = 0k, G+ = 0k×k, D+ = D,

and U+ = U . Then, it follows that

T δ̂
2

+ = −1

2

√
T v̄T (θ∗)′M−1

√
T v̄T (θ∗) + op(1)

=
1

4

√
T v̄2T (θ∗)′U−

1
2PP ′U−

1
2

√
T v̄2,T (θ∗) + op(1) (A.50)

by using the fact that In−U−
1
2D(D′U−1D)−1D′U−

1
2 = PP ′. Also, the stated regularity conditions

ensure that the empirical process
√
T v̄2,T (θ∗) obeys the central limit theorem and

√
T v̄2,T (θ∗)

A∼ N(0n, 4S) (A.51)

under the null H0 : δ+ = 0. Then, we obtain

T δ̂
2

+
A∼ z′S 1

2U−
1
2PP ′U−

1
2S

1
2 z, (A.52)

where z ∼ N(0n, In). Since S
1
2U−

1
2PP ′U−

1
2S

1
2 has the same nonzero eigenvalues as P ′U−

1
2SU−

1
2P ,

we have

T δ̂
2

+
A∼ Fn−k(ξ), (A.53)

where the ξi’s are the eigenvalues of P ′U−
1
2SU−

1
2P .
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(b) Now consider the case δ+ > 0. In this situation, the asymptotic behavior of
√
T (δ̂

2

+ − δ2
+) is

determined by 1√
T

∑T
t=1(φt(θ

∗)−E[φt(θ
∗)]), which converges weakly to a Gaussian process. Under

the stated assumptions and since E[φt(θ
∗)] = δ2

+, we have

√
T (δ̂

2

+ − δ2
+) =

1√
T

T∑
t=1

(φt(θ
∗)− E[φt(θ

∗)]) + op(1)
A∼ N(0, vδ̂+). (A.54)

Deriving the asymptotic distribution of
√
T (θ̂ − θ∗) closely follows Gospodinov, Kan, and Robotti

(2013) and is omitted to conserve space. This completes the proof.
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Appendix B

B.1 Elliptical Distributions: Definitions and Notation

In this section, we introduce the definitions and notation for the class of multivariate elliptical

distributions, following closely Landsman and Valdez (2003). We say that two random variables

(u, v) have a bivariate elliptical distribution, written as E(µ, S, ψ), if their characteristic function

can be expressed as

ϕ(t) = exp(it′µ)ψ

(
t′St

2

)
(B.1)

for some

µ =

[
µu
µv

]
, S =

[
s2
u suv

svu s2
v

]
, (B.2)

and ψ(·), which is called the characteristic generator. When the mean of [u, v]′ exists, we have

E[u] = µu and E[v] = µv. When the variance of [u, v]′ exists, we have σ2
u = Var[u] = c2s2

u,

σ2
v = Var[v] = c2s2

v, and σuv = Cov[u, v] = c2suv, where c =
√
−ψ′(0). It is important to remember

that S is not the covariance matrix of [u, v]′ in general.

We assume that the density functions of u and v exist. The density function of v (the density

function of u is similarly defined) is given by

fv(v) =
c1

sv
h

(
(v − µv)2

2s2
v

)
, (B.3)

where h(·) is a nonnegative function (called the density generator) and

c1 =
1√
2

[∫ ∞
0

x−
1
2h(x)dx

]−1

(B.4)

is a normalization constant.

We provide two examples of elliptical distributions: normal and Student t. For the normal

distribution, we have

ψ(s) = e−s, (B.5)

h(t) = e−t, (B.6)

c1 =
1√
2π
, (B.7)

fv(v) =
1√

2πsv
e
− (v−µv)

2

2s2v . (B.8)
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It follows that ψ′(s) = −e−s, c =
√
−ψ′(0) = 1, and σ2

v = s2
v.

For the Student t distribution with ν degrees of freedom, we have

ψ(s) =
Kν/2(

√
2νs)

(
νs
2

) ν
4

2Γ
(
ν
2

) , (B.9)

h(t) =

(
1 +

2t

ν

)− ν+1
2

, (B.10)

c1 =
1

B
(

1
2 ,

ν
2

)√
ν
, (B.11)

fv(v) =
1

B
(

1
2 ,

ν
2

)√
νsv

[
1 +

(v − µv)2

νs2
v

]− ν+1
2

, (B.12)

where Kν(x) is the modified Bessel function of the second kind, Γ(a) is the gamma function, and

B(a, b) is the beta function. It is straightforward to show that

ψ′(s) = −
νK(ν−2)/2(

√
2νs)

(
νs
2

) ν−2
4

Γ
(
ν
2

) , (B.13)

and c =
√
−ψ′(0) = [ν/(ν − 2)]

1
2 . In addition, when ν > 1, the mean of v exists and when ν > 2,

the variance of v exists and σ2
v = νs2

v/(ν − 2).

For a given elliptical random variable v with parameters µv and s2
v, we define

v̇ =
v − µv
sv

. (B.14)

The random variable v̇ has a spherical distribution (that is, an elliptical distribution with parame-

ters µv̇ = 0 and sv̇ = 1). We denote its density and cumulative distribution functions by ḟ(v̇) and

Ḟ (v̇), respectively. Note that

ḟ(v̇) = c1h

(
v̇2

2

)
. (B.15)

By symmetry, we have ḟ(−v̇) = ḟ(v̇) and 1 − Ḟ (−v̇) = Ḟ (v̇). In addition, we have σ2
v̇ = c2 when

the variance of v̇ exists.

For every spherical random variable v̇ with finite variance, Landsman and Valdez (2003) show

that a random variable w with density function14

f̆(w) =

∫ ∞
w

cv̇ḟ(cv̇)dv̇ =
1

c

∫ ∞
cw

sḟ(s)ds (B.16)

14Instead of mapping v̇ into w, Landsman and Valdez (2003) define a slightly different mapping from v̇ into
Z∗ = cw.
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is also a spherical random variable. The density function of w can alternatively be written as

f̆(w) =
c1

c
H

(
c2w2

2

)
, (B.17)

where

H(x) =

∫ ∞
x

h(t)dt. (B.18)

From this expression, we can easily see that the density function of w depends only on w2, which

implies that w has a spherical distribution. The distribution of w is crucial for us to obtain the tail

conditional expectation of v̇.

For a given spherical random variable v̇, the above definitions allow us to quickly obtain the

density function of the associated spherical random variable w. For example, when v̇ ∼ N(0, 1),

we have h(t) = e−t and

H(x) =

∫ ∞
x

e−tdt = e−x. (B.19)

Therefore, using c = 1 and c1 = 1/
√

2π, we obtain

f̆(w) =
1√
2π
e−

w2

2 (B.20)

and w ∼ N(0, 1).

When v̇ ∼ tν for ν > 2, we use (B.10) to obtain

H(x) =

∫ ∞
x

(
1 +

2t

ν

)− ν+1
2

dt =
ν

ν − 1

(
1 +

2x

ν

)− ν−1
2

. (B.21)

Then, using (B.11) and c = [ν/(ν − 2)]
1
2 , we obtain

f̆(w) =
1√

νB
(

1
2 ,

ν
2

)√ν − 2√
ν

ν

ν − 1

(
1 +

w2

ν − 2

)− ν−1
2

=
1√

ν − 2B
(

1
2 ,

ν−2
2

) (1 +
w2

ν − 2

)− ν−1
2

, (B.22)

and w ∼ tν−2.
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B.2 Lemmas

Lemma B.1. Suppose [u, v]′ is bivariate elliptically distributed with finite variance. Let η = µv/σv,

where µv and σv are the mean and standard deviation of v, respectively. We have

E[v+] = µvḞ (cη) + σvf̆(η) = F̆ (η)σvg(η), (B.23)

E[uv+] = σuvF̆ (η) + µu[µvḞ (cη) + σvf̆(η)]

= F̆ (η) (E[uv] + µuσv[g(η)− η]) , (B.24)

where Ḟ is the cumulative distribution function of v̇ = (v−µv)/sv, c = σv̇, f̆ and F̆ are the density

and cumulative distribution functions of another spherical random variable w that is associated with

v̇ as defined in (B.16), and

g(η) =
ηḞ (cη) + f̆(η)

F̆ (η)
. (B.25)

Proof of Lemma B.1. For a given ḟ , we define the functions

ḣ(x) =

∫ ∞
−x

v̇ḟ(v̇)dv̇, (B.26)

Ḣ(x) =

∫ ∞
−x

v̇2ḟ(v̇)dv̇. (B.27)

We are interested in obtaining E[v+], which is given by

E[v+] =

∫ ∞
0

vfv(v)dv =

∫ ∞
−cη

(µv + svv̇)ḟ(v̇)dv̇ = µvḞ (cη) + svḣ(cη) = µvḞ (cη) + σvf̆(η), (B.28)

where the last equality follows from (B.16) and the fact that ḣ(cη) = cf̆(−η) = cf̆(η).

In order to obtain E[uv+], we need to first derive E[v+2], which is given by

E[v+2] =

∫ ∞
0

v2fv(v)dv =

∫ ∞
−cη

(µv + svv̇)2ḟ(v̇)dv̇ = µ2
vḞ (cη) + 2µvsvḣ(cη) + s2

vḢ(cη). (B.29)

Since

dḣ(η)

dη
= −ηḟ(−η) = −ηḟ(η), (B.30)
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we can use integration by parts to obtain

Ḣ(cη) =

∫ ∞
−cη

v̇2ḟ(v̇)dv̇

= −v̇ḣ(v̇)
∣∣∣∞
−cη

+

∫ ∞
−cη

ḣ(v̇)dv̇

= d− cηḣ(−cη) + c

∫ ∞
−cη

f̆

(
v̇

c

)
dv̇

= d− c2ηf̆(η) + c2

∫ ∞
−η

f̆(s)ds

= d− c2ηf̆(η) + c2F̆ (η), (B.31)

where d ≡ limv̇→∞−v̇ḣ(v̇) and the fourth equality follows from the fact that ḣ(−cη) = ḣ(cη) =

cf̆(η). We now show that d = 0 when c <∞. Since w is a symmetric random variable, F̆ (0) = 1/2

and it follows that

Ḣ(0) = d+ c2F̆ (0) = d+
c2

2
. (B.32)

However, we know that

Ḣ(0) =

∫ ∞
0

v̇2ḟ(v̇)dv̇ =
c2

2
, (B.33)

and hence d = 0 when c is finite. Therefore, we have

Ḣ(cη) = −c2ηf̆(η) + c2F̆ (η). (B.34)

Using (B.29) and ḣ(cη) = cf̆(η), we have

E[v+2] = µ2
vḞ (cη) + 2µvsvḣ(cη)− s2

vc
2ηf̆(η) + s2

vc
2F̆ (η)

= µ2
vḞ (cη) + µvσvf̆(η) + σ2

vF̆ (η). (B.35)

Under the bivariate elliptical assumption on u and v, we have

E[u|v] = µu +
σuv
σ2
v

(v − µv). (B.36)

It then follows that

E[uv+] = E[E[u|v]v+]

= E

[(
µu +

σuv
σ2
v

(v − µv)
)
v+

]
=

(
µu −

σuv
σ2
v

µv

)
E[v+] +

σuv
σ2
v

E[v+2]

=

(
µu −

σuv
σ2
v

µv

)
[µvḞ (cη) + σvf̆(η)] +

σuv
σ2
v

[µ2
vḞ (cη) + σ2

vF̆ (η) + µvσvf̆(η)]

= σuvF̆ (η) + µu[µvḞ (cη) + σvf̆(η)]. (B.37)
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This completes the proof.

The following lemma is used in proving the uniqueness of the solution to the equation in Propo-

sition 1 for elliptically distributed random variables.

Lemma B.2. Let ḟ and Ḟ be the density and cumulative distribution functions of a spherical

random variable v̇ with finite variance. By truncating v̇ from above at the value of cu, we define a

truncated random variable x with density function ḟ(x)/Ḟ (cu) for −∞ < x < cu. The variance of

x is given by

Var[x] =
c2

Ḟ (cu)

[
F̆ (u)− uf̆(u)− f̆(u)2

Ḟ (cu)

]
, (B.38)

where c = σv̇, and f̆ and F̆ are the density and cumulative distribution functions of another elliptical

random variable w that is associated with v̇ as defined in equation (B.16).

Proof of Lemma B.2. Using the fact that

∂cf̆(x/c)

∂x
= −xḟ(x), (B.39)

we can easily obtain

E[x] =
1

Ḟ (cu)

∫ cu

−∞
xḟ(x)dx = − c

Ḟ (cu)
f̆
(x
c

)∣∣∣cu
−∞

= − cf̆(u)

Ḟ (cu)
. (B.40)

Then, using integration by parts, we obtain the second moment of x as

E[x2] =
1

Ḟ (cu)

∫ cu

−∞
x2ḟ(x)dx

=
1

Ḟ (cu)

[
−cxf̆

(x
c

)∣∣∣cu
−∞

+

∫ cu

−∞
cf̆
(x
c

)
dx

]
=

1

Ḟ (cu)
[−c2uf̆(u) + c2F̆ (u)]. (B.41)

It follows that the variance of x is given by (B.38). This completes the proof.
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Table 1
Summary of the models using quarterly gross returns on the one-month T-bill
and the 25 Fama-French size and book-to-market ranked portfolios

Panel A: Unconstrained HJ-distance

Model CC-CAY CC-MY C-SW IGM ICAPM D-CCAPM FF3

δ̂ 0.623 0.635 0.650 0.541 0.527 0.650 0.582
p(δ = 0) 0.001 0.003 0.000 0.356 0.133 0.000 0.000

se(δ̂) 0.097 0.094 0.073 0.125 0.109 0.081 0.079
P [ŷ < 0] 0.115 0.111 0.014 0.207 0.115 0.023 0.014
σŷ 0.772 0.920 0.390 1.409 1.060 0.475 0.407
ρ2
c 0.193 0.138 0.512 0.123 0.199 0.350 0.975

Panel B: Constrained HJ-distance

Model CC-CAY CC-MY C-SW IGM ICAPM D-CCAPM FF3

δ̂+ 0.666 0.692 0.681 0.670 0.595 0.679 0.607
p(δ+ = 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000

se(δ̂+) 0.099 0.091 0.085 0.096 0.107 0.087 0.088
P [ŷ < 0] 0.009 0.018 0.005 0.018 0.023 0.000 0.014
σŷ 0.510 0.394 0.283 0.491 0.622 0.316 0.405
ρ2
c 0.201 0.186 0.766 0.165 0.328 0.634 0.975

(δ̂+ − δ̂)/δ̂ 6.9% 8.9% 4.8% 23.9% 12.9% 4.6% 4.3%
ˆ̃
δ 0.634 0.660 0.654 0.618 0.563 0.655 0.582

The table presents the sample unconstrained and constrained HJ-distances (δ̂ and δ̂+, respectively) of seven
linear asset-pricing models. The models include the conditional consumption CAPM (CC-CAY) of Lettau and
Ludvigson (2001), a version of the conditional consumption CAPM (CC-MY) of Lustig and Van Nieuwerburgh
(2005), the conditional CAPM (C-SW) of Santos and Veronesi (2006), the investment growth model (IGM) of
Li, Vassalou, and Xing (2006), the intertemporal CAPM (ICAPM) of Petkova (2006), the durable consumption
CAPM (D-CCAPM) of Yogo (2006), and the three-factor model (FF3) of Fama and French (1993). The data
are from 1953:3 to 2007:3 (217 observations). p(δ = 0) is the p-value for the test of H0 : δ = 0. p(δ+ = 0) is the

p-value for the test of H0 : δ+ = 0. se(δ̂) (se(δ̂+)) is the standard error of δ̂ (δ̂+) under the assumption that
δ > 0 (δ+ > 0). P [ŷ < 0] is the probability for the estimated SDF to take on negative values during the sample
period. σŷ is the standard deviation of the estimated SDF. ρ2c is the centered R2 from the linear regression

of the estimated SDF on the returns on the test assets. (δ̂+ − δ̂)/δ̂ is the percentage difference between the

sample constrained and unconstrained HJ-distances.
ˆ̃
δ is a sample measure of the maximum pricing error on

the test assets for the SDF that minimizes the constrained HJ-distance.
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Table 2
Estimates and t-ratios of parameters for various models using quarterly gross
returns on the one-month T-bill and the 25 Fama-French size and book-to-market
ranked portfolios

CC-CAY

Unconstrained HJ-distance Constrained HJ-distance

γ̂0 γ̂cay γ̂cnd γ̂cnd·cay γ̂0 γ̂cay γ̂cnd γ̂cnd·cay

γ̂ 1.28 -40.11 -54.14 -666.16 1.18 -28.04 -36.38 489.24
t(γ̂) 7.46 -1.50 -1.13 -0.17 12.44 -1.95 -1.74 0.25

CC-MY

Unconstrained HJ-distance Constrained HJ-distance

γ̂0 γ̂my γ̂cnd γ̂cnd·my γ̂0 γ̂my γ̂cnd γ̂cnd·my

γ̂ 1.32 2.70 -90.08 404.75 1.15 2.15 -41.47 27.49
t(γ̂) 6.71 0.81 -1.84 0.78 16.53 1.10 -2.56 0.21

C-SW

Unconstrained HJ-distance Constrained HJ-distance

γ̂0 γ̂rmkt γ̂rmkt·sw γ̂0 γ̂rmkt γ̂rmkt·sw

γ̂ 1.01 117.47 -91.11 1.03 57.61 -45.80
t(γ̂) 23.20 1.24 -1.27 26.66 1.06 -1.12

IGM

Unconstrained HJ-distance Constrained HJ-distance

γ̂0 γ̂ihh γ̂icorp γ̂incorp γ̂ifcorp γ̂ifm γ̂0 γ̂ihh γ̂icorp γ̂incorp γ̂ifcorp γ̂ifm

γ̂ 0.68 -17.10 9.19 -10.09 20.47 10.54 0.99 -8.90 1.31 -4.20 5.95 4.25
t(γ̂) 1.52 -1.42 1.08 -1.59 1.32 0.61 7.07 -2.06 0.93 -3.50 1.28 1.02
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Table 2 (continued)
Estimates and t-ratios of parameters for various models using quarterly gross
returns on the one-month T-bill and the 25 Fama-French size and book-to-market
ranked portfolios

ICAPM

Unconstrained HJ-distance Constrained HJ-distance

γ̂0 γ̂rmkt γ̂term γ̂def γ̂div γ̂rf γ̂0 γ̂rmkt γ̂term γ̂def γ̂div γ̂rf

γ̂ 0.93 3.12 -178.07 162.45 179.53 -9.95 0.99 -0.42 -98.73 123.22 71.14 -13.90
t(γ̂) 6.98 0.43 -1.33 1.41 0.69 -0.15 12.15 -0.10 -2.11 2.08 0.49 -0.58

D-CCAPM

Unconstrained HJ-distance Constrained HJ-distance

γ̂0 γ̂rmkt γ̂cnd γ̂cd γ̂0 γ̂rmkt γ̂cnd γ̂cd

γ̂ 1.22 -1.98 -59.16 1.86 1.14 -2.54 -24.47 -1.97
t(γ̂) 7.75 -1.50 -1.10 0.23 14.36 -2.34 -1.01 -0.38

FF3

Unconstrained HJ-distance Constrained HJ-distance

γ̂0 γ̂rmkt γ̂rsmb γ̂rhml γ̂0 γ̂rmkt γ̂rsmb γ̂rhml

γ̂ 1.15 -4.57 -0.26 -6.49 1.15 -4.53 -0.32 -6.45
t(γ̂) 20.61 -3.86 -0.18 -4.66 20.80 -3.88 -0.23 -4.65

The table presents the estimation results of seven linear asset-pricing models. The models include the conditional
consumption CAPM (CC-CAY) of Lettau and Ludvigson (2001), a version of the conditional consumption CAPM
(CC-MY) of Lustig and Van Nieuwerburgh (2005), the conditional CAPM (C-SW) of Santos and Veronesi (2006),
the investment growth model (IGM) of Li, Vassalou, and Xing (2006), the intertemporal CAPM (ICAPM) of
Petkova (2006), the durable consumption CAPM (D-CCAPM) of Yogo (2006), and the three-factor model (FF3)
of Fama and French (1993). The data are from 1953:3 to 2007:3 (217 observations). We report SDF parameter
estimates γ̂ (with γ̂0 being the estimated intercept of the SDF) and associated t-statistics (t(γ̂)) based on (50)
and (51).
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Table 3
Summary of the models using quarterly gross returns on the one-month T-bill
and 10 size and 12 industry portfolios

Panel A: Unconstrained HJ-distance

Model CC-CAY CC-MY C-SW IGM ICAPM D-CCAPM FF3

δ̂ 0.541 0.489 0.488 0.497 0.491 0.439 0.491
p(δ = 0) 0.000 0.020 0.000 0.003 0.000 0.038 0.000

se(δ̂) 0.077 0.081 0.075 0.084 0.073 0.078 0.075
P [ŷ < 0] 0.005 0.083 0.005 0.069 0.000 0.046 0.000
σŷ 0.196 0.674 0.270 0.673 0.265 0.549 0.241
ρ2
c 0.164 0.224 0.829 0.125 0.825 0.362 0.996

Panel B: Constrained HJ-distance

Model CC-CAY CC-MY C-SW IGM ICAPM D-CCAPM FF3

δ̂+ 0.547 0.510 0.490 0.517 0.496 0.461 0.495
p(δ+ = 0) 0.000 0.000 0.000 0.000 0.000 0.005 0.000

se(δ̂+) 0.081 0.084 0.078 0.086 0.078 0.081 0.079
P [ŷ < 0] 0.000 0.014 0.005 0.018 0.000 0.023 0.000
σŷ 0.135 0.411 0.277 0.395 0.255 0.398 0.241
ρ2
c 0.163 0.202 0.803 0.124 0.889 0.490 0.997

(δ̂+ − δ̂)/δ̂ 1.2% 4.3% 0.4% 4.1% 0.9% 5.1% 0.9%
ˆ̃
δ 0.542 0.497 0.488 0.506 0.492 0.446 0.491

The table presents the sample unconstrained and constrained HJ-distances (δ̂ and δ̂+, respectively) of seven
linear asset-pricing models. The models include the conditional consumption CAPM (CC-CAY) of Lettau and
Ludvigson (2001), a version of the conditional consumption CAPM (CC-MY) of Lustig and Van Nieuwerburgh
(2005), the conditional CAPM (C-SW) of Santos and Veronesi (2006), the investment growth model (IGM) of
Li, Vassalou, and Xing (2006), the intertemporal CAPM (ICAPM) of Petkova (2006), the durable consumption
CAPM (D-CCAPM) of Yogo (2006), and the three-factor model (FF3) of Fama and French (1993). The data
are from 1953:3 to 2007:3 (217 observations). p(δ = 0) is the p-value for the test of H0 : δ = 0. p(δ+ = 0) is the

p-value for the test of H0 : δ+ = 0. se(δ̂) (se(δ̂+)) is the standard error of δ̂ (δ̂+) under the assumption that
δ > 0 (δ+ > 0). P [ŷ < 0] is the probability for the estimated SDF to take on negative values during the sample
period. σŷ is the standard deviation of the estimated SDF. ρ2c is the centered R2 from the linear regression

of the estimated SDF on the returns on the test assets. (δ̂+ − δ̂)/δ̂ is the percentage difference between the

sample constrained and unconstrained HJ-distances.
ˆ̃
δ is a sample measure of the maximum pricing error on

the test assets for the SDF that minimizes the constrained HJ-distance.
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Figure 1. Difference in the probabilities of taking on negative values for two linear
SDFs. The figure plots P [y < 0] − P [ỹ < 0] as a function of ρ2 in a one-factor setting, where
y and ỹ are the linear SDFs chosen to minimize the unconstrained and constrained HJ-distances,
respectively. ρ2 is the proportion of variability of the factor that is explained by the returns. The
dotted line represents the case in which the Sharpe ratio of the tangency portfolio (

√
a) is 0.25.

The solid line is for
√
a = 0.5, and the dashed line is for

√
a = 0.75. In each case, we assume

that the squared Sharpe ratio of the factor mimicking portfolio (a1) is half of the value of a. The
factor and the excess returns on the test assets are assumed to be multivariate t-distributed with
six degrees of freedom.
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Figure 2. Differences in aggregate measures of pricing errors and in constrained and

unconstrained HJ-distances. The figure plots δ̃
2 − δ2 and ∆ = δ2

+ − δ2 as functions of ρ2 in a
one-factor setting. ρ2 is the proportion of variability of the factor that is explained by the returns.
The dotted line represents the case in which the Sharpe ratio of the tangency portfolio (

√
a) is

0.25. The solid line is for
√
a = 0.5, and the dashed line is for

√
a = 0.75. In each case, we assume

that the squared Sharpe ratio of the factor mimicking portfolio (a1) is half of the value of a. The
gross risk-free rate is assumed to be 1.005. The factor and the excess returns on the test assets are
assumed to be multivariate t-distributed with six degrees of freedom.
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Figure 3. Probability for the sample constrained HJ-distance to take on the value of
infinity. The figure plots P [δ̂+ =∞] as a function of the length of the time series (T ). The payoffs
of the test assets consist of a constant risk-free rate and the excess returns on N risky assets. The
excess returns are assumed to be i.i.d. multivariate t-distributed with six degrees of freedom and
their unconditional variances are set equal to one. The four graphs in the figure present P [δ̂+ =∞]
for N = 5, 10, 25, 100. Within each graph, the dotted line represents the case in which the Sharpe
ratio of the tangency portfolio of the risky assets (

√
a) is 0.25. The solid line is for

√
a = 0.5, and

the dashed line is for
√
a = 0.75. The probabilities are computed based on 10,000 simulated series.
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