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The Exact Distribution of the Hansen-Jagannathan Bound

Abstract

Under the assumption of multivariate normality of asset returns, this paper presents a geometric

interpretation and the finite-sample distributions of the sample Hansen-Jagannathan bounds on the

variance of admissible stochastic discount factors, with and without the nonnegativity constraint

on the stochastic discount factors. In addition, since the sample Hansen-Jagannathan bounds can

be very volatile, we propose a simple method to construct confidence intervals for the population

Hansen-Jagannathan bounds. Finally, we show that the analytical results in the paper are robust

to departures from the normality assumption.



1. Introduction

Under the law of one price, Hansen and Jagannathan (1991) derive a lower volatility bound (un-

constrained HJ-bound hereafter) that every valid stochastic discount factor (SDF) must satisfy.

In addition, Hansen and Jagannathan (1991) propose a tighter volatility bound (constrained HJ-

bound hereafter) that is applicable to nonnegative SDFs. The unconstrained HJ-bound has received

wide attention in the literature.1 Although the constrained HJ-bound is sharper than the uncon-

strained HJ-bound and is theoretically appealing, it has not received nearly as much attention as

the unconstrained HJ-bound in empirical work. The few empirical papers that use the constrained

bound besides Hansen and Jagannathan (1991) are Snow (1991), Cecchetti, Lam, and Mark (1994),

Burnside (1994), He and Modest (1995), and Hagiwara and Herce (1997).

Figure 1 plots the sample unconstrained HJ-bound and the nonparametric estimator of the

constrained HJ-bound used in the existing literature. The sample HJ-bounds are computed using

annual real non-overlapping returns on four size and book-to-market ranked portfolios, five industry

portfolios, and a three-month Treasury bill over the post-war period (1952–2012).2 The figure

shows that for this choice of portfolio returns and sample period, there is a nontrivial difference

between the two HJ-bounds. The constrained HJ-bound is markedly tighter than its unconstrained

counterpart and potentially represents a higher hurdle for a proposed SDF.

Figure 1 about here

Since the two HJ-bounds can exhibit large differences, our objective in this paper is to un-

derstand what drives a wedge between the unconstrained and constrained HJ-bounds. We tackle

1Examples include Bekaert and Hodrick (1992), Backus, Gregory, and Telmer (1993), Cecchetti, Lam, and Mark
(1994), Burnside (1994), Heaton (1995), and Epstein and Zin (2001), among many others. In addition, Ferson
and Siegel (2003) and Bekaert and Liu (2004) show how conditioning information can be used to optimally tighten
the unconstrained HJ-bound; while Kan and Zhou (2006) tighten the unconstrained HJ-bound by making the SDF
explicitly a function of a set of state variables.

2This set of portfolio returns has been shown to pose great challenges to existing asset-pricing models. The
value-weighted equity returns are from Kenneth French’s website. The five industries are (1) consumer durables,
nondurables, wholesale, retail, and some services (laundries and repair shops), (2) manufacturing, energy, and utilities,
(3) business equipment, telephone and television transmission, (4) healthcare, medical equipment, and drugs, and (5)
mines, construction, building materials, transportation, hotels, business services, entertainment, and finance. The
annual return on the three-month Treasury bill is obtained by compounding the one-month holding-period returns
on a three-month bill, and the data is from the CRSP US Treasuries and Inflation Indices File. Real returns are
obtained by deflating nominal returns by the Consumer Price Index (all urban consumers, not seasonally adjusted)
from the Bureau of Labor Statistics.
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this question by first examining the population properties of the two HJ-bounds and then charac-

terizing their sampling distributions. The first part of the paper is concerned with the geometry

of the unconstrained and constrained HJ-bounds. While there is a well-known mapping between

the unconstrained HJ-bound and the mean-variance frontier of the portfolio returns, the mapping

between the constrained HJ-bound and the mean-variance frontier has not been explored in depth.

We contribute to an understanding of this relation by establishing an explicit link between the

constrained HJ-bound and the Sharpe ratio of the portfolio with minimum second moment of trun-

cated returns. Importantly, under a multivariate normality assumption on the portfolio returns,

we are able to plot the mean-variance frontier of the truncated returns and analyze the differences

between its shape and the shape of the mean-variance frontier. Formulating the constrained HJ-

bound problem as a portfolio problem provides important insights. First, our analysis suggests that

the squared Sharpe ratio of the tangency portfolio in the mean-variance frontier of the truncated

portfolio returns is the primary driver of the constrained HJ-bound, and shows that a candidate

SDF has to satisfy more stringent bounds when the squared Sharpe ratio of the tangency portfolio

is high. This is consistent with the original goal of Hansen and Jagannathan (1991) of determining

which characteristics of the asset returns represent the biggest challenge to a proposed SDF. Sec-

ond, the dual formulation of the constrained HJ-bound problem shows that meaningful differences

between the constrained and unconstrained HJ-bounds only arise when the Sharpe ratio of the tan-

gency portfolio is large. Finally, the dual formulation of the constrained HJ-bound problem allows

us to show that the traditional sample constrained HJ-bound can take on the value of infinity with

positive probability.

As we mentioned earlier, the constrained HJ-bound has not been very popular in the literature.

We suspect that the lack of popularity of the constrained HJ-bound is due to its computational

difficulty. When there areN assets, one has to solveN nonlinear equations to obtain the constrained

HJ-bound. In this paper, we show that under the assumption that returns are multivariate normally

distributed, the constrained HJ-bound has a very simple analytical expression. This analytical

expression allows us to obtain a maximum likelihood estimator of the constrained HJ-bound which

is simpler and more precise than the traditional nonparametric estimator of the constrained HJ-

bound. In addition, we provide an approximate unbiased estimator of the constrained HJ-bound

with improved finite-sample properties.
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As documented by Burnside (1994), Cecchetti, Lam, and Mark (1994), and Ferson and Siegel

(2003), the sample HJ-bounds can have a large finite-sample upward bias. Although Ferson and

Siegel (2003) provide a bias adjustment for the sample unconstrained HJ-bound, the adjusted

estimator can still be very volatile. In this paper, we present the exact distributions of the sam-

ple unconstrained and constrained HJ-bounds under the multivariate normality assumption.3 In

addition, we show that under general distributional assumptions, the traditional nonparametric

estimator of the constrained HJ-bound does not have any finite moment. Finally, we propose a

simple method to construct confidence intervals for the unconstrained and constrained HJ-bounds.

An empirical example may help illustrate the importance of reporting confidence intervals for

the HJ-bounds instead of only presenting their point estimates. Using the same return data as

in Figure 1, in Figure 2 we provide a comparison of the SDFs implied by three state-of-the-art

consumption-based asset-pricing models with the HJ-bounds.4 The three asset-pricing models are

the long-run risks model of Bansal, Kiku, and Yaron (2012a, BKY henceforth), the external habit

model of Campbell and Cochrane (1999, CC henceforth), and the rare disasters model of Nakamura,

Steinsson, Barro, and Ursúa (2013, NSBU henceforth). These models have been shown to match

closely the historical average annual real returns on the risk-free bond and the equity market. The

mean-standard deviation pairs of the SDFs implied by BKY, CC, and NSBU are computed via

simulation using the estimated parameters reported in Bansal, Kiku, and Yaron (2012b), Aldrich

and Gallant (2011), and Nakamura, Steinsson, Barro, and Ursúa (2013), respectively.5 Since the

model-implied SDFs are positive, it seems reasonable to compare them with the more demanding

HJ-bound that imposes the nonnegativity constraint. We present two different estimators of the

constrained HJ-bound. The solid and dashed lines represent, in the order, the new maximum

likelihood and approximate unbiased estimators of the constrained HJ-bound that we develop in

3Gordon, Samson, and Carmichael (1995) characterize the finite-sample uncertainty associated with the sample
unconstrained HJ-bound using Bayesian inference methods.

4Since we consider Figure 2 to be primarily diagnostic, we do not present confidence regions for the mean-standard
deviation pairs of the SDFs or formally test whether the point estimates of the SDF lie outside the HJ-bounds.
Cochrane and Hansen (1992), Burnside (1994), and Cecchetti, Lam, and Mark (1994) develop classical hypothesis
tests based on the distance between a given SDF and the HJ-bounds. These studies find that the point estimates
of the SDF plot outside the sample unconstrained and constrained HJ-bounds too often when the model is true.
Otrok, Ravikumar, and Whiteman (2002) use Monte Carlo simulations to derive finite-sample critical values of the
test statistics developed by Burnside (1994) and Cecchetti, Lam, and Mark (1994).

5The mean-standard deviation pairs of the various SDFs are taken from Table 3 of Favero, Ortu, Tamoni, and
Yang (2014). We refer the readers to their paper for a thorough description of the models and the computational
details.
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this paper. For this particular example, the two estimators of the constrained HJ-bound are

quite far apart, consistent with the fact that the sample constrained HJ-bound, similarly to its

unconstrained counterpart, can have a substantial finite-sample upward bias. While the use of

the maximum likelihood estimator of the constrained HJ-bound would lead us to conclude that all

models are rejected by the data, one would reach a more optimistic conclusion for NSBU when using

the approximate unbiased estimator of the constrained HJ-bound. In addition, comparing the SDF

implied by NSBU with the HJ-bounds in Figure 1, it is immediately evident that this model satisfies

the sample unconstrained HJ-bound but does not meet the tighter sample constrained HJ-bound.

Therefore, at least for this empirical example, the magnitude of the bias appears to be economically

significant, and the use of the two HJ-bounds leads to different conclusions on the performance of a

given SDF. Since the approximate unbiased estimator can still be quite volatile, to obtain a better

idea of where the population HJ-bound may actually lie, we construct 95% confidence intervals

for the constrained HJ-bound (dotted lines) using the methodology described later in the paper.

The confidence intervals in Figure 2 are quite wide, indicating that there is substantial uncertainty

about the exact location of the constrained HJ-bound.6 Taking sampling error into account, both

NSBU and CC might not be entirely at odds with the data.7 This stands in sharp contrast to the

rejections of the models that we obtain when merely relying on the sample constrained HJ-bound.

Figure 2 about here

The rest of the paper is organized as follows. Section 2 presents the unconstrained and con-

strained HJ-bounds and our main results on the constrained HJ-bound under the assumption that

the returns are multivariate normally distributed. In Section 3, we summarize the asymptotic dis-

tributions of the sample unconstrained and constrained HJ-bounds and present a new maximum

likelihood estimator of the constrained HJ-bound. In Section 4, under the multivariate normality

assumption, we present the finite-sample distributions of the sample unconstrained and constrained

6Gregory and Smith (1992) and Burnside (1994) show that the large sampling error in the sample HJ-bounds can
lead to a false rejection of the model. In related work, Britten-Jones (1999) shows the importance and magnitude of
sampling error in estimates of the weights of a mean-variance efficient portfolio. The main message that emerges from
these studies is that merely relying on point estimates of HJ-bounds or tangency portfolio weights can be misleading.

7Instead of constructing confidence intervals for the HJ-bounds, Burnside (1994) constructs confidence regions for
the parameters of the candidate SDF. His approach takes into account the sampling variability of the SDF, whereas
our approach is only concerned with the variability of the sample HJ-bound. The advantage of our approach is
that the confidence intervals for the HJ-bound are computed based on the exact distribution. In addition, once the
confidence intervals for the HJ-bound are computed, they can be used for evaluating multiple SDFs.
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HJ-bounds and derive an approximate unbiased estimator of the constrained HJ-bound. In addi-

tion, we present a method for constructing exact confidence intervals for the unconstrained and

constrained HJ-bounds. Finally, we investigate the robustness of our finite-sample results to depar-

tures from normality. The last section summarizes our findings and the Appendix contains proofs

of all lemmas and propositions.

2. Population Hansen-Jagannathan Bounds

In this section, we summarize existing results and present some new ones on the HJ-bounds. The

section is divided into three subsections. In subsection 1, we present the unconstrained HJ-bound

for the case in which we only require the SDFs to satisfy the law of one price. In subsection 2,

we present the constrained HJ-bound for the case in which we also impose the nonnegativity

constraint on the SDFs. Most of the results in these two subsections are well known from the

work of Hansen and Jagannathan (1991). In subsection 3, we present the constrained HJ-bound

under the assumption that the returns are multivariate normally distributed. While the normality

assumption is restrictive, it allows us to (1) understand the determinants of the difference between

the unconstrained and constrained HJ-bounds, (2) establish a connection between the minimum-

variance frontier and the constrained HJ-bound, and (3) conduct finite-sample inference on the

sample HJ-bounds.

The basic setup is as follows. Denote the vector of gross returns on the N risky assets by R and

the mean and the covariance matrix of R by µ = E[R] and V = Var[R], respectively.8 In addition,

we assume that the gross risk-free rate is R0, so that there are altogether N + 1 assets. In some

applications, there is no risk-free asset and R0 will be treated as a free variable. The HJ-bound

will then be expressed as a function of R0.

The analyses for both the constrained and the unconstrained cases are very similar. We first

start off with an optimal portfolio problem and then write the SDF as a function of the gross return

on the optimal portfolio. The variance of this SDF gives us the HJ-bound.

8Although we assume R to be gross returns, we can easily change the setup to allow for some or all of R to be
excess returns (i.e., returns on zero investment portfolios). All we need to do is to replace 1N with q in our subsequent
analysis, where q is the vector of the costs of the N risky assets (with elements of zero or one to indicate whether the
returns are excess returns or gross returns).
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2.1. Unconstrained Hansen-Jagannathan Bound

When the law of one price holds, there exists an SDF m that prices all the risky assets correctly

E[mR] = 1N , (1)

where 1N is an N -vector of ones. In addition, the risk-free rate R0 restricts the mean of m because

E[mR0] = 1⇒ µm ≡ E[m] = 1/R0. There can be many m’s that price the N + 1 assets correctly,

but we are interested in finding the one that has the lowest variance. Instead of directly solving

this problem, Hansen and Jagannathan (1991) propose to solve a dual problem. The dual problem

consists in finding a portfolio that minimizes the second moment of its gross return. Denote by w

the portfolio weights in the N risky assets and by 1 − w′1N the portfolio weight in the risk-free

asset. The gross return on the portfolio is given by

Rp = (1− w′1N )R0 + w′R = R0 + w′(R−R01N ). (2)

The portfolio that minimizes the second moment is the solution to the problem

min
w
E[(R0 + w′(R−R01N ))2]. (3)

Denoting the minimum second moment portfolio by p∗, it is straightforward to show that its weights

in the N risky assets are given by

w∗ = − R0

1 + θ2
0

V −1(µ−R01N ), (4)

where

θ2
0 = (µ−R01N )′V −1(µ−R01N ) = a− 2bR0 + cR2

0, (5)

and a = µ′V −1µ, b = 1′NV
−1µ, and c = 1′NV

−11N are the three efficiency set constants that

characterize the minimum-variance frontier of the N risky assets. Note that w∗ is proportional to

the weights of the tangency portfolio (i.e., the portfolio that maximizes the Sharpe ratio) which has

weights V −1(µ−R01N )/(b− cR0) in the risky assets. This suggests that p∗ is a linear combination

of the risk-free asset and the tangency portfolio and its gross return is given by

Rp∗ = R0 + w∗′(R−R01N ). (6)
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It is easy to verify that µp∗ ≡ E[Rp∗ ] = R0/(1 + θ2
0), σ2

p∗ ≡ Var[Rp∗ ] = R2
0θ

2
0/(1 + θ2

0)2, E[R2
p∗ ] =

R2
0/(1 + θ2

0), and the squared Sharpe ratio of p∗ is θ2
0. Define an SDF as

m0 =
Rp∗

‖Rp∗‖2
=

1− (µ−R01N )′V −1(R− µ)

R0
, (7)

where ‖X‖ = E[X2]
1
2 . Lemma 1 summarizes the properties of m0 that are given in Hansen and

Jagannathan (1991).

Lemma 1. For m0 defined in (7), we have (1) E[m0] = 1/R0, (2) E[m0R] = 1N , (3) ‖m0‖ =

1/‖Rp∗‖, (4) Rp∗ = m0/‖m0‖2, (5) for any admissible SDF m with E[m] = 1/R0, we have

Cov[m,m0] = Var[m0] and Var[m] ≥ Var[m0].

The first two properties tell us that m0 is indeed a valid SDF that correctly prices the risk-free

asset and the N risky assets. The third and the fourth properties show the duality between m0

and Rp∗ . The last property suggests that Var[m0] provides a lower bound for the variance of all

admissible SDFs with E[m] = 1/R0. It is straightforward to show that Var[m0] is given by

Var[m0] =
(µ−R01N )′V −1(µ−R01N )

R2
0

= aµ2
m − 2bµm + c ≡ σ2

0, (8)

where µm = 1/R0 and σ2
0 is called the unconstrained HJ-bound. Since every admissible SDF must

be at least as volatile as m0, σ2
0 can be used as a model diagnostic for a proposed SDF. Note that

σ2
0 is a quadratic function of µm and only depends on µ and V through the three efficiency set

constants a, b, and c.

Hansen and Jagannathan (1991) provide a linkage between the minimum-variance frontier and

the unconstrained HJ-bound. The basic relation is given by

θ0 =
σp∗

µp∗
=

σ0

µm
. (9)

In Figure 3, we provide a graphical illustration of this relation in the (σp, µp) space. When the

risk-free rate is R0, the two straight lines emanating from the point (0, R0) represent the minimum-

variance frontier of the risk-free asset and the N risky assets. These two straight lines have a slope

of θ0, which is equal to the absolute value of the Sharpe ratio of the tangency portfolio. Since

E[R2
p] = µ2

p + σ2
p, the portfolio with minimum second moment has the shortest distance from the

origin. To locate the portfolio with minimum second moment, we draw a circle with its center at
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the origin, and the location of the minimum second moment portfolio p∗ can be obtained from the

point where the circle is tangent to the minimum-variance frontier of the risk-free and risky assets.

Suppose that we draw a solid line joining the origin and p∗ and a horizontal dotted line at the level

of 1/R0 = µm. Since σp∗/µp∗ is also equal to θ0, the intersection point of these two lines has a

horizontal distance of µmθ0 = σ0 from the y-axis. Therefore, this distance gives us the HJ-bound

on the standard deviation of admissible SDFs.

Figure 3 about here

2.2. Constrained Hansen-Jagannathan Bound

Hansen and Jagannathan (1991) suggest that for evaluating SDFs that are nonnegative, we can

tighten the HJ-bound by imposing a nonnegativity constraint on the admissible SDFs. To obtain

a nonnegative minimum-variance SDF, Hansen and Jagannathan (1991) propose to first solve the

dual portfolio problem

min
w
E[max[0, R0 + w′(R−R01N )]2]. (10)

The problem amounts to finding a portfolio that minimizes the second moment of its truncated

return, i.e., minw E[R+
p

2], where R+
p = max[0, Rp]. This portfolio problem is nontrivial to solve

because the second moment of a truncated portfolio return depends on the joint distribution of the

returns on the risky assets. Therefore, unless the joint distribution of R is completely characterized

by its first two moments (as it is the case, for example, under multivariate elliptical distributions),

knowing the mean and the covariance matrix of R is in general not sufficient for us to solve this

problem.

Denote by q∗ the portfolio with minimum second moment of truncated return. Hansen and Ja-

gannathan (1991) show that we can use the gross return on this portfolio to construct a nonnegative

SDF

mc =
R+
q∗

‖R+
q∗‖2

. (11)

Lemma 2 summarizes the properties of mc.

Lemma 2. For mc defined in (11), we have (1) E[mc] = 1/R0, (2) E[mcR] = 1N , (3) ‖mc‖ =

1/‖R+
q∗‖, (4) R+

q∗ = mc/‖mc‖2, (5) for any admissible SDF m with E[m] = 1/R0 and m ≥ 0, we

have Cov[m,mc] ≥ Var[mc] = σ2
c and Var[m] ≥ σ2

c .
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The first two properties tell us that mc is indeed a valid SDF that correctly prices the risk-free

asset and the N risky assets. The third and the fourth properties show the duality between mc and

R+
q∗ . The last property suggests that σ2

c provides a lower bound for the variance of all admissible

SDFs that are nonnegative.9 In many ways, Lemma 2 is almost identical to Lemma 1 after we

replace m0 with mc and Rp∗ with R+
q∗ . The only difference is in the last property. In Lemma 1,

we have Cov[m,m0] = Var[m0] but in Lemma 2 we only have the inequality Cov[m,mc] ≥ σ2
c . The

reason is that R+
q∗ is not a portfolio return. As a result, we do not have the exact pricing result

E[mR+
q∗ ] = 1 but just the inequality E[mR+

q∗ ] ≥ 1.

There is a well known mapping between the unconstrained HJ-bound and the mean-variance

frontier of the portfolio returns as given in (9). A similar mapping can also be developed for the

constrained HJ-bound. Let µ+
p ≡ E[R+

p ] and σ+
p ≡ (Var[R+

p ])
1
2 be the mean and standard deviation

of the truncated gross return on portfolio p, respectively. The following lemma presents the linkage

between the mean-variance frontier of the truncated portfolio returns and the constrained HJ-

bound.

Lemma 3. Define the squared truncated Sharpe ratio of the portfolio q∗ as

θ2
c =

(E[R+
q∗ ]−R0)2

Var[R+
q∗ ]

. (12)

We have

θc =
σ+
q∗

µ+
q∗

=
σc
µm

. (13)

Comparing (13) with (9), we see that the linkage between the unconstrained HJ-bound and the

mean-variance frontier also exists for the case of the constrained HJ-bound, except that we need to

replace the mean and variance of the portfolio returns with the mean and variance of the truncated

portfolio returns.

Although the results on the constrained and unconstrained HJ-bounds are quite similar, the

constrained HJ-bound is rarely used in empirical work. We believe that part of the reason is that

it is difficult to find the portfolio that minimizes the second moment of its truncated return in (10).

9Using Hölder’s inequality and exploiting the fact that the SDF is assumed to be a positive random variable, Snow
(1991) derives explicit restrictions on general noncentral moments of the SDF. Extending Hansen and Jagannathan
(1991), Snow (1991) provides the greatest lower bound on the δth moment of the SDF as a function of the price of
some portfolio and the ρth moment of the truncated payoff on that portfolio, where 1/δ + 1/ρ = 1.
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Besides depending on the joint distribution of R, this problem is also highly nonlinear and there

is generally no closed-form solution. Without an analytical solution, it is difficult for researchers

to understand what is the portfolio q∗ that minimizes the second moment of its truncated return.

As a result, we cannot plot the mean-variance frontier of the truncated portfolio returns, and

it becomes hard to visualize the relation between this frontier and the constrained HJ-bound as

described in Lemma 3. To overcome these problems, we need to make stronger assumptions on

the joint distribution of R. In the next subsection, we make the additional assumption that the

returns are multivariate normally distributed. With this assumption, we can obtain an analytical

solution for the portfolio that minimizes the second moment of its truncated return.10 While returns

are certainly not normal, we view this as a good working approximation for monthly and annual

returns. More importantly, the normality assumption allows us to obtain a better understanding of

the constrained HJ-bound that is hard to come by under more general distributional assumptions.

2.3. Constrained Hansen-Jagannathan Bound under Normality

We assume that R ∼ N(µ, V ). With the multivariate normality assumption on R, the portfolio

return Rp = R0 + w′(R − R01N ) is also normally distributed with mean and variance given by

µp = R0 +w′(µ−R01N ) and σ2
p = w′V w, respectively. Lemma 4 presents the formulae for the first

and second moments of the truncated portfolio return, R+
p , which is the first step towards finding

the portfolio that minimizes the second moment of its truncated return.

Lemma 4. Suppose that the gross return on a portfolio, Rp, is normally distributed with mean µp

and variance σ2
p. The first and second moments of R+

p are given by

E[R+
p ] = µpΦ(η) + σpφ(η), (14)

E[R+
p

2] = (µ2
p + σ2

p)Φ(η) + µpσpφ(η), (15)

where η = µp/σp, φ(·) is the density function of the standard normal distribution and Φ(·) is the

cumulative standard normal distribution function.

10Cecchetti, Lam, and Mark (1992) also study the constrained HJ-bound under the normality assumption. However,
their analysis does not lead to a closed-form solution for the constrained HJ-bound. In addition to the multivariate
normality case, we also obtain an analytical solution for the constrained HJ-bound under a multivariate elliptical
distribution assumption. The results of this analysis are available from the authors upon request.
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In addition to Lemma 4, we need the following lemma to find the portfolio that minimizes the

second moment of its truncated return.

Lemma 5. Let g(u) = u + φ(u)/Φ(u). We have (1) g(u) is a positive and strictly increasing

function of u, and (2) limu→−∞ g(u) = 0 and limu→∞ g(u) = ∞. It follows that g(u) = c has a

unique solution for c > 0.

Using the results in Lemma 4 and Lemma 5, we present the explicit solution to the constrained

HJ-bound problem in Proposition 1.

Proposition 1. Suppose that R ∼ N(µ, V ). Let η∗ be the unique solution to

g(η) =
1

θ0
, (16)

where θ0 is defined in (5). Then, the portfolio that minimizes the second moment of its truncated

return has the following weights in the N risky assets:

w∗ = − R0

θ0(η∗ + θ0)
V −1 (µ−R01N ) . (17)

In addition, the constrained HJ-bound is given by

Var[mc] =
θ0(η∗ + θ0)

R2
0Φ(η∗)

− 1

R2
0

=
σ0(η∗µm + σ0)

Φ(η∗)
− µ2

m ≡ σ2
c , (18)

where µm = 1/R0 and σ2
0 is the unconstrained HJ-bound defined in (8).

By examining (17), we can see that under the normality assumption, the portfolio that minimizes

the second moment of its truncated return, just like the minimum second moment portfolio in (4),

is a linear combination of the tangency portfolio and the risk-free asset. From (16), we know

1

θ0
= η∗ +

φ(η∗)

Φ(η∗)
> η∗, (19)

and we have

0 < θ0(η∗ + θ0) < 1 + θ2
0. (20)

Consequently, the portfolio with minimum second moment of truncated returns in (17) involves

short-selling more of the tangency portfolio than the minimum second moment portfolio in (4).

With the nonnegativity constraint, σ2
c is naturally greater than σ2

0. From (16), we can see that η∗

11



is a monotonically decreasing function of θ0. Therefore, for a given R0, the constrained HJ-bound

σ2
c is uniquely determined by θ0, the Sharpe ratio of the tangency portfolio. The following lemma

further shows that σ2
c is a monotonically increasing function of θ0. In addition, it shows that the

difference between the constrained and unconstrained HJ-bounds is also a monotonically increasing

function of θ0.

Lemma 6. For a given R0, σ2
c is a strictly increasing function of θ0. In addition, let

h(θ0) = σ2
c − σ2

0, h̃(θ0) =
σ2
c

σ2
0

− 1. (21)

We have (1) h(θ0) and h̃(θ0) are positive and strictly increasing functions of θ0, (2) limθ0→0 h(θ0) =

limθ0→0 h̃(θ0) = 0, and (3) limθ0→∞ h(θ0) = limθ0→∞ h̃(θ0) =∞.

Lemma 6 suggests that when the Sharpe ratio of the tangency portfolio is small, the constrained and

unconstrained HJ-bounds will be very close to each other. It is only when the tangency portfolio has

a large Sharpe ratio that we can expect some meaningful differences between the two HJ-bounds.

Note that the Sharpe ratio of the tangency portfolio is an increasing function of the number of

test assets and of the return horizon. Therefore, we should expect a bigger difference between the

unconstrained and constrained HJ-bounds when more test assets are employed or when the return

horizon is long.

Proposition 1 provides a useful characterization of the portfolio q∗ with minimum second mo-

ment of truncated returns and allows us to better understand the relation between the Sharpe ratio

of q∗ and the constrained HJ-bound in Lemma 3. In Figure 4, we provide a graphical illustration

of this relation in the (σ+
p , µ

+
p ) space under the assumption that the returns have a multivariate

normal distribution. When the risk-free rate is R0, the two curves emanating from the point (0, R0)

represent the minimum/maximum variance frontier of the truncated portfolio returns. It can be

readily shown that just like the mean-variance frontier of the returns, the mean-variance frontier

of the truncated returns is a linear combination of the risk-free asset and the tangency portfolio,

so that we can easily trace out the frontier by altering the weight in the risk-free asset. However,

there are two major differences between the mean-variance frontier of the returns and the mean-

variance frontier of the truncated returns. The first one is that the mean-variance frontier of the

truncated returns is not represented by two straight lines as it is the case for the mean-variance

12



frontier of the returns. When the weight of the risk-free asset in a portfolio is close to one (i.e.,

near the point (0, R0)), the gross return on the portfolio has a very small probability of assuming

a negative value, and the mean-variance frontier of the truncated returns is almost identical to

the mean-variance frontier of the returns. When the portfolio has significant positive or negative

weights in the tangency portfolio, then the mean and standard deviation of the truncated portfolio

return can differ significantly from the mean and standard deviation of the portfolio return. The

second difference is that the mean of the truncated portfolio return has a lower bound, so the lower

curve does not continue to go down and instead turns around after reaching a minimum.11 Once

it turns around, the curve becomes the maximum variance frontier of the truncated returns rather

than the minimum variance frontier of the truncated returns. The turnaround occurs because the

probability of getting both large positive and negative returns increases with more short-selling of

the tangency portfolio. Beyond a certain point, more short-selling of the tangency portfolio can

actually increase the expected truncated portfolio return, since the negative returns are dropped in

the calculation of the mean of the truncated portfolio return. Since E[(R+
p )2] = (µ+

p )2 + (σ+
p )2, the

portfolio with minimum second moment of truncated returns has the shortest distance from the

origin. To locate q∗, we draw a circle with its center at the origin, and the location of q∗ can be ob-

tained from the point where the circle is tangent to the minimum variance frontier of the truncated

portfolio returns. Note that the absolute value of the Sharpe ratio of q∗ as well as σ+
q∗/µ

+
q∗ are both

equal to θc. Suppose that we draw a solid line joining the origin and q∗ and a horizontal dotted line

at the level of 1/R0 = µm. Then, the intersection point of these two lines has a horizontal distance

of µmθc = σc from the y-axis. Therefore, this distance gives us the constrained HJ-bound on the

standard deviation of nonnegative admissible SDFs.

Figure 4 about here

3. Sample Hansen-Jagannathan Bounds

Since the population HJ-bounds are unobservable, we need to estimate them using realized returns.

Suppose that we have a time series of gross returns on the N risky assets, Rt, t = 1, . . . , T . The

11Let u∗ be the solution to the equation φ(u)/Φ(u) = θ0. It can be shown that minw µ
+
p = R0Φ(u∗).
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mean and covariance matrix of Rt can be estimated using the sample quantities

µ̂ =
1

T

T∑
t=1

Rt, (22)

V̂ =
1

T

T∑
t=1

(Rt − µ̂)(Rt − µ̂)′. (23)

To estimate the unconstrained HJ-bound for a given value of µm = 1/R0, researchers typically use

the sample counterpart of (8)

σ̂2
0 = âµ2

m − 2b̂µm + ĉ, (24)

where â, b̂, and ĉ are given by

â = µ̂′V̂ −1µ̂, b̂ = 1′N V̂
−1µ̂, ĉ = 1′N V̂

−11N . (25)

For the constrained HJ-bound, Hansen, Heaton, and Luttmer (1995) suggest an estimator of σ2
c that

can be obtained in two steps. We first estimate E[R+
q∗

2]. This can be accomplished by computing

the sample counterpart of (10)

λ̂ = min
w

1

T

T∑
t=1

max[0, R0 + w′(Rt −R01N )]2, (26)

where R0 = 1/µm. From property (3) of Lemma 2, we know that E[m2
c ] = 1/E[R+

q∗
2]. Therefore,

using λ̂ as an estimator of E[R+
q∗

2], we can estimate σ2
c using

σ̂2
c =

1

λ̂
− µ2

m. (27)

We call σ̂2
c the nonparametric estimator of σ2

c because it does not require any knowledge of the

joint distribution of the returns.

Note that in computing σ̂2
c , we need to solve for w∗ in (26) numerically. Without a good initial

estimate, numerical minimization can be time consuming and can also give us a local minimum

rather than a global minimum. Based on our experience, the sample counterpart of (17) often

provides a good initial estimate of w∗ and leads to fast convergence of the numerical minimization

problem.

When returns are multivariate normally distributed, we propose an estimator of σ2
c that is

simpler to compute and is more efficient than σ̂2
c . Following Proposition 1, we let η̂∗ be the unique

solution to

g(η) =
µm
σ̂0
, (28)
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where σ̂2
0 is the sample unconstrained HJ-bound defined in (24). Using η̂∗, we compute the maxi-

mum likelihood estimator of σ2
c as

σ̃2
c =

σ̂0(η̂∗µm + σ̂0)

Φ(η̂∗)
− µ2

m. (29)

Unlike the nonparametric estimator σ̂2
c , which requires solving an N -dimensional minimization

problem, the maximum likelihood estimator σ̃2
c requires solving only one nonlinear equation. As a

result, σ̃2
c is significantly easier to obtain than σ̂2

c . In addition, there is only one solution to (28),

so we do not need to worry about getting a local minimum.

When returns are normally distributed, σ̃2
c is asymptotically more efficient than σ̂2

c . The reason

is that we only need to estimate µ and V to obtain σ̃2
c . In contrast, σ̂2

c requires us to estimate the

joint distribution of the returns and this estimator can be very volatile. When returns are close

to but not exactly normally distributed, we may still prefer to use σ̃2
c instead of σ̂2

c because the

latter can be very noisy. The finite-sample performance of these two estimators under normal and

nonnormal distributions will be studied in Section 4.

3.1. Asymptotic Distributions

Traditionally, statistical inferences on the HJ-bounds are based on the asymptotic distributions of

the sample HJ-bounds. In this section, we briefly review the existing asymptotic results on the

sample unconstrained and constrained HJ-bounds. We then specialize the asymptotic results to

the case where returns are multivariate normally distributed, under which we can derive analytical

expressions for the asymptotic variances of the sample unconstrained and constrained HJ-bounds.

The results under normality will be used in the next section, where we investigate how well the

asymptotic distributions of these estimators approximate their finite-sample distributions.

Under the assumptions that returns are jointly stationary and ergodic, and their fourth moments

exist, Hansen, Heaton, and Luttmer (1995, Proposition 2.1) provide the asymptotic distributions

of σ̂2
0 and σ̂2

c . Define m0,t and mc,t as the realizations of m0 and mc at time t

m0,t =
1− (µ−R01N )′V −1(Rt − µ)

R0
= µm − (µmµ− 1N )′V −1(Rt − µ), (30)

mc,t =
R+
q∗,t

‖R+
q∗,t‖2

. (31)
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With some simplifications, the asymptotic results of Hansen, Heaton, and Luttmer (1995) can be

written as

√
T (σ̂2

0 − σ2
0)

A∼ N(0, v0), (32)
√
T (σ̂2

c − σ2
c )

A∼ N(0, vc), (33)

where v0 =
∑∞

j=−∞E[φ0,tφ0,t+j ] and vc =
∑∞

j=−∞E[φc,tφc,t+j ], and

φ0,t = m2
0,t − µ2

m − σ2
0, (34)

φc,t = m2
c,t − µ2

m − σ2
c . (35)

To obtain a consistent estimator of v0, we can replace φ0,t with

φ̂0,t = m̂2
0,t − µ2

m − σ̂2
0, (36)

where

m̂0,t =
1− (µ̂−R01N )′V̂ −1(Rt − µ̂)

R0
= µm − (µmµ̂− 1N )′V̂ −1(Rt − µ̂) (37)

is the estimate of the minimum-variance SDF. Similarly, we can construct a consistent estimator

of vc by replacing φc,t with

φ̂c,t = m̂2
c,t − µ2

m − σ̂2
c , (38)

where

m̂c,t =
R+
q̂∗,t

1
T

∑T
t=1(R+

q̂∗,t)
2

=
R+
q̂∗,t

R0
1
T

∑T
t=1R

+
q̂∗,t

, (39)

and R+
q̂∗,t is the gross return on the portfolio with sample minimum second moment of truncated

returns at time t.12 When returns are i.i.d. multivariate normally distributed, we can derive ana-

lytical expressions of the asymptotic variances of σ̂2
0 and σ̂2

c . In addition, we can also derive the

asymptotic distribution of the maximum likelihood estimator of σ2
c . These asymptotic results are

summarized in the following lemma.

12The last equality in (39) follows from the fact that the first order condition of the minimization problem is
1
T

∑T
t=1R

+
q̂∗,t(Rt −R01N ) = 0N , which implies that

1

T

T∑
t=1

(R+
q̂∗,t)

2 =
1

T

T∑
t=1

R+
q̂∗,tRq̂∗,t =

1

T

T∑
t=1

R+
q̂∗,t[R0 + w∗′(Rt −R01N )] = R0

1

T

T∑
t=1

R+
q̂∗,t. (40)
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Lemma 7. Suppose that Rt, t = 1, . . . , T , are i.i.d. multivariate normally distributed. Then, the

asymptotic distributions of σ̂2
0, σ̂2

c , and σ̃2
c are given by

√
T (σ̂2

0 − σ2
0)

A∼ N
(

0,
2θ2

0(2 + θ2
0)

R4
0

)
, (41)

√
T (σ̂2

c − σ2
c )

A∼ N
(

0,
θ3

0[θ0(η∗2 + 3) + η∗(η∗2 + 5)]

R4
0Φ(η∗)3

− θ2
0(η∗ + θ0)2

R4
0Φ(η∗)2

)
, (42)

√
T (σ̃2

c − σ2
c )

A∼ N
(

0,
2θ2

0(2 + θ2
0)

R4
0Φ(η∗)2

)
, (43)

where θ2
0 is defined in (5) and η∗ is defined in Proposition 1. In addition, Avar[σ̂2

c ] ≥ Avar[σ̃2
c ].

Since η∗ is uniquely determined by θ0 (the absolute value of the Sharpe ratio of the tangency

portfolio of the risky assets), the asymptotic distributions of σ̂2
0, σ̂2

c , and σ̃2
c in Lemma 7 only

depend on R0 and θ0. In particular, these asymptotic distributions do not depend on N , the

number of risky assets. This is in sharp contrast with our results in the next section which show

that N plays a crucial role in determining the finite-sample distributions of σ̂2
0, σ̂2

c , and σ̃2
c .

4. Finite-Sample Distributions of the Sample Hansen-Jagannathan
Bounds

While the asymptotic distributions of the sample HJ-bounds are simple and easy to compute, they

may not be reliable in finite samples. In this section, we present the finite-sample distributions of

σ̂2
0 and σ̃2

c under the normality assumption. For σ̂2
c , we cannot provide a simple expression of its

finite-sample distribution. Nevertheless, we are able to show that the finite-sample distribution of

σ̂2
c only depends on a single parameter. As a result, we are able to present a simple simulation

approach to efficiently approximate the finite-sample distribution of σ̂2
c .

Before analyzing the finite-sample distributions of the sample HJ-bounds, we first present the

finite-sample distribution and moments of the sample squared Sharpe ratio of the tangency portfolio

θ̂2
0 = (µ̂−R01N )′V̂ −1(µ̂−R01N ) (44)

in the following proposition. The distribution of θ̂2
0 can be easily obtained by using Theorem 3.2.12

of Muirhead (1982). It can also be obtained as a special case of the distribution of the Gibbons,

Ross, and Shanken (1989) test when the number of factor mimicking portfolios is equal to zero.
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Proposition 2. Under the i.i.d. multivariate normality assumption on Rt, the distribution of the

sample squared Sharpe ratio of the tangency portfolio is proportional to a noncentral F -distribution

θ̂2
0 ∼

(
N

T −N

)
FN,T−N (Tθ2

0), (45)

where Fm,n(δ) denotes a noncentral F random variable with m and n degrees of freedom, and

noncentrality parameter δ. The r-th moment of θ̂0 exists if and only if −N < r < T −N . When

−N < r < T −N , we have

E[θ̂r0] =
Γ
(
N+r

2

)
Γ
(
T−N−r

2

)
Γ
(
N
2

)
Γ
(
T−N

2

) 1F1

(
−r

2
;
N

2
;−Tθ

2
0

2

)
, (46)

where Γ(x) is the gamma function and 1F1(a; b;x) is the confluent hypergeometric function. When

r/2 is a nonnegative integer, we have

E[θ̂r0] =

(
N
2

)
r/2(

T−N−r
2

)
r/2

r/2∑
i=0

(
r/2
i

)(
Tθ20

2

)i
(
N
2

)
i

, (47)

where (n)r = n(n+ 1) · · · (n+ r − 1) and (n)0 = 1.

4.1. Sample Unconstrained Hansen-Jagannathan Bound

Since σ̂2
0 = θ̂2

0/R
2
0 is a linear transformation of θ̂2

0, we can easily use the result in Proposition 2 to

compute the finite-sample distribution of σ̂2
0 as

P [σ̂2
0 < v] = P [θ̂2

0 < R2
0v] = FN,T−N,Tθ20

(
(T −N)R2

0v

N

)
, (48)

where Fm,n,δ(x) is the noncentral F cumulative distribution function with m and n degrees of

freedom, and noncentrality parameter δ.

In Figure 5, we plot the exact distribution of σ̂0 as a function of T for some representative

values of θ0 (0.2 and 0.4) and N (5 and 25). In each case, we assume R0 = 1.005 and plot the

population value of σ0 using a horizontal solid line.13 We then plot the 1st, 5th, 50th, 95th, and

99th percentiles of σ̂0 as functions of T . By comparing the four graphs in Figure 5, we can obtain

a good understanding of how the finite-sample distribution of σ̂0 varies with θ0, N , and T . In

general, we see that the σ̂0 is not symmetrically distributed around σ0. The distribution of σ̂0 gets

13Note that θ0 of 0.2 and 0.4 cover a reasonably wide range of Sharpe ratios observed in monthly data. In addition,
an R0 of 1.005 seems sensible since it corresponds to an annual net return on the risk-free asset of about 6%.
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tighter as T increases but even for T as large as 600, there is still substantial volatility in σ̂0. By

comparing the two upper panels (θ0 = 0.2) with the two lower panels (θ0 = 0.4) in Figure 5, we see

that σ̂0 is more volatile for higher θ0 but that the distribution of σ̂0 is more symmetric for higher

θ0. By comparing the two left panels (N = 5) with the two right panels (N = 25) in Figure 5, we

can see that an increase in N significantly increases the volatility of σ̂0 and drives the distribution

of σ̂0 further away from σ0. When θ0 = 0.2 and N = 25, we notice that even for T = 600, the 1st

percentile of σ̂0 is higher than the true σ0, indicating that σ̂0 provides a very poor estimate of σ0.

Figure 5 about here

The plots in Figure 5 suggest that there can be a significant upward bias in the distribution of σ̂0

especially when N is large. The underlying reason is that the sample tangency portfolio represents

the outcome of an optimization problem that uses the sample mean and covariance matrix of the

returns. Since the optimizer tends to put heavy weights on assets with high average returns (but

not necessarily high expected returns), the Sharpe ratio of the sample tangency portfolio (θ̂0) tends

to be considerably higher than the true θ0, especially when the number of assets is large.

Using the exact moments of θ̂0 in (47), we can obtain the exact mean and variance of the sample

unconstrained HJ-bound σ̂2
0 as14

E[σ̂2
0] =

N + Tθ2
0

(T −N − 2)R2
0

if T −N > 2, (50)

Var[σ̂2
0] =

2[(N + Tθ2
0)2 + (N + 2Tθ2

0)(T −N − 2)]

(T −N − 2)2(T −N − 4)R4
0

if T −N > 4. (51)

Therefore, the ratios of the asymptotic mean and variance to the exact mean and variance of σ̂2
0

are given by

σ2
0

E[σ̂2
0]

=
(T −N − 2)θ2

0

N + Tθ2
0

, (52)

Avar[σ̂2
0]

Var[σ̂2
0]

=
(T −N − 2)2(T −N − 4)θ2

0(2 + θ2
0)

T [(N + Tθ2
0)2 + (N + 2Tθ2

0)(T −N − 2)]
. (53)

14Using the mean of σ̂2
0 , we can easily derive an unbiased estimator of σ2

0 as suggested by Ferson and Siegel (2003):

σ̂2
0u =

(
T −N − 2

T

)
σ̂2
0 − N

T
µ2
m. (49)
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These two ratios are only functions of N , T , and θ0. It is easy to show that both ratios are less than

one, indicating that the exact distribution of σ̂2
0 has a higher mean than σ2

0 and that σ̂2
0 is more

volatile than what is suggested by the variance of its asymptotic distribution. In Figure 6, we plot

the ratios σ2
0/E[σ̂2

0] and Avar[σ̂2
0]/Var[σ̂2

0] as functions of T for four different choices of number of

assets (N = 2, 5, 10, and 25). The top two panels present the plots for the case in which θ0 = 0.2

and the bottom two panels present the plots for the case in which θ0 = 0.4. As expected, Figure 6

shows that the asymptotic distribution of σ̂2
0 provides a better approximation to the finite-sample

distribution of σ̂2
0 when T increases. Comparing the upper panels with the lower panels in Figure 6,

we also find that the asymptotic distribution of σ̂2
0 is more accurate when θ0 is higher. Finally,

the quality of the approximation of the asymptotic distribution significantly deteriorates with an

increase in N . When N = 25, the asymptotic distribution of σ̂2
0 provides a poor approximation to

the exact distribution of σ̂2
0 even for T as large as 600.

Figure 6 about here

4.2. Maximum Likelihood Estimator of the Constrained Hansen-Jagannathan
Bound

While the maximum likelihood estimator of the constrained HJ-bound, σ̃2
c , looks complicated, it is

actually just a monotonic transformation of θ̂2
0. To see this, we can rewrite σ̃2

c in (29) as

σ̃2
c =

1

R2
0

[
θ̂0(η̂∗ + θ̂0)

Φ(η̂∗)
− 1

]
, (54)

where η̂∗ is the solution to g(η) = 1/θ̂0. Using the same proof as in Lemma 6, we can show that

σ̃2
c is a monotonically increasing function of θ̂2

0. Denoting the monotonic relation between σ̃2
c and

θ̂2
0 by

σ̃2
c = f(θ̂2

0), θ̂2
0 = f−1(σ̃2

c ), (55)

we can again use Proposition 2 and obtain the finite-sample distribution of σ̃2
c as

P [σ̃2
c < v] = P [f−1(σ̃2

c ) < f−1(v)] = FN,T−N,Tθ20

(
(T −N)f−1(v)

N

)
. (56)

The only difference is that in this case we need to numerically compute f−1(v). Since f(x) is a

monotonically increasing function of x, solving for f−1(v) is fast and numerically stable.

20



In Figure 7, we plot the exact distribution of σ̃c as a function of T for some representative

values of θ0 (0.2 and 0.4) and N (5 and 25). In each case, we assume R0 = 1.005 and plot the

population value of σc using a horizontal solid line. We then plot the 1st, 5th, 50th, 95th, and 99th

percentiles of σ̃c as functions of T . Since σ̃c is a monotonic transformation of σ̂0, the distributions

of σ̃c in Figure 7 are quite similar to the distributions of σ̂0 in Figure 5. Using a proof similar

to the one of Lemma 6, we can show that the difference between σ̃c and σ̂0 is large only when σ̂0

is large. As a result, the lower percentiles of σ̃c and σ̂0 are almost identical. However, the 95th

and 99th percentiles of σ̃c are significantly larger than those of σ̂0, especially when N and θ0 are

large. Despite the difference in the right tails of the distributions of σ̃c and σ̂0, the general pattern

that we observe in the distribution of σ̂0 continues to hold for the distribution of σ̃c. Namely, the

distribution of σ̃c has a significant positive bias, and this bias becomes more severe when N is large

and T is small. Similar to the σ̂0 case, the percentage bias of σ̃c is larger for smaller θ0.

Figure 7 about here

In Figure 8, we plot the ratios σ2
c/E[σ̃2

c ] and Avar[σ̃2
c ]/Var[σ̃2

c ] as functions of T for four different

choices of number of assets (N = 2, 5, 10, and 25). The top two panels present the plots for the

case of θ0 = 0.2 and the bottom two panels are for the case of θ0 = 0.4. Although we can compute

the exact distribution of σ̃c, it is not easy to obtain simple expressions for the finite-sample mean

and variance of σ̃2
c . Therefore, we use the sample mean and variance of 100,000 simulations of σ̃2

c

to approximate E[σ̃2
c ] and Var[σ̃2

c ].

Figure 8 about here

The plots in Figure 8 are very similar to the plots in Figure 6. They show that the asymptotic

distribution of σ̃2
c does not always provide a good approximation to the finite-sample distribution

of σ̃2
c . The quality of the approximation improves with larger T , larger θ2

0, and smaller N . When

N = 25, the asymptotic distribution of σ̃2
c is unreliable even for T as large as 600.

Since σ̃2
c can be a heavily biased estimator of σ2

c , it is desirable to obtain an approximate

unbiased estimator of σ2
c . Let σ2

c = f(θ2
0) and σ̃2

c = f(θ̂2
0). Using a first-order Taylor series

expansion and the fact that ∂σ2
c/∂θ

2
0 = 1/[R2

0Φ(η∗)], we have

σ̃2
c = f(θ̂2

0) ≈ f(θ2
0) + f ′(θ2

0)(θ̂2
0 − θ2

0) = σ2
c +

1

R2
0Φ(η∗)

(θ̂2
0 − θ2

0). (57)
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Taking the expectation of both sides, we obtain

E[σ̃2
c ] ≈ σ2

c +
1

R2
0Φ(η∗)

(E[θ̂2
0]− θ2

0) = σ2
c +

N + (N + 2)θ2
0

(T −N − 2)R2
0Φ(η∗)

. (58)

Therefore, we can replace θ2
0 and η∗ with their sample counterparts and use

σ̃2
c −

N + (N + 2)θ̂2
0

(T −N − 2)R2
0Φ(η̂∗)

(59)

as an approximate unbiased estimator of σ2
c . However, θ̂2

0 can be a heavily upward biased estimator

of θ2
0, especially when N is large. As a result, the above estimator tends to over-adjust and it can

be biased downward when N is large. Another problem with the above estimator is that it can be

negative. To correct for these two problems, we propose the use of

σ̃2
cu = max

[
0, σ̃2

c −
N + (N + 2)θ̂2

0u

(T −N − 2)R2
0Φ(η̂∗u)

]
(60)

as an adjusted estimator of σ2
c , where

θ̂2
0u = max

[
0,

(
T −N − 2

T

)
θ̂2

0 −
N

T

]
(61)

and η̂∗u is the solution to

u+
φ(u)

Φ(u)
=

1

θ̂0u

. (62)

In Figure 9, we plot the exact distribution of σ̃cu as a function of T for some representative values

of θ0 (0.2 and 0.4) and N (5 and 25). In each case, we assume that R0 = 1.005 and plot the

population value of σc using a horizontal solid line. We then plot the 1st, 5th, 50th, 95th, and

99th percentiles of σ̃cu as functions of T . By comparing Figure 9 with Figure 7, we observe that

σ̃cu is much better behaved than σ̃c. For example, the four plots in Figure 9 show that the 50th

percentile of σ̃cu is very close to σc, while the 50th percentile of the unadjusted σ̃c in Figure 7 is

significantly higher than σc, even for T as large as 600. Overall, the distribution of σ̃cu tends to be

more symmetric and less volatile than the distribution of σ̃c.

Figure 9 about here

Using 100,000 simulations of σ̃2
cu, we estimate E[σ̃2

cu] and Var[σ̃2
cu] and plot the ratios σ2

c/E[σ̃2
cu]

and Avar[σ̃2
cu]/Var[σ̃2

cu] as functions of T for four different choices of number of assets (N = 2, 5,

10, and 25) in Figure 10. The top two panels present the plots for the case of θ0 = 0.2 and the

22



bottom two panels are for the case of θ0 = 0.4. The plots of the ratios of the asymptotic mean

to the finite mean in Figure 10 are substantially different from the ones in Figure 8. They show

that σ̃2
cu is close to being an unbiased estimator of σ2

c , except for when N = 25 and T is very

small. Although the asymptotic variance of σ̃2
cu is still substantially lower than the finite-sample

variance of σ̃2
cu, the ratio is closer to one after the bias adjustment. This suggests that σ̃2

cu is not

only effective in removing the bias of σ̃2
c , but is also less volatile than σ̃2

c . Therefore, we consider

σ̃2
cu to be a superior estimator of the constrained HJ-bound than σ̃2

c .

Figure 10 about here

4.3. Nonparametric Estimator of the Constrained Hansen-Jagannathan Bound

The last estimator that we consider is the nonparametric estimator of the constrained HJ-bound,

σ̂2
c . Although we cannot obtain the exact distribution of σ̂2

c , we show in the following proposition

that the distribution of σ̂2
c only depends on θ0.

Proposition 3. Under the i.i.d. multivariate normality assumption on Rt, the distribution of σ̂2
c

coincides with the distribution of
1

R2
0

(
1

λ̃
− 1

)
, (63)

where

λ̃ = min
w̃

1

T

T∑
t=1

max[0, 1 + w̃′zt]
2, (64)

and zt ∼ N([θ0, 0′N−1]′, IN ).

Proposition 3 provides us with an efficient way of simulating σ̂2
c . It suggests that one only needs

to simulate zt (whose distribution only depends on θ0) for t = 1, . . . , T to obtain a draw of σ̂2
c .

Based on 100,000 simulations, we plot the exact distribution of σ̂c as a function of T for some

representative values of θ0 (0.2 and 0.4) and N (5 and 25) in Figure 11. In each case, we assume

that R0 = 1.005 and plot the population value of σc using a horizontal solid line. We then plot

the 1st, 5th, 50th, 95th, and 99th percentiles of σ̂c as functions of T . By comparing Figure 7

with Figure 11, we can see that the nonparametric estimator σ̂c tends to be more volatile than the

maximum likelihood estimator σ̃c. This is particularly the case when N = 25 and T ≤ 120, where

we find that σ̂c can often be very large. Note that σ̂c is inversely related to λ̂ in (26), which is
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a nonparametric estimator of E[R+
q∗

2]. However, when N is large and T is small, there is a high

probability that we can find a portfolio that has negative gross return in almost every period in

the sample. When this occurs, we have λ̂ ≈ 0 and this results in a very large value of σ̂c.

Figure 11 about here

The very fat right tail of σ̂2
c renders the asymptotic distribution of σ̂2

c grossly inappropriate for

approximating the finite-sample distribution of σ̂2
c , especially when N is large and T is small. In

fact, we are able to establish that P [λ̂ = 0] > 0 so that P [σ̂2
c =∞] > 0, which in turn implies the

nonexistence of moments for σ̂2
c .

15 To show this, we note that for any nonzero N -vector w0, we

have

P [λ̂ = 0] = P

[
min
w

T∑
t=1

max[0, R0 + w′(Rt −R01N )]2 = 0

]

≥ P

[
T∑
t=1

max[0, R0 + w′0(Rt −R01N )]2 = 0

]

=
T∏
t=1

P [R0 + w′0(Rt −R01N ) ≤ 0]

= Φ

(
−µp
σp

)T
, (65)

where µp = R0 +w′0(µ−R01N ) and σ2
p = w′0V w0. The second to last equality in the above equation

follows from the independence property of Rt. While P [λ̂ = 0] goes to zero as T increases, it remains

nonzero for any finite T . As a result, the moments of σ̂2
c do not exist and we can no longer study

the finite-sample mean and variance of σ̂2
c as we do for σ̃2

c . Note that the result that σ̂2
c does not

have any finite moment is quite general and is not limited to the normality case. For any joint

distribution of Rt, if there exists a nonzero N -vector w0 such that P [R0 +w′0(Rt−R01N ) ≤ 0] > 0,

then we have P [λ̂ = 0] > 0 and the moments of σ̂2
c do not exist.

4.4. Confidence Intervals

From the results in the previous subsections, we find that all the sample HJ-bounds are quite

volatile and have a serious bias, especially when N is large and T is small. This problem is

15Burnside (1994) notes that λ̂ can be equal to zero for some values of R0. In his simulations, he also finds that
such an event occurs quite frequently.
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particularly serious in the case of the nonparametric estimator of the constrained HJ-bound because

this estimator does not even have finite moments. Given the high volatility of the sample HJ-

bounds, it is unwise to rely solely on the point estimator of the HJ-bound to make inferences. It

would be ideal to have an interval estimator of the HJ-bounds to improve our understanding of

where the true HJ-bounds may fall.

As it turns out, constructing confidence intervals for σ2
0 and σ2

c is the same as constructing a

confidence interval for θ2
0. Suppose that we can find a pair (θ2

0, θ̄
2
0) to form a 100(1−α)% confidence

interval for θ2
0, i.e.,

P [θ2
0 ≤ θ2

0 ≤ θ̄2
0] = 1− α. (66)

Then, using the fact that σ2
0 and σ2

c are monotonically increasing transformations of θ2
0, we can

obtain the confidence interval for σ2
0 as (θ2

0/R
2
0, θ̄

2
0/R

2
0) and the confidence interval for σ2

c as

(f(θ2
0), f(θ̄2

0)), where f is a function such that f(θ2
0) = σ2

c .

From Proposition 2, we know that the finite-sample distribution of θ̂2
0 is proportional to a

noncentral F -distribution with noncentrality parameter Tθ2
0. Since the noncentral F -distribution

is decreasing in its noncentrality parameter, we can use the statistical method (see, for example,

Casella and Berger (1990, Section 9.2.3)) to construct a confidence interval for θ2
0.16 Using this

methodology, we first plot the 100(α/2) and 100(1 − α/2) percentiles of the distribution of θ̂2
0 for

different values of θ2
0. We then draw a horizontal line at the observed value of θ̂2

0. This horizontal

line will first intersect the 100(1− α/2) percentile line and then the 100(α/2) percentile line of θ̂2
0.

The interval between these two intersection points gives us a 100(1 − α)% confidence interval for

θ2
0. Mathematically, θ̄2

0 and θ2
0 are implicitly determined by

FN,T−N,θ̄20
(x) =

α

2
, (67)

FN,T−N,θ20
(x) = 1− α

2
, (68)

where x = (T − N)θ̂2
0/N , δ̄ = T σ̄2

0/µ
2
m, and δ = Tσ2

0/µ
2
m. Note that since FN,T−N,δ(x) is de-

creasing in the noncentrality parameter δ, (68) will not have a nonnegative solution for θ2
0 when

FN,T−N,0(x) < 1 − α/2. In this case, we set θ2
0 = 0. Similarly, if FN,T−N,0(x) < α/2, we cannot

find a nonnegative solution for θ̄2
0, and we set θ̄2

0 = 0.17

16Lewellen, Nagel, and Shanken (2010) also use the statistical method to construct the confidence interval for the
unexplained squared Sharpe ratio of an asset-pricing model.

17A Matlab program for computing the confidence intervals for σ2
0 and σ2

c is available upon request.
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Using the monthly excess returns (in excess of the one-month T-bill rate) on the 25 Fama-

French size and book-to-market ranked portfolios (from Kenneth French’s website) over the period

1931/7–2014/10, the sample squared Sharpe ratio of the tangency portfolio is 0.0943 and the 95%

confidence interval for the squared Sharpe ratio is (0.0361, 0.1081). Similar to the two HJ-bounds,

the confidence interval for the squared Sharpe ratio is quite wide even for T = 1000, indicating

that there is substantial uncertainty about the value of the squared Sharpe ratio of the tangency

portfolio.

4.5. Effects of Nonnormality and Conditional Heteroskedasticity

The distributional results on the sample HJ-bounds in this paper are derived under the assump-

tion of i.i.d. multivariate normality. While we certainly do not think that returns are exactly

i.i.d. normal, we view the normality assumption as a good working approximation for monthly and

annual returns, which are used in most of the applications of the HJ-bounds. Nevertheless, we

are interested in understanding how robust our results are to departures from the i.i.d. normality

assumption. In particular, we are interested in return distributions with fat tails because the re-

turns on financial assets often exhibit a leptokurtic behavior. We therefore study two alternative

return distributions that exhibit leptokurtic behavior: (1) the case where returns are multivariate

t-distributed; and (2) the case where returns exhibit conditional heteroskedasticity of a GARCH

type as in Bollerslev (1986).

4.5.1. Nonnormality

In this experiment, we study the case where returns are multivariate t-distributed with five degrees

of freedom. With the choice of five degrees of freedom, the t-distribution exhibits extreme fat tails

and potentially presents a serious challenge to our finite-sample results that are derived under the

normality assumption. Since we cannot derive the finite-sample distributions of σ̂2
0 and σ̃2

c under the

multivariate t-distribution assumption, we have to rely on simulation. Using 100,000 simulations,

we find that the distribution of θ̂2
0 under the t-distribution assumption has a slightly fatter right

tail than under the normality assumption. However, the noncentral F -distribution remains a very

good approximation of the exact distribution of θ̂2
0. To demonstrate this, in Figure 12 we present

the coverage probabilities of the 90%, 95%, and 99% confidence intervals for σ2
0 (which are exact
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under the normality assumption) when returns are multivariate t-distributed with five degrees of

freedom. We plot the probability of coverage of the three confidence intervals as a function of T for

some representative values of θ0 (0.2 and 0.4) and N (5 and 25). The plots show that the actual

probabilities of coverage are quite close to the confidence levels. For the 99% confidence intervals,

the coverage probability is almost exact. For the 90% and 95% confidence intervals, the coverage

probabilities are almost exact for the case in which θ0 = 0.2 but off by about 1% to 2% for the

case in which θ0 = 0.4. The reason why the coverage probabilities are slightly off when θ0 = 0.4

compared to the case where θ0 = 0.2 can be understood by noticing that V̂ is more volatile under

the t-distribution assumption than under the normality assumption and that the sample squared

Sharpe ratio of the tangency portfolio is given by θ̂2
0 = (µ̂−R01N )′V̂ −1(µ̂−R01N ). Therefore, the

increased volatility of V̂ has a bigger impact on θ̂2
0 when average excess returns are high (i.e., when

θ0 is high) than when average excess returns are low (i.e., when θ0 is low). Consequently for larger

θ0, θ̂2
0 is more volatile under the t-distribution assumption than under the normality assumption

and this leads to a decrease in the coverage probabilities of our confidence intervals.

Figure 12 about here

In Figure 13, we repeat the same exercise for the confidence intervals for σ2
c . One additional

issue emerges when computing the probability of coverage of the confidence intervals for σ2
c : the

population value of σ2
c under the multivariate t-distribution assumption is different from the one

under the multivariate normality assumption. It can be shown (the proof of this result is available

upon request) that for the multivariate t-distribution with ν degrees of freedom, σ2
c is given by

σ2
c =

1

R2
0

[
θ0(θ0 + η∗)

Φν−2(η∗)
− 1

]
, (69)

where Φν−2(·) is the cumulative distribution function of a standard t-distribution with ν−2 degrees

of freedom, and η∗ is the solution to

ηΦν

((
ν
ν−2

) 1
2
η

)
+ φν−2(η)

Φν−2(η)
=

1

θ0
, (70)

where φν−2(·) is the density function of a standard t-distribution with ν − 2 degrees of freedom.

When θ0 = 0.2, σc is almost identical under the normality and the t-distribution assumptions.
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When θ0 = 0.4, σc = 0.3983 under the normality assumption but it increases to 0.4024 under the

t-distribution assumption with five degrees of freedom.

Since there is only a small difference in the population value of σ2
c under the two distributional

assumptions, Figure 13 shows that the probabilities of coverage of the confidence intervals for σ2
c

are quite close to the confidence levels even when returns are multivariate t-distributed. When T

increases, we can see a small decrease in the probability of coverage for the case in which θ0 = 0.4

(due to the fact that our confidence intervals are designed to cover a slightly different σ2
c ), but

the probability of coverage is still quite accurate for T as large as 600. For the 99% confidence

intervals, the coverage probability is almost exact. Similar to the unconstrained case, the coverage

probabilities of the 90% and 95% confidence intervals are almost exact for the case in which θ0 = 0.2

but off by about 1% to 2% for the case in which θ0 = 0.4.

Figure 13 about here

4.5.2. Conditional Heteroskedasticity

In this experiment, we introduce conditional heteroskedasticity in the return data generating pro-

cess and investigate whether the noncentral F -distribution remains a good approximation of the

exact distribution of θ̂2
0. For modeling returns on financial assets, the GARCH(1,1) process pro-

posed by Bollerslev (1986) has become a fairly popular choice in the literature. However, since we

have multiple assets in our framework, we also need to make assumptions on the dynamics of the

correlations of the returns on different pairs of assets. For simplicity, we use Bollerslev’s (1990)

constant correlation multivariate GARCH(1,1) model that assumes that these correlations are con-

stant over time. Instead of assuming that excess returns follow a constant correlation multivariate

GARCH(1,1), we assume that the transformed excess returns, zt = P ′V −
1
2 rt, follow a constant

correlation multivariate GARCH(1,1), where rt is an N × 1 vector of excess returns, and P is an

N × N orthonormal matrix with its first column equal to V −
1
2 (µ − R01N )/θ0. This assumption

is made for convenience because it allows us to generate the time series of each element of the
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transformed returns independently using the univariate GARCH(1,1) process

zit = E[zit] + εt,

εt ∼ N(0, ht),

ht = ωi + αiε
2
t−1 + βiht−1, (71)

where ωi > 0, αi ≥ 0, βi ≥ 0, and αi + βi < 1 for i = 1, . . . , N . Since the unconditional variance

of zit is equal to one, we set ωi = 1 − αi − βi. In addition, we assume E[z1t] = θ0, and E[zit] = 0

for i > 1, so that the returns have the desired unconditional Sharpe ratio of θ0. To simulate zt, we

also need to choose the αi and βi parameters. We calibrate these parameters using the transformed

excess returns on the 25 monthly Fama-French size and book-to-market ranked portfolios (from

Kenneth French’s website) over the post-World War II period (1946/1–2014/10). The average αi

and βi parameter estimates across the 25 assets are 0.093 and 0.822, respectively. We use these

estimated parameters to generate strings of simulated zt. In Figure 14, we present the coverage

probabilities of the 90%, 95%, and 99% confidence intervals for σ2
0 when each of the transformed

return series follows a GARCH(1,1) process. Using 100,000 simulations, we plot the probability of

coverage of the three confidence intervals as a function of T for some representative values of θ0

(0.2 and 0.4) and N (5 and 25). For the N = 5 case, we use only the first five elements of the

simulated zt, while for the N = 25 case we use all the elements of the simulated zt. The plots show

that the actual probabilities of coverage are quite close to the confidence levels. Similar to the

t-distribution case, the coverage probability of the 99% confidence intervals is almost exact, while

the coverage probabilities of the 90% and 95% confidence intervals are almost exact for the case in

which θ0 = 0.2 but off by about 1% to 2% for the case in which θ0 = 0.4.

Figure 14 about here

In Figure 15, we repeat the same exercise for the confidence intervals for σ2
c . Since we cannot

analytically derive the population value of σ2
c under the GARCH(1,1) assumption, we rely on a

large-scale simulation. Similar to Ferson and Siegel (2003), we form artificial samples just like in

the simulations, but with 1,000,000 observations. Then, using the nonparametric estimator of the

constrained HJ-bound, we set the population values of σ2
c equal to the sample values in the artificial

samples with 1,000,000 observations. Based on our parameter values, we have σc = 0.1990 for the
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θ0 = 0.2 case, and σc = 0.3985 for the θ0 = 0.4 case. These population values are very close to

the ones that we would obtain if the returns were normally distributed. Since there is only a small

difference in the population value of σ2
c under the two distributional assumptions, Figure 15 shows

that the probabilities of coverage of the confidence intervals for σ2
c are quite close to the confidence

levels even when each element of the transformed returns zt is GARCH(1,1) distributed. For the

99% confidence intervals, the coverage probability is almost exact. Similar to the unconstrained

HJ-bound case, the coverage probabilities of the 90% and 95% confidence intervals are almost exact

for the case in which θ0 = 0.2 but off by about 1% to 2% for the case in which θ0 = 0.4.

Figure 15 about here

In summary, the coverage probabilities of the confidence intervals proposed in this paper are

quite accurate even when returns exhibit severe departures from the i.i.d. multivariate normality

assumption. Hence, we expect our confidence intervals to have good coverage probabilities when

using monthly data to estimate the unconstrained and constrained HJ-bounds. Our confidence

interval analysis under normality would work even better when carried out on annual return data

since the departures from the i.i.d. multivariate normality assumption are smaller for annual data.

In cases where returns have extreme fat tails and when the population Sharpe ratio is rather large,

the actual coverage probabilities of our confidence intervals for the HJ-bounds can be smaller than

the stated confidence levels. In those cases, one may treat our confidence intervals for the HJ-bounds

as conservative estimates of the uncertainty of the location of the population HJ-bounds.

4.6. Sampling Distributions Using Historical Data

In this subsection, we compare the different estimators of the unconstrained and constrained HJ-

bounds using real data. As in Section 4.4, we make use of the monthly returns on the 25 Fama-

French size and book-to-market ranked portfolios (from Kenneth French’s website) over the period

1931/7–2014/10 (T = 1000). In Figure 16, we plot the estimated probability density functions

(pdfs) of the sample HJ-bounds. For the cases in which the finite-sample distributions of the

sample HJ-bounds are not available analytically, we run 100,000 simulations to characterize their

finite-sample behavior.

Figure 16 about here
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In the top panel of Figure 16, we plot the estimated pdfs of σ̂2
0 based on (1) its asymptotic

distribution (Asymptotic) in (32). The pdf based on the asymptotic distribution derived under the

normality assumption in (41) is not plotted in the graph since it is almost identical; (2) its finite-

sample distribution under normality (Normal) in (48); and (3) its finite-sample distribution under

stationary bootstrap resampling (Bootstrap).18 The figure shows that, even for T = 1000, the pdf

of σ̂2
0 based on the asymptotic distribution is quite far from the pdfs based on the finite-sample

distributions. In addition, the i.i.d. normal method based on (48) and the bootstrap resampling

methods deliver estimated pdfs that are fairly close to each other.

Turning to the constrained HJ-bound, in the bottom panel of Figure 16, we plot the estimated

pdfs of σ̂2
c based on (1) its asymptotic distribution (Asymptotic) in (33). The pdf based on the

asymptotic distribution derived under the normality assumption in (42) is not plotted in the graph

since it is almost identical; (2) its finite-sample distribution under normality (Normal) that is ob-

tained by simulation using Proposition 3; and (3) its finite-sample distribution under stationary

bootstrap resampling (Bootstrap).19 For finite-sample comparison purposes, we also plot the es-

timated pdf of σ̃2
c based on its finite-sample distribution (Normal (MLE)) in (56). As for σ̂2

0, the

asymptotic distribution of σ̂2
c is quite far from its finite-sample counterparts even for T = 1000.

In addition, the finite-sample distribution of σ̃2
c appears to be very close to the finite-sample dis-

tribution of σ̂2
c under normality, and can be used as a reasonable approximation in finite samples.

Finally, the normal pdf is much closer to the bootstrap pdf than the asymptotic one. Overall,

our analysis suggests that the normality assumption, on which our proposed estimators and finite-

sample results are built on, is not too restrictive even when real data is used to characterize the

return distribution.

5. Conclusions

We provide a geometric interpretation of the unconstrained and constrained HJ-bounds in the

mean-variance frontiers of returns and truncated returns, respectively. Assuming that the returns

are multivariate normally distributed, we present the finite-sample distributions of the sample un-

18In implementing the stationary bootstrap of Politis and Romano (1994), the expected block length is set equal
to 4. Given the little persistence in returns, different block lengths deliver results that are very similar.

19In computing the finite-sample distributions based on 100,000 simulations, we never encounter instances in which
the sample constrained HJ-bound assumes the value of infinity.
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constrained and constrained HJ-bounds. In addition, we show that the moments of the traditional

nonparametric estimator of the constrained HJ-bound do not exist in finite samples. To overcome

this problem, we present a simpler and more reliable maximum likelihood estimator of the con-

strained HJ-bound. To correct for the finite-sample bias in the maximum likelihood estimator,

we also provide an approximate unbiased estimator of the constrained HJ-bound. We show the

importance of our bias adjustment using simulations and an empirical application.

For typical number of assets and length of time series, the sample unconstrained and constrained

HJ-bounds are very volatile. To account for their sampling variability, we propose a simple method

to construct confidence intervals for the unconstrained and constrained HJ-bounds. We believe

it would be a good practice to report both the point estimates and the confidence intervals for

the HJ-bounds in empirical work. Using simulations, we show that our confidence intervals have

accurate probabilities of coverage even when the distribution of the returns has fat tails and exhibits

conditional heteroskedasticity of a GARCH type.
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Appendix

Proof of Lemma 1: (1) Since E[R] = µ, the expectation of the second term in (7) vanishes and

we have E[m0] = 1/R0. (2) Using the fact that E[R(R − µ)′] = V , we have E[m0R] = (µ − (µ −

R01N ))/R0 = 1N . (3) ‖m0‖2 = E[R2
p∗ ]/‖Rp∗‖4 = 1/‖Rp∗‖2. (4) Using (3), we have m0/‖m0‖2 =

(Rp∗/‖Rp∗‖2)‖Rp∗‖2 = Rp∗ . (5) Since Rp∗ is the gross return on a portfolio, we have E[mRp∗ ] = 1.

Using (3), we obtain

E[mm0] =
E[mRp∗ ]

‖Rp∗‖2
=

1

‖Rp∗‖2
= E[m2

0]. (A1)

This implies that

Cov[m,m0] = E[mm0]− E[m]E[m0] = E[m2
0]− E[m0]2 = Var[m0], (A2)

0 ≤ Var[m−m0] = Var[m]− 2Cov[m,m0] + Var[m0] = Var[m]−Var[m0]. (A3)

This completes the proof.

Proof of Lemma 2: (1) Differentiating E[R+
p

2] = E[R+
p Rp] with respect to w, we can easily show

that the portfolio with minimum second moment of its truncated return must satisfy the first order

condition

E[R+
q∗(R−R01N )] = 0N . (A4)

Using (A4), we obtain

E[R+
q∗

2] = E[R+
q∗Rq∗ ] = E[R+

q∗(R0 + w∗′(R−R01N ))] = R0E[R+
q∗ ]. (A5)

It follows that E[mc] = E[R+
q∗ ]/E[R+

q∗
2] = 1/R0. (2) Dividing the first order condition (A4) by

‖R+
q∗‖2 and using E[mcR0] = 1, we obtain

E[mc(R−R01N )] = 0N ⇒ E[mcR] = 1N . (A6)

(3) ‖mc‖2 = E[R+
q∗

2]/‖R+
q∗‖4 = 1/‖R+

q∗‖2. (4) Using (3), we have mc/‖mc‖2 = (R+
q∗/‖R

+
q∗‖2)‖R+

q∗‖2

= R+
q∗ . (5) Since m > 0 and Rq∗ is a portfolio return, we have E[mR+

q∗ ] ≥ E[mRq∗ ] = 1. Using (3),

we obtain

E[mmc] =
E[mR+

q∗ ]

‖R+
q∗‖2

≥ E[mRq∗ ]

‖R+
q∗‖2

=
1

‖R+
q∗‖2

= E[m2
c ]. (A7)
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This implies that

Cov[m,mc] = E[mmc]− E[m]E[mc] ≥ E[m2
c ]− E[mc]

2 = σ2
c , (A8)

0 ≤ Var[m−mc] = Var[m]− 2Cov[m,mc] + σ2
c ≤ Var[m]− σ2

c . (A9)

This completes the proof.

Proof of Lemma 3: Using (A5), we can simplify the squared Sharpe ratio of q∗ to

θ2
c =

(E[R+
q∗ ]−R0)2

Var[R+
q∗ ]

=
(E[R+

q∗ ]−R0)2

R0E[R+
q∗ ]− E[R+

q∗ ]
2

=
R0 − E[R+

q∗ ]

E[R+
q∗ ]

. (A10)

Similarly, we have

Var[R+
q∗ ]

E[R+
q∗ ]

2
=
E[R+

q∗
2]− E[R+

q∗ ]
2

E[R+
q∗ ]

2
=
R0E[R+

q∗ ]− E[R+
q∗ ]

2

E[R+
q∗ ]

2
=
R0 − E[R+

q∗ ]

E[R+
q∗ ]

. (A11)

Finally, using properties 1 and 3 in Lemma 2 and (A5), we have

σ2
c

µ2
m

=
E[m2

c ]− µ2
m

µ2
m

=

1
E[R+

q∗
2]
− 1

R2
0

1
R2

0

=
R2

0

E[R+
q∗

2]
− 1 =

R2
0

R0E[R+
q∗ ]
− 1 =

R0 − E[R+
q∗ ]

E[R+
q∗ ]

. (A12)

Therefore, we have θ2
c = Var[R+

q∗ ]/E[R+
q∗ ]

2 = σ2
c/µ

2
m. This completes the proof.

Proof of Lemma 4: We first present some moments of a truncated standard normal random variable

that will be used throughout the Appendix. Suppose that y ∼ N(0, 1). Using integration by parts

and the fact that dφ(y)/dy = −yφ(y) and φ(−η) = φ(η), we obtain∫ ∞
−η

yφ(y)dy = −φ(y)|∞−η = φ(η), (A13)∫ ∞
−η

y2φ(y)dy = −yφ(y)|∞−η +

∫ ∞
−η

φ(y)dy = −ηφ(η) + Φ(η), (A14)∫ ∞
−η

y3φ(y)dy = −y2φ(y)
∣∣∞
−η + 2

∫ ∞
−η

yφ(y)dy = (η2 + 2)φ(η), (A15)∫ ∞
−η

y4φ(y)dy = −y3φ(y)
∣∣∞
−η + 3

∫ ∞
−η

y2φ(y)dy = −(η3 + 3η)φ(η) + 3Φ(η). (A16)
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Letting y = (Rp − µp)/σp and using (A13)–(A14), we obtain

E[R+
p ] =

∫ ∞
0

Rpf(Rp)dRp

=

∫ ∞
−η

(µp + σpy)φ(y)dy

= µpΦ(η) + σpφ(η), (A17)

E[R+
p

2] =

∫ ∞
0

R2
pf(Rp)dRp

=

∫ ∞
−η

(µp + σpy)2φ(y)dy

= µ2
pΦ(η) + 2µpσpφ(η) + σ2

p[−ηφ(η) + Φ(η)]

= (µ2
p + σ2

p)Φ(η) + µpσpφ(η). (A18)

This completes the proof.

Proof of Lemma 5: Define

f(u) =
φ(u)

Φ(u)
. (A19)

For u ≥ 0, it is obvious that g(u) = u+ f(u) > 0. For u < 0, Gordon (1941) shows that

0 < g(u) ≤ −1

u
. (A20)

Therefore, we have g(u) > 0 for all u, and limu→∞ g(u) =∞ is obvious. Taking the limit of (A20),

we have limu→−∞ g(u) = 0. Differentiating g(u), we have

g′(u) = 1 + f ′(u) = 1− f(u) [u+ f(u)] > 0

by the inequality 1 − uf(u) − f(u)2 > 0 due to Birnbaum (1942) and Sampford (1953). This

completes the proof.

Proof of Proposition 1: Using the derivatives

∂µp
∂w

= µ−R01N , (A21)

∂σ2
p

∂w
= 2V w, (A22)

∂σp
∂w

=
1

σp
V w, (A23)

∂Φ(η)

∂w
= φ(η)

[
(µ−R01N )σp − ηV w

σ2
p

]
, (A24)

∂φ(η)

∂w
= −ηφ(η)

[
(µ−R01N )σp − ηV w

σ2
p

]
, (A25)
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and Lemma 4, we can show that

∂E[R+
p

2]

∂w
=
∂[(µ2

p + σ2
p)Φ(η) + µpσpφ(η)]

∂w
= 2Φ(η) [V w + σpg(η)(µ−R01N )] . (A26)

Setting this equal to zero, we have the following first order condition for portfolio q∗:

w∗ = −σq∗g(η∗)V −1(µ−R01N ). (A27)

The variance of Rq∗ is then given by the identity

σ2
q∗ = w∗′V w∗ = σ2

q∗g(η∗)2(µ−R01N )V −1(µ−R01N ) = σ2
q∗g(η∗)2θ2

0. (A28)

Since g(η∗) and θ0 are positive, we can take the square root of both sides and obtain

g(η∗) =
1

θ0
, (A29)

and w∗ must satisfy

w∗ = −σq
∗

θ0
V −1(µ−R01N ). (A30)

With this expression, the expected return on q∗ is given by

µq∗ = R0 + w∗′(µ−R01N ) = R0 −
σq∗

θ0
(µ−R01N )′V −1(µ−R01N ) = R0 − θ0σq∗ . (A31)

Dividing both sides by σq∗ and using the fact that η∗ = µq∗/σq∗ , we obtain

σq∗ =
R0

η∗ + θ0
. (A32)

Substituting this into (A30), the portfolio with minimum second moment of its truncated return is

given by

w∗ = − R0

θ0(η∗ + θ0)
V −1(R−R01N ). (A33)

Using (A5) and Lemma 3, we have

E[R+
q∗

2] = R0E[R+
q∗ ] = R0[µq∗Φ(η∗) + σq∗φ(η∗)] = R0σq∗Φ(η∗)g(η∗) =

R2
0Φ(η∗)

θ0(η∗ + θ0)
, (A34)

where the last equality is obtained by using (A29) and (A32). From property (3) in Lemma 2, we

have

E[m2
c ] =

1

E[R+
q∗

2]
=
θ0(η∗ + θ0)

R2
0Φ(η∗)

. (A35)
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Using property (1) in Lemma 2, we have E[mc] = 1/R0 = µm. The expression for σ2
c can be

obtained by using the fact that σ0 = θ0/R0. This completes the proof.

Proof of Lemma 6: We first derive ∂η∗/∂θ0. Differentiating both sides of (16) with respect to η∗

and using (A21) gives us

− 1

θ2
0

∂θ0

∂η∗
= 1− φ(η∗)

Φ(η∗)

[
η∗ +

φ(η∗)

Φ(η∗)

]
⇒ − 1

θ2
0

∂θ0

∂η∗
= 1−

(
1

θ0
− η∗

)
1

θ0

⇒ ∂η∗

∂θ0
=

1

1− θ0(η∗ + θ0)
. (A36)

We then obtain the derivative of σ2
c with respect to θ0 as

∂σ2
c

∂θ0
=

∂

∂θ0

θ0(η∗ + θ0)

R2
0Φ(η∗)

=
η∗ + θ0

∂η∗

∂θ0
+ 2θ0 − θ0(η∗ + θ0) φ(η∗)

Φ(η∗)
∂η∗

∂θ0

R2
0Φ(η∗)

. (A37)

Using the fact that φ(η∗)/Φ(η∗) = (1/θ0)− η∗ and (A36), we can simplify the derivative to

∂σ2
c

∂θ0
=
η∗ + 2θ0 − η∗[1− θ0(η∗ + θ0)]∂η

∗

∂θ0

R2
0Φ(η∗)

=
2θ0

R2
0Φ(η∗)

> 0. (A38)

Using this derivative and the fact that σ2
0 = θ2

0/R
2
0, we obtain

h′(θ0) =
2θ0

R2
0Φ(η∗)

− 2θ0

R2
0

> 0 (A39)

because 0 < Φ(η∗) < 1. From Lemma 5, we know limθ0→0 η
∗ =∞ which implies limθ0→0 φ(η∗) = 0

and limθ0→0 Φ(η∗) = 1. Consequently, we have

lim
θ0→0

θ0η
∗ = lim

θ0→0

η∗

η∗ + φ(η∗)
Φ(η∗)

= 1. (A40)

It follows that limθ0→0 σ
2
c = 1

R2
0
− 1
R2

0
= 0 and limθ0→0 h(θ0) = 0. To prove that limθ0→∞ h(θ0) =∞,

it suffices to show that h′′(θ0) > 0 because h(θ0) is a strictly increasing function of θ0. The second

derivative of h(θ0) is given by

h′′(θ0) =
2− 2θ0

φ(η∗)
Φ(η∗)

∂η∗

∂θ0

R2
0Φ(η∗)

− 2

R2
0

=
2[1− Φ(η∗)]− 2θ0

φ(η∗)
Φ(η∗)

∂η∗

∂θ0

R2
0Φ(η∗)

. (A41)

The first term is obviously positive. The second term is negative because ∂η∗/∂θ0 < 0 using

Lemma 5. It follows that h′′(θ0) > 0.
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Using the L’Hôpital’s Rule, it is easy to show that limθ0→0 h̃(θ0) = limθ0→0
1

Φ(η∗) − 1 = 0 and

limθ0→∞ h̃(θ0) = limθ0→∞
1

Φ(η∗) − 1 =∞. The derivative of h̃(θ0) is given by

h̃′(θ0) =
1

σ4
0

[
2θ0

R2
0Φ(η∗)

σ2
0 −

2θ0

R2
0

σ2
c

]
=

2θ0

σ4
0R

4
0

[
θ2

0

Φ(η∗)
− θ0(η∗ + θ0)

Φ(η∗)
+ 1

]
=

2θ2
0

σ4
0R

4
0Φ(η∗)

[
Φ(η∗)

θ0
− η∗

]
=

2θ2
0

σ4
0R

4
0Φ(η∗)

[
Φ(η∗)

(
η∗ +

φ(η∗)

Φ(η∗)

)
− η∗

]
=

2θ2
0

σ4
0R

4
0Φ(η∗)

[−η∗ (1− Φ(η∗)) + φ(η∗)] . (A42)

By setting u = −η∗ and using the fact that 1 − Φ(−η∗) = Φ(−η∗) = Φ(u) and φ(η∗) = φ(−η∗) =

φ(u), the term in the square brackets can be written as

uΦ(u) + φ(u) = Φ(u)

(
u+

φ(u)

Φ(u)

)
, (A43)

which is greater than zero as shown in the proof of Lemma 5. It follows that h̃(θ0) is a strictly

increasing function of θ0. This completes the proof.

Proof of Lemma 7: Let ut = (µ−R01N )′V −1(Rt − µ). Under the i.i.d. normality assumption, it is

easy to verify that E[ut] = 0, E[u2
t ] = θ2

0, E[u3
t ] = 0, and E[u4

t ] = 3θ4
0. Hence, we have

v0 = E[φ2
0,t] = E

[(
(1− ut)2

R2
0

− 1 + θ2
0

R2
0

)2
]

=
2θ2

0(2 + θ2
0)

R4
0

. (A44)

Under the i.i.d. normality assumption, we have vc = E[φ2
c,t]. To derive E[φ2

c,t], we need to obtain

explicit expressions for the terms

E[m2
c,t] =

1

‖R+
q∗,t‖2

, (A45)

E[m4
c,t] =

E[(R+
q∗,t)

4]

‖R+
q∗,t‖8

= E[m2
c,t]

4E[(R+
q∗,t)

4]. (A46)

Using (A35), we have

E[m2
c,t] =

θ0(η∗ + θ0)

R2
0Φ(η∗)

. (A47)
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To derive E[(R+
q∗,t)

4], suppose that Rp ∼ N(µp, σ
2
p). Then, we have

E[(R+
p )4] =

∫ ∞
−η

(µp + σpy)4φ(y)dy

= µ4
pΦ(η) + 4µ3

pσpφ(η) + 6µ2
pσ

2
p[−ηφ(η) + Φ(η)]

+ 4µpσ
3
p(η

2 + 2)φ(η) + σ4
p[−(η3 + 3η)φ(η) + 3Φ(η)]

= [(η4 + 6η2 + 3)Φ(η) + η(η2 + 5)φ(η)]σ4
p (A48)

by applying (A13)–(A16). Using this result, we obtain

E[(R+
q∗,t)

4] = [(η∗4 + 6η∗2 + 3)Φ(η∗) + η∗(η∗2 + 5)φ(η∗)]σ4
q∗

=
[(η∗4 + 6η∗2 + 3)Φ(η∗) + η∗(η∗2 + 5)φ(η∗)]R4

0

(η∗ + θ0)4
(A49)

by using the expression of σq∗ in (A32). It follows that

E[m4
c,t] =

θ4
0[(η∗4 + 6η∗2 + 3)Φ(η∗) + η∗(η∗2 + 5)φ(η∗)]

R4
0Φ(η∗)4

. (A50)

Using the fact that φ(η∗)/Φ(η∗) = 1/θ0 − η∗, we can write

E[m4
c,t] =

θ4
0

[
(η∗4 + 6η∗2 + 3) + η∗(η∗2 + 5)( 1

θ0
− η∗)

]
R4

0Φ(η∗)3

=
θ4

0(η∗2 + 3)

R4
0Φ(η∗)3

+
η∗θ3

0(η∗2 + 5)

R4
0Φ(η∗)3

=
θ3

0[θ0(η∗2 + 3) + η∗(η∗2 + 5)]

R4
0Φ(η∗)3

. (A51)

It follows that

E[φ2
c,t] = E[m4

c,t]− 2(σ2
c + µ2

m)E[m2
c,t] + (σ2

c + µ2
m)2

= E[m4
c,t]− E[m2

c,t]
2

=
θ3

0[θ0(η∗2 + 3) + η∗(η∗2 + 5)]

R4
0Φ(η∗)3

− θ2
0(η∗ + θ0)2

R4
0Φ(η∗)2

. (A52)

The asymptotic distribution of σ̃2
c can be easily obtained using the delta method. Note that both

σ2
0 and σ2

c are monotonic functions of θ0. Using the fact ∂σ2
0/∂θ0 = 2θ0/R

2
0 and ∂σ2

c/∂θ0 =

2θ0/R
2
0Φ(η∗) from (A38), we obtain ∂σ2

c/∂σ
2
0 = 1/Φ(η∗). Using the delta method, we obtain

√
T (σ̃2

c − σ2
c )

A∼ N
(

0,
v0

Φ(η∗)2

)
. (A53)
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Finally, Avar[σ̂2
c ] ≥ Avar[σ̃2

c ] follows from the fact σ̃2
c is the maximum likelihood estimator of σ2

c

and hence it is asymptotically most efficient. This completes the proof.

Proof of Proposition 2: Under the normality assumption, we have

µ̂ ∼ N(µ, V/T ), (A54)

T V̂ ∼WN (T − 1, V ), (A55)

and they are independent of each other. Define θ̃2
0 = (µ̂−R01N )′V −1(µ̂−R01N ). Using Theorem

3.2.12 of Muirhead (1982), we have

Y ≡ T θ̃2
0

θ̂2
0

∼ χ2
T−N , (A56)

and the ratio is independent of µ̂ and hence independent of θ̃2
0. From (A54), we have

µ̂−R01N ∼ N(µ−R01N , V/T ). (A57)

Therefore,

X ≡ T θ̃2
0 ∼ χ2

N (Tθ2
0) (A58)

and is independent of Y . Together, we have

θ̂2
0 =

T θ̃2
0

Y
=
X

Y
∼
(

N

T −N

)
FN,T−N (Tθ2

0). (A59)

Using the independence between X and Y , the r-th moment of θ̂0 is given by

E[θ̂r0] = E[X
r
2 ]E[Y −

r
2 ]. (A60)

Note that E[X
r
2 ] exists if and only if r > −N and E[Y −

r
2 ] exists if and only if r < T − N .

Using the moments of a noncentral chi-squared distribution (see, for example, Johnson, Kotz, and

Balakrishnan (1995, p. 450)), we have

E[X
r
2 ] =

2
r
2 Γ
(
N+r

2

)
Γ
(
N
2

) 1F1

(
−r

2
;
N

2
;−Tθ

2
0

2

)
, (A61)

E[Y −
r
2 ] =

2−
r
2 Γ
(
T−N−r

2

)
Γ
(
T−N

2

) . (A62)

Combining these two expressions, we obtain

E[θ̂r0] =
Γ
(
N+r

2

)
Γ
(
T−N−r

2

)
Γ
(
N
2

)
Γ
(
T−N

2

) 1F1

(
−r

2
;
N

2
;−Tθ

2
0

2

)
. (A63)
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When r/2 is a nonnegative integer, the confluent hypergeometric function can be simplified to

1F1

(
−r

2
;
N

2
;−Tθ

2
0

2

)
=

r/2∑
i=0

(
− r

2

)
i(

N
2

)
i

−
(
Tθ20

2

)i
i!

=

r/2∑
i=0

(
r/2
i

)(
Tθ20

2

)i
(
N
2

)
i

. (A64)

This completes the proof.

Proof of Proposition 3: The nonparametric estimator of σ2
c is given by

σ̂2
c =

1

R2
0

(
1

λ̃
− 1

)
, (A65)

where λ̃ is defined as

λ̃ =
1

R2
0

min
w

1

T

T∑
t=1

max[0, R0 + w′(Rt −R01N )]2. (A66)

Defining rt = Rt −R01N as the excess returns on the N risky assets at time t, we can rewrite λ̃ as

λ̃ =
1

R2
0

min
w

1

T

T∑
t=1

max[0, R0 + w′rt]
2 = min

ŵ

1

T

T∑
t=1

max[0, 1 + ŵ′rt]
2, (A67)

where ŵ = w/R0.

Letting µ̃ = V −
1
2 (µ−R01N ), we have that µ̃′µ̃ = θ2

0. Now, define P as an N ×N orthonormal

matrix with its first column equal to µ̃/(µ̃′µ̃)
1
2 = µ̃/θ0. Since rt ∼ N(µ−R01N , V ), we have that

zt ≡ P ′V −
1
2 rt ∼ N([θ0, 0′N−1]′, IN ). (A68)

Having defined zt, we can rewrite λ̃ as

λ̃ = min
w̃

1

T

T∑
t=1

max[0, 1 + w̃′zt]
2, (A69)

where w̃ = P ′V
1
2 ŵ. This completes the proof.
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Figure 1 Sample Hansen-Jagannathan Bounds. The figure presents the sample uncon-
strained Hansen-Jagannathan bound (solid line) and the nonparametric estimator of the constrained
Hansen-Jagannathan bound (dashed line). The sample Hansen-Jagannathan bounds are computed
using annual real non-overlapping returns on four size and book-to-market ranked portfolios, five
industry portfolios, and a three-month Treasury bill over the period 1952–2012.
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Figure 2 Confidence Intervals for the Constrained Hansen-Jagannathan Bound. The
figure presents the mean-standard deviation pairs of the stochastic discount factors implied by the
long-run risks model of Bansal, Kiku, and Yaron (BKY, 2012a), the external habit model of Camp-
bell and Cochrane (CC, 1999), and the rare disasters model of Nakamura, Steinsson, Barro, and
Ursúa (NSBU, 2013). The figure also presents the maximum likelihood estimator (solid line) and
an approximate unbiased estimator (dashed line) of the constrained Hansen-Jagannathan bound, as
well as the 95% confidence intervals (dotted lines) for the constrained Hansen-Jagannathan bound.
The sample constrained Hansen-Jagannathan bounds and the confidence intervals are computed
using annual real non-overlapping returns on four size and book-to-market ranked portfolios, five
industry portfolios, and a three-month Treasury bill over the period 1952–2012.
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Figure 3 Graphical Representation of the Unconstrained Hansen-Jagannathan
Bound. The figure provides a geometric interpretation of the unconstrained HJ-bound using
the mean-variance frontier of the portfolio returns. R0 is the gross risk-free rate. The two solid
lines emanating from the point (0, R0) represent the minimum-variance frontier of the risk-free and
risky assets in the (σp, µp) space. The portfolio with minimum second moment is represented by
p∗, and it is the portfolio that is closest to the origin. The absolute value of the Sharpe ratio of p∗

as well as σp∗/µp∗ are both equal to θ0. The horizontal distance between the point (0, 1/R0) and
the solid line joining p∗ and the origin is equal to σ0, where σ0 is the unconstrained HJ-bound on
the standard deviation of admissible SDFs with E[m] = 1/R0.
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Figure 4 Graphical Representation of the Constrained Hansen-Jagannathan Bound.
The figure provides a geometric interpretation of the constrained HJ-bound using the mean-variance
frontier of the truncated portfolio returns. R0 is the gross risk-free rate. The two curves emanating
from the point (0, R0) represent the minimum/maximum variance frontier of the truncated portfolio
returns in the (σ+

p , µ
+
p ) space. The portfolio with minimum second moment of its truncated return

is represented by q∗, and it is the portfolio that is closest to the origin. The absolute value of the
Sharpe ratio of q∗ as well as σ+

q∗/µ
+
q∗ are both equal to θc. The horizontal distance between the

point (0, 1/R0) and the solid line joining q∗ and the origin is equal to σc, where σc is the HJ-bound
on the standard deviation of nonnegative admissible SDFs with E[m] = 1/R0.
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Figure 5 Exact Distribution of the Sample Unconstrained Hansen-Jagannathan
Bound. The figure presents the 1st, 5th, 50th, 95th, and 99th percentiles of the exact distri-
bution of the sample unconstrained HJ-bound for different number of risky assets (N) and length
of time series observations (T ) under the normality assumption. The upper two panels are for
θ0 = 0.2 and the lower two panels are for θ0 = 0.4, where θ0 is the Sharpe ratio of the tangency
portfolio of the N risky assets. The gross risk-free rate is assumed to be 1.005 and the solid line in
the figure represents the population value of the unconstrained HJ-bound.
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Figure 6 Ratio of Asymptotic to Exact Moments of the Sample Unconstrained
Hansen-Jagannathan Bound. The figure presents the ratios of the asymptotic mean and vari-
ance to the exact mean and variance of the sample unconstrained HJ-bound (σ̂2

0) for different
number of risky assets (N) and length of time series observations (T ) under the normality assump-
tion. The upper two panels are for θ0 = 0.2 and the lower two panels are for θ0 = 0.4, where θ0 is
the Sharpe ratio of the tangency portfolio of the N risky assets.
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Figure 7 Exact Distribution of the Maximum Likelihood Estimator of the Con-
strained Hansen-Jagannathan Bound. The figure presents the 1st, 5th, 50th, 95th, and 99th
percentiles of the exact distribution of the maximum likelihood estimator of the constrained HJ-
bound for different number of risky assets (N) and length of time series observations (T ) under
the normality assumption. The upper two panels are for θ0 = 0.2 and the lower two panels are for
θ0 = 0.4, where θ0 is the Sharpe ratio of the tangency portfolio of the N risky assets. The gross
risk-free rate is assumed to be 1.005 and the solid line in the figure represents the population value
of the constrained HJ-bound.
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Figure 8 Ratio of Asymptotic to Exact Moments of the Maximum Likelihood Es-
timator of the Constrained Hansen-Jagannathan Bound. The figure presents the ratios
of the asymptotic mean and variance to the exact mean and variance of the maximum likelihood
estimator of the constrained HJ-bound (σ̃2

c ) for different number of risky assets (N) and length of
time series observations (T ) under the normality assumption. The exact moments are estimated
based on 100,000 simulations. The upper two panels are for θ0 = 0.2 and the lower two panels are
for θ0 = 0.4, where θ0 is the Sharpe ratio of the tangency portfolio of the N risky assets.
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Figure 9 Finite-Sample Distribution of an Approximate Unbiased Estimator of the
Constrained Hansen-Jagannathan Bound. The figure presents the 1st, 5th, 50th, 95th, and
99th percentiles of the finite-sample distribution of an approximate unbiased estimator of the con-
strained HJ-bound for different number of risky assets (N) and length of time series observations
(T ) under the normality assumption. The upper two panels are for θ0 = 0.2 and the lower two
panels are for θ0 = 0.4, where θ0 is the Sharpe ratio of the tangency portfolio of the N risky
assets. The gross risk-free rate is assumed to be 1.005 and the solid line in the figure represents
the population value of the constrained HJ-bound.
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Figure 10 Ratio of Asymptotic to Finite Moments of an Approximate Unbiased
Estimator of the Constrained Hansen-Jagannathan Bound. The figure presents the ratios
of the asymptotic mean and variance to the finite mean and variance of an approximate unbiased
estimator of the constrained HJ-bound (σ̃2

cu) for different number of risky assets (N) and length
of time series observations (T ) under the normality assumption. The finite moments are estimated
based on 100,000 simulations. The upper two panels are for θ0 = 0.2 and the lower two panels are
for θ0 = 0.4, where θ0 is the Sharpe ratio of the tangency portfolio of the N risky assets.
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Figure 11 Exact Distribution of the Nonparametric Estimator of the Constrained
Hansen-Jagannathan Bound. The figure presents the 1st, 5th, 50th, 95th, and 99th percentiles
of the exact distribution of the estimator of the constrained HJ-bound for different number of risky
assets (N) and length of time series observations (T ) under the normality assumption. The exact
moments are estimated based on 100,000 simulations. The upper two panels are for θ0 = 0.2 and
the lower two panels are for θ0 = 0.4, where θ0 is the Sharpe ratio of the tangency portfolio of
the N risky assets. The gross risk-free rate is assumed to be 1.005 and the solid line in the figure
represents the population value of the constrained HJ-bound.
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Figure 12 Probabilities of Coverage of the Confidence Intervals for the Unconstrained
Hansen-Jagannathan Bound. The figure presents the probabilities of coverage of the 90%, 95%,
and 99% confidence intervals for the unconstrained HJ-bound for different number of risky assets
(N) and length of time series observations (T ) under the assumption that returns are multivariate
t-distributed with five degrees of freedom. The probabilities of coverage are estimated based on
100,000 simulations. The upper two panels are for θ0 = 0.2 and the lower two panels are for
θ0 = 0.4, where θ0 is the Sharpe ratio of the tangency portfolio of the N risky assets.
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Figure 13 Probabilities of Coverage of the Confidence Intervals for the Constrained
Hansen-Jagannathan Bound. The figure presents the probabilities of coverage of the 90%, 95%,
and 99% confidence intervals for the constrained HJ-bound for different number of risky assets (N)
and length of time series observations (T ) under the assumption that returns are multivariate t-
distributed with five degrees of freedom. The probabilities of coverage are estimated based on
100,000 simulations. The upper two panels are for θ0 = 0.2 and the lower two panels are for
θ0 = 0.4, where θ0 is the Sharpe ratio of the tangency portfolio of the N risky assets.
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Figure 14 Probabilities of Coverage of the Confidence Intervals for the Unconstrained
Hansen-Jagannathan Bound. The figure presents the probabilities of coverage of the 90%, 95%,
and 99% confidence intervals for the unconstrained HJ-bound for different number of risky assets
(N) and length of time series observations (T ) under the assumption that the transformed excess
returns are GARCH(1,1) distributed, with the parameters chosen based on the monthly excess
returns on the 25 Fama-French size and book-to-market ranked portfolios over the period 1946/1–
2014/10. The probabilities of coverage are estimated based on 100,000 simulations. The upper two
panels are for θ0 = 0.2 and the lower two panels are for θ0 = 0.4, where θ0 is the Sharpe ratio of
the tangency portfolio of the N risky assets.
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Figure 15 Probabilities of Coverage of the Confidence Intervals for the Constrained
Hansen-Jagannathan Bound. The figure presents the probabilities of coverage of the 90%, 95%,
and 99% confidence intervals for the constrained HJ-bound for different number of risky assets (N)
and length of time series observations (T ) under the assumption that the transformed excess returns
are GARCH(1,1) distributed, with the parameters chosen based on the monthly excess returns on
the 25 Fama-French size and book-to-market ranked portfolios over the period 1946/1–2014/10.
The probabilities of coverage are estimated based on 100,000 simulations. The upper two panels
are for θ0 = 0.2 and the lower two panels are for θ0 = 0.4, where θ0 is the Sharpe ratio of the
tangency portfolio of the N risky assets.
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Figure 16 Probability Density Functions of the Sample Hansen-Jagannathan Bounds.
The figure presents the estimated pdfs of the sample unconstrained HJ-bound and of the nonpara-
metric estimator of the constrained HJ-bound. The parameters of the distributions are estimated
based on the monthly returns on the 25 Fama-French size and book-to-market ranked portfolios over
the period 1931/7–2014/10. When not available analytically, the pdfs based on the finite-sample
distributions are estimated using 100,000 simulations.
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