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1. Asymptotic Distributions of the Parameter Estimates and of
the Sample Hansen-Jagannathan Distance

The notations in this appendix follow those in Kan and Robotti (“Specification Tests of Asset

Pricing Models Using Excess Returns,” Journal of Empirical Finance 15, 2008). In that paper, we

show that when excess returns are used, we should normalize the linear stochastic discount factor

as

yt(λ) = 1− λ′(ft − µ1). (1)

Let rt be a vector of excess returns on N test assets at time t. The pricing errors of the normalized

SDF model on the excess returns are given by

e(λ) = E[rtyt(λ)] = µ2 − V21λ, (2)

In addition, when excess returns are used, the squared HJ-distance needs to be modified and is

defined as

δ2 = min
λ
e(λ)′V −122 e(λ) = µ′2V

−1
22 µ2 − µ

′
2V
−1
22 V21(V12V

−1
22 V21)

−1V12V
−1
22 µ2. (3)

The λ that minimizes e(λ)′V −122 e(λ) is given by

λm = (V12V
−1
22 V21)

−1(V12V
−1
22 µ2). (4)

We define em = µ2 − V21λm and yt(λm) = 1 − λ′m(ft − µ1). Since there is no source of confusion,

we suppress the subscript m in λm and em from now on.

The estimates of λ and δ2 are given by

λ̂ = (V̂12V̂
−1
22 V̂21)

−1(V̂12V̂
−1
22 µ̂2), (5)

δ̂2 = µ̂′2V̂
−1
22 µ̂2 − µ̂

′
2V̂
−1
22 V̂21(V̂12V̂

−1
22 V̂21)

−1V̂12V̂
−1
22 µ̂2. (6)

Kan and Robotti (2008) show that the asymptotic distribution of λ̂ under a potentially misspecified

model is given by

√
T (λ̂− λ)

A∼ N

0K ,

∞∑
j=−∞

E[hth
′
t+j ]

 , (7)

where

ht = HV12V
−1
22 (rt − µ2)(1− yt) +H[(ft − µ1)− V12V −122 (rt − µ2)]ut + λ, (8)
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with H = (V12V
−1
22 V21)

−1 and ut = e′V −122 (rt − µ2).

The asymptotic distribution of δ̂2 under the correctly specified model is given by

T δ̂2
A∼
N−K∑
i=1

ξixi, (9)

where the xi’s are independent χ2
1 random variables, and the ξi’s are the eigenvalues of P ′V −122 SV

−1
22 P ,

where P is an N × (N −K) orthonormal matrix with its columns orthogonal to V
− 1

2
22 V21,

S =

∞∑
j=−∞

E[gtg
′
t+j ], (10)

and gt = rtyt. When δ > 0, the asymptotic distribution of δ̂2 is given by

√
T (δ̂2 − δ2) A∼ N

0K ,
∞∑

j=−∞
E[qtq

′
t+j ]

 , (11)

where

qt = 2utyt − u2t + δ2. (12)

2. Model Comparison

We consider two competing models. Let x1 = [f ′1, f
′
2]
′ and x2 = [f ′1, f

′
3]
′, where f1 to f3 are three

sets of distinct factors, and fi is of dimension Ki × 1, i = 1, 2, 3. We assume that the SDF of

model 1 is linear in x1 and is given by y1 = 1 − η′(x1 − E[x1]) whereas the SDF of model 2 is

linear in x2 and is given by y2 = 1− λ′(x2 − E[x2]). Let D1 = Cov[r, x′1] and D2 = Cov[r, x′2] and

assume that both D1 and D2 have full column rank, so that the SDF parameters that minimize

the HJ-distances of the two models are uniquely identified as

η = (D′1V
−1
22 D1)

−1D′1V
−1
22 µ2, (13)

λ = (D′2V
−1
22 D2)

−1D′2V
−1
22 µ2. (14)

It follows that the pricing errors and the squared HJ-distances of the two models are given by

ei = µ2 −Di(D
′
iV
−1
22 Di)

−1D′iV
−1
22 µ2 i = 1, 2, (15)

δ2i = µ′2V
−1
22 µ2 − µ

′
2V
−1
22 Di(D

′
iV
−1
22 Di)

−1D′iV
−1
22 µ2 i = 1, 2. (16)
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The sample estimates are analogously defined. When K1 = 0, the two models do not share a

common factor. When K2 = 0, the second model nests the first model as a special case. Similarly,

when K3 = 0, the first model nests the second model as a special case. When both K2 > 0 and

K3 > 0, the two models are not nested.

2.1 Nested Models

Without loss of generality, we assume K2 = 0, so that model 2 nests model 1 as a special case. For

the nested models case, the following lemma shows that δ21 = δ22 implies some restrictions on the

SDF parameters of model 2.

Lemma 1: δ21 = δ22 if and only if λ2 = 0K3 , where λ2 is the vector of the last K3 elements of λ.

Note that the above lemma is applicable even when the models are misspecified. In order to

test the equality of HJ-distances of the two models, the above lemma suggests that one can simply

perform a test of H0 : λ2 = 0K3 in model 2. Suppose that V̂ (λ̂2) is a consistent estimator of the

asymptotic variance of
√
T (λ̂2 − λ2). Then, under the null hypothesis H0 : λ2 = 0K3 ,

T λ̂′2V̂ (λ̂2)
−1λ̂2

A∼ χ2
K3
, (17)

which can be used for testing H0 : δ21 = δ22 . However, it is important to note that, in general, we

cannot conduct this test using the usual standard error of λ̂ which assumes that model 2 is correctly

specified. Instead, we need to rely on the misspecification robust standard errors of λ̂2 based on

(7)–(8) to perform the test of H0 : λ2 = 0K3 .

Alternatively, we can derive the asymptotic distribution of δ̂21 − δ̂22 and use it for the purpose of

testing H0 : δ21 = δ22 . The following proposition presents the asymptotic distribution of δ̂21 − δ̂22 .

Proposition 1: Partition H2 = (D′2V
−1
22 D2)

−1 as

H2 =

[
H2,11 H2,12

H2,21 H2,22

]
, (18)

where H2,22 is K3 ×K3. Under the null hypothesis H0 : δ21 = δ22 ,

T (δ̂21 − δ̂22)
A∼

K3∑
i=1

ξixi, (19)
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where the xi’s are independent χ2
1 random variables and the ξi’s are the eigenvalues of H−12,22V (λ̂2),

with V (λ̂2) being the asymptotic variance of
√
T (λ̂2 − λ2).

Again, we emphasize that the misspecification robust version of V (λ̂2) should be used to test

H0 : δ21 = δ22 . This is because model misspecification tends to create additional sampling variation

in δ̂21 − δ̂22 . Without taking into account potential model misspecification, one might mistakenly

reject H0 : δ21 = δ22 . In actual testing, we replace ξi with its sample counterpart ξ̂i, where the

ξ̂i’s are the eigenvalues of Ĥ−12,22V̂ (λ̂2), and Ĥ2,22 and V̂ (λ̂2) are consistent estimators of H2,22 and

V (λ̂2), respectively.

2.2 Non-Nested Models

For non-nested models, δ21 = δ22 can occur under two different scenarios. The first scenario is

y1 = y2, which clearly implies e1 = e2 and δ21 = δ22 . The second scenario is y1 6= y2 (i.e., e1 6= e2),

but the aggregate pricing errors in the two models are the same — i.e., e′1V
−1
22 e1 = e′2V

−1
22 e2. It

turns out that the asymptotic distributions of δ̂21 − δ̂22 under these two scenarios are different and

we have to deal with them separately.

2.2.1 Tests of Equality of Two Stochastic Discount Factors

The condition y1 = y2 imposes parametric restrictions on η and λ. Suppose we partition η and λ as

η = [η′1, η
′
2]
′ and λ = [λ′1, λ

′
2]
′, where η1 and λ1 are the first K1 elements of η and λ, respectively.

At first sight, it may appear that y1 = y2 holds if and only if η1 = λ1, η2 = 0K2 and λ2 = 0K3 . The

following lemma shows that the restriction η1 = λ1 is redundant because it is implied by the other

two restrictions.

Lemma 2: For non-nested models, y1 = y2 if and only if η2 = 0K2 and λ2 = 0K3 .

Note that Lemma 2 is applicable even when the models are misspecified. It suggests that we

can test H0 : y1 = y2 by simply testing the parametric hypothesis H0 : η2 = 0K2 , λ2 = 0K3 . Let

ψ = [η′2, λ
′
2]
′ and ψ̂ = [η̂′2, λ̂

′
2]
′. It is easy to establish that the asymptotic distribution of ψ̂ under

potentially misspecified models is given by

√
T (ψ̂ − ψ)

A∼ N(0K2+K3 , V (ψ̂)), (20)
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where

V (ψ̂) =
∞∑

j=−∞
E[h̃th̃

′
t+j ], (21)

with

h̃t =

[
H1bD

′
1V
−1
22 (rt − µ2)(1− y1t) +H1b[(xt − E[xt])−D′1V

−1
22 (rt − µ2)]u1t + η2

H2bD
′
2V
−1
22 (rt − µ2)(1− y2t) +H2b[(xt − E[xt])−D′2V

−1
22 (rt − µ2)]u2t + λ2

]
, (22)

where u1t = e′1V
−1
22 (rt − µ2), u2t = e′2V

−1
22 (rt − µ2), H1b is the last K2 rows of (D′1V

−1
22 D1)

−1, and

H2b is the last K3 rows of (D′2V
−1
22 D2)

−1.

Suppose that V̂ (ψ̂) is a consistent estimator of V (ψ̂). Then under the null hypothesis H0 : ψ =

0K2+K3 ,

T ψ̂′V̂ (ψ̂)−1ψ̂
A∼ χ2

K2+K3
, (23)

and this can be used as a statistic for testing H0 : y1 = y2. Just like in the nested models case, it

is important that we conduct this test using the robust standard error of ψ̂ based on (21)–(22).

When y1 = y2, the asymptotic distribution of δ̂21 − δ̂22 is given by the following proposition.

Proposition 2: Let H1 = (D′1V
−1
22 D1)

−1 and H2 = (D′2V
−1
22 D2)

−1, and partition them as

H1 =

[
H1,11 H1,12

H1,21 H1,22

]
, H2 =

[
H2,11 H2,12

H2,21 H2,22

]
, (24)

where H1,11 and H2,11 are of dimension K1 ×K1. Under the null hypothesis H0 : y1 = y2, we have

T (δ̂21 − δ̂22)
A∼
K2+K3∑
i=1

ξixi, (25)

where the xi’s are independent χ2
1 random variables and the ξi’s are the eigenvalues of[

−H−11,22 0K2×K3

0K3×K2 H−12,22

]
V (ψ̂). (26)

Note that (25) allows us to construct a test of H0 : y1 = y2 using δ̂21 − δ̂22 . However, it should

be pointed out that unlike the Wald test in (23), there are cases in which y1 6= y2 but yet (25) fails

to reject H0 : y1 = y2 with probability one as T goes to infinity.

Before moving on to the case of y1 6= y2, a couple of remarks are in order. The first remark is

that we can think of the results of the nested models case as a special case of testing H0 : y1 = y2
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with K2 = 0. The only difference is that the ξi’s in Proposition 1 are all positive, whereas some

of the ξi’s in Proposition 2 are negative. As a result, we need to perform a two-sided test for the

non-nested models case when we use (25) to test H0 : y1 = y2. The second remark is more subtle.

Unlike (17) and (19), which are tests of H0 : δ21 = δ22 for the nested models case, (23) and (25)

for the non-nested models case are only tests of H0 : y1 = y2. They should not be interpreted as

pure tests of H0 : δ21 = δ22 . This is because y1 = y2 is a sufficient but not a necessary condition

for δ21 = δ22 . We can have δ21 = δ22 even when y1 6= y2, and these cases are taken up in the next

subsection.

2.2.2 Tests of Equality of the HJ-Distances of Two Distinct Stochastic Discount Fac-
tors

For two distinct non-nested SDFs (i.e., y1 6= y2 with positive probability), the asymptotic distri-

bution of δ̂21 − δ̂22 under the null hypothesis H0 : δ21 = δ22 depends on whether (1) both models are

correctly specified, or (2) both models are misspecified.

The first case is a little peculiar and it requires some explanation. In the likelihood ratio setting

of Vuong (1989), we cannot have two distinct non-nested models that are both correctly specified.

One may wonder how two distinct SDFs can be both correctly specified. Two asset pricing models

are considered to be correctly specified when they both produce zero pricing errors. This occurs

when the vector 1N is in the span of D1 as well as in the span of D2. A simple example of this is

when the first model is the correctly specified model and the second model has f3 = f2 + ε, where

ε is a vector of pure measurement errors with mean zero and independent of the returns. In this

case, D2 = E[Rx′2] = E[Rx′1] = D1 and the second model also produces zero pricing errors even

though y1 6= y2.

The following proposition presents a simple chi-squared test for testing if both models 1 and 2

are correctly specified.

Proposition 3: Let n1 = N − K1 − K2 and n2 = N − K1 − K3. Also, let P1 be an N × n1
orthonormal matrix with its columns orthogonal to V

− 1
2

22 D1 and P2 be an N × n2 orthonormal

matrix with its columns orthogonal to V
− 1

2
22 D2. Define

gt(θ) =

[
g1t(η)

g2t(λ)

]
=

[
rty1t(η)

rty2t(λ)

]
, (27)
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where θ = [η′, λ′]′, and

S =
∞∑

j=−∞
E[gt(θ)gt+j(θ)

′] =

[
S11 S12

S21 S22

]
. (28)

When y1 6= y2 and under the null hypothesis H0 : δ21 = δ22 = 0,

T

 P̂ ′1V̂
− 1

2
22 ê1

P̂ ′2V̂
− 1

2
22 ê2

′  P̂ ′1V̂
− 1

2
22 Ŝ11V̂

− 1
2

22 P̂1 P̂ ′1V̂
− 1

2
22 Ŝ12V̂

− 1
2

22 P̂2

P̂ ′2V̂
− 1

2
22 Ŝ21V̂

− 1
2

22 P̂1 P̂ ′2V̂
− 1

2
22 Ŝ22V̂

− 1
2

22 P̂2

−1  P̂ ′1V̂
− 1

2
22 ê1

P̂ ′2V̂
− 1

2
22 ê2

 A∼ χ2
n1+n2

, (29)

where ê1 and ê2 are the sample pricing errors of models 1 and 2, and P̂1, P̂2, Ŝ are consistent

estimators of P1, P2, and S, respectively.

When y1 6= y2, the asymptotic distribution of δ̂21 − δ̂22 when both models are correctly specified

is given in the following proposition.

Proposition 4: Using the notation in Proposition 3, when y1 6= y2 and under the null hypothesis

H0 : δ21 = δ22 = 0,

T (δ̂21 − δ̂22)
A∼
n1+n2∑
i=1

ξixi, (30)

where the xi’s are independent χ2
1 random variables and the ξi’s are the eigenvalues of P ′1V
− 1

2
22 S11V

− 1
2

22 P1 P ′1V
− 1

2
22 S12V

− 1
2

22 P2

−P ′2V
− 1

2
22 S21V

− 1
2

22 P1 −P ′2V
− 1

2
22 S22V

− 1
2

22 P2

 . (31)

Note that the ξi’s are not all positive, because δ̂21 − δ̂22 can be negative. Therefore, we need to

perform a two-sided test of H0 : δ21 = δ22 instead of a one-sided test, as in the nested models case.

Finally, similar to the asymptotic distribution of δ̂2, the asymptotic distribution of δ̂21 − δ̂22

changes when the models are misspecified. Consequently, we cannot use Proposition 4 to test

H0 : δ21 = δ22 when the models are misspecified. Proposition 5 presents the appropriate asymptotic

distribution of δ̂21 − δ̂22 when both non-nested models are misspecified and y1 6= y2.

Proposition 5: Suppose y1 6= y2. Let dt = q1t − q2t, where

q1t = 2u1ty1t − u21t + δ21 ,

q2t = 2u2ty2t − u22t + δ22 ,
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with u1t = e′1V
−1
22 (rt − µ2) and u2t = e′2V

−1
22 (rt − µ2). When δ1 6= 0 and δ2 6= 0,

√
T (δ̂21 − δ̂22 − (δ21 − δ22))

A∼ N(0, vd), (32)

where

vd =

∞∑
j=−∞

E[dtdt+j ]. (33)

Under the null hypothesis H0 : δ21 = δ22 6= 0,

√
T (δ̂21 − δ̂22)

A∼ N(0, vd) (34)

and dt can be simplified to

dt = 2u1ty1t − u21t − 2u2ty2t + u22t. (35)

The expression of dt in (35) reveals that there are situations in which one cannot use the

normal test in Proposition 5 to test H0 : δ21 = δ22 . This can happen when (1) y1t = y2t, which

implies u1t = u2t and hence dt = 0; or (2) y1t 6= y2t but both models are correctly specified—i.e.,

u1t = u2t = 0, which also leads to dt = 0.
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