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The Distribution of the Sample Minimum-Variance
Frontier

Abstract

In this paper, we present a finite sample analysis of the sample minimum-variance frontier un-

der the assumption that the returns are independent and multivariate normally distributed.

We show that the sample minimum-variance frontier is a highly biased estimator of the

population frontier and we propose an improved estimator of the population frontier. In ad-

dition, we provide the exact distribution of the out-of-sample mean and variance of sample

minimum-variance portfolios. This allows us to understand the impact of estimation error

on the performance of in-sample optimal portfolios

Keywords: Minimum-variance frontier; Efficiency set constants; Finite sample distribution.



1. Introduction

The minimum-variance frontier plays a central role in much of finance. For example, it is

the cornerstone of modern portfolio theory and many asset pricing models. In addition, it

is closely linked to the Hansen-Jagannathan bound on the variance of admissible stochastic

discount factors (Hansen and Jagannathan (1991)). It is a common practice in the finance

literature to trace out the minimum-variance frontier using sample estimates of the mean

and covariance matrix of returns. However, a sample frontier is subject to estimation error,

so it is important to understand its finite sample distribution.

While the sample frontiers are widely calculated and interpreted, their finite sample

properties are virtually unknown. Dickinson (1974) shows that the sample variance of the

sample global minimum-variance portfolio has a chi-squared distribution.1 For the two assets

case, he also provides the exact distribution of the weights of the sample global minimum-

variance portfolio. Jobson and Korkie (1980) provide the exact mean and variance of the

three sample efficiency set constants that determine the sample minimum-variance frontier.

In addition, they provide approximation formulas for the mean and variance of the weights

of the sample tangency portfolio. Jobson (1991) provides the exact distribution for two out

of the three random variables that are crucial in determining the location of the sample

minimum-variance frontier. Okhrin and Schmid (2006) derive the exact mean and variance

of the weights of the sample optimal portfolio that maximizes a given expected quadratic

utility function. For the special case of sample global minimum-variance portfolio, they also

provide the exact distribution of its weights.

We contribute to this literature by deriving the finite sample distribution and moments

of the sample minimum-variance frontier when returns are independent multivariate normal

random variables. We find that the sample minimum-variance frontier is a heavily biased

estimator of the population frontier even when the length of the estimation window is very

long. To correct for this bias, we propose a new adjusted estimator of the population frontier

that has a significantly smaller bias than the traditional sample estimator.

For many investors, inference on the population minimum-variance frontier is of little

1Dickinson’s result contains an error in the degrees of freedom.
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interest when they cannot hold the portfolios on the population frontier because the mean

and covariance matrix of the returns are unknown. The classical approach to mean-variance

portfolio selection (Markowitz (1952)) involves estimating the sample mean and covariance

matrix of returns and then treating these as their population values when selecting the

optimal portfolio. However, using sample estimates of the means and covariances results in

estimation error of the optimal portfolio weights. To an investor who holds an optimized

portfolio that is based on sample estimates, he is most concerned with its out-of-sample

performance.

Researchers have been questioning the out-of-sample performance of optimal portfolios

formed using sample estimates for quite some time. Using a simulation experiment of three

stocks, Frankfurter, Phillips and Seagle (1971) find that grossly inefficient portfolios in terms

of true parameters may appear to be efficient in-sample for a large proportion of the time.

Dickinson (1974) finds that the estimates of the weights and variance of the global minimum-

variance portfolio are highly unreliable. Using a simulation experiment of twenty stocks,

Jobson and Korkie (1981) conclude that with a typical length of estimation window, the

sample mean and variance of the sample tangency portfolio is a very poor estimator of

its out-of-sample performance. They find that even a näıve equally weighted portfolio can

significantly outperform the sample tangency portfolio. In a simulation experiment using

five assets, Broadie (1993) demonstrates that sample frontiers are overly optimistic while the

out-of-sample frontiers are inferior to both the true and sample frontiers. Michaud (1989)

discusses various problems of using the Markowitz’s method of selecting optimal portfolio.

As a result, researchers have started to incorporate estimation risk when solving the

portfolio choice problem. Broadly speaking, there are three different approaches that are

used to improve the out-of-sample performance of an optimal portfolio. The first approach

is to use better statistical estimators of the mean and covariance matrix to form optimal

portfolios. For example, Jorion (1986) proposes the use of a shrinkage estimator of the

mean, and Ledoit and Wolf (2003) propose the use of a shrinkage estimator of the covariance

matrix.2 The second approach is to impose some structure on the data generating process

2Jagannathan and Ma (2003) show that imposing no short-selling constraints on the portfolio is equivalent
to using a particular shrinkage estimator of the covariance matrix.
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to reduce the number of parameters to be estimated. For example, Sharpe (1963) suggests

the use of a single factor model, and Jorion (1985) suggests the use of the capital asset

pricing model to improve the estimates of mean and covariance matrix. The third approach

explicitly incorporates uncertainty in choosing optimal portfolios. For example, Barry (1974)

and Brown (1976) incorporate estimation risk in the problem with Bayesian procedure (see

Bawa, Brown, and Klein (1979) for an extensive survey of the early work). Garlappi, Uppal,

and Wang (2007) propose optimal portfolio rules that take into account both parameter and

model uncertainty for an investor that exhibits uncertainty aversion.

All three approaches result in portfolio rules that appear to have better out-of-sample

performance than optimal portfolios formed using the sample mean and covariance matrix.

However, the evidence is largely based on simulation or historical data, so it is not en-

tirely clear what is the real reason for the improvement and what are the conditions for

the dominance. As a result, it is important to understand analytically what determines the

out-of-sample performance of a sample minimum-variance portfolio. The out-of-sample per-

formance of a sample minimum-variance portfolio has received quite a bit of attention lately.

TerHorst, DeRoon, and Werkerzx (2002), Mori (2004), and Kan and Zhou (2007) study

the average out-of-sample performance (or risk function) associated with holding the sample

tangency and global minimum-variance portfolios. They also propose superior portfolio rules

that dominate the sample tangency portfolio. Two recent papers that are closely related to

our study are Basak, Jagannathan, and Ma (2005) and Siegel and Woodgate (2007). Basak,

Jagannathan, and Ma (2005) show that the in-sample minimum-variance frontier is overly

optimistic and, in particular, the sample variance can dramatically understate the actual

variance of holding such a portfolio out-of-sample. They present a Jackknife estimator for

the out-of-sample variance which corrects some of this in-sample optimism and illustrate the

economic significance of ignoring the overoptimism. Siegel and Woodgate (2007) make the

same point as Basak, Jagannathan, and Ma (2005) and further point out that the in-sample

mean of a sample minimum-variance portfolio can also be a highly biased estimator of its

out-of-sample mean. In particular, the out-of-sample expected return is shrunk toward the

expected return of the global minimum-variance portfolio. In addition, they provide approxi-

mate formulas to correct for this overoptimism in the sample mean and variance of the sample
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minimum-variance portfolio. We extend the results of Basak, Jagannathan, and Ma (2005)

and Siegel and Woodgate (2007) by presenting the exact distribution of the out-of-sample

mean and variance of a sample minimum-variance portfolio. In addition, we present unbiased

forecasts of the expected out-of-sample mean and variance of optimal portfolios based on

sample estimates. Our results suggest that for estimation windows normally encountered in

practice, estimation error overwhelms the benefits of optimization, and the sample tangency

portfolio does not perform much better than the sample global minimum-variance portfolio.3

The remainder of the paper is organized as follows. Section 2 presents the joint distri-

bution of three sample efficiency set constants that are the key elements for constructing

the sample minimum-variance frontier. Section 3 discusses the distribution of the sample

minimum-variance frontier and presents an improved estimator of the population minimum-

variance frontier. Section 4 discusses the distribution of the out-of-sample performance of

a sample minimum-variance portfolio. It also suggests unbiased estimators of the average

out-of-sample mean and variance of such a portfolio. Section 5 concludes the paper. Proofs

and some additional materials are in the appendix.

2. Analysis of sample efficiency set constants

In order for us to study the distribution of the sample minimum-variance frontier, we need

to first study the joint distribution of three random variables that together determine the

sample minimum-variance frontier. Let Rt be the vector of returns on N ≥ 2 risky assets

at time t for t = 1, . . . , T where T denotes the length of the time series. Depending on the

context, Rt can be gross returns, net returns, or excess returns (in excess of either the risk-free

or some other rate). For finite sample inference, we assume Rt is independent and identically

distributed (i.i.d.) as multivariate normal with mean µ and covariance matrix V . In addition,

we assume µ is not proportional to 1N and V is nonsingular. To address the issue of the finite

3Jobson, Korkie, and Ratti (1979) suggest investing in only the sample global minimum-variance portfolio.
Haugen and Baker (1991) and Clarke, de Silva and Thorley (2006) find that sample global minimum-variance
portfolios dominate the value-weighted market portfolio. Jorion (1986) suggests using a shrinkage estimator
of expected return, which effectively suggests moving the optimal portfolio from the sample tangency portfolio
to the sample global minimum-variance portfolio. Kan and Zhou (2007) suggest a portfolio rule that optimally
combines the risk-free asset, the sample tangency portfolio, and the sample global minimum-variance portfolio
to maximize the average out-of-sample performance.
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sample distribution of the minimum-variance frontier, we must make an assumption about

the distribution of returns. Although it is well known that daily stock returns are generally

nonnormal and heterogeneous, the evidence of predictability and nonnormality in monthly

returns is much weaker. Since we mainly deal with monthly stock returns in our empirical

applications, we treat the i.i.d. normality assumption as a reasonable working approximation.

In addition, we make an attempt in the paper to understand the impact of departure from

normality on our results by studying the distribution of the minimum-variance frontier when

returns follow a multivariate-t distribution. While our finite sample distribution results are

not exact when returns are not normally distributed, they generally provide a much better

approximation to the actual distribution than asymptotic results would.

For any target expected return µp, the minimum-variance portfolio solves the following

minimization problem

min
w∈ℜN

w′V w s.t. w′µ = µp and w′1N = 1, (1)

where 1N denotes an N -vector of ones. The minimum-variance frontier traces out the vari-

ance of the minimum-variance portfolios for a range of target expected returns µp, and it

plays a central role in portfolio theory and asset pricing. As is well known, (see e.g., Mer-

ton (1972)) the minimum-variance frontier can be characterized using the following three

so-called efficiency set constants:

a = µ′V −1µ, b = µ′V −11N , c = 1′NV
−11N . (2)

For our analysis of the minimum-variance frontier, it is useful to consider a remapping

of these three constants to another set of three constants (see also Jobson (1991)):

ψ2 = a− b2

c
, µg =

b

c
, σ2

g =
1

c
. (3)

It can be easily shown that ψ2 is the square of the slope of the asymptote to the minimum-

variance frontier in the (σ, µ) space, and µg and σ
2
g are the mean and variance of the global

minimum-variance portfolio. There exists a one-to-one mapping between (ψ2, µg, σ
2
g) and

(a, b, c). Knowing (ψ2, µg, σ
2
g), we can determine (a, b, c) using the following relations:

a = ψ2 +
µ2
g

σ2
g

, b =
µg
σ2
g

, c =
1

σ2
g

. (4)
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Suppose we have T observations on Rt, the maximum likelihood estimates of µ and V are

given by

µ̂ =
1

T

T∑
t=1

Rt, (5)

V̂ =
1

T

T∑
t=1

(Rt − µ̂)(Rt − µ̂)′. (6)

It is well-known that under the i.i.d. normality assumption, µ̂ and V̂ are independent of each

other and they have the following exact distributions (see, e.g., Muirhead (1982))

µ̂ ∼ N(µ, V/T ), (7)

V̂ ∼ WN(T − 1, V/T ), (8)

where WN(T − 1, V/T ) denotes an N -dimensional Wishart distribution with T − 1 degrees

of freedom and covariance matrix V/T . We assume T > N so that V̂ is invertible.

The sample efficiency set constants are defined as4

â = µ̂′V̂ −1µ̂, b̂ = µ̂′V̂ −11N , ĉ = 1′N V̂
−11N . (9)

We also define ψ̂2 = â − b̂2/ĉ, µ̂g = b̂/ĉ, σ̂2
g = 1/ĉ as the sample counterparts of ψ2, µg and

σ2
g .

5 We are interested in the finite sample joint distribution of (â, b̂, ĉ), or equivalently the

finite sample joint distribution of (ψ̂2, µ̂g, σ̂
2
g). The following Proposition presents the joint

distribution of (ψ̂2, µ̂g, σ̂
2
g).

6

Proposition 1 Let r ∼ (N − 1)FN−1,T−N+1(Tψ
2)/(T −N + 1) where Fm,n(δ) stands for a

noncentral F -distribution with m and n degrees of freedom and a noncentrality parameter of

4We can also define the sample efficiency set constants using the unbiased estimator of V (i.e., divided
by T − 1 instead of by T ) or Ṽ = T V̂ /(T −N − 2) (such that E[Ṽ −1] = V −1). It requires only multiplying
a different scaling factor in our analysis to deal with these alternative estimators of V .

5Note that ψ̂2 can be written as

ψ̂2 = µ̂′[V̂ −1 − V̂ −11N (1′N V̂
−11N )−11′N V̂

−1]µ̂,

and it is proportional to the Hotelling’s T 2-statistic of testing H0 : µ = k1N for some scalar k.
6Knight and Satchell (2006) present the finite sample distribution of ψ̂2. Jobson (1991) presents the

finite sample distribution of ψ̂2 and σ̂2
g , and Bodnar and Schmid (2006a) independently derive the joint

distribution of (ψ̂2, µ̂g, σ̂
2
g).
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δ, q ∼ χ2
T−N , and x ∼ N(0, 1), independent of each other. ψ̂2, µ̂g, and σ̂2

g can be written as

functions of r, q, and x as follows:

ψ̂2 = r, µ̂g = µg +

(
1 + r

T

) 1
2

σgx, σ̂2
g =

σ2
gq

T
. (10)

Conditional on ψ̂2, µ̂g ∼ N(µg, σ
2
g(1 + ψ̂2)/T ). The joint density function of (ψ̂2, µ̂g, σ̂

2
g) is

given by

f(ψ̂2, µ̂g, σ̂
2
g) = f(ψ̂2, µ̂g)f(σ̂

2
g) = f(ψ̂2)f(µ̂g|ψ̂2)f(σ̂2

g). (11)

The three sample efficiency set constants are given by â = ψ̂2 + µ̂2
g/σ̂

2
g , b̂ = µ̂g/σ̂

2
g , and

ĉ = 1/σ̂2
g .

Proposition 1 suggests that while µ̂ and V̂ determine the sample efficiency set constants, one

does not need to know µ and V to determine the distribution of the sample efficiency set

constants. The joint distribution of (â, b̂, ĉ) is completely determined by the three population

efficiency set constants (a, b, c) (together with N and T ) or equivalently by (ψ2, µg, σ
2
g).

Proposition 1 also shows that (ψ̂2, µ̂g) are independent of σ̂2
g .

Besides knowing what are the determining parameters of the distribution of the sample

efficiency set constants, Proposition 1 provides us a speedy approach of simulating (â, b̂, ĉ)

that has its computation time independent of N and T . Traditionally, researchers need to

simulate a T ×N matrix of returns in order to simulate one realization of (â, b̂, ĉ). A faster

method is to just simulate µ̂ and V̂ using (7) and (8) to generate samples of (â, b̂, ĉ). This

is still costly when N is large as the computational time is O(N2). However, relying on

Proposition 1 all we need to do is simulate three independent random variables r, q, and x

to obtain a sample of (â, b̂, ĉ). In addition, one does not need to specify µ and V for such a

simulation.

Equipped with Proposition 1, we can easily obtain the joint moments of (â, b̂, ĉ). The

following Lemma presents the mean and covariance matrix of (â, b̂, ĉ) as well as the unbiased

estimators of (a, b, c). With appropriate adjustments of the scaling factor, some of the results

in this lemma are available in Jobson and Korkie (1980).

Lemma 1 The expected values of â, b̂, and ĉ are given by

E[â] =
N + Ta

T −N − 2
, E[b̂] =

Tb

T −N − 2
, E[ĉ] =

Tc

T −N − 2
. (12)
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The unbiased estimators of a, b, and c are given by

âu =
(T −N − 2)â−N

T
, b̂u =

(T −N − 2)b̂

T
, ĉu =

(T −N − 2)ĉ

T
. (13)

The covariance matrix of â, b̂, and ĉ is given by

Var[â] =
2T 2a2 + 2(T − 2)(N + 2Ta)

(T −N − 2)2(T −N − 4)
, (14)

Var[b̂] =
T 2
[
ac+

(
T−2
T

)
c+

(
T−N
T−N−2

)
b2
]

(T −N − 1)(T −N − 2)(T −N − 4)
, (15)

Var[ĉ] =
2T 2c2

(T −N − 2)2(T −N − 4)
, (16)

Cov[â, b̂] =
2T 2ab+ 2(T − 2)Tb

(T −N − 2)2(T −N − 4)
, (17)

Cov[â, ĉ] =
2T 2

[
ac+

(
T−2
T

)
c+ (T −N − 2)b2

]
(T −N − 1)(T −N − 2)2(T −N − 4)

, (18)

Cov[b̂, ĉ] =
2T 2bc

(T −N − 2)2(T −N − 4)
. (19)

The joint moments of ψ̂2, µ̂g and σ̂
2
g are also easy to obtain. The following lemma presents the

mean and covariance matrix of (ψ̂2, µ̂g, σ̂
2
g) as well as the unbiased estimators of (ψ2, µg, σ

2
g).

Some of these results are given in Jobson (1991).

Lemma 2 The expected values of ψ̂2, µ̂g, and σ̂
2
g are given by

E[ψ̂2] =
N − 1 + Tψ2

T −N − 1
, E[µ̂g] = µg, E[σ̂2

g ] =
(T −N)σ2

g

T
. (20)

The unbiased estimators of ψ2, µg, and σ2
g are given by

ψ̂2
u =

(T −N − 1)ψ̂2 − (N − 1)

T
, µ̂gu = µ̂g, σ̂2

gu =
T σ̂2

g

T −N
. (21)

The covariance matrix of ψ̂2, µ̂g, and σ̂
2
g is given by

Var[ψ̂2] =
2T 2ψ4 + 2(T − 2)(N − 1 + 2Tψ2)

(T −N − 1)2(T −N − 3)
, (22)

Var[µ̂g] =
[T (1 + ψ2)− 2]σ2

g

T (T −N − 1)
, (23)

Var[σ̂2
g ] =

2(T −N)σ4
g

T 2
, (24)

Cov[ψ̂2, µ̂g] = Cov[ψ̂2, σ̂2
g ] = Cov[µ̂g, σ̂

2
g ] = 0. (25)
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3. In-sample performance of sample minimum-variance

portfolios

3.1 The four minimum-variance frontiers

If µ and V are known, then it is well known that the minimum-variance portfolio of the N

risky assets with a targeted expected return of µp is given by

w = V −1[µ, 1N ]A
−1[µp, 1]

′, (26)

where

A =

[
a b

b c

]
. (27)

The variance of this optimal portfolio is given by σ2
p = w′V w. It is easy to show that the

relation between σ2
p and µp is

σ2
p =

a− 2bµp + cµ2
p

ac− b2
. (28)

By varying µp in equation (28) we obtain the minimum-variance frontier. Instead of writing

σ2
p using the efficiency set constants, it is more convenient for us to write σ2

p using ψ2, µg

and σ2
g as

σ2
p = σ2

g +
(µp − µg)

2

ψ2
. (29)

We call this frontier the population minimum-variance frontier.

When we do not know µ and V , we typically construct the minimum-variance portfolio

using the sample moments. The weights of the sample minimum-variance portfolio are given

by

ŵ = V̂ −1[µ̂, 1N ]Â
−1[µp, 1]

′, (30)

where

Â =

[
â b̂

b̂ ĉ

]
. (31)

For a given value of µp, the in-sample variance of the sample minimum-variance portfolio is

given by

σ̂2
p = ŵ′V̂ ŵ =

â− 2b̂µp + ĉµ2
p

âĉ− b̂2
= σ̂2

g +
(µp − µ̂g)

2

ψ̂2
. (32)
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We call (32) the sample minimum-variance frontier. This is typically what researchers plot

when they use historical data to estimate the population frontier. However, σ̂2
p in (32) is a

random variable as µ̂ and V̂ are random. Although as T → ∞, σ̂2
p → σ2

p, the finite sample

distribution of σ̂2
p can differ significantly from σ2

p even when T is reasonably large.

Knowing that σ̂2
p is random, we present its finite sample distribution in the next subsec-

tion. In addition, we present the expected value of σ̂2
p, which is denoted by σ̄2

p = E[σ̂2
p]. The

relation between σ̄2
p and µp gives us a third frontier that we called the expected value of the

sample minimum-variance frontier, or the in-sample frontier in short. The distribution and

the expected value of the sample frontier give us an idea of how far on average the sample

frontier is away from the population frontier. This information is useful for researchers to

make inference concerning the population frontier. In many empirical tests of asset pricing

models as well as investigation of international diversification benefits, making inference on

the population frontier is the main task. An implicit assumption of this exercise is we assume

that the economic agents know the population frontier and that it is only the econometrician

that does not have this information.

In another line of research, we take the stand that the investors, just like the econome-

trician, do not know the true µ and V but instead only have the sample information µ̂ and

V̂ . Under these circumstances, the population frontier is of little interest to investors as it

is unattainable. Instead, they are interested in finding out what is the out-of-sample perfor-

mance if they hold a sample minimum-variance portfolio ŵ. Recent studies like Mori (2004),

Kan and Zhou (2007), Basak, Jagannathan, and Ma (2005), and Siegel and Woodgate (2007)

start to address this issue. Note that for an investor who holds portfolio ŵ, the out-of-sample

mean and variance are given by

µ̃p = ŵ′µ, (33)

σ̃2
p = ŵ′V ŵ. (34)

Since ŵ is random, the out-of-sample mean and variance of the sample minimum-variance

portfolio are also random. An investor who holds ŵ for the next period is more interested in

µ̃p and σ̃
2
p rather than their in-sample counterparts. In Section 4, we present the distribution

of µ̃p and σ̃2
p. Denote µ

p
= E[µ̃p] and σ2

p = E[σ̃2
p] as the average out-of-sample mean and

10



variance of the sample minimum-variance portfolio. Investors are interested in finding out

the frontier based on µ
p
and σ2

p because this represents a realistic expectation of the out-of-

sample performance of the sample minimum-variance portfolios. We call this fourth frontier,

which is constructed using µ
p
and σ2

p, the out-of-sample frontier. In Section 4, we provide

analytical expressions for this out-of-sample frontier as well as delivering an unbiased forecast

of it.

3.2 Distribution of the sample minimum-variance frontier

Using the results in Proposition 1, we can write the distribution of σ̂2
p as function of the

three random variables r, q, x. However, for convenience of presentation, we use an alternate

characterization. Define

δ =
µp − µg
σg

, (35)

this allows us to write σ2
p as the following function of σ2

p, ψ
2 and δ2:

σ2
p = σ2

g

(
1 +

δ2

ψ2

)
. (36)

Using this characterization, the following Proposition presents the distribution of σ̂2
p.

Proposition 2 Let u ∼ χ2
N−1(Tψ

2), v ∼ χ2
T−N+1, and ỹ ∼ N(

√
Tδ, 1), independent of

each other. For a sample minimum-variance portfolio with target expected return of µp, the

distribution of the sample variance σ̂2
p is given by7

σ̂2
p =

σ̌2
pv

T
, (37)

where

σ̌2
p = σ2

g

(
1 +

ỹ2

u

)
. (38)

Proposition 2 and equation (33) suggest that the sample frontier, like the population frontier,

is a quadratic function of µp. However, the coefficients are random and the distribution of

7The exact density function of σ̂2
p can be written as an infinite series of confluent hypergeometric functions.

Details are available upon request. Hillier and Satchell (2003) present a similar analysis as our Proposition 2.
The only difference is that they analyze a minimum-variance portfolio that has the same sample mean as a
target portfolio whereas we analyze a minimum-variance portfolio with a constant sample mean.
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σ̂2
p depends on three independent random variables. There are two sources of randomness in

σ̂2
p. One is due to v, which is a function of V̂ and the other one is due to u and ỹ in σ̌2

p, which

are functions of µ̂. With (37), simulating the distribution of σ̂2
p is rather straightforward.

It requires specifying (a, b, c), or equivalently (ψ2, µg, σ
2
g) and then simulating u, v and ỹ to

obtain the distribution of σ̂2
p. While one can always simulate the distribution of the sample

minimum-variance frontier by simulating a T ×N matrix of returns, our method is far more

efficient. In addition, it is difficult to generalize the results from a Monte Carlo simulation

as they depend on the choice of µ and V . Our analysis, however, makes it clear that the

finite sample distribution only depends on the three efficiency set constants, and it is valid

for all relevant combinations of µ and V .

Before we discuss the exact moments of σ̂2
p, we need to introduce an important integral

that will be used repeatedly throughout the paper:

ϕ =
Tψ2

2

∫ 1

0

e
Tψ2(y−1)

2 y
N−3

2 dy for N ≥ 2. (39)

Note that we can also write ϕ using the confluent hypergeometric function as8

ϕ =
Tψ2e−

Tψ2

2

N − 1
1F1

(
N − 1

2
,
N + 1

2
;
Tψ2

2

)
=

Tψ2

N − 1
1F1

(
1,
N + 1

2
;−Tψ

2

2

)
. (40)

Let P be an N×(N−1) orthonormal matrix such that its columns are orthogonal to V − 1
21N ,

i.e., P ′V − 1
21N = 0N−1. Define z =

√
TP ′V − 1

2 µ̂ ∼ N(µz, IN−1), where µz =
√
TP ′V − 1

2µ. It

is easy to verify that µ′
zµz = Tψ2, so u = z′z ∼ χ2

N−1(Tψ
2). The following lemma expresses

the expectation of various ratios of z′µz and z
′z in terms of ϕ.

Lemma 3 Suppose z ∼ N(µz, IN−1), and µ
′
zµz = Tψ2. We have

E

[
1

z′z

]
=

1− ϕ

N − 3
for N > 3, (41)

E

[
1

(z′z)2

]
=

(N − 5)ϕ− Tψ2(1− ϕ) + 2

2(N − 3)(N − 5)
for N > 5, (42)

E

[
z′µz
z′z

]
= ϕ for N > 2, (43)

E

[
z′µz
(z′z)2

]
=

Tψ2(1− ϕ)

2(N − 3)
− ϕ

2
for N > 3, (44)

8A fast and numerically stable Matlab program for computing ϕ is available upon request.
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E

[
(z′µz)

2

z′z

]
= Tψ2 − (N − 2)ϕ for N > 1, (45)

E

[
(z′µz)

2

(z′z)2

]
=

(N − 2)ϕ

2
− Tψ2(N − 4)(1− ϕ)

2(N − 3)
for N > 3. (46)

With the help of this lemma, the following Proposition presents the expected value and

variance of σ̂2
p. The expected value tells us on average where the sample frontier is located

while the variance tells us how volatile the sample frontier is.

Proposition 3 For a sample minimum-variance portfolio with target expected return of µp,

its expected in-sample variance exists if and only if N > 3. When N > 3, the expected value

of σ̂2
p is given by

σ̄2
p = E[σ̂2

p] =

(
T −N + 1

T

)
E[σ̌2

p], (47)

where E[σ̌2
p] = σ2

g(1 + hE[u−1]) and h = Tδ2 + 1. In addition, the variance of σ̂2
p exists if

and only if N > 5. When N > 5, the variance of σ̂2
p is given by

Var[σ̂2
p] =

(T −N + 1)[(T −N + 3)Var[σ̌2
p] + 2E[σ̌2

p]
2]

T 2
, (48)

where Var[σ̌2
p] = σ4

g [(h
2 + 4h− 2)E[u−2]− (hE[u−1])2], with E[u−1] and E[u−2] are given in

(41) and (42).

To get a feeling for how well the sample frontier approximates the population frontier,

consider the following example. We assume there are N = 10 risky assets, with popu-

lation minimum-variance frontier determined by the following parameters: µg = 0.00745,

σg = 0.04930, and ψ = 0.133. These parameters are chosen based on the unbiased estimates

of µg, σ
2
g and ψ2 using monthly returns on the ten size-ranked portfolios of the combined

NYSE-AMEX-NASDAQ from 1926/1–2004/12.

In Figure 1, we provide information on the distribution of the sample minimum-variance

frontier of these ten assets for different estimation period lengths (T ). In each panel, the

solid line is the population frontier, the dashed line is the expected value of the sample

minimum-variance frontier (σ̄p) and the dotted lines are the 5th and 95th percentiles of σ̂p.
9

9Note that σ̄p is the square root of E[σ̂2
p], but not the mean of σ̂p. The analytical expression for E[σ̂p] is

available upon request. The difference between E[σ̂p] and σ̄p is almost negligible even for T as small as 60.
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The 5th and 95th percentiles of σ̂p are obtained by simulating σ̂p 100,000 times using (37). It

is readily apparent that the sample minimum-variance frontier is hugely biased and the bias

is most pronounced for portfolios that are far from the global minimum-variance portfolio.

The bias is still quite pronounced even when using moments estimated with 50 years of

monthly data.

Figure 1 about here

It is evident from this figure that the sample minimum-variance frontier tends to lie to the

left of the population frontier, providing an overly optimistic assessment of the population

frontier. To understand the reason for this, recall that the sample frontier is computed using

the sample mean and covariance matrix that was also used to obtain the optimal portfolio

weights of the sample minimum-variance portfolios. Due to the optimization, these portfolio

weights are tilted toward assets with lower sample variances and lower sample covariances

with other assets. However, low sample variance and covariances may be due to negative

estimation error. As a result, the in-sample variance of these minimum-variance portfolios

tends to be understated.

In the appendix, we present results for a second example based on N = 25 risky assets

chosen to closely mimic the monthly value-weighted returns from the popular Fama and

French (1993) 25 size and book-to-market portfolios over the period 1932/1–2004/12. The

main difference that can be noted is that the bias increases with the number of assets.

3.3 Improved estimator of the minimum-variance frontier

Statistically, the main reason for the huge bias of the sample minimum-variance frontier is its

use of 1/ψ̂2 to estimate 1/ψ2. From Proposition 1 we know that ψ̂2 ∼ χ2
N−1(Tψ

2)/χ2
T−N+1.

Therefore, using the results in Lemma 3, the expected value of 1/ψ̂2 is given by

E

[
1

ψ̂2

]
=

(T −N + 1)(1− ϕ)

N − 3
. (49)

The expectation of 1/ψ̂2 is in general much less than 1/ψ2. In Figure 2, we plot the percentage

bias of 1/ψ̂2 as a function of Tψ2 for the case that N = 10. Over a reasonable range of Tψ2,

14



the percentage bias of 1/ψ̂2 is huge. Even for Tψ2 as large as 20, the expectation of 1/ψ̂2

is still less than 75% of the true value of 1/ψ2. This explains why the sample frontier has a

much smaller variance than the true frontier, even for T as large as 600.

Although we know the functional form of the expectation of 1/ψ̂2, correcting for the bias

of 1/ψ̂2 is not an easy task. This is because the bias is determined by N , T and ψ2 through

the function ϕ, which is a confluent hypergeometric function. The confluent hypergeometric

function is a special function that is very difficult to approximate by polynomials.10 As a

result, when we attempt to use the standard bias reduction methods that rely on either

Taylor series expansions or resampling techniques, the improvement is typically very small

unless Tψ2 is large. To illustrate, we plot the percentage bias of the jackknife version of

1/ψ̂2 in Figure 2.11 While the jackknife version of 1/ψ̂2 provides an improvement over the

sample estimator, its bias is still large.

Figure 2 about here

If we were able to find an adjusted estimator ψ̂2
a that is a function of ψ̂2 such that

E[1/ψ̂2
a] = 1/ψ2, then we can construct an unbiased estimator of σ2

p as follows:

σ̂2
pu =

T σ̂2
g

T −N
+

1

ψ̂2
a

[
(µp − µ̂g)

2 −
σ̂2
g(1 + ψ̂2)

T −N

]
. (50)

However, it does not appear to us that an unbiased estimator of 1/ψ2 exists, so we search

for an improved estimator of 1/ψ2 instead.12 After considering many estimators of 1/ψ2, we

settled on the following adjusted estimator of 1/ψ2 :

1

ψ̂2
a

=
T
∫ z
0
u
T−N−1

2 (1− u)
N−5

2 du

2z
T−N−1

2 (1− z)
N−3

2

, (51)

10See Luh, Müller, and Vasundhra (2005) for a discussion of the difficulties in approximating confluent
hypergeometric functions over a wide range of arguments.

11The jackknife version of an estimator θ̂ is θ̂JK = T θ̂ − (T − 1)
∑T

t=1 θ̂(t)/T , where θ̂(t) is the estimator

θ̂ calculated without using the t-th observation of the data.
12There is a large literature of estimating noncentrality parameter of noncentral chi-squared and F -

distributions using a single observation, see Johnson, Kotz, and Balakrishnan (1995, Chapters 29–30) for a
review of this literature. However, none of the existing work appears to deal with the problem of estimating
the inverse of the noncentrality parameter.
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where z = 1/(1 + ψ̂2). While the expression of 1/ψ̂2
a looks complicated, the integral in the

numerator is proportional to the incomplete beta function, so we can easily use the following

Matlab command to compute 1/ψ̂2
a:

13

T*betainc(z,(T-N+1)/2,(N-3)/2)/(2*(1-z)*betapdf(z,(T-N+1)/2,(N-3)/2))

As it turns out, this new estimator of 1/ψ2 is not unbiased, but its bias is significantly less

than that of 1/ψ̂2. The following lemma presents the expectation of this adjusted estimator.

Lemma 4 When N > 3, the expectation of 1/ψ̂2
a exists and it is given by

E

[
1

ψ̂2
a

]
=

1− e−
Tψ2

2

ψ2
. (52)

In addition, the relative bias of 1/ψ̂2
a is smaller than the relative bias of 1/ψ̂2 when N ≥ 5.

Note that the relative bias of this adjusted estimator is equal to −eTψ2/2 which depends

on Tψ2 but not on N . In Figure 2, we plot the percentage bias of 1/ψ̂2
a as a function of

Tψ2 for the case that N = 10. When Tψ2 is very small, there is still a large bias in our

adjusted estimator. However, when Tψ2 increases, the bias of 1/ψ̂2
a disappears significantly

more quickly than 1/ψ̂2. For example, when Tψ2 = 4, the percentage bias of 1/ψ̂2
a is already

at a low level of −13.5%, whereas 1/ψ̂2 and its jackknife version still have percentage biases

of −64.2% and −37.7%, respectively. Therefore, the improvement of 1/ψ̂2
a over 1/ψ̂2 is

remarkable. If one is still concerned with the bias of 1/ψ̂2
a when Tψ2 is very small, one

can use a jackknife version of 1/ψ̂2
a. In Figure 2, we also plot the percentage bias of the

jackknife version of 1/ψ̂2
a. It shows that when Tψ2 is small, the jackknife version of 1/ψ̂2

a

greatly reduces the bias of 1/ψ̂2
a, but when Tψ2 becomes larger, it tends to overshoot and

has a bigger bias than 1/ψ̂2
a. Due to the computational time of the jackknife version and its

additional volatility, we have decided to simply use 1/ψ̂2
a as our estimator of 1/ψ2.

13When N is odd, we can use integration by parts repeatedly to write

1

ψ̂2
a

=
T

2

N−5
2∑

s=0

(
N−3
2 − s

)
s(

T−N+1
2

)
s+1

1

ψ̂2(s+1)
,

so 1/ψ̂2
a can be written as a polynomial in 1/ψ̂2.
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With our adjusted estimator ψ̂2
a, we can plug it in (50) to obtain an approximately

unbiased estimator of σ2
p. However, there is one additional problem with this estimator: σ̂2

pu

can be negative and hence is an inadmissible estimator of σ2
p. To overcome this problem, we

choose to use the following adjusted estimator of σ2
p:

σ̂2
pa =

T σ̂2
g

T −N
+

1

ψ̂2
a

max

[
(µp − µ̂g)

2 −
σ̂2
g(1 + ψ̂2)

T −N
, 0

]
. (53)

To examine how well this adjusted estimator of σ2
p performs, we plot the expected value of

our adjusted sample frontier (the dashed line) and the population frontier (the solid line)

in Figure 3 for different lengths of estimation period (T ). In addition, we plot the 5th and

95th percentiles of σ̂pa using the dotted lines. By comparing the distribution of the adjusted

sample frontier in Figure 3 with the distribution of the näıve sample frontier in Figure 1, we

see that our adjusted estimator in equation (53) performs dramatically better. While there

is still some bias in our adjusted sample frontier when T is small, the bias becomes almost

negligible when T > 120 months.

Figure 3 about here

3.4 Distribution of the weights

Although this paper is primarily concerned with characterizing the exact behavior of the

sample minimum-variance frontier, the distribution of the weights of the sample minimum-

variance portfolio (ŵ) with a given target expected return is potentially interesting. In the

following Proposition, we simplify the exact distribution of ŵ and present the exact mean

and covariance matrix of ŵ.

Proposition 4 Let Ã = [µ̂, 1N ]
′V −1[µ̂, 1N ]

′, σ̌2
p = [µp, 1]Ã

−1[µp, 1]
′, x ∼ N(0N−2, IN−2),

r̃ ∼ χ2
T−N+2, and Q be an N× (N−2) orthonormal matrix that is orthogonal to V − 1

2 [µ̂, 1N ],

with x, r̃ and µ̂ are independent of each other. The weights of the sample minimum-variance

portfolio with a target expected return of µp can be written as14

ŵ = V −1[µ̂, 1N ]Ã
−1[µp, 1]

′ + V − 1
2Q

σ̌px

r̃
1
2

. (54)

14For the special case of N = 2, the second term drops out and it can be shown that ŵ has the same
distribution as wg +sgn(µ1 −µ2)σg ỹ[1, −1]′/[([1, −1]V [1, −1]′)

1
2 z], where ỹ ∼ N(

√
Tδ, 1), z ∼ N(

√
Tψ, 1),
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When N > 2, the expected value of ŵ exists and it is given by

E[ŵ] = wg + ϕ(w − wg), (55)

where w is the population counterpart of ŵ and it is defined in (26), ϕ is defined in (39),

and wg = V −11N/(1
′
NV

−11N) is the vector of the weights of the global minimum-variance

portfolio. In addition, the covariance matrix of ŵ exists when N > 3 and it is given by

Var[ŵ] =

[(
T −N − 1

T −N

)
σ2
gh

(
1− ϕ

2(N − 3)
− ϕ

2Tψ2

)
+

E[σ̌2
p]

T −N
−

σ2
gϕ

(T −N)Tψ2

]
Va

+

[(
T −N − 1

T −N

)
σ2
gh

(
(N − 1)ϕ

2Tψ2
− 1− ϕ

2

)
−

σ2
g

T −N

(
1− (N − 1)ϕ

Tψ2

)]
Vb

− ϕ2(w − wg)(w − wg)
′, (56)

where h = Tδ2 + 1, E[σ̌2
p] is given in Proposition 3, and

Va = V −1 − V −11N1
′
NV

−1

1′NV
−11N

, (57)

Vb =
V −1(µ− µg1N)(µ− µg1N)

′V −1

(µ− µg1N)′V −1(µ− µg1N)
. (58)

Proposition 4 extends the work of Britten-Jones (1999) who presents a test of linear re-

strictions on the weights of the tangency portfolio. It also extends the work of Okhrin

and Schmid (2006) who present the exact distribution of the weights of the sample global

minimum-variance portfolio and the exact mean and covariance matrix of the weights of

the sample minimum-variance portfolio that maximizes an expected quadratic utility (as

opposed to having a given target expected return as in our case).

3.5 Departures from normality

Our analytical results so far are derived under the assumption of multivariate normality.

It is natural to question how well these results work when the returns are not normally

distributed. To examine the robustness of our finite sample results to departures from

and they are independent of each other. An explicit expression of the probability density function of ŵ for
N = 2 is available upon request. For a slightly different problem, Hillier and Satchell (2003) also show that
conditional on µ̂, the sample weights have a multivariate t-distribution.
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normality, we consider the case in which the returns follow a multivariate t-distribution with

five degrees of freedom. Under this t-distribution assumption, the returns have fat tails,

which is what we often find in the data. As we cannot obtain the finite sample distribution

of σ̂2
p and σ̂2

pa under the t-distribution assumption, we rely on simulation. In order to easily

compare our results under the assumption of normality with results from the t-distribution,

we simulate the returns of the assets using exactly the same µ and V as in the normality case.

In Figure 4, we plot the distribution of σ̂p and σ̂pa under the normality and the t-distribution

assumptions for the ten assets case using the same parameters as in Figures 1 and 3. To

conserve space, we only provide the plots for T = 60 and T = 240 because there is a

negligible difference between the results under the normality and t-distribution assumptions

when T = 600. The left panels in Figure 4 are for the unadjusted sample frontiers (σ̂p)

and the right panels are for the adjusted sample frontiers (σ̂pa). In each panel, the dashed

lines represent the distribution of the sample frontiers under the multivariate t-distribution

assumption and the dotted lines represent the distribution under the normality assumption.

From the upper panels of Figure 4, we can see that when T = 60, σ̂p and σ̂pa under the

t-distribution assumption is on average smaller than their distributions when returns are

normally distributed. This result is expected because when returns are t-distributed, we get

more extreme returns than in the normality case. As the mean-variance optimizer heavily

overweighs stocks with extreme average returns, the sample variance of the optimal portfolio

is likely to be smaller when extreme returns are more likely to occur. As T increases to

240, the finite sample distribution of σ̂p under the t-distribution case is very close to the

distribution under the normality case. This is because although the returns are not normally

distributed, the distribution of µ̂ converges to the normal distribution when T is reasonably

large. By comparing the distribution of the unadjusted sample frontier in the left panels

with the adjusted sample frontier in the right panels, we can see that while our adjusted

sample frontier is obtained under the normality assumption, it still does a very good job in

reducing the bias of the unadjusted sample frontier even when returns exhibit very fat tails.

Figure 4 about here

Our robustness analysis suggests that our finite sample results can be sensitive to return

distributions that exhibit fat tails, especially for T ≤ 60 and when the number of assets is
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large. However, for T ≥ 240, our finite sample results are very good approximations even

when returns have a significant departure from the normality assumption. More importantly,

our proposed adjusted estimator of the frontier still does a far better job than the unadjusted

estimator even when returns are not normally distributed.

4. Out-of-sample performance of sample minimum-variance

portfolios

4.1 Out-of-sample mean and variance

In this section, we are interested in the out-of-sample mean and variance of a sample

minimum-variance portfolio. For the sample minimum-variance frontier, ŵ is chosen such

that µ̂p = ŵ′µ̂ = µp, so there is no randomness in the in-sample mean. As a result, the

only random variable is the in-sample variance σ̂2
p = ŵ′V̂ ŵ. However, for the out-of-sample

case, both the out-of-sample mean and variance, i.e., µ̃p = ŵ′µ and σ̃2
p = ŵ′V ŵ, are random

variables. This means that there is one more random variable to study for the out-of-sample

case.

Similar to the in-sample variance case, the joint distribution of µ̃p and σ̃
2
p only depends on

(ψ2, µg, σ
2
g). However, unlike σ̂

2
p whose distribution can be obtained by generating three ran-

dom variables, our method of simulating the joint distribution of (µ̃p, σ̃
2
p) requires generating

six random variables. The additional random variables are needed because the expressions

for µ̃p and σ̃2
p depend not only on (µ̂, V̂ ) but also on (µ, V ). The following Proposition

presents the joint distribution of µ̃p and σ̃
2
p.

Proposition 5 Let x̃ ∼ N(0, 1), q̃ ∼ χ2
N−3, r̃ ∼ χ2

T−N+2, ũ ∼ χ2
N−2, ỹ ∼ N(

√
Tδ, 1) and

z̃ ∼ N(
√
Tψ, 1), independent of each other. Let u = z̃2 + ũ ∼ χ2

N−1(Tψ
2) and t̃ = x̃/r̃

1
2 .

For a sample minimum-variance portfolio with target expected return of µp, its out-of-sample

expected return and variance can be written as follows:

µ̃p = µg + ψ

[
σg
z̃

u
ỹ + σ̌p

(
ũ

u

) 1
2

t̃

]
, (59)
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σ̃2
p = σ̌2

p

(
1 +

x̃2 + q̃

r̃

)
, (60)

where σ̌2
p is defined in Proposition 2.

There are two sources of randomness in the weights of the sample minimum-variance port-

folio, one is due to µ̂ and the other is due to V̂ . From the proof of Proposition 5, we see that

the random variables ũ, ỹ and z̃ are functions of µ̂, whereas x̃, q̃ and r̃ are functions of V̂ .

If V is known but µ is not known, then the distribution of µ̃p and σ̃
2
p will be simplified to

µ̃p = µg + ψσg
z̃

u
ỹ, (61)

σ̃2
p = σ̌2

p. (62)

Comparing these expressions with the ones in Proposition 5, we can see that the estimation

risk of V̂ adds to the uncertainty of µ̃p and σ̃2
p. In particular, it will always increase σ̃2

p by

a random factor of 1 + (x̃2 + q̃)/r̃ and this further degrades the out-of-sample performance

of the sample minimum-variance portfolio. On the other hand, if µ is known but V is not

known, µ̃p and σ̃
2
p will become

µ̃p = µp, (63)

σ̃2
p = σ2

p

(
1 +

x̃2 + q̃

r̃

)
. (64)

In this case, µ̃p will always be equal to the target expected return µp and only σ̃2
p is random.

Since the out-of-sample mean and variance of a sample minimum-variance portfolio are

random variables, we are interested in their expectations. These expectations give us an idea

of what kind of average out-of-sample return and risk that an investor can obtain by holding

a sample minimum-variance portfolio. The following Proposition presents the expected out-

of-sample mean and variance of a sample minimum-variance portfolio.15 In addition, it also

presents the covariance matrix of (µ̃p, σ̃
2
p, σ̂

2
p).

Proposition 6 For a sample minimum-variance portfolio with target expected return of µp,

its expected out-of-sample mean exists if and only if N > 2. When N > 2, the expected value

15Analytical results for expected out-of-sample standard deviation (E[σ̃p]) are available upon request. The
difference between E[σ̃p] and σp is almost negligible.
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of µ̃p is given by

µ
p
= E[µ̃p] = µp − (1− ϕ)(µp − µg), (65)

where ϕ is defined in (39). In addition, the expected out-of-sample variance of the sample

minimum-variance portfolio exists if and only if N > 3. When N > 3, the expected value of

σ̃2
p is given by

σ2
p = E[σ̃2

p] =

(
T − 2

T −N

)
E[σ̌2

p]. (66)

For the covariance matrix of µ̃p and σ̃2
p, Var[µ̃p] and Cov[µ̃p, σ̃

2
p] exist if and only if N > 3,

and Var[σ̃2
p] exists if and only if N > 5. When they exist, the variances and covariance are

given by

Var[µ̃p] =
ψ2E[σ̌2

p]−
σ2
g

T

(
E
[
(z′µz)2

z′z

]
+ hE

[
(z′µz)2

(z′z)2

])
T −N

+
σ2
gh

T
E

[
(z′µz)

2

(z′z)2

]
− ϕ2(µp − µg)

2, (67)

Var[σ̃2
p] =

(T − 2)

(T −N)(T −N − 2)

[
(T − 4)Var[σ̌2

p] +
2(N − 2)E[σ̌2

p]
2

(T −N)

]
, (68)

Cov[µ̃p, σ̃
2
p] =

(T − 2)

(T −N)
(µp − µg)σ

2
g

[
(h+ 2)E

[
z′µz
(z′z)2

]
− hϕ(1− ϕ)

N − 3

]
, (69)

where E[(z′µz)
2/(z′z)], E[(z′µz)/(z

′z)2], and E[(z′µz)
2/(z′z)2] are given in Lemma 3, and h,

E[σ̌2
p] and Var[σ̌2

p] are defined in Proposition 3. The covariances of the in-sample variance

σ̂2
p with µ̃p and σ̃2

p are given by

Cov[µ̃p, σ̂
2
p] =

[
(T −N + 1)(T −N)

T (T − 2)

]
Cov[µ̃p, σ̃

2
p], (70)

Cov[σ̃2
p, σ̂

2
p] =

[
(T −N + 1)(T − 2)

T (T −N)

]
Var[σ̌2

p]. (71)

In Figure 5 we plot three frontiers: the population minimum-variance frontier (the solid

line), the expected value of the in-sample frontier (the outer dashed line), and the expected

value of the out-of-sample frontier (the inner dashed line) for different estimation period

lengths. From the figure it is evident that there is a huge difference between the three fron-

tiers, even for T as large as 600 months. The in-sample frontier is in general a downward

biased estimate of the population frontier, which in turn heavily dominates the out-of-sample

frontier. If an investor chooses to hold a sample minimum-variance portfolio, he is interested
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in the out-of-sample frontier because that represents the average true performance of his

portfolio. Nevertheless, what he observes from the data is the sample frontier, and it is

on average much better than the out-of-sample frontier. If an investor relies on the sam-

ple frontier to indicate the out-of-sample performance of his portfolio, he will be grossly

disappointed.

Figure 5 about here

There are two sources of disappointment for the investor. Using the fact that 0 < ϕ < 1

for N ≥ 3, we can see from equation (65) that the average out-of-sample mean (µ
p
) shrinks

toward the expected return of the global minimum-variance portfolio (µg). As a result,

µ
p
tends to be lower than the target expected return (µp) when µp > µg, so the investor

will on average be disappointed with the out-of-sample mean of his portfolio. As for the

out-of-sample variance of the portfolio, we use (47) and (66) to obtain

σ2
p =

[
(T − 2)T

(T −N)(T −N + 1)

]
σ̄2
p, (72)

so the average out-of-sample variance of the sample minimum-variance portfolio (σ2
p) tends

to be much higher than its average in-sample variance (σ̄2
p), especially when N/T is large.

Therefore, the investor will also be disappointed with the larger than expected risk of his

portfolio. To understand the sources of these two disappointments, recall that the sample

minimum-variance portfolio is obtained using the estimated moments of the returns. Suppose

we form a portfolio with a high target expected return (µp > µg). Our portfolio will tend

to be heavily invested in assets with high sample means and these sample means are high in

part due to chance. Therefore, out-of-sample the returns will tend to be lower than they were

in-sample. Similarly, our optimal portfolio tends to load heavily on assets with low sample

variances and covariances which are in part low by chance. Out-of-sample, the covariances

and variance will tend to be higher than they were historically. These two effects produce

out-of-sample returns that have lower means and higher variances than the in-sample frontier

implies.

Our results suggest that for a sample minimum-variance portfolio, the sample mean and

variance are too optimistic as forecasts of its out-of-sample mean and variance. In order to
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come up with a reliable forecast of the true out-of-sample performance of a sample minimum-

variance portfolio, we need to use a less optimistic forecast. The following Proposition

provides the unbiased forecast of µ
p
and σ2

p.

Proposition 7 The unbiased estimators of µ
p
and σ2

p are given by

µ̂
pu

= µp −
N − 3

(T −N + 1)ψ̂2
(µp − µ̂g) for N > 3, (73)

σ̂2
pu =

[
(T − 2)T

(T −N)(T −N + 1)

]
σ̂2
p for N > 5. (74)

Since µ
p
shrinks toward µg, our unbiased estimator also shrinks µp toward µ̂g to get an

unbiased forecast of µ
p
. In addition, the sample variance σ̂2

p is too optimistic as a forecast

of the out-of-sample variance. Proposition 7 suggests that one should multiply σ̂2
p by an

adjustment factor of (T − 2)T/[(T −N)(T −N + 1)] to get an unbiased forecast of the out-

of-sample variance of the sample minimum-variance portfolio. Note that similar formulas

were presented by Siegel and Woodgate (2007), but their formulas are only approximately

unbiased but not exact.

4.2 In-sample and out-of-sample Sharpe ratios

Many popular performance measures of a portfolio are functions of µp and σ
2
p. For example,

one can measure the performance of a portfolio using its Sharpe ratio, defined as

θp =
µp − r

σp
, (75)

where r is the risk-free rate. In order to estimate the Sharpe ratio of a portfolio, one often

uses the sample Sharpe ratio, defined as

θ̂p =
µ̂p − r

σ̂p
. (76)

When the portfolio weight vector w is fixed, θ̂p can be easily shown to have the following

distribution (see Miller and Gehr (1978))

θ̂p ∼
tT−1(

√
Tθp)√

T − 1
, (77)
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where tν(δ) is a noncentral t-distribution with ν degrees of freedom and a noncentrality

parameter of δ.16

However, for a sample minimum-variance portfolio, the weights of the portfolio are ran-

dom, so the distribution result above does not apply and the exact distribution of its sample

Sharpe ratio was previously unknown. With the results in our Proposition 2, we can now

easily evaluate the distribution of θ̂p. However, for an investor who holds a sample minimum-

variance portfolio, he is not particularly concerned with the distribution of θ̂p but rather is

more concerned about the out-of-sample Sharpe ratio of his portfolio, which is given by

θ̃p =
µ̃p − r

σ̃p
. (78)

With our results in Proposition 5, we can also easily evaluate the distribution of θ̃p.

In Figure 6, we provide information on the distribution of θ̂p and θ̃p for N = 10 assets and

various lengths of estimation window, using the same parameters as before and assuming

r = 0.5%/month. The solid line in Figure 6 represents the Sharpe ratios of portfolios on

the population frontier for µg ≤ µp ≤ µT , where µT is the expected return of the tangency

portfolio. As expected, when we increase the target expected return from µg to µT , the

population Sharpe ratio steadily increases and reaches the maximum at µp = µT . The

dashed-dotted line and the surrounding dotted lines in Figure 6 represent the mean and

the 5th and 95th percentiles of the in-sample Sharpe ratio (θ̂p) for portfolios on the sample

frontier. As σ̂2
p tends to be smaller than σ2

p, the in-sample Sharpe ratios are naturally

much higher than the population ones. The high in-sample Sharpe ratios are of course

unattainable out-of-sample. In Figure 6, we use the dashed line and the surrounding dotted

lines to represent the mean and the 5th and 95th percentiles of the out-of-sample Sharpe

ratio (θ̃p) of the sample minimum-variance portfolios. These represent the true performance

of holding the sample minimum-variance portfolios. By comparing the distribution of θ̂p

with θ̃p, we can see that θ̂p grossly overestimates θ̃p. For µp that is far away from µg, we

often see that the 5th percentile of θ̂p is even higher than the 95th percentile of θ̃p. This

suggests that when we choose an optimal portfolio based on sample estimates, we cannot

16For the fixed weights case, asymptotic distribution of θ̂p is provided by Jobson and Korkie (1981), Cadsby
(1986), Lo (2002) and Memmel (2003).
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trust the sample Sharpe ratio as an indicator of the future performance of the portfolio. It is

also noteworthy that unlike the population and the in-sample Sharpe ratios, the distribution

of the out-of-sample Sharpe ratio when µp = µg is not all that different from the distribution

when µp = µT , especially when we use a short estimation window. Therefore, the sample

tangency portfolio is not all that superior to the sample global minimum-variance portfolio

for investment purposes, unless the estimation window is very long.

Figure 6 about here

5. Conclusions

The minimum-variance frontier holds an important position in finance. However, relatively

little is known about its sampling properties. In this paper we derive the finite-sample

distribution of the efficient set constants and the sample minimum-variance frontier. We

show that the sample minimum-variance frontier commonly graphed in the finance literature

is significantly biased downward and suggest how a much improved estimate of the frontier

can be obtained.

An important and relatively understudied problem is the distribution of the returns from

holding a sample minimum-variance portfolio. We characterize the mean and variance of the

out-of-sample return of a sample minimum-variance portfolio. The out-of-sample frontier is

dramatically inferior to the in-sample frontier and failing to correct for the overoptimism

leads to significant disappointment out-of-sample. In-sample optimism arises because the

sample minimum-variance portfolios are tilted toward assets that experienced favorable in-

sample returns, some of which is due to sampling variability. Stocks that experienced extreme

returns, both good and bad, in-sample tend to perform less extreme out-of-sample because

the random component of their sample moments is uncorrelated with future performance. We

show how to construct an unbiased estimate of the mean and variance of the out-of-sample

returns. Correcting for the in-sample optimism takes two forms. The out-of-sample expected

return must be shrunk toward the average return of the sample global minimum-variance

portfolio, and the out-of-sample variance must be increased by a constant factor.
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Several extensions of the results in this paper are possible. For example, it is relatively

easy to apply our distribution results to study the distributions of other out-of-sample per-

formance measures that are functions of µ̃p and σ̃2
p. It is also not too difficult to extend

our distribution results on the sample minimum-variance frontier by incorporating equality

constraints on the portfolio weights. However, there are some interesting problems that are

technically challenging to us. One problem is how to construct a confidence interval for the

population minimum-variance frontier.17 Another problem is how to obtain the distribution

of the sample frontier when we incorporate inequality constraints (like short-selling con-

straints) on the portfolio weights. Finally, a very interesting open-ended question is in the

presence of estimation risk, how one should choose a portfolio to optimize its out-of-sample

performance. We hope future research will provide solutions to these problems.

17Jobson (1991) provides various approaches of constructing confidence intervals for the frontier based on
asymptotic results. Bodnar and Schmid (2006b) present an exact confidence region for the entire frontier.
Exact confidence intervals on the minimum-variance frontier (for a given expected return or variance) are
currently unavailable in the literature.
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Figure 1. The figure provides information on the distribution of the sample minimum-
variance frontier for different lengths of estimation period (T ). The solid line represents the
population frontier for N = 10 assets, with parameters µg = 0.00745, σg = 0.04930, and
ψ = 0.133. The dashed line represents σ̄p, where σ̄

2
p is the expected value of the sample

minimum-variance frontier. The two dotted lines represent the 5th and the 95th percentiles
of the sample minimum-variance frontier, based on 100,000 simulations.
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Figure 2. The figure plots the percentage biases of four estimators of the inverse of the
squared slope of the asymptote to the minimum-variance frontier (1/ψ2) as a function of
Tψ2, where T is the number of time series observations. The dotted line represents the
percentage bias of the sample estimator 1/ψ̂2. The solid line represents the percentage bias
of the adjusted estimator 1/ψ̂2

a. The percentage biases of the jackknife version of the ψ̂2 and
ψ̂2
a are plotted using the dashed-dotted line and dashed line, respectively. The percentage

biases of 1/ψ̂2 and its jackknife version are computed under the assumption of N = 10 assets
and T = 120, but the plot is quite insensitive to the assumption of T .
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Figure 3. The figure provides information on the distribution of the adjusted sample
minimum-variance frontier for different lengths of estimation period (T ). The solid line repre-
sents the population frontier for N = 10 assets, with parameters µg = 0.00745, σg = 0.04930,
and ψ = 0.133. The dashed line represents the expected value of the adjusted sample
minimum-variance frontier and the two dotted lines represent the 5th and the 95th per-
centiles of the adjusted sample minimum-variance frontier, all based on 100,000 simulations.
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Figure 4. The figure provides information on the distribution of the unadjusted and adjusted
sample minimum-variance frontier for different lengths of estimation period (T ). The solid
line represents the population frontier for N = 10 assets, with parameters µg = 0.00745,
σg = 0.04930, and ψ = 0.133. The three dashed lines represents the 5th percentile, expected
value, and 95th percentile of the unadjusted and adjusted sample minimum-variance frontier
under the assumption that returns are multivariate t-distributed with five degrees of freedom.
The three dotted lines are the corresponding ones for the normality case. The distributions
of the unadjusted and adjusted frontiers are based on 100,000 simulations.
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Figure 5. The figure provides information on the average out-of-sample performance of
sample minimum-variance frontier for different lengths of estimation period (T ). The solid
line represents the population frontier for N = 10 assets, with parameters µg = 0.00745,
σg = 0.04930, and ψ = 0.133. The outer dashed line represents σ̄p, where σ̄

2
p is the expected

value of the sample minimum-variance frontier. The inner dashed line represents σp, where σ
2
p

is the expected value of the out-of-sample variance of the sample minimum-variance frontier.
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Figure 6. The figure provides information on the distribution of the in-sample and out-of-
sample Sharpe ratio of sample minimum-variance portfolios with different target expected
return for different lengths of estimation period (T ). The solid line represents the Sharpe
ratio of the population minimum-variance frontier for N = 10 assets, with parameters µg =
0.00745, σg = 0.04930, ψ = 0.133 and a risk-free rate of 0.005. The dashed-dotted (dashed)
line and surrounding dotted lines represent the average, 5th, and 95th percentiles of the in-
sample (out-of-sample) Sharpe ratio of the sample minimum-variance portfolio with target
expected return µp. The distributions of the in-sample and out-of-sample Sharpe ratio are
based on 100,000 simulations.
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Appendix: Proofs and extensions

A Proofs

Proof of Proposition 1. Let

Ã = [µ̂, 1N ]
′V −1[µ̂, 1N ], (79)

Â = [µ̂, 1N ]
′V̂ −1[µ̂, 1N ] =

[
â b̂

b̂ ĉ

]
. (80)

From Theorem 3.2.11 of Muirhead (1982), conditional on µ̂, we have

Â−1 =
1

âĉ− b̂2

[
ĉ −b̂
−b̂ â

]
=

 1

ψ̂2
− µ̂g

ψ̂2

− µ̂g

ψ̂2
σ̂2
g +

µ̂2g

ψ̂2

 ∼ W2(T −N + 1, Ã−1/T ). (81)

Let P be an N×(N−1) orthonormal matrix such that its columns are orthogonal to V − 1
21N ,

i.e., P ′V − 1
21N = 0N−1. We define y =

√
T1′NV

−1µ̂/
√
c ∼ N(µy, 1) and z =

√
TP ′V − 1

2 µ̂ ∼
N(µz, IN−1), where µy =

√
Tb/

√
c =

√
Tµg/σg and µz =

√
TP ′V − 1

2µ. Note that y and z are

independent of each other. With y and z defined, we can write

TÃ =

[
y2 + u (Tc)

1
2y

(Tc)
1
2y Tc

]
, (82)

where u = z′z = T µ̂[V −1 − V −11N(1
′
NV

−11N)
−11′NV

−1]µ̂ ∼ χ2
N−1(Tψ

2). Taking the inverse

of TÃ, we have

Ã−1

T
=

[
1
u

− y√
Tcu

− y√
Tcu

y2+u
Tcu

]
=

 1
u

− σgy√
Tu

− σgy√
Tu

σ2
g

T

(
1 + y2

u

)  . (83)

Let Âij be the (i, j)th element of Â−1. Using Theorem 3.2.10 of Muirhead (1982), we have

1/ψ̂2 = Â11 ∼ W1(T −N + 1, 1/u) and σ̂2
g = Â22 − Â21(Â11)−1Â12 ∼ W1(T −N, σ2

g/T ), and

they are independent of each other. The first result suggests that v = u/ψ̂2 ∼ χ2
T−N+1 and

it is independent of u, so we have ψ̂2 = u/v ≡ r. The second result suggests σ̂2
g = σ2

gq/T ,

where q ∼ χ2
T−N . The theorem also suggests that when conditional on Â11, or equivalently
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when conditional on ψ̂2, µ̂g = −Â21(Â11)−1 ∼ N(σgy/
√
T , σ2

gψ̂
2/T ). Therefore, conditional

on ψ̂2, we can write

µ̂g =
σg(y + ψ̂y1)√

T
, (84)

where y1 ∼ N(0, 1) and it is independent of ψ̂2. Finally, by defining x = (y + ψ̂y1 −
√
Tµg/σg)/(1 + ψ̂2)

1
2 , we can write

µ̂g = µg +

(
1 + ψ̂2

T

) 1
2

σgx. (85)

Note that conditional on ψ̂2, x ∼ N(0, 1) and its distribution does not depend on r and q,

so x is independent of r and q. This completes the proof.

Proof of Lemma 1. For constant vectors e, and f , we use Theorem 3.2 of Haff (1979) to

obtain the following identities.

E[e′V̂ −1f ] =
T (e′V −1f)

T −N − 2
, (86)

E[(e′V̂ −1e)(e′V̂ −1f)] =
T 2(e′V −1e)(e′V −1f)

(T −N − 2)(T −N − 4)
, (87)

E[(e′V̂ −1f)2] =
T 2[(e′V −1e)(f ′V −1f) + (T −N − 2)(e′V −1f)2]

(T −N − 1)(T −N − 2)(T −N − 4)
, (88)

E[(e′V̂ −1e)(f ′V̂ −1f)] =
T 2[(T −N − 3)(e′V −1e)(f ′V −1f) + 2(e′V −1f)2]

(T −N − 1)(T −N − 2)(T −N − 4)
. (89)

For E[â], we put e = f = µ̂ in (86). Then using the independence between µ̂ and V̂ , we have

E[µ̂′V̂ −1µ̂] = E[E[µ̂′V̂ −1µ̂|µ̂]] = E[T µ̂′V −1µ̂]

T −N − 2
=

N + Ta

T −N − 2
. (90)

The last equality follows because T µ̂′V −1µ̂ ∼ χ2
N(Ta) and its expected value is N +Ta. The

proofs for E[b̂] and E[ĉ] are similar. For the second moment of â, we put e = f = µ̂ in (87)

to obtain

E[(µ̂′V̂ −1µ̂)2] = E[E[(µ̂′V̂ −1µ̂)2|µ̂]] = E[(T µ̂′V −1µ̂)2]

(T −N − 2)(T −N − 4)
=

(N + Ta)2 + 2(N + 2Ta)

(T −N − 2)(T −N − 4)
.

(91)

The last equality follows because the second moment of a χ2
N(Ta) random variable is given

by (N+Ta)2+2(N+2Ta). Then using Var[â] = E[â2]−E[â]2 and with some simplification,
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we obtain (14). For E[âb̂], we put e = µ̂ and f = 1N in (87) to obtain

E[(µ̂′V̂ −1µ̂)(µ̂′V̂ −11N)] = E[E[(µ̂′V̂ −1µ̂)(µ̂′V̂ −11N)|µ̂]]

=
E[(T µ̂′V −1µ̂)(T µ̂′V −11N)]

(T −N − 2)(T −N − 4)

=
(N + 2 + Ta)Tb

(T −N − 2)(T −N − 4)
. (92)

The last equality follows because for y ∼ N(µy, IN), we have E[(y′y)(y′h)] = (N + 2 +

µ′
yµy)(µ

′
yh) for any constant vector h. Then using Cov[â, b̂] = E[âb̂] − E[â]E[b̂] and with

some simplification, we obtain (17). The derivations for the other elements of the covariance

matrix are similar. This completes the proof.

Proof of Lemma 2. From the proof of Proposition 1, we have ψ̂2 = u/v where u ∼
χ2
N−1(Tψ

2), v ∼ χ2
T−N+1, and they are independent of each other. Using the fact E[u] =

N − 1 + Tψ2, E[u2] = (N − 1 + Tψ2)2 + 2(N − 1 + 2Tψ2), E[v−1] = 1/(T − N − 1) and

E[v−2] = 1/[(T − N − 1)(T − N − 3)], we can easily verify the expressions for E[ψ̂2] and

Var[ψ̂2]. For µ̂g, we have

E[µ̂g] = E[E[µ̂g|ψ̂2]] = µg, (93)

Var[µ̂g] = E[Var[µ̂g|ψ̂2]] + Var[E[µ̂g|ψ̂2]] = E

[
σ2
g(1 + ψ̂2)

T

]
=
σ2
g

T

(
1 +

N − 1 + Tψ2

T −N − 1

)
.(94)

For σ̂2
g , Proposition 1 suggests that σ̂2

g = σ2
gq/T , where q ∼ χ2

T−N . Using the fact that

E[q] = T − N and Var[q] = 2(T − N), we can easily obtain the expressions for E[σ̂2
g ] and

Var[σ̂2
g ]. For Cov[µ̂g, ψ̂

2], we use

Cov[µ̂g, ψ̂
2] = E[Cov[E[µ̂g|ψ̂2], ψ̂2]] = Cov[µg, ψ̂

2] = 0. (95)

Finally, σ̂2
g is independent of ψ̂

2 and µ̂g, which implies they are uncorrelated. This completes

the proof.

Proof of Lemma 3. All six identities can be proved by using Lemma 1 of Sawa (1972).

We only provide the proof of (46) here. The proof of the other identities are similar.18 Let

18(41)–(42) are the inverse first and second moment of a noncentral chi-squared distribution, and they
were first presented in Krishnan (1967). (43) can be obtained using Lemma 4.2.1 of Muirhead (1982). (45)
can be written as the expectation of a ratio of two quadratic forms of z, and its expression is available in
Hoque (1985) and Magnus (1986).
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x1 = z′z, x2 = z′µz, the joint moment generating function of x1 and x2 is given by

ϕ(θ1, θ2) = E[exp(θ1x1 + θ2x2)]

=

∫ ∞

−∞
· · ·
∫ ∞

−∞

1

(2π)
N−1

2

e−
1
2
(z−µz)′(z−µz)+θ1z′z+θ2z′µzdz1 . . . dzN−1

=
1

(1− 2θ1)
N−1

2

e
1
2

[
(1+θ2)

2

1−2θ1
−1

]
µ′zµz

. (96)

From Lemma 1 of Sawa (1972), the expectation of (x2/x1)
2 is given by

E

[
x22
x21

]
=

∫ 0

−∞
−θ1

∂2ϕ(θ1, θ2)

∂θ22

∣∣∣∣
θ2=0

dθ1. (97)

Taking the partial derivative of ϕ(θ1, θ2) with respect to θ2 twice and setting θ2 = 0, we have

∂2ϕ(θ1, θ2)

∂θ22

∣∣∣∣
θ2=0

=
2θe

θ
(

1
1−2θ1

−1
)

(1− 2θ1)
N−1

2
+1

(
1 +

2θ

1− 2θ1

)
, (98)

where θ = (µ′
zµz)/2 = Tψ2/2. Using a transformation of y = 1/(1− 2θ1), we can write

E

[
x22
x21

]
=

θ

2

∫ 1

0

[
y
N−5

2 − (1− 2θ)y
N−3

2 − 2θy
N−1

2

]
eθ(y−1)dy

=
θ

2

∫ 1

0

y
N−5

2 eθ(y−1)dy − (1− 2θ)ϕ

2
− θ2

∫ 1

0

y
N−1

2 eθ(y−1)dy. (99)

Using integration by parts, the first term can be written as θ(1− ϕ)/(N − 3) and the third

term can be written as θ − (N − 1)ϕ/2. Simplifying the expression, we obtain (46). This

completes the proof.

Proof of Propositions 2 and 5. Let X = V − 1
2 [µ̂, 1N ] and W = TV − 1

2 V̂ V − 1
2 ∼ WN(T −

1, IN). Using X and W , we can rewrite the following two matrices as

Â−1[µ̂, 1N ]V̂
−1µ = (X ′W−1X)−1X ′W−1V − 1

2µ, (100)

Â−1[µ̂, 1N ]V̂
−1V V̂ −1[µ̂, 1N ]

′Â−1 = (X ′W−1X)−1(X ′W−2X)(X ′W−1X)−1. (101)

Let Q be an N × (N − 2) orthonormal matrix that is orthogonal to X, so [X(X ′X)−
1
2 , Q]

is an orthonormal basis of RN . It follows that X(X ′X)−1X ′ +QQ′ = IN and we can write

(X ′W−1X)−1X ′W−1 = (X ′W−1X)−1X ′W−1[X(X ′X)−1X ′ +QQ′]

= (X ′X)−1X ′ + (X ′W−1X)−1(X ′W−1Q)Q′. (102)
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Using this identity and the fact that X ′X = Ã, where Ã is defined in (79), we can write

[1, µp](X
′W−1X)−1X ′W−1V − 1

2µ

= µ̌p + [1, µp](X
′W−1X)−1(X ′W−1Q)Q′V − 1

2µ, (103)

[1, µp](X
′W−1X)−1(X ′W−2X)(X ′W−1X)−1[1, µp]

′

= σ̌2
p + [1, µp](X

′W−1X)−1(X ′W−1Q)(Q′W−1X)(X ′W−1X)−1[1, µp]
′, (104)

where µ̌p = [1, µp]Ã
−1X ′V − 1

2µ and σ̌2
p = [µp, 1]Ã

−1[µp, 1]
′. Since µ̂ is independent of V̂ , X

andW are independent of each other. Conditional on X, we use Theorem 3.2.11 of Muirhead

(1982) to show that

B = ([X(X ′X)−
1
2 , Q]′W−1[X(X ′X)−

1
2 , Q])−1 ∼ WN(T − 1, IN). (105)

Partition B into two by two blocks with dimensions 2 and N − 2, respectively. Using Bij to

denote the (i, j)th block of B, we can write

B11 −B12B
−1
22 B21 = (X ′X)

1
2 (X ′W−1X)−1(X ′X)

1
2 = TÃ

1
2 Â−1Ã

1
2 , (106)

−B−1
22 B21 = Q′W−1X(X ′W−1X)−1(X ′X)

1
2 = Q′W−1X(X ′W−1X)−1Ã

1
2 .(107)

From Theorem 3.2.10 of Muirhead (1982), we have TÃ
1
2 Â−1Ã

1
2 ∼ W2(T −N + 1, I2) and it

is independent of B−1
22 B21. It follows that

σ̂2
p = [µp, 1]Â

−1[µp, 1]
′ = [µp, 1]Ã

− 1
2 (Ã

1
2 Â−1Ã

1
2 )Ã− 1

2 [µp, 1]
′ ∼ W1(T −N +1, σ̌2

p/T ), (108)

so T σ̂2
p/σ̌

2
p ∼ χ2

T−N+1 ≡ v and v is independent of σ̌2
p and B

−1
22 B21. This proves Proposition 2.

Let Tν(B,C) denotes the matric t-distribution with ν degrees of freedom and B and C

are symmetric positive definite matrices.19 Dickey (1967, p.514) shows that

B−1
22 B21 ∼ TT−N+2(IN−2, I2). (109)

It follows that

Y = Q′W−1X(X ′W−1X)−1[µp, 1]
′ = −B−1

22 B21Ã
− 1

2 [µp, 1]
′ ∼ TT−N+2(IN−2, σ̌

2
p), (110)

19The density function of Y ∼ Tν(B,C) is proportional to |B|−
q
2 |C|−

p
2 |Iq + C−1Y ′B−1Y |−

ν+p+q−1
2 . Our

notation of matric t-distribution differs slightly from the one used by Dickey (1967).
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and (T −N +2)
1
2Y/σ̌p has a standard multivariate t-distribution with T −N +2 degrees of

freedom, and we can write

Y =
σ̌px

r̃
1
2

, (111)

where x ∼ N(0N−2, IN−2) and r̃ ∼ χ2
T−N+2. Using (103) and (104), we express µ̃p and σ̃

2
p as

µ̃p = µ̌p + Y ′Q′V − 1
2µ = µ̌p +

x′Q′V − 1
2µ

r̃
1
2

σ̌p, (112)

σ̃2
p = σ̌2

p + Y ′Y = σ̌2
p

(
1 +

x′x

r̃

)
. (113)

Let d̃ = µ′V − 1
2QQ′V − 1

2µ = µ′V − 1
2 [IN − X(X ′X)−1X ′]V − 1

2µ and x̃ = µ′V − 1
2Qx/d̃

1
2 . It is

straightforward to show that x̃ ∼ N(0, 1), q̃ = x′x − x̃2 ∼ χ2
N−3, and they are independent

of each other. Therefore, we can write

µ̃p = µ̌p + σ̌pd̃
1
2
x̃

r̃
1
2

, (114)

σ̃2
p = σ̌2

p

(
1 +

x̃2 + q̃

r̃

)
. (115)

Let y and z as defined in the proof of Proposition 1, we have ỹ =
√
Tµp/σg−y ∼ N(

√
Tδ, 1),

z̃ = z′µz/(µ
′
zµz)

1
2 = z′µz/(

√
Tψ) ∼ N(

√
Tψ, 1) and ũ = z′[IN−1 − µz(µ

′
zµz)

−1µ′
z]z ∼ χ2

N−2,

independent of each other, so u = z′z = z̃2 + ũ. Using the representation of Ã−1 in (83) and

upon simplification, we have

µ̌p = µg +

(
z′µz
z′z

)
σgỹ√
T

= µg +
ψz̃

u
σgỹ, (116)

d̃ = ψ2 − (z′µz)
2

T (z′z)
= ψ2

(
1− z̃2

u

)
=
ψ2ũ

u
, (117)

σ̌2
p = σ2

g +
σ2
g ỹ

2

z′z
= σ2

g

(
1 +

ỹ2

u

)
. (118)

Putting all the terms together, we obtain our expressions for µ̃p and σ̃
2
p. This completes the

proof.

Proof of Proposition 3. Using the independence of v and σ̌2
p, we have σ̄

2
p = E[v/T ]E[σ̌2

p] =

(T −N + 1)E[σ̌2
p]/T . Using the fact that E[ỹ2] = 1 + Tδ2 = h, E[σ̌2

p] is given by

E[σ̌2
p] = σ2

g(1 + E[u−1]E[ỹ2]) = σ2
g(1 + hE[u−1]). (119)
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For Var[σ̂2
p], we use the fact that E[v

2] = (T −N +1)(T −N +3) and Var[v] = 2(T −N +1)

to obtain

Var[σ̂2
p] = E[Var[σ̂2

p|v]] + Var[E[σ̂2
p|v]]

=
E[v2]

T 2
Var[σ̌2

p] + Var

[
vE[σ̌2

p]

T

]
=

(T −N + 1)(T −N + 3)Var[σ̌2
p]

T 2
+

2(T −N + 1)E[σ̌2
p]

2

T 2
. (120)

For Var[σ̌2
p], we use the fact that Var[ỹ2] = 2(2Tδ2 + 1) = 2(2h− 1) to obtain

Var[σ̌2
p] = E[Var[σ̌2

p|u]] + Var[E[σ̌2
p|u]]

= σ4
gE[u

−2]Var[ỹ2] + σ4
gh

2Var[u−1]

= σ4
g

[
2(2h− 1)E[u−2] + h2(E[u−2]− E[u−1]2)

]
. (121)

Putting all the terms together, we obtain our expression of Var[σ̂2
p]. From Johnson, Kotz,

and Balakrishnan (1995, Chapter 29), we know that E[u−1] exists if and only if N > 3 and

E[u−2] exists if and only if N > 5. As h > 0, E[σ̂2
p] also exists if and only if N > 3 and

Var[σ̂2
p] exists if and only if N > 5. This completes the proof.

Proof of Lemma 4. From the proof of Proposition 1, we know that ψ̂2 = u/v, where

u = χ2
N−1(Tψ

2) and v ∼ χ2
T−N+1 are independent of each other. From Johnson, Kotz, and

Balakrishnan (1995, p.484), the density function of x = ψ̂2 is given by

f(x) = e−
Tψ2

2

∞∑
j=0

qj
x
N−3

2
+j

(1 + x)
T
2
+j
, (122)

where qj = (Tψ2/2)j/
[
B
(
N−1
2

+ j, T−N+1
2

)
j!
]
. The expectation of 1/ψ̂2

a is then given by

E

[
1

ψ̂2
a

]
=

Te−
Tψ2

2

2

∞∑
j=0

qj

∫ ∞

0

∫ 1
1+x

0 u
T−N−1

2 (1− u)
N−5

2 du(
1

1+x

)T−N−1
2

(
x

1+x

)N−3
2

x
N−1

2
+j−1

(1 + x)
T
2
+j

dx

=
Te−

Tψ2

2

2

∞∑
j=0

qj

∫ ∞

0

∫ 1
1+x

0

xj

(1 + x)j+2
u
T−N−1

2 (1− u)
N−5

2 dudx

=
Te−

Tψ2

2

2

∞∑
j=0

qj

∫ 1

0

[∫ 1−u
u

0

xj

(1 + x)j+2
dx

]
u
T−N−1

2 (1− u)
N−5

2 du
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=
Te−

Tψ2

2

2

∞∑
j=0

qj
(j + 1)

∫ 1

0

u
T−N−1

2 (1− u)
N−3+j

2 du

=
Te−

Tψ2

2

2

∞∑
j=0

(
Tψ2

2

)j
(j + 1)!

=
1− e−

Tψ2

2

ψ2
. (123)

Using Sawa’s lemma, we can write the expected value of 1/ψ̂2 as

E

[
1

ψ̂2

]
= (T −N + 1)E

[
1

u

]
=
T −N + 1

2

∫ 1

0

e
Tψ2(y−1)

2 y
N−5

2 dy. (124)

When N ≥ 5, we have 0 < y
N−5

2 ≤ 1 for 0 < y < 1. It follows that

E

[
1

ψ̂2

]
<
T

2

∫ 1

0

e
Tψ2(y−1)

2 y
N−5

2 dy ≤ T

2

∫ 1

0

e
Tψ2(y−1)

2 dy =
1− e−

Tψ2

2

ψ2
= E

[
1

ψ̂2
a

]
. (125)

Therefore, 1/ψ̂2
a has a smaller relative bias than 1/ψ̂2. This completes the proof.

Proof of Proposition 4. As in the proofs of Propositions 2 and 5, we define X =

V − 1
2 [µ̂, 1N ] and W = TV − 1

2 V̂ V − 1
2 ∼ WN(T − 1, IN), which are independent of each other

since µ̂ is independent of V̂ . Let Q be an N× (N−2) orthonormal matrix that is orthogonal

to X, we use (102) to write ŵ in (30) as

ŵ = V − 1
2W−1X(X ′W−1X)−1[µp, 1]

′ = w̃ + V − 1
2Q(Q′W−1X)(X ′W−1X)−1[µp, 1]

′, (126)

where

w̃ = V −1[µ̂, 1N ]Ã
−1[µp, 1]

′. (127)

Recall from the proof of Propositions 2 and 5 that conditional on µ̂, we have

Y = Q′W−1X(X ′W−1X)−1[µp, 1]
′ =

σ̌px

r̃
1
2

, (128)

where

σ̌2
p = [µp, 1]Ã

−1[µp, 1]
′ = σ2

g

(
1 +

ỹ2

u

)
, (129)

with ỹ =
√
Tµp
σg

− y ∼ N(
√
Tδ, 1), x ∼ N(0N−2, IN−2) and r̃ ∼ χ2

T−N+2 are independent of

each other, and δ = (µp − µg)/σg. Using these transformations, we obtain (54).
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By using the expression of Ã−1 in (83), we can further simplify w̃ to

w̃ = V −1[µ̂, 1N ]Ã
−1[µp, 1]

′

= TV −1[µ̂, 1N ]

[ 1
u

− σgy√
Tu

− σgy√
Tu

σ2
g

T

(
1 + y2

u

) ][ µp

1

]

= TV −1[µ̂, 1N ]

 1
u

(
µp − σg√

T
y
)

σ2
g

T
− σgy√

Tu

(
µp − σg√

T
y
) 

=
V −11N

1′NV
−11N

+

(
µp −

σg√
T
y

)
T

u
V −1[µ̂, 1N ]

[
1

−σgy√
T

]

= wg +

(
µp −

σg√
T
y

)
TV − 1

2 [IN − V − 1
21N(1

′
NV

−11N)
−11′NV

− 1
2 ]V − 1

2 µ̂

u

= wg + σgỹ

√
TV − 1

2PP ′V − 1
2 µ̂

u

= wg + σgỹ
V − 1

2Pz

u
, (130)

where ỹ ∼ N(
√
Tδ, 1) and z ∼ N(

√
TP ′V − 1

2µ, IN−1) are independent of each other and

u = z′z.

In order to obtain the mean and the covariance matrix of ŵ, we need the following

identities:

E
[ z
z′z

]
=

ϕ

Tψ2
µz for N > 2, (131)

E

[
zz′

z′z

]
=

ϕ

Tψ2
IN−1 +

(
1

Tψ2
− (N − 1)ϕ

T 2ψ4

)
µzµ

′
z for N > 1, (132)

E

[
zz′

(z′z)2

]
=

(
1− ϕ

2(N − 3)
− ϕ

2Tψ2

)
IN−1 +

(
(N − 1)ϕ

2T 2ψ4
− 1− ϕ

2Tψ2

)
µzµ

′
z for N > 3.(133)

(131) can be proved using the Sawa’s lemma as in the proof of Lemma 3. For (132) and

(133), we can use Proposition 7 of Hillier, Kan, and Wang (2008) to obtain the following

identity

E

[
z′Az

(z′z)q

]
=

tr(A)

2q
(
N+1
2

− q
)
q

1F1

(
q;
N + 1

2
;−Tψ

2

2

)
+

µ′
zAµz

2q
(
N+3
2

− q
)
q

1F1

(
1;
N + 3

2
;−Tψ

2

2

)
for N > 2q − 1, (134)
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where q is a positive integer and A is a square matrix. In particular, if we choose A to be a

zero matrix except its (i, j)th element is equal to one, we have

E

[
zizj
(z′z)q

]
=

δij

2q
(
N+1
2

− q
)
q

1F1

(
q;
N + 1

2
;−Tψ

2

2

)
+

E[zi]E[zj]

2q
(
N+3
2

− q
)
q

1F1

(
q;
N + 3

2
;−Tψ

2

2

)
for N > 2q − 1, (135)

where δij = 1 when i = j and zero otherwise. Putting together the elements, we obtain the

following identity

E

[
zz′

(z′z)q

]
=

1F1

(
q; N+1

2
;−Tψ2

2

)
2q
(
N+1
2

− q
)
q

IN−1 +
1F1

(
q; N+3

2
;−Tψ2

2

)
2q
(
N+3
2

− q
)
q

µzµ
′
z for N > 2q − 1. (136)

By using the definition of ϕ as in (39) and the recurrence relation of the confluent hyperge-

ometric function, we can write the following expressions in terms of ϕ

1F1

(
1; N+1

2
;−Tψ2

2

)
N − 1

=
ϕ

Tψ2
, (137)

1F1

(
1; N+3

2
;−Tψ2

2

)
N + 1

=
1

Tψ2
− (N − 1)ϕ

T 2ψ4
, (138)

1F1

(
2; N+1

2
;−Tψ2

2

)
(N − 1)(N − 3)

=
1− ϕ

2(N − 3)
− ϕ

2Tψ2
, (139)

1F1

(
2; N+3

2
;−Tψ2

2

)
(N − 1)(N + 1)

=
(N − 1)ϕ

2T 2ψ4
− 1− ϕ

2Tψ2
. (140)

Finally, putting q = 1 and q = 2 in (136) and using (137)–(140), we prove (132) and (133).

With (131)–(133) proved, we proceed to derive the mean and the covariance matrix of

ŵ. Since E[x] = 0N−2 and x is independent of µ̂ and r̃, we have

E[ŵ] = E[w̃] = wg + (µp − µg)
√
TV − 1

2PE
[z
u

]
, (141)

using the fact that ỹ is independent of z and E[ỹ] =
√
Tδ. Then, using (131) and the fact

that µz =
√
TP ′V − 1

2µ, we obtain

√
TV − 1

2PE
[z
u

]
=

ϕ

ψ2
V − 1

2PP ′V − 1
2µ
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=
ϕ

ψ2
V − 1

2

(
IN − V − 1

21N1
′
NV

− 1
2

1′NV
−11N

)
V − 1

2µ

=
ϕ

ψ2
V −1(µ− µg1N) (142)

for N > 2. It follows that the expected value of ŵ when N > 2 is given by

E[ŵ] = wg + ϕ
(µp − µg)

ψ2
V −1(µ− µg1N) = wg + ϕ(w − wg) (143)

using the fact that

w = V −1[µ, 1N ]A
−1[µp, 1]

′

=
V −11N

1′NV
−11N

+
(µp − µg)

ψ2
V −1(µ− µg1N)

= wg +
(µp − µg)

ψ2
V −1(µ− µg1N). (144)

Since x has mean zero and is independent of µ̂, the two terms of ŵ in (54) are uncorrelated

and the second term has mean zero, so we have

Var[ŵ] = Var[w̃] + V − 1
2E

[
σ̌2
pQxx

′Q′

r̃

]
V − 1

2 . (145)

In order to determine the covariance matrix of w̃, we first obtain

E[w̃w̃′] = wgw
′
g + (µp − µg)E

[√
TV − 1

2Pzw′
g

u

]
+ (µp − µg)E

[√
Twgz

′P ′V − 1
2

u

]

+ E

[(
µp −

σg√
T
y

)2
]
E

[
TV − 1

2Pzz′P ′V − 1
2

u2

]
= wgw

′
g + ϕ(w − wg)w

′
g + ϕwg(w − wg)

′

+

[
(µp − µg)

2 +
σ2
g

T

]
E

[
TV − 1

2Pzz′P ′V − 1
2

u2

]
. (146)

Denoting h = Tδ2 + 1, we obtain for N > 3

Var[w̃] = σ2
ghV

− 1
2PE

[
zz′

(z′z)2

]
P ′V − 1

2 − ϕ2(w − wg)(w − wg)
′. (147)

Using the fact that E[xx′] = IN−2, E[1/r̃] = 1/(T −N) and x, r̃, and Q are independent of

each other, we obtain

E

[
σ̌2
pQxx

′Q′

r̃

]
=

1

(T −N)
E
[
σ̌2
pV

− 1
2QQ′V − 1

2

]
. (148)
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Since Q is orthogonal to V − 1
21N and V − 1

2 µ̂, we can write QQ′ as20

QQ′ = PP ′ − PP ′V − 1
2 µ̂′µ̂V − 1

2PP ′

µ̂′V − 1
2PP ′V − 1

2 µ̂
= PP ′ − Pzz′P ′

z′z
. (149)

As σ̌2
p = σ2

g

(
1 + ỹ2

u

)
and ỹ is independent of u, we have

E
[
σ̌2
pV

− 1
2QQ′V − 1

2

]
= E[σ̌2

p]V
− 1

2PP ′V − 1
2 − σ2

gV
− 1

2PE

[
zz′

z′z

]
P ′V − 1

2

− σ2
ghV

− 1
2PE

[
zz′

(z′z)2

]
P ′V − 1

2 (150)

using the fact that E[ỹ2] = h. Combining these two terms, we have for N > 3,

Var[ŵ] = Var[w̃] +
E
[
σ̌2
pV

− 1
2QQ′V − 1

2

]
(T −N)

=

(
T −N − 1

T −N

)
σ2
ghV

− 1
2PE

[
zz′

(z′z)2

]
P ′V − 1

2 +
E[σ̌2

p]

T −N
V − 1

2PP ′V − 1
2

−
σ2
g

T −N
V − 1

2PE

[
zz′

z′z

]
P ′V − 1

2 − ϕ2(w − wg)(w − wg)
′. (151)

Substituting in (132) and (133) and using the definitions of Va and Vb, we obtain (56). This

completes the proof.

Proof of Proposition 6. We follow the notation in Proposition 5. For µ
p
, the last term of

µ̃p has mean zero because E[t̃] = 0, so we have from (116)

µ
p
= E

[
µg +

(
z′µz
z′z

)
σgỹ√
T

]
= µg + E

[
z′µz
z′z

]
(µp − µg) = µg + ϕ(µp − µg). (152)

The second equality relies on the fact that ỹ and z are independent, and the last equality

uses (43) to obtain E[z′µz/(z
′z)] = ϕ, which exists if and only if N > 2. For σ2

p, we have

σ2
p = E

[(
1 +

x̃2 + q̃

r̃

)
σ̌2
p

](
1 +

N − 2

T −N

)
E[σ̌2

p]. (153)

The second equality relies on the fact that σ̌2
p (which is only a function of z̃, ũ and ỹ) is

independent of x̃, q̃ and r̃.

20This expression can also be directly obtained by using the fact that QQ′ = IN − X(X ′X)−1X ′ =
IN −XÃ−1X ′.
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The proof of the variances and covariance requires repeated use of the two identities for

unconditional variance and covariance Var[X] = E[Var[X|Z]]+Var[E[X|Z]] and Cov[X, Y ] =

E[Cov[X, Y |Z]]+Cov[E[X|Z], E[Y |Z]]. We only provide the proof of Var[µ̃p] here, the proof

for the other elements are similar.

Var[µ̃p] = Var

[
ψσg

z̃

u
ỹ + ψσ̌p

(
ũ

u

) 1
2

t̃

]

=
1

T −N
E

[
ψ2σ̌2

p

ũ

u

]
+Var

[(
z′µz
z′z

)
σgỹ√
T

]

=
ψ2E[σ̌2

p]− E
[
σ̌2
p

T
(z′µz)2

z′z

]
T −N

+ E

[(
z′µz
z′z

)2 σ2
g

T

]
+Var

[(
z′µz
z′z

)
(µp − µg)

]

=
ψ2E[σ̌2

p]−
σ2
g

T

(
E
[
(z′µz)2

z′z

]
+ hE

[
(z′µz)2

(z′z)2

])
T −N

+
σ2
g

T
E

[
(z′µz)

2

(z′z)2

]
+ (µp − µg)

2

(
E

[
(z′µz)

2

(z′z)2

]
− E

[
z′µz
z′z

]2)

=
ψ2E[σ̌2

p]−
σ2
g

T

(
E
[
(z′µz)2

z′z

]
+ hE

[
(z′µz)2

(z′z)2

])
T −N

+
σ2
gh

T
E

[
(z′µz)

2

(z′z)2

]
− ϕ2(µp − µg)

2.(154)

The second equality is obtained by conditional on t̃ and using the fact that Var[t̃] = E[t̃2] =

1/(T −N). The third equality is obtained by conditional on ỹ. Rearranging the terms, we

obtain Var[µ̃p]. Note that Var[µ̃p] exists if and only if E[(z′µz)
2/(z′z)2] exists, i.e., N > 3.

This completes the proof.

Proof of Proposition 7. From Proposition 1, we know E[µ̂g|ψ̂2] = µg. From (41), we have

E[ψ̂−2] = (T −N + 1)(1− ϕ)/(N − 3), so we have

E[µ̂
pu
] = µp−

N − 3

T −N + 1

[
T −N + 1

N − 3
(1− ϕ)(µp − µg)

]
= µp−(1−ϕ)(µp−µg) = µ

p
. (155)

The unbiasedness of σ̂2
pu follows from (47) and (66). This completes the proof.

B Application using 25 portfolios

In this example, we assume there are N = 25 risky assets, with population minimum-

variance frontier determined by the following parameters: µg = 0.01199, σg = 0.04108,
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and ψ = 0.209. These parameters are chosen based on the unbiased estimates of µg, σ
2
g

and ψ2 using monthly value-weighted returns from the popular Fama and French (1993)

25 portfolios over the period 1932/1–2004/12, formed based on size and book-to-market

ratio.21 Figure A.1 provides the distribution of the sample minimum-variance frontier of

these 25 assets for different lengths of estimation period (T ). As compared with Figure 1,

we find that with more assets, the sample minimum-variance frontier exhibits a larger bias.

In Figure A.1, we find that a significant part of the population frontier still falls outside of

the 95th percentile of the sample frontier even when the estimation window is as long as

T = 600 months. This suggests that with the typical length of time series that we use, the

sample frontier is an extremely unreliable estimator of the population frontier.

In Figure A.2 we plot the percentage biases of different estimators of 1/ψ2. Compared

with Figure 2, we observe that the percentage bias of 1/ψ̂2 is larger when N = 25. For exam-

ple, when Tψ2 = 4, the percentage biases of 1/ψ̂2 and its jackknife version have percentage

biases of −87.6% and −73.9%, respectively. Even for Tψ2 as large as 20, the expectation of

1/ψ̂2 is still less than 40% of the true value of 1/ψ2.

Figure A.3 plots the adjusted frontier and we find it performs dramatically better than

the sample frontier plotted in Figure A.1.

In Figure A.4, we provide evidence on the performance of the unadjusted and adjusted

frontiers when returns are non-normal for the N = 25 assets case. The returns are assumed

to follow a multivariate t-distribution with five degrees of freedom and have the same µ and

V as in the normality case for Figures A.1 and A.3. The results are broadly consistent with

the N = 10 assets case reported in Figure 4. However, with more assets, the fat tails in the

t-distribution have a much stronger impact on the finite sample distribution of σ̂p and σ̂pa,

especially for T = 60. In general, the fat tails lower σ̂2
p and σ̂2

pa so that they have a bigger

bias than the normality case. The effect of the fat tails is much smaller as T increases to

240 but there is still a noticeable difference between the finite sample distributions under the

two distribution assumptions. In Figure A.4, we provide evidence on the performance of the

unadjusted and adjusted frontiers when returns are non-normal for the N = 25 assets case

using the same parameters for Figures A.1 and A.3. The results are broadly consistent with

21We are grateful to Ken French for making this data available on his website.
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the N = 10 assets case reported in Figure 4. However, with more assets, the fat tails in the

t-distribution have a much stronger impact on the finite sample distribution of σ̂p and σ̂pa,

especially for T = 60. In general, the fat tails lower σ̂2
p and σ̂2

pa so that they have a bigger

bias than the normality case. The effect of the fat tails is much smaller as T increases to

240 but there is still a noticeable difference between the finite sample distributions under

the two distribution assumptions.

Figure A.5 compares the population frontier with the in-sample and out-of-sample fron-

tiers for the N = 25 assets case. We observe the downward bias of the in-sample frontier and

the upward bias of the out-of-sample frontier are more severe when there are more assets.

Figure A.6 provides information about the distribution of θ̂p and θ̃p for the N = 25 assets

case. The patterns in Figure A.5 are largely similar to those in Figure 6 (for the N = 10

assets case), but with more assets, the overoptimism of the in-sample Sharpe ratio becomes

even more pronounced.
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Figure A.1. The figure provides information on the distribution of the sample minimum-
variance frontier for different lengths of estimation period (T ). The solid line represents the
population frontier for N = 25 assets, with parameters µg = 0.01199, σg = 0.04108, and
ψ = 0.209. The dashed line represents σ̄p, where σ̄

2
p is the expected value of the sample

minimum-variance frontier. The two dotted lines represent the 5th and the 95th percentiles
of the sample minimum-variance frontier, based on 100,000 simulations.
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Figure A.2. The figure plots the percentage biases of four estimators of the inverse of the
squared slope of the asymptote to the minimum-variance frontier (1/ψ2) as a function of
Tψ2, where T is the number of time series observations. The dotted line represents the
percentage bias of the sample estimator 1/ψ̂2. The solid line represents the percentage bias
of the adjusted estimator 1/ψ̂2

a. The percentage biases of the jackknife version of the ψ̂2 and
ψ̂2
a are plotted using the dashed-dotted line and dashed line, respectively. The percentage

biases of 1/ψ̂2 and its jackknife version are computed under the assumption of N = 25 assets
and T = 120, but the plot is quite insensitive to the assumption of T .
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Figure A.3. The figure provides information on the distribution of the adjusted sample
minimum-variance frontier for different lengths of estimation period (T ). The solid line
represents the population frontier for N = 25 assets, with parameters µg = 0.01199, σg =
0.04108, and ψ = 0.209. The dashed line represents the expected value of the adjusted sample
minimum-variance frontier and the two dotted lines represent the 5th and the 95th percentiles
of the adjusted sample minimum-variance frontier, all based on 100,000 simulations.
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Figure A.4. The figure provides information on the distribution of the unadjusted and ad-
justed sample minimum-variance frontier for different lengths of estimation period (T ). The
solid line represents the population frontier for N = 25 assets, with parameters µg = 0.01199,
σg = 0.04108, and ψ = 0.209. The three dashed lines represents the 5th percentile, expected
value, and 95th percentile of the unadjusted and adjusted sample minimum-variance frontier
under the assumption that returns are multivariate t-distributed with five degrees of freedom.
The three dotted lines are the corresponding ones for the normality case. The distributions
of the unadjusted and adjusted frontiers are based on 100,000 simulations.
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Figure A.5. The figure provides information on the average out-of-sample performance of
sample minimum-variance frontier for different lengths of estimation period (T ). The solid
line represents the population frontier for N = 25 assets, with parameters µg = 0.01199,
σg = 0.04108, and ψ = 0.209. The outer dashed line represents σ̄p, where σ̄

2
p is the expected

value of the sample minimum-variance frontier. The inner dashed line represents σp, where σ
2
p

is the expected value of the out-of-sample variance of the sample minimum-variance frontier.
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Figure A.6. The figure provides information on the distribution of the in-sample and out-of-
sample Sharpe ratio of sample minimum-variance portfolios with different target expected
return for different lengths of estimation period (T ). The solid line represents the Sharpe
ratio of the population minimum-variance frontier for N = 10 assets, with parameters µg =
0.01199, σg = 0.04108, ψ = 0.209, and a risk-free rate of 0.005. The dashed-dotted (dashed)
line and surrounding dotted lines represent the average, 5th, and 95th percentiles of the in-
sample (out-of-sample) Sharpe ratio of the sample minimum-variance portfolio with target
expected return µp. The distributions of the in-sample and out-of-sample Sharpe ratio are
based on 100,000 simulations.
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