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‘We present new expressions for the densities and distributions of the largest eigenvalue
and the trace of a Beta—Wishart matrix. The series expansions for these expressions
involve fewer terms than previously known results. For the trace we also present a new
algorithm that is linear in the size of the matrix and the degree of truncation, which is
optimal.
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1. Introduction

The Beta—Wishart ensemble was introduced recently in [5,8]. The eigenvalues of a
Wishart matrix and its trace have long been used in multivariate statistical analysis
for a variety of analyses and applications [11]. The only known expressions from [6]
((3.1) and (4.3) below), however, are in terms of infinite series of Jack functions, and
in particular, the hypergeometric function of a matrix argument. These series are
notoriously slow to converge and have been a computational challenge for decades
despite recent progress [10]. The main issue is the exponential number of terms in
(a finite truncation of) the expansion of hypergeometric function as a series of Jack
functions. For an m x m matrix argument truncated for integer partitions of size
not exceeding some M, that number grows exponentially as O(M™). In turn, each
Jack function presents a computational challenge of its own [2].

In this paper we improve on previously known results for the largest eigenvalue
and the trace as follows. For the largest eigenvalue, we exploit a connection with
the Beta-MANOVA ensemble [4] to derive new expressions for the density and
the distribution of the largest eigenvalue that only requires summation over integer
partitions of size not exceeding m — 1 parts instead of m. This modest improvement
results in substantial computational savings given the exponential nature of the
current best algorithm for computing the hypergeometric function.

For the trace, we present new expressions for its density and distribution in terms
of the hypergeometric function of a matrix argument, but whose series expansion
only involves Jack functions corresponding to partitions in only one part. We derive
a new algorithm for computing each of these Jack functions in only O(m) time,
which is optimal.

Furthermore, since there is only one partition in only one part for any integer,
the density (and in turn, the distribution) of the trace can be computed in time
that is linear in both the size of the matrix, m, and the degree of the truncation,
M, an optimal result. Our final expressions for trace are subtraction-free, meaning
they are guaranteed to be computed to high relative accuracy in the presence of
roundoff errors.

We finish our presentation with numerical tests.

2. Preliminaries

All results in this paper are for Beta random matrices, therefore we drop the Beta
prefix when referring to the Wishart or MANOVA ensembles.

The sequence k = (K1, K2, . ..) is a partition of an integer k > 0 (denoted & - k)
if k1 > kg > -+ > 0 are integers such that |k| = k1 + ko +--- = k.

For a partition kK = (k1,kK2,...,Kn) and parameter S > 0, the generalized
Pochhammer symbol is defined as

(a)y” H (a—56),., (2.1)

i=1
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where (a)r = a(a+1)--- (a+k—1) is the rising factorial. In particular, (%ﬂ);ﬁ) =0
for partitions x in more than m (nonzero) parts. For a partition x = (k) in only
one part, (a)? = (a) is independent of £3.

The multivariate Gamma function of parameter S > 0 is defined as

I9(c) = L HF(C —51B)  for R(c) > LB (2.2)
i=1

In particular, the above definition immediately implies

T (z+a)
lim —/———= =1, 2.3
r—00 F%)(l‘)fl}ma ( )
which we will utilize below.
For an m x m Hermitian matrix X, the Jack function

Off)(X) = Off)('fﬁl,xz, . ,l‘m)

is a symmetric, homogeneous polynomial of degree |x| in the eigenvalues
X1,Ta,. .., Ty, of X [13, Proposition 4.2].

For integers p > 0 and ¢ > 0, and m X m Hermitian matrices X and Y the
hypergeometric function of two matriz arguments X and Y and parameter g > 0 is

oo 1 (al)(’”"'(a )(B) C’(B)(X)C(ﬂ)(y)
FEP(a1,...,ap;b1,...,bX,Y) = il K ) Uk p .
P q P q kZ:O% k! (bl)if) .. (bq)ff) C;(gﬁ)(fm)

(2.4)
For one matriz argument,

pFP(ar, o ap b, by X) = JF (an, s api by b X ).

—piq

We will utilize the following identity for the hypergeometric function of a matrix
argument [7, (13.4)]

VP (a5 X) = | — X[ for X < In. 25)

3. The density of the largest eigenvalue of the Wishart ensemble
We obtain this result as a limiting argument from the density of the largest eigen-
value of the MANOVA ensemble.

Proposition 3.1. Let p;,i =1,2,...,m, be the eigenvalues of a MANOVA matriz
with parameters a,b and covariance X1, then

: Hi
Ai = lim — -
¢ bir{olo ﬂ 1-— ,u/
i =1,2,...,m, are the eigenvalues of a Wishart matriz with n = % degrees of

freedom and covariance X.
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Proof. We start with the joint density of M = diag (1, 2, - - . , m) from [4]
1
Si’(a,b)

where r = mTflﬁ +1,

|7 M| Ly — M| 1 Fy7 (a4 by M(M = L) ™1 271 )dp(M),

dp(M) = T I — 1P dpadpz - dpi,

i<j
and SY(a,b) is the value of the Selberg Integral [12]
mLR(36) TR (T 0)

S (a,b) = ™
) (a,b) W%B(F(g)) % (a+0b)

We change variables N = 2 M (I, — M)~". The Jacobian is (%b)mﬁm — M|72
and du(M) = (%b)m(m_l)ﬁmHm — M|(m=DBdu(N), so the density of N is
e (r(g)) ¢ (a+ b)

mITy) (2 B)T5 (a) Th (b)
which equals

m(m—1) m ma
5 (0(5) (D)™ ro(a+h)
m!T% (%B)F,(f;) (a) L' (b)bmea

1517 (45) ™ IN1*" 1By (a+b; — 5N, 271 du(N),

S| N F (atb; — L2 N, S dp(N).

(a+b)
blrl

lim 1 F”(a+b—1- SN, 271 = oF”(-SN,271).

b—oo

Using also (2.3), the density of A = diag (A1, Aa, ..., Ay) = limp_ N becomes

() ()™
mIT (%B)I‘ﬁﬁ) (a)

Now, directly from the definition (2.1), limp_ oo =1, thus

ST 0B (— A, BT du(A),

which is joint eigenvalue density of a Wishart matrix with n = %‘1 degrees of freedom
and covariance ¥ [5]. O

Using the above result we immediately obtain the density of the largest eigen-
value of the Wishart matrix as a limit of that of a MANOVA matrix.

Theorem 3.1. The density of the largest eigenvalue of an m x m Wishart matrix

with n = —25 degrees of freedom and covariance ¥ is
(8)
ma, I/ (r 251y - ,
B m ( ) |E|7aeftr( 5 2 1)(_L25)ma 12 FQ(E)(T‘ g’m—lﬁ;a 7,’7;5; 125271)’

2 F,(ff)(a—&—r) 2

where r = %ﬂ + 1.
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Proof. We utilize Proposition 3.1 above. The density of the maximum eigenvalue
of an m x m MANOVA matrix with parameters a,b and covariance X~ is [9]:

maDm(a,b)|Z|_a|Im—|— 1| a— b( T )ma—l(l_x)—Q

l1—zx

X F“)(a—i—b r—}—fr—la—i—rm (1 L2y 4+ 1)~ )

where
T (a+ b)TE (1)
I‘ﬁ?(a + )I‘%’(b)

B(l—x)*
2b

D (a,b) =

We change variables % 12 — z. The Jacobian is and the density becomes

ma—1 Jé]

a —a—b
maDy, (a,b)|S| | L, + L2n-Lme-b(z8)me ! 8
< aF 0t bt B — o, 26 (B4 1,) )

which equals

(B) B)
Fm az+b Fm T —a T @ . e S
ma—ray ( )(ﬂ) (r) b ‘Im—FfoE e, + ﬂE 1 b(Tﬂ) g
I’ (a+ r)y’ (b)bme
XSFéB)(a—’_b’T—F 1a+r’257b(% +%Im)71)~
(
Using again that limp_, o (a;# _,
' ~1
blggongm(aij,rJr et L(BE 4 L))

:2F2(5)(T+§, —Lia+r, mﬁ,wBZ h.
Also, using (2.3) and
111’11 |I + xﬁz 1|7b _ 67“(%271)
the density becomes

maﬂ . Fgff) (T) |E‘7ae—tr(7ﬁ
2 I‘gﬁ)(a +7)

as claimed. O

D)™ (r+ 8, 2 Bratr, 28 8.

Computationally, the significance of the above result is that the parameter mT’l 155
implies that the o F5 hypergeometric function need only be summed over partitions
of m — 1 parts instead of m. Since the number of partitions of M in not more than
k parts for M > k grows as O(M*), we can compute the density of the largest
eigenvalue of a Wishart matrix about O(M) times faster than a direct differentiation
of the expression for the distribution from [6]:

o) Jses”
T (a+r) er(3A=7H1

PAmax < x] = FP (rya+r 28871, (3.1)
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Another advantage of the density expression of Theorem 3.1 is that it allows us
to write the density of A\,.x as an infinite mixture of chi-squared densities. To see
that, let ¥ = E_l/tr(E_l) and the density of Aax becomes

8 (r
Fromen () = ma - T 5] Z Btr(27Y) fapmarr) (Btr(S™H)2)T (ma + k)

(/3)
(r+ g)ﬁ (9).” c5)
bk (CH'?“)(B)(QB)(B) RE

K

X

where
- e ()

is the density of a chi-squared random variable with v degrees of freedom. Now, let

(B) _ 8)
N r+5) (228), ) s
B ST (ma+ k) D ( >FE5> ® k'( :
I’ (a+7) wr (a+r) (36), :

and we express the density of Apax as

W = Ma -

Fmax (@) = Btr(E Zwkfz matk) (Btr(Z71)z).

k=0
Since the wy’s are independent of x, we only need to compute them once for all val-
ues of x. In addition, integrating the above density expression gives us an alternative
expression for the cumulative distribution of Apa.x as

o0
P[)\max < .’L‘] = ZkaQ(ma+k) (Btr(E‘l)x),

k=0
where F,(z) is the distribution of a chi-squared random variable with v degrees of
freedom. By taking limit of 2 — oo on both sides, we see that Y-, wy = 1. As wy,
only involves partitions of m — 1 parts, this is numerically more efficient than the
expression (3.1), which involves partitions of m parts.

Finally, the infinite mixture of chi-squared representation of the density of Ay .x

also allows us to obtain an explicit expression for the moment of Apax:

EN L] = {ﬁtr ] Zwk (ma + k),

4. The trace of a Wishart matrix

We present new expressions for the density and distribution of the trace of a Wishart
matrix that can be computed in time that is linear in the size of the matrix and
the degree of the truncation of its series expansion. This complexity is optimal and
is an exponential improvement over the previous result for the trace from [6].
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Theorem 4.1. For a Wishart matriz A ~ W,S?) (n,X), the distribution and density

of its trace for an arbitrary z and a = ”2—5 are
x —1]@ 1 2a T —
P[trqu;] = |752 1’ mlFl( )(a;ma+l;—752 1), (41)
xT — 2a x —_
Joa(z) = ‘ 0y 1’ (ma)lFl( )(a;ma;zIm — 7*32 Y. (4.2)

Proof. The expression for the density of the trace from [6] is

—zpl (a)” -
ftT(A) - ’ BZ 1‘ Z ]_" ma+ k Z k! Cf(f)( —AX 1)a (43)
Fk

where A > 0 is arbitrary.

From the identity (2.5) we see that for an arbitrary matrix X and a scalar y,
the value of 1 F{”’ (a; yX) does not depend on . Using also the fact that (a )2 =0
for partitions k in more than one part,

ZZ )P 0P (X) =1 F7 (a3yX) = 1 F{** (a3 y X) Z (a)e OV (X).
k=0 rkk k:—O
By comparing the coefficients in front of y*, we obtain
(a)” (@) (2
>V = LR (),
Kk ’ ’
In particular, the above is true for X = I,,, — AX~!. Thus
% 1 1 k() _
= [z285 7% 7i (1, —AS7Y) (44
R SN (@ oy
=|z8n~! F(zByroap _ Axpl
- g0z %wm@k(n) (1 35
zf
|z —1ja € 2* (2a) . zp 8 v—1
_|§ﬁ2 ‘ T (ma) 1Fy7 (a;ma; 851, — 52571
zav—1]a € 2 _
= [56571 T (ma) VFPY (a3 ma; 21, — 22571, (4.5)
where z = 2)\ Because A > 0 we have z > 0, but otherwise arbitrary. Since

the 1F1(2a) function in (4.5) converges for any value of the matrix argument and is
defined for all z, (4.2) is true for any value of z (this fact is also implied by Corollary
2.3 in [3]). Setting z = 0 and integrating (4.5), we get (4.1). |

The expression (4.2) also allows us to write the density of trA as a mixture of
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chi-squared densities. From (4.4)

ma+k _zB
At e (@rgeag g
fira(e) = | | Z <2/\> al'(ma + k) k! G )
e xf
= X|>‘Z 1| def2(7na+k) <)\> ) (46)
k=0
where A > 0 and
a)k: a _
dy = (FC'? (I, — AX7Y).

Integrating this with respect to x allows us to get an alternative expression of the
distribution of trA as

PltrA < 2] = AR ];)dkpz math) (”f) (4.7)

Although (4.6) and (4.7) are valid for any positive A, the speed of convergence
and numerical stability of these expressions could crucially depend on the choice of
A. For numerical stability, we can choose A = o,,, where o, is the smallest eigen-
value of . This ensures that I,, —AX~! has at most m — 1 nonzero eigenvalues all of
which are positive. This choice eliminates all subtractions meaning the density and
distribution will be computed to high relative accuracy in floating point arithmetic.

5. Computing the Jack function of partition in one part in O(m)
time

The algorithm of [10] can be used to compute C’,gza)(B), B = diag(by,ba, ..., bm),
in O(km) time. Now we present an alternative algorithm, based on an idea in [1],
which only costs O(m). This is optimal since each Jack function depends on m
variables.

Define d;, via

D(t) = |I,, — tB|™* = 1 F*(a;tB) = Z “)’“ cf‘”(B) =Y ditt,
k=0

i, d, = “ECPY(B). Let

oo
= Zpktk,

where py, = tr(B¥) =Y bF. Diﬁerentiating D(t),
tD'(t) = aD(t)P(t).

Comparing the coefficients of t* on both sides, we obtain

—aZprdk r—azzb d.— r—azzdk rbi —anm,

r=11i=1 i=1r=1
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where

k
Qi = d—rb]
r=1

is a polynomial in b;. For gi; we thus have the following recurrence relation

k

qri = b (dk—l + de—rb;_l> =bi(dk—1+ qr—1,i)-
r=2

With the initial conditions of dy = 1 and ¢qo; = 0 for i = 1,2,...,m, di can be

obtained from

Qi = (dg—1 + qr—1,3)bs, i=1,...,m,
a m
di, = T 2%1‘-

The cost of computing dj, is thus O(m), which is optimal, and is exactly what
we need to compute the density and distribution of the trace.

6. Numerical experiments

We performed extensive numerical tests to verify the correctness of the formulas in
this paper and present four examples in Figure 1.
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