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We present new expressions for the densities and distributions of the largest eigenvalue
and the trace of a Beta–Wishart matrix. The series expansions for these expressions
involve fewer terms than previously known results. For the trace we also present a new
algorithm that is linear in the size of the matrix and the degree of truncation, which is

optimal.
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1. Introduction

The Beta–Wishart ensemble was introduced recently in [5,8]. The eigenvalues of a

Wishart matrix and its trace have long been used in multivariate statistical analysis

for a variety of analyses and applications [11]. The only known expressions from [6]

((3.1) and (4.3) below), however, are in terms of infinite series of Jack functions, and

in particular, the hypergeometric function of a matrix argument. These series are

notoriously slow to converge and have been a computational challenge for decades

despite recent progress [10]. The main issue is the exponential number of terms in

(a finite truncation of) the expansion of hypergeometric function as a series of Jack

functions. For an m ×m matrix argument truncated for integer partitions of size

not exceeding some M , that number grows exponentially as O(Mm). In turn, each

Jack function presents a computational challenge of its own [2].

In this paper we improve on previously known results for the largest eigenvalue

and the trace as follows. For the largest eigenvalue, we exploit a connection with

the Beta–MANOVA ensemble [4] to derive new expressions for the density and

the distribution of the largest eigenvalue that only requires summation over integer

partitions of size not exceeding m−1 parts instead of m. This modest improvement

results in substantial computational savings given the exponential nature of the

current best algorithm for computing the hypergeometric function.

For the trace, we present new expressions for its density and distribution in terms

of the hypergeometric function of a matrix argument, but whose series expansion

only involves Jack functions corresponding to partitions in only one part. We derive

a new algorithm for computing each of these Jack functions in only O(m) time,

which is optimal.

Furthermore, since there is only one partition in only one part for any integer,

the density (and in turn, the distribution) of the trace can be computed in time

that is linear in both the size of the matrix, m, and the degree of the truncation,

M , an optimal result. Our final expressions for trace are subtraction-free, meaning

they are guaranteed to be computed to high relative accuracy in the presence of

roundoff errors.

We finish our presentation with numerical tests.

2. Preliminaries

All results in this paper are for Beta random matrices, therefore we drop the Beta

prefix when referring to the Wishart or MANOVA ensembles.

The sequence κ = (κ1, κ2, . . .) is a partition of an integer k ≥ 0 (denoted κ ` k)

if κ1 ≥ κ2 ≥ · · · ≥ 0 are integers such that |κ| ≡ κ1 + κ2 + · · · = k.

For a partition κ = (κ1, κ2, . . . , κm) and parameter β > 0, the generalized

Pochhammer symbol is defined as

(a)(β)

κ ≡
m∏
i=1

(
a− i−1

2 β
)
κi
, (2.1)
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where (a)k = a(a+1) · · · (a+k−1) is the rising factorial. In particular,
(
mβ
2

)(β)
κ

= 0

for partitions κ in more than m (nonzero) parts. For a partition κ = (k) in only

one part, (a)(β)
κ = (a)k is independent of β.

The multivariate Gamma function of parameter β > 0 is defined as

Γ(β)

m (c) ≡ π
m(m−1)

4 β
m∏
i=1

Γ
(
c− i−1

2 β
)

for <(c) > m−1
2 β. (2.2)

In particular, the above definition immediately implies

lim
x→∞

Γ(β)
m (x+ a)

Γ(β)
m (x)xma

= 1, (2.3)

which we will utilize below.

For an m×m Hermitian matrix X, the Jack function

C(β)

κ (X) = C(β)

κ (x1, x2, . . . , xm)

is a symmetric, homogeneous polynomial of degree |κ| in the eigenvalues

x1, x2, . . . , xm of X [13, Proposition 4.2].

For integers p ≥ 0 and q ≥ 0, and m × m Hermitian matrices X and Y the

hypergeometric function of two matrix arguments X and Y and parameter β > 0 is

pF
(β)

q (a1, . . . , ap; b1, . . . , bq;X,Y ) ≡
∞∑
k=0

∑
κ`k

1

k!
· (a1)(β)

κ · · · (ap)(β)
κ

(b1)(β)
κ · · · (bq)(β)

κ
· C

(β)
κ (X)C(β)

κ (Y )

C(β)
κ (Im)

.

(2.4)

For one matrix argument,

pF
(β)

q (a1, . . . , ap; b1, . . . , bq;X) ≡ pF
(β)

q (a1, . . . , ap; b1, . . . , bq;X, Im).

We will utilize the following identity for the hypergeometric function of a matrix

argument [7, (13.4)]

1F
(β)

0 (a;X) = |Im −X|−a, for X < Im. (2.5)

3. The density of the largest eigenvalue of the Wishart ensemble

We obtain this result as a limiting argument from the density of the largest eigen-

value of the MANOVA ensemble.

Proposition 3.1. Let µi, i = 1, 2, . . . ,m, be the eigenvalues of a MANOVA matrix

with parameters a, b and covariance Σ−1, then

λi ≡ lim
b→∞

2b

β
· µi

1− µi
,

i = 1, 2, . . . ,m, are the eigenvalues of a Wishart matrix with n = aβ
2 degrees of

freedom and covariance Σ.



January 31, 2019 16:24 WSPC/INSTRUCTION FILE WishartTrace

4 Drensky, Edelman, Genoar, Kan, and Koev

Proof. We start with the joint density of M = diag (µ1, µ2, . . . , µm) from [4]

1

S(β)
m (a, b)

|Σ|−a|M |a−r|Im −M |−a−r 1F
(β)

0 (a+ b;M(M − Im)−1,Σ−1)dµ(M),

where r ≡ m−1
2 β + 1,

dµ(M) =
∏
i<j

|µi − µj |βdµ1dµ2 · · · dµm

and S(β)
m (a, b) is the value of the Selberg Integral [12]

S(β)

m (a, b) ≡
m!Γ(β)

m

(
m
2 β
)

π
m(m−1)

2 β
(

Γ
(
β
2

))m · Γ(β)
m (a) Γ(β)

m (b)

Γ(β)
m (a+ b)

.

We change variables N = 2b
βM(Im −M)−1. The Jacobian is

(
2b
β

)m|Im −M |−2

and dµ(M) =
(

2b
β

)m(m−1)β/2|Im −M |(m−1)βdµ(N), so the density of N is

π
m(m−1)

2 β
(

Γ
(
β
2

))m
Γ(β)
m (a+ b)

m!Γ(β)
m

(
m
2 β
)
Γ(β)
m (a) Γ(β)

m (b)
|Σ|−a

(
β
2b

)ma|N |a−r 1F
(β)

0

(
a+ b;− β

2bN,Σ
−1
)
dµ(N),

which equals

π
m(m−1)

2 β
(

Γ
(
β
2

))m (
β
2

)ma
m!Γ(β)

m

(
m
2 β
)
Γ(β)
m (a)

·Γ
(β)
m (a+ b)

Γ(β)
m (b)bma

|Σ|−a|N |a−r 1F
(β)

0

(
a+b;− 1

b ·
β
2N,Σ

−1
)
dµ(N).

Now, directly from the definition (2.1), limb→∞
(a+b)(β)κ

b|κ|
= 1, thus

lim
b→∞

1F
(β)

0 (a+ b;− 1
b ·

β
2N,Σ

−1) = 0F
(β)

0 (−β2N,Σ
−1).

Using also (2.3), the density of Λ = diag (λ1, λ2, . . . , λm) = limb→∞N becomes

π
m(m−1)

2 β
(

Γ
(
β
2

))m (
β
2

)ma
m!Γ(β)

m

(
m
2 β
)
Γ(β)
m (a)

· |Σ|−a|Λ|a−r 0F
(β)

0 (−β2 Λ,Σ−1)dµ(Λ),

which is joint eigenvalue density of a Wishart matrix with n = 2a
β degrees of freedom

and covariance Σ [5].

Using the above result we immediately obtain the density of the largest eigen-

value of the Wishart matrix as a limit of that of a MANOVA matrix.

Theorem 3.1. The density of the largest eigenvalue of an m×m Wishart matrix

with n = 2a
β degrees of freedom and covariance Σ is

maβ

2
· Γ

(β)
m (r)

Γ
(β)
m (a+ r)

|Σ|−ae−tr( xβ2 Σ−1)
(
xβ
2

)ma−1
2F

(β)

2

(
r+ β

2 ,
m−1

2 β; a+r, m2 β; xβ2 Σ−1
)
,

where r ≡ m−1
2 β + 1.
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Proof. We utilize Proposition 3.1 above. The density of the maximum eigenvalue

of an m×m MANOVA matrix with parameters a, b and covariance Σ−1 is [9]:

maDm(a, b)|Σ|−a|Im + x
1−xΣ−1|−a−b

(
x

1−x
)ma−1

(1− x)−2

× 3F
(β)

2

(
a+ b, r + β

2 , r − 1; a+ r, m2 β; ( 1−x
x Σ + Im)−1

)
,

where

D(β)

m (a, b) ≡ Γ(β)
m (a+ b)Γ(β)

m (r)

Γ(β)
m (a+ r)Γ(β)

m (b)
.

We change variables 2b
β ·

x
1−x → x. The Jacobian is β(1−x)2

2b and the density becomes

maDm(a, b)|Σ|−a|Im + xβ
2b Σ−1|−a−b

(
xβ
2b

)ma−1 β
2b

× 3F
(β)

2

(
a+ b, r + β

2 , r − 1; a+ r, m2 β;
(

2b
xβΣ + Im

)−1)
which equals

ma
Γ

(β)
m (a+ b)Γ

(β)
m (r)

Γ
(β)
m (a+ r)Γ

(β)
m (b)bma

|Σ|−a|Im + xβ
2b Σ−1|−a|Im + xβ

2b Σ−1|−b
(
xβ
2

)ma−1 β
2

× 3F
(β)

2

(
a+ b, r + β

2 , r − 1; a+ r, m2 β; 1
b

(
2
xβΣ + 1

b Im
)−1)

.

Using again that limb→∞
(a+b)(β)κ

b|κ|
= 1,

lim
b→∞

3F
(β)

2

(
a+ b, r + β

2 , r − 1; a+ r, m2 β; 1
b

(
2
xβΣ + 1

b Im
)−1)

= 2F
(β)

2

(
r + β

2 , r − 1; a+ r, m2 β; xβ2 Σ−1
)
.

Also, using (2.3) and

lim
b→∞

|Im + xβ
2b Σ−1|−b = e−tr( xβ2 Σ−1)

the density becomes

maβ

2
· Γ

(β)
m (r)

Γ
(β)
m (a+ r)

|Σ|−ae−tr( xβ2 Σ−1)(xβ
2

)ma−1
2F

(β)

2

(
r+ β

2 ,
m−1

2 β; a+r, m2 β; xβ2 Σ−1
)
.

as claimed.

Computationally, the significance of the above result is that the parameter m−1
2 β

implies that the 2F2 hypergeometric function need only be summed over partitions

of m− 1 parts instead of m. Since the number of partitions of M in not more than

k parts for M � k grows as O(Mk), we can compute the density of the largest

eigenvalue of a Wishart matrix aboutO(M) times faster than a direct differentiation

of the expression for the distribution from [6]:

P [λmax < x] =
Γ(β)
m (r)

Γ(β)
m (a+ r)

·
∣∣x

2βΣ−1
∣∣a

etr( x2 βΣ−1) 1F
(β)

1 (r; a+ r; x2βΣ−1). (3.1)
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Another advantage of the density expression of Theorem 3.1 is that it allows us

to write the density of λmax as an infinite mixture of chi-squared densities. To see

that, let Σ̃ = Σ−1/tr(Σ−1) and the density of λmax becomes

fλmax
(x) = ma · Γ

(β)
m (r)

Γ
(β)
m (a+ r)

|Σ̃|a
∞∑
k=0

βtr(Σ−1)f2(ma+k)(βtr(Σ−1)x)Γ(ma+ k)

×
∑
κ`k

(
r + β

2

)(β)

κ

(
m−1

2 β
)(β)

κ

(a+ r)
(β)
κ

(
m
2 β
)(β)

κ

C
(β)
κ (Σ̃)

k!
,

where

fν(z) =
e−

z
2

2Γ
(
ν
2

) (z
2

) ν
2−1

is the density of a chi-squared random variable with ν degrees of freedom. Now, let

wk = ma · Γ
(β)
m (r)

Γ
(β)
m (a+ r)

|Σ̃|aΓ(ma+ k)
∑
κ`k

(
r + β

2

)(β)

κ

(
m−1

2 β
)(β)

κ

(a+ r)
(β)
κ

(
m
2 β
)(β)

κ

C
(β)
κ (Σ̃)

k!

and we express the density of λmax as

fλmax
(x) = βtr(Σ−1)

∞∑
k=0

wkf2(ma+k)(βtr(Σ−1)x).

Since the wk’s are independent of x, we only need to compute them once for all val-

ues of x. In addition, integrating the above density expression gives us an alternative

expression for the cumulative distribution of λmax as

P [λmax < x] =

∞∑
k=0

wkF2(ma+k)(βtr(Σ−1)x),

where Fν(z) is the distribution of a chi-squared random variable with ν degrees of

freedom. By taking limit of x→∞ on both sides, we see that
∑∞
k=0 wk = 1. As wk

only involves partitions of m − 1 parts, this is numerically more efficient than the

expression (3.1), which involves partitions of m parts.

Finally, the infinite mixture of chi-squared representation of the density of λmax

also allows us to obtain an explicit expression for the moment of λmax:

E[λpmax] =

[
2

βtr(Σ−1)

]p ∞∑
k=0

wk(ma+ k)p.

4. The trace of a Wishart matrix

We present new expressions for the density and distribution of the trace of a Wishart

matrix that can be computed in time that is linear in the size of the matrix and

the degree of the truncation of its series expansion. This complexity is optimal and

is an exponential improvement over the previous result for the trace from [6].
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Theorem 4.1. For a Wishart matrix A ∼W (β)
m (n,Σ), the distribution and density

of its trace for an arbitrary z and a ≡ nβ
2 are

P [trA ≤ x] =
∣∣xβ

2 Σ−1
∣∣a 1

Γ(ma+ 1)
1F

(2a)
1

(
a;ma+ 1;−xβ2 Σ−1

)
, (4.1)

ftrA(x) =
∣∣xβ

2 Σ−1
∣∣a e−z

xΓ(ma)
1F

(2a)
1

(
a;ma; zIm − xβ

2 Σ−1
)
. (4.2)

Proof. The expression for the density of the trace from [6] is

ftr(A)(x) =
∣∣xβ

2 Σ−1
∣∣ae− xβ2λ 1

x

∞∑
k=0

(
xβ
2λ

)k
Γ(ma+ k)

∑
κ`k

(a)(β)
κ

k!
C(β)

κ (Im − λΣ−1), (4.3)

where λ > 0 is arbitrary.

From the identity (2.5) we see that for an arbitrary matrix X and a scalar y,

the value of 1F
(β)

0 (a; yX) does not depend on β. Using also the fact that (a)
(2a)
κ = 0

for partitions κ in more than one part,

∞∑
k=0

∑
κ`k

yk

k!
(a)(β)

κ C(β)
κ (X) = 1F

(β)
0 (a; yX) = 1F

(2a)
0 (a; yX

)
=

∞∑
k=0

yk

k!
(a)k C

(2a)
k (X).

By comparing the coefficients in front of yk, we obtain

∑
κ`k

(a)
(β)
κ

k!
C(β)
κ (X) =

(a)k
k!

C
(2a)
k (X).

In particular, the above is true for X = Im − λΣ−1. Thus

ftr(A)(x) =
∣∣x

2βΣ−1
∣∣ae− xβ2λ 1

x

∞∑
k=0

1

Γ(ma+ k)

(
xβ
2λ

)k (a)k
k!

C(2a)
κ (Im − λΣ−1) (4.4)

=
∣∣x

2βΣ−1
∣∣a e−

xβ
2λ

xΓ(ma)

∞∑
k=0

(a)k
k!(ma)k

(
xβ
2λ

)k
C(2a)
κ (Im − λΣ−1)

=
∣∣x

2βΣ−1
∣∣a e−

xβ
2λ

xΓ(ma)
1F

(2a)
1

(
a;ma; xβ2λ Im −

xβ
2 Σ−1

)
=
∣∣x

2βΣ−1
∣∣a e−z

xΓ(ma)
1F

(2a)
1

(
a;ma; zIm − xβ

2 Σ−1
)
, (4.5)

where z ≡ xβ
2λ . Because λ > 0 we have z > 0, but otherwise arbitrary. Since

the 1F
(2a)
1 function in (4.5) converges for any value of the matrix argument and is

defined for all z, (4.2) is true for any value of z (this fact is also implied by Corollary

2.3 in [3]). Setting z = 0 and integrating (4.5), we get (4.1).

The expression (4.2) also allows us to write the density of trA as a mixture of
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chi-squared densities. From (4.4)

ftrA(x) =
∣∣λΣ−1

∣∣a ∞∑
k=0

(
xβ

2λ

)ma+k
e−

xβ
2λ

xΓ(ma+ k)

(a)k
k!

C
(2a)
k (Im − λΣ−1)

=
β

λ
|λΣ−1|a

∞∑
k=0

dkf2(ma+k)

(
xβ

λ

)
, (4.6)

where λ > 0 and

dk ≡
(a)k
k!

C
(2a)
k (Im − λΣ−1).

Integrating this with respect to x allows us to get an alternative expression of the

distribution of trA as

P [trA ≤ x] = |λΣ−1|a
∞∑
k=0

dkF2(ma+k)

(
xβ

λ

)
. (4.7)

Although (4.6) and (4.7) are valid for any positive λ, the speed of convergence

and numerical stability of these expressions could crucially depend on the choice of

λ. For numerical stability, we can choose λ = σm, where σm is the smallest eigen-

value of Σ. This ensures that Im−λΣ−1 has at most m−1 nonzero eigenvalues all of

which are positive. This choice eliminates all subtractions meaning the density and

distribution will be computed to high relative accuracy in floating point arithmetic.

5. Computing the Jack function of partition in one part in O(m)

time

The algorithm of [10] can be used to compute C
(2a)
k (B), B = diag(b1, b2, . . . , bm),

in O(km) time. Now we present an alternative algorithm, based on an idea in [1],

which only costs O(m). This is optimal since each Jack function depends on m

variables.

Define dk via

D(t) = |Im − tB|−a = 1F
(2a)
0 (a; tB) =

∞∑
k=0

(a)kt
k

k!
C

(2a)
k (B) =

∞∑
k=0

dkt
k,

i.e., dk = (a)k
k! C

(2a)
k (B). Let

P (t) ≡
m∑
i=1

tbi
1− tbi

=

∞∑
k=1

pkt
k,

where pk = tr(Bk) =
∑m
i=1 b

k
i . Differentiating D(t),

tD′(t) = aD(t)P (t).

Comparing the coefficients of tk on both sides, we obtain

kdk = a

k∑
r=1

prdk−r = a

k∑
r=1

m∑
i=1

bri dk−r = a

m∑
i=1

k∑
r=1

dk−rb
r
i = a

m∑
i=1

qki,
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where

qki ≡
k∑
r=1

dk−rb
r
i

is a polynomial in bi. For qki we thus have the following recurrence relation

qki = bi

(
dk−1 +

k∑
r=2

dk−rb
r−1
i

)
= bi(dk−1 + qk−1,i).

With the initial conditions of d0 = 1 and q0i = 0 for i = 1, 2, . . . ,m, dk can be

obtained from

qki = (dk−1 + qk−1,i)bi, i = 1, . . . ,m,

dk =
a

k

m∑
i=1

qki.

The cost of computing dk is thus O(m), which is optimal, and is exactly what

we need to compute the density and distribution of the trace.

6. Numerical experiments

We performed extensive numerical tests to verify the correctness of the formulas in

this paper and present four examples in Figure 1.
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