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We derive new expressions for the densities of extreme eigenvalues of a Beta–MANOVA

matrix, which generalize the classical result of Khatri for the real case. We also present
new expressions for the distributions of those eigenvalues which are valid for any values

of the parameters.

1. Introduction

The Beta–MANOVA random matrix ensemble was introduced recently by Dubbs

and Edelman in [2]. It generalizes the classical (β = 1, 2, 4) MANOVA models to

any β > 0: For a given covariance Σ, if A is m×m Beta–Wishart [3] with n degrees

of freedom and covariance Σ and G is Beta–Wishart with p degrees of freedom and

covariance A−1, then M ≡ (Im +G−1)−1 is Beta–MANOVA with parameters n, p

and covariance Σ. In this paper we use parameters a = pβ
2 and b = nβ

2 instead of

n and p making the presentation consistent with Beta–Jacobi [4] and simplifying

most expressions.

In [2] the authors derive two expressions for the distribution of the largest

eigenvalue P (λmax(M) < x). The first, (2.7) below, is not valid for all x ∈ [0, 1] (and

for example, for identity covariance it is only valid for x ∈ [0, 1
2 ]). The second, (2.9)

below, is only valid when certain parameters are nonnegative integers. We utilize a

simple formula to derive an expression that is valid for all values of the parameters

and all x ∈ [0, 1]. This new expression is readily computable with existing software.
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Our main result is a new expression for the density of the largest eigenvalue,

which generalizes to any β > 0 the classical result of Khatri [8] for the real, β = 1,

case. From a computational standpoint this expression has the attractive property

that, for an m×m matrix, the series expansion of the hypergeometric function of

a matrix argument be summed over partitions of only m− 1 parts instead of m. In

the process we obtain the density ((3.6) below) and the distribution ((3.8) below)

of the largest eigenvalue of G in the Beta–MANOVA construction.

Because the largest and the smallest eigenvalues are simply related, we imme-

diately obtain the density and distribution of the smallest eigenvalue as well.

We present preliminaries on partitions, Jack functions, the hypergeometric func-

tion of a matrix argument, and the Beta–MANOVA ensemble in section 2. Our main

result on the density of the largest eigenvalue is in section 3. Finally, we present

numerical experiments in section 4.

2. Preliminaries

We follow Dubbs and Edelman [2] and introduce the notions pertinent to the Beta–

MANOVA ensemble.

The sequence κ = (κ1, κ2, . . .) is a partition of an integer k ≥ 0 (denoted κ ` k)

if κ1 ≥ κ2 ≥ · · · ≥ 0 are integers such that |κ| ≡ κ1 + κ2 + · · · = k.

For a partition κ = (κ1, κ2, . . . , κm) and parameter β > 0, the generalized

Pochhammer symbol is

(a)(β)

κ ≡
m∏
i=1

(
a− i−1

2 β
)
κi
, (2.1)

where (a)k = a(a+ 1) · · · (a+ k − 1) is the rising factorial.

The multivariate Gamma function of parameter β > 0 is

Γ(β)

m (c) ≡ π
m(m−1)

4 β
m∏
i=1

Γ
(
c− i−1

2 β
)

for <(c) > m−1
2 β. (2.2)

For a matrix X = diag (x1, x2, . . . , xm), the Jack function

C(β)

κ (X) = C(β)

κ (x1, x2, . . . , xm)

is a symmetric, homogeneous polynomial of degree |κ| in the eigenvalues

x1, x2, . . . , xm of X. We refer to [5,7] for a detailed treatment and properties.

For integers p ≥ 0 and q ≥ 0, and m × m diagonal matrices X and Y the

hypergeometric function of two matrix arguments X and Y and parameter β > 0 is

pF
(β)

q (a1, . . . , ap; b1, . . . , bq;X,Y ) ≡
∞∑
k=0

∑
κ`k

1

k!
· (a1)(β)

κ · · · (ap)(β)
κ

(b1)(β)
κ · · · (bq)(β)

κ
· C

(β)
κ (X)C(β)

κ (Y )

C(β)
κ (Im)

.

(2.3)

For one matrix argument,

pF
(β)

q (a1, . . . , ap; b1, . . . , bq;X) ≡ pF
(β)

q (a1, . . . , ap; b1, . . . , bq;X, Im).
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Definition 2.1. An m×m matrix M is Beta–MANOVA of parameters a, b > r−1

for β > 0 if the joint density of its eigenvalues λ1, λ2, . . . , λm is:

1

S(β)
m (a, b)

|Σ|a|Λ|a−r|Im − Λ|−a−r 1F
(β)

0 (a+ b; Λ(Λ− Im)−1,Σ)dµ(Λ), (2.4)

where Λ = diag (λ1, λ2, . . . , λm),

r ≡ m− 1

2
β + 1, (2.5)

|A| denotes the determinant of a matrix A, S(β)
m (a, b) is the value of the Selberg

Integral [11]:

S(β)

m (a, b) ≡
m!Γ(β)

m

(
m
2 β
)

π
m(m−1)

2 β
(
Γ
(
β
2

))m · Γ(β)
m (a) Γ(β)

m (b)

Γ(β)
m (a+ b)

, (2.6)

and the Vandermonde determinant is incorporated into a new measure to prevent

it from appearing everywhere

dµ(Λ) =
∏
i<j

|λi − λj |βdλ1dλ2 · · · dλm.

The joint density (2.4) is positive by Liu [10, Prop. 2.3] (since 0 < λi < 1, i =

1, 2, . . . ,m, and the covariance Σ is positive definite). Liu also establishes an alter-

native expression for it [10, Prop. 2.4] (based on (3.3) below), which reduces directly

to the one for the β-Jacobi ensemble, [4, (2.1)], when Σ = I.

For the largest eigenvalue we have from [2, (3.6), (1.1)],

P (λmax(M) < x) = |Σ|aD(β)

m (a, b)
(

x
1−x

)ma
2F

(β)

1

(
a+ b, a; a+ r;− x

1−xΣ
)
, (2.7)

where

D(β)

m (a, b) ≡ Γ(β)
m (a+ b)Γ(β)

m (r)

Γ(β)
m (a+ r)Γ(β)

m (b)
, (2.8)

and also, when t ≡ b− r is a nonnegative integer,

P (λmax(M) < x) =
∣∣ 1−x
x Σ−1 + Im

∣∣−a mt∑
k=0

∑
κ`k,κ1≤t

1

k!
(a)(β)

κ C(β)

κ

(
(Im + x

1−xΣ)−1
)
.

(2.9)

Since the hypergeometric function 2F
(β)

1 only converges when the eigenvalues of

the matrix argument do not exceed 1 in absolute value, the first expression (2.7)

only converges when

x
1−xσi ≤ 1, (2.10)

where σi > 0, i = 1, 2, . . . ,m, are the eigenvalues of Σ. The inequality (2.10) is

equivalent to x ≤ mini
(

1
1+σi

)
. For Σ = Im, for example, it becomes x ≤ 1

2 , which

is unfortunate since the largest eigenvalue appears to take values mostly in [ 1
2 , 1] in

our numerical tests.
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On the other side, the second expression, (2.9), is only valid when b − r is a

nonnegative integer, which restricts its usefulness.

As we will see in the next section, the formula (3.2) yields an expression for the

distribution of the largest eigenvalue, which is valid for all values of the parameters

and all x ∈ [0, 1].

3. New results

Before we present our main theorem we need several identities. Throughout this

section r is defined as in (2.5).

Kadell’s generalization of Selberg’s integral [6] is∫
[0,1]m

C(β)

κ (X)|X|a−r|Im −X|b−a−rdµ(X) =
(a)(β)

κ

(b)(β)
κ
S(β)

m (a, b− a)C(β)

κ (Im). (3.1)

We will also utilize the formulas [5, Prop. 13.1.6], [1, (2.15)]

2F
(β)

1 (a, b; c;X) = 2F
(β)

1

(
c− a, b; c;−X(Im −X)−1

)
· |Im −X|−b, (3.2)

1F
(β)

0 (t;−T,Σ) = |Im + xΣ|−t1F (β)

0 (t; (Σ−1 + xIm)−1, xIm − T ). (3.3)

We also simplify the following expression, which we will need in Theorem 3.1.

Lemma 3.1. With Sm defined as in (2.6),

S(β)

m−1(r + β
2 , a−

β
2 )

S(β)
m (a, b)

= a
Γ(β)
m (a+ b)

Γ(β)
m (b)

· Γ(β)
m (r)

Γ(β)
m (a+ r)

. (3.4)

Proof. We start by noting that from definition (2.2), for z ≥ r − 1,

Γ(β)

m−1

(
z − β

2 )

Γ(β)
m (z)

=
1

π
m−1

2 βΓ(z)
. (3.5)

Then

S(β)

m−1(r + β
2 , a−

β
2 )

S(β)
m (a, b)

=

(m−1)!Γ
(β)
m−1

(
m−1

2 β
)

π
(m−1)(m−2)

2
β
(

Γ
(
β
2

))m−1 ·
Γ
(β)
m−1

(
r+

β
2

)
Γ
(β)
m−1

(
a−β2

)
Γ
(β)
m−1(a+r)

m!Γ
(β)
m

(
m
2 β
)

π
m(m−1)

2
β
(

Γ
(
β
2

))m · Γ
(β)
m (a)Γ

(β)
m (b)

Γ
(β)
m (a+b)

=
Γ(β)
m (a+ b)

Γ(β)
m (b)

·
π
m−1

2 βΓ
(
β
2

)
m

·
Γ(β)

m−1

(
m−1

2 β
)

Γ(β)
m

(
m
2 β
) ·

Γ(β)

m−1

(
a− β

2

)
Γ(β)
m (a)

·
Γ(β)

m−1

(
r + β

2

)
Γ(β)

m−1(a+ r)
,

which using (3.5) becomes

=
Γ(β)
m (a+ b)

Γ(β)
m (b)

·
Γ
(
β
2

)
m
· 1

Γ
(
m
2 β
) · 1

Γ(a)
·

Γ(β)

m−1

(
r + β

2

)
Γ(β)

m−1(a+ r)
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and using that Γ(z + 1) = zΓ(z) for any z and Γ(1) = 1,

=
Γ(β)
m (a+ b)

Γ(β)
m (b)

· a ·
Γ
(
β
2 + 1

)
Γ
(
m
2 β + 1

) · Γ(1)

Γ(a+ 1)
·
m−1∏
i=1

Γ
(
m−1

2 β + 1 + β
2 −

i−1
2 β

)
Γ
(
a+ m−1

2 β + 1 + i−1
2 β

)
=

Γ(β)
m (a+ b)

Γ(β)
m (b)

· a ·
m∏
i=1

Γ
(
m−1

2 β + 1− i−1
2 β

)
Γ
(
a+ m−1

2 β + 1 + i−1
2 β

)
= a · Γ(β)

m (a+ b)

Γ(β)
m (b)

· Γ(β)
m (r)

Γ(β)
m (a+ r)

.

Finally, we prove our main result.

Theorem 3.1. With notation as in Definition 2.1, the density of the largest eigen-

value of an m×m Beta–MANOVA matrix is

maDm(a, b)|Σ|−b|C|a+bxma−1(1−x)mb−1
3F

(β)

2

(
a+b, r+ β

2 , r−1; a+r, m2 β;xC
)
dx,

where C ≡ ((1− x)Σ−1 + xIm)−1.

Proof. We start with the joint density (2.4) of the eigenvalues λ1, λ2, . . . , λm:

1

S(β)
m (a, b)

|Σ|a|Λ|a−r|Im − Λ|−a−r 1F
(β)

0 (a+ b; Λ(Λ− Im)−1,Σ)dµ(Λ).

We need to get rid of the |Im − Λ|−a−r factor so that we can use (3.1) to inte-

grate all but the largest eigenvalue out. We change variables T = Λ(Im−Λ)−1. The

Jacobian is |Im − Λ|−2 and dµ(Λ) = |Im − Λ|(m−1)βdµ(T ), so the density of T is

1

S(β)
m (a, b)

|Σ|a|T |a−r 1F
(β)

0 (a+ b;−T,Σ)dµ(T ).

Using (3.3) the above becomes

1

S(β)
m (a, b)

|Σ|a|T |a−r|Im + xΣ|−a−b1F (β)

0 (a+ b; (Σ−1 + xIm)−1, xIm − T )dµ(T ),

where x is arbitrary. We choose x to be tm, the largest eigenvalue of T , and change

variables ti = xix, i = 1, 2, . . . ,m − 1. Let X = diag (x1, x2, . . . , xm−1). The Jaco-

bian is xm−1 so the term |T |a−rdµ(T ) becomes

|X|a−rxm(a−r)+m(m−1)
2 β+m−1dµ(X) dx = |X|a−rxma−1dµ(X) dx.

Also, from the properties of the Jack function [12], since one of the eigenvalues

of xIm − T is zero, C(β)
κ (xIm − T ) = C(β)

κ (x(Im−1 − X)). The joint density of

x, x1, x2, . . . , xm−1 is thus

1

S(β)
m (a, b)

|Σ|a|Im + xΣ|−a−bxma−1|X|a−r|Im−1 −X|β

× 1F
(β)

0 (a+ b;x(Σ−1 + xIm)−1, Im−1 −X)dµ(X)dx.
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Expanding the hypergeometric function this is

1

S(β)
m (a, b)

|Σ|a|Im + xΣ|−a−bxma−1|X|a−r|Im−1 −X|β

×
∞∑
k=0

∑
κ`k

(a+ b)(β)
κ

k!
· C

(β)
κ (x(Σ−1 + xIm)−1)C(β)

κ (Im−1 −X)

C(β)
κ (Im)

.

In order to integrate X out of the joint density, we must evaluate the integral∫
[0,1]m−1

|X|a−r|Im−1 −X|βC(β)

κ (Im−1 −X)dµ(X),

which we achieve by changing variables xi → 1− xi and using (3.1):∫
[0,1]m−1

|X|β |Im−1−X|a−rC(β)

κ (X)dµ(X)=
(r + β

2 )(β)
κ

(a+ r)(β)
κ
S(β)

m−1(r+ β
2 , a−

β
2 )C(β)

κ (Im−1).

Going back, for the density of x we have

m
S(β)

m−1(r + β
2 , a−

β
2 )

S(β)
m (a, b)

|Σ|a|Im + xΣ|−a−bxma−1

×
∞∑
k=0

∑
κ`k

1

k!
(a+ b)(β)

κ · C(β)

κ (x(Σ−1 + xIm)−1)
(r + β

2 )(β)
κ

(a+ r)(β)
κ
· C

(β)
κ (Im−1)

C(β)
κ (Im)

.

The factor of m appears because the eigenvalues are unordered and the largest

eigenvalue can be any of t1, t2, . . . , tm. Now, from Stanley [12, Theorem 5.4],

C(β)
κ (Im−1)

C(β)
κ (Im)

=
(m−1

2 β)(β)
κ

(m2 β)(β)
κ

.

Using (3.4) and (2.8), we obtain the density of the largest eigenvalue of T to be

maDm(a, b)|Σ|a|Im + xΣ|−a−bxma−1

×
∞∑
k=0

∑
κ`k

1

k!
(a+ b)(β)

κ

(r + β
2 )(β)
κ (m−1

2 β)(β)
κ

(m2 β)(β)
κ (a+ r)(β)

κ
C(β)

κ (x(Σ−1 + xIm)−1)

= maDm(a, b)|Σ|a|Im + xΣ|−a−bxma−1

× 3F
(β)

2 (a+ b, r + β
2 ,

m−1
2 β; a+ r, m2 β;x(Σ−1 + xIm)−1). (3.6)

Going back to the largest eigenvalue of Λ = (Im+T−1)−1, the change of variables

is x→ x
1−x with Jacobian (1− x)−2, so its density is

maDm(a, b)|Σ|a|Im + x
1−xΣ|−a−b( x

1−x )ma−1(1− x)−2

× 3F
(β)

2

(
a+ b, r + β

2 ,
m−1

2 β; a+ r, m2 β;x((1− x)Σ−1 + xIm)−1
)
dx,

and the claim follows.
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Since
(
m−1

2 β
)(β)
κ

= 0 for partitions of more than m − 1 parts (see (2.1)), the

series for 3F
(β)

2 in the density above needs only be computed for partitions of not

more than m − 1 parts. Since the number of partitions of an integer N in not

more than k parts grows roughly as O(Nk) for N � k, this results in substantial

computational savings.

Looking back at the construction M = (Im + G−1)−1 of the Beta–MANOVA

matrix M , we obtain expressions for the distributions of the largest eigenvalues of

M and G valid for all x ∈ [0, 1] and all x ≥ 0, respectively, by applying (3.2) to [2,

(3.5)] and (2.7).

Proposition 3.1. With notation as in Definition 2.1, the largest eigenvalues of a

Beta–MANOVA matrix M and the matrix G = (M−1 − Im)−1 have distributions

P (λmax(M) < x) = D(β)

m (a, b)|xC|a2F
(β)

1 (a, r − b; a+ r;xC); (3.7)

P (λmax(G) < x) = D(β)

m (a, b)|xE|a2F
(β)

1 (a, r − b; a+ r;xE). (3.8)

where C ≡ ((1− x)Σ−1 + xIm)−1 and E ≡ (Σ−1 + xIm)−1. The above expressions

are valid for all x ∈ [0, 1] and all x ≥ 0, respectively, and any a, b > m−1
2 β.

If σ1, σ2, . . . , σm > 0 are the eigenvalues of Σ, the eigenvalues of the matrix

argument xC in (3.7) are ((1− x)(xσi)
−1 + 1)−1 ∈ (0, 1] for all x ∈ (0, 1] and 0 for

x = 0. The eigenvalues of the matrix argument xE in (3.8) are (1 + (xσi)
−1)−1 ∈

[0, 1] for all x > 0 and 0 for x = 0. Thus both hypergeometric functions in (3.7)

and (3.8) always converge.

For the smallest eigenvalue, it follows directly from the construction of Dubbs

and Edelman in [2] that if M is Beta–MANOVA with parameters a, b and covariance

Σ, then Im −M is Beta–MANOVA with parameters b, a and covariance Σ−1.

Proposition 3.2. If Fa,b,Σ(x) is the distribution (3.7) of the largest eigenvalue of

a Beta–MANOVA random matrix M with parameters a, b, and covariance Σ and

fa,b,Σ(x) is its density, then for the smallest eigenvalue λmin

P (λmin(M) < x) = 1− Fb,a,Σ−1(1− x)

and its density is fb,a,Σ−1(1− x).

4. Numerical experiments

We performed extensive numerical tests to verify the correctness of the expres-

sions for the densities and distributions of the exteme eigenvalues of the MANOVA

ensemble using the software mhg [9]. We present examples in Figure 1.
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