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What Will the Likely Range of My Wealth Be?

The median is often a better measure than the mean in evaluating the long-term value of

a portfolio. However, the standard plug-in estimate of the median is too optimistic. It has a

substantial upward bias that can easily exceed a factor of two. In this paper, we provide an

unbiased forecast of the median of the long-term value of a portfolio. In addition, we also provide

an unbiased forecast of an arbitrary percentile of the long-term portfolio value distribution. This

allows us to construct the likely range of the long-term portfolio value for any given confidence

level. Finally, we provide an unbiased forecast of the probability for the long-term portfolio value

falling into a given interval. Our unbiased estimators provide a more accurate assessment of the

long-term value of a portfolio than the traditional estimators, and are useful for long-term planning

and investment.



Forecasting long-term portfolio return is of great interest to investors and fund managers. How-

ever, this is not an easy task. In their thought-provoking paper, Jacquier, Kane, and Marcus (2003)

show that when estimating the expected terminal value of a portfolio, both geometric mean and

arithmetic mean returns are substantially biased and they provide an approach to correct the bias.

Hughson, Stutzer, and Yung (2006), however, point out that the median is of greater interest since

the mean is too optimistic compared with the median.1 Both of these studies provide valuable

insights into long-term planning and investment.

In this paper, we address the question of the likely range of the long-term portfolio value. This

question seems of even greater interest to investors. For example, in 40 years, what are the 5th and

95th percentiles of the value of my portfolio? The dual question is that, what is the probability

that my portfolio value will be, say, between $1 million and $5 million when I retire in 40 years?

The answers to these questions clearly depend on our estimates of the model parameters. Using

the standard lognormal model of long-term wealth that Jacquier, Kane, and Marcus (2003) used,

we find that the usual sample estimates of both the range and the probability falling into a given

range are significantly biased. Drawing on various contributions in the statistical literature, we

provide the minimum-variance unbiased estimators for both of them. These estimators are useful

for investors to evaluate their likely ranges of long-term portfolio value as well as to estimate the

probabilities for their long-term portfolio value to be in a desired interval.

The Model and Existing Studies

Let R̃t be the return on a portfolio between time t− 1 and time t (a tilde indicates that the return

is a random variable). For simplicity, we make the standard lognormal assumption that the return

R̃t is independently and identically lognormal, which implies that the continuously compounded

return r̃t = ln(1 + R̃t) is normally distributed with mean µ and variance σ2. Equivalently, we can

write

r̃t = µ+ ε̃t, (1)

where ε̃t is normally distributed, has mean zero and variance σ2. This is a popular model for asset

allocation and is also the model underlying the famous Black-Scholes formula. Jacquier, Kane,

1Their paper won both the FAJ Scroll Award and the Readers Choice Award.
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and Marcus (2003) also use this lognormal model for asset returns when estimating the expected

long-term portfolio value. Bodie, Kane, and Marcus (2005), in Chapter 24 of their popular text,

discuss both the model and the estimation issues in detail. Jacquier, Kane, and Marcus (2005) show

that different estimation methods can make an important difference in asset allocation decisions.

Technically, the assumption that the return is independently and identically distributed is for

simplicity. However, Jacquier, Kane, and Marcus (2003, 2005) perform a sensitivity analysis and

show that in the context of the estimation of long-term wealth, the results are robust to possible

autocorrelations in asset returns.

Assume today is time T . The terminal wealth of investing $1 for H periods is given by

W̃ =
H∏
t=1

(1 + R̃T+t) = eHµ+
∑H
t=1 ε̃T+t , (2)

where ε̃t ∼ N(0, σ2) is the disturbance of the return at time t. Since W̃ is a random variable, its

value is unknown today. The expected value of W̃ is of practical interest and is easily obtained as

We = E[W̃ ] = e
H
(
µ+σ2

2

)
(3)

if the true value of µ and σ2 is known. However, µ and σ2 are generally unknown and have to be

estimated from data.

Let µ̂ and σ̂2 be the unbiased estimators of µ and σ2 based on the historical data with sample

size T ,

µ̂ =
1
T

T∑
t=1

rt, σ̂2 =
1

T − 1

T∑
t=1

(rt − µ̂)2, (4)

which are the outputs of almost any statistical software. Although µ̂ and σ̂2 are unbiased, a

nonlinear function of µ̂ and σ̂2 is generally not an unbiased estimator of the corresponding function

of µ and σ2. Indeed, the standard plug-in estimator of We based on µ̂ and σ̂2 is

Ŵe = e
H
(
µ̂+ σ̂2

2

)
, (5)

and its expected value is given by

E[Ŵe] = E

[
e
H
(
µ̂+ σ̂2

2

)]
6= e

H
(
µ+σ2

2

)
= We. (6)

So Ŵe is a biased estimator of We. As shown by Jacquier, Kane, and Marcus (2003), the longer

the investment horizon H, the greater the bias. Because of the substantial bias, they provide
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unbiased estimators to resolve the problem. As we will show below, a similar problem also exists

for estimating the quantiles and probabilities.

Unbiased Estimation of the Median

We are interested in estimating different quantiles of the terminal wealth W̃ . We first consider a

particularly interesting quantile of W̃ — the median (50th percentile), which is given by

Wm = eHµ. (7)

Comparing this with (3), the expected terminal wealth is equal to the median terminal wealth

multiplied by a scalar e
Hσ2

2 . For reasonable values of σ, this scalar can easily be greater than two

with a modest H. For example, with an annual standard deviation of σ = 20% and H = 40 years,

we have the mean of the terminal wealth to be 2.23 times as large as its median. This says that

the terminal wealth is distributed with a large positive skewness, and the mean is located at the

extreme right tail of the distribution. As H increases, the probability that the terminal wealth

will be greater than its expected value approaches zero. Theoretically, the mean is optimal for

quadratic error loss function, and the median is optimal for absolute error loss function. Given the

shape of the distribution of terminal loss function, it is difficult to argue for the use of a quadratic

error loss function. This leads to Hughson, Stutzer, and Yung’s (2006) insightful suggestion that

median rather than expected terminal wealth may be more appropriate for assessing long-term

wealth outcomes.

Given the median is of interest now, the question is how to estimate it in practice. This is

because µ is unknown in the real world, and have to be estimated by the available data. The

standard approach of estimating Wm is to use

Ŵm = eHµ̂, (8)

where the unknown µ is replaced by its estimate µ̂. This is the usual plug-in estimate of the median.

However, from the normality assumption on µ̂, we can show that the expected value of the estimate

is

E[Ŵm] = eHµ+H2σ2

2T , (9)

3



which is different from the true median Wm by having the second term. As a result, the ratio of

this expected value to the true median is

E[Ŵm]/Wm = e
H2σ2

2T . (10)

Hence, the plug-in median estimate is always biased upward, and the bias grows exponentially

with a ratio of H2σ2/(2T ). For any given sample size, the greater the investment horizon or the

volatility, the greater the bias.

Suppose we use T = 30 years of annual data to estimate the median of terminal wealth, with the

true annual standard deviation of σ = 20%. Assume the investment horizon is H = 40 years. Then

eH
2σ2/(2T ) = 2.906. This means that, on average, the estimated median can be almost three times

as large as the true value! In comparison with Jacquier, Kane, and Marcus’s (2003) finding for

estimated expected terminal wealth, the bias in estimating the median is of the same magnitude.

To see how the result varies under alternative parametric assumptions, Table 1 provides the ratio

of E[Ŵm]/Wm for varying values of H and σ following Jacquier, Kane, and Marcus (2003). With

a sample period of 30 years, the biases are huge, varying from 1.822 to 11.023 for an investment

horizon of 40 years as volatility goes from 15% to 30%. Only when the investment horizon is 10

years or less that we can ignore this bias. With a longer sample period of 75 years, the biases are

smaller. Nevertheless, at a horizon of 40 years, the biases are still significant, varying from 1.271

to 2.612.

Note that the results in Table 1 only depend on H, T and σ, but it does not depend on how

often we sample the data. This is because Ŵm depends only on µ̂ and µ̂ remains the same no

matter how often we sample the data.

Since the bias of Ŵm is substantial, it is important to obtain an unbiased estimator. Intu-

itively, since Ŵm is biased significantly upwards, we need to adjust it down. As a special case of

Proposition 1 below, the unbiased estimator of Wm is given by:

Ŵ u
m = eHµ̂g0(σ̂), (11)

where g0(σ̂) is a function of σ̂ that is used to eliminate the bias, and is defined by

g0(σ̂) =
∞∑
k=0

(dσ̂2)k(
T−1

2

)
k
k!
, (12)
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Table 1. Ratio of Expected Forecasted Median to True Median

Horizon (H years)

σ 10 20 30 40

A. Sample period (T = 30 years)
15% 1.038 1.162 1.401 1.822
20% 1.069 1.306 1.822 2.906
25% 1.110 1.517 2.554 5.294
30% 1.162 1.822 3.857 11.023

B. Sample period (T = 75 years)
15% 1.015 1.062 1.145 1.271
20% 1.027 1.113 1.271 1.532
25% 1.043 1.181 1.455 1.948
30% 1.062 1.271 1.716 2.612

where d = −H2(T −1)/4T and (a)k = a(a+1) · · · (a+k−1) is the rising factorial (or Pochhammer

symbol). As shown in the proof of Proposition 1, Ŵ u
m is unbiased and also has the smallest variance

among all possible unbiased estimators of Wm. Note that unlike the plug-in estimate Ŵm which

is independent of the sampling frequency of the returns, g0(σ̂) and hence Ŵ u
m is not invariant to

the sampling frequency of returns. For a given length of sample period, the Ŵ u
m that is computed

using the annual data is different from the one that is computed using the monthly data.

To illustrate the possible difference between the two estimators Ŵm and Ŵ u
m, we consider an

investment in the U.S. equity market or one of the seven international equity markets. The second

and third columns of Table 2 report the sample mean and standard deviations of the returns

from different markets, based on available monthly data from 1970/1–2007/12 (456 months). The

biased and unbiased estimators Ŵm and Ŵ u
m, of the median terminal wealth from investing $1 for

a horizon of 30 years on the different markets are given in the fourth and fifth columns. For the

U.S. equity market, even with 456 months of data, the plug-in estimate of the median terminal

wealth is $23.388, about 31% higher than the unbiased estimate of $17.838. The differences are

in general greater for other international markets. The greatest difference occurs for the Italian
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equity market. The biased estimate is now about 101% larger than the unbiased one.2

Table 2. Biased and Unbiased Estimates of Median, Quantiles and Probabilities

H = 360 months, T = 456 months

Market µ̂ σ̂ Ŵm Ŵ u
m Ŵ0.05 Ŵ0.95 Ŵ u

0.05 Ŵ u
0.95 p̂ p̂u

U.S. 0.0088 0.0436 23.388 17.838 5.990 91.319 4.557 69.688 0.535 0.660
Australia 0.0094 0.0679 29.413 15.249 3.529 245.132 1.817 127.313 0.446 0.742
Canada 0.0085 0.0539 21.194 14.013 3.937 114.085 2.593 75.497 0.458 0.549
France 0.0097 0.0632 33.020 18.705 4.594 237.352 2.587 134.643 0.484 0.818
Germany 0.0075 0.0553 15.108 9.781 2.690 84.841 1.734 54.976 0.359 0.280
Italy 0.0063 0.0701 9.579 4.760 1.075 85.387 0.530 42.513 0.251 0.114
Japan 0.0085 0.0612 21.081 12.364 3.118 142.545 1.819 83.709 0.428 0.539
U.K. 0.0100 0.0626 36.705 21.000 5.195 259.333 2.956 148.571 0.496 0.866

Estimating Quantiles of the Terminal Wealth

Besides being interested in the median of the terminal wealth, which is a special quantile that

permits simple intuition and analytical expression, an investor may also be interested in estimating

other quantiles of the terminal wealth. Given a probability level p, the p-th quantile of his terminal

wealth, Wp, is defined as

Prob(W̃ < Wp) = p. (13)

For example, the median terminal wealth, Wm, is W0.5. Investors may be interested in estimating

W0.05 and W0.95 because there is a 90% probability that his terminal wealth will fall in the range

[W0.05,W0.95].

Based on Equation (2),
ln(W̃ )−Hµ√

Hσ
(14)

is a standard normal random variable with mean zero and variance one. Let Cp be the p-th quantile

2The unbiased estimator Ŵu
m also have smaller mean squared errors and mean absolute errors than Ŵm. We do

not address these statistical issues here for brevity. The technical results are available in a separate paper.
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of a standard normal distribution, i.e.,

Φ(Cp) = p, (15)

where Φ(·) is the cumulative distribution function of a standard normal random variable.3 Then,

Wp = eHµ+Cp
√
Hσ. (16)

Note that Wp is a log-linear function of both µ and σ.

The standard plug-in estimator of Wp is

Ŵp = eHµ̂+Cp
√
Hσ̂. (17)

As in the case of estimating Wm, this plug-in estimator is substantially biased. Figure 1 provides the

bias ratio E[Ŵp]/Wp as a function of investment horizon H for p = 0.05, 0.5 and 0.95, respectively.

Consider the top left panel with T = 75 years and σ = 15% per year. We find that the ratio

increases from 1 to 1.3 as the horizon increases from one to 40 years. Although the ratio is

significantly different from one, it does not seem too striking. However, when σ is 30% per year,

as shown in the top right panel, the ratio is more than two when H = 40 years. The worse case

occurs when T = 30 years and σ = 30% per year. As shown in the bottom right panel, the ratio

is now too large to be ignored. It is over three for H = 30 years and over 12 for H = 40 years.

Overall, the plug-in estimator has substantial biases. Another interesting result is that the ratio of

E[Ŵp]/Wp for either p = 0.05, 0.5 or 0.95 are virtually the same, despite asymmetry of the wealth

distribution.

Because of the substantial bias of the standard plug-in estimator, it is important to obtain an

unbiased estimator. Shimizu and Iwase (1981) obtained an unbiased estimator of the quantile of a

lognormal distribution and their result allows us to obtain an unbiased estimator of Wp for H = 1.

The following proposition generalizes the result of Shimizu and Iwase (1981) to obtain the unbiased

estimator of Wp for general H.

Proposition 1 The unbiased estimator of Wp is

Ŵ u
p = eHµ̂g(σ̂), (18)

3Cp can be easily computed using the Excel function for the inverse of the standard normal distribution, NORMSINV.
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Figure 1
This figure plots the ratio of E[Ŵp]/Wp for p = 0.05, p = 0.5 and p = 0.95 as a function of
investment horizon H. The upper panels are for an estimation period of T = 75 years. The lower
panels are for an estimation period of T = 30 years. The left panels assume σ =15% per year and
the right panels assume σ =30% per year.
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where g(σ̂) is the adjustment to eliminate the bias, and is defined by

g(σ̂) =
∞∑
k=0

k∑
j=0

Γ
(
T−1

2

)
ck−jdj σ̂k+j

j!(k − j)!Γ
(
T−1+k+j

2

) , (19)

where c = Cp
√
H(T − 1)/2, d = −H2(T − 1)/4T , and Γ(·) is the gamma function.

The proof of Proposition 1 is given in the Appendix. Like Ŵ u
m, Ŵ u

p also has the minimum

variance among all possible unbiased estimators of Wp. Although Ŵ u
p looks much more complex

than Ŵ u
m, it can, however, be as easily computed as the latter.4 In many cases, we can actually

correct for most of the bias in Ŵp with a simple adjustment. This adjustment is motivated by the

fact that if µ is unknown but σ is known, then the unbiased estimator of Wp is given by

Ŵ u
p (σ) = eHµ̂+Cp

√
Hσ−H

2σ2

2T . (20)

Replacing σ by σ̂, we obtain a much simpler approximate unbiased estimator of Wp as

Ŵ au
p = eHµ̂+Cp

√
Hσ̂−H

2σ̂2

2T = Ŵpe
−H

2σ̂2

2T , (21)

which is simply equal to the plug-in estimator multiplied by an adjustment factor of e−
H2σ̂2

2T . Note

that this adjustment factor is independent of p.

To understand the difference between the exact unbiased estimator Ŵ u
p and the approximate

unbiased estimator Ŵ au
p , we plot in Figure 2 the ratio of Ŵ u

p /Ŵ
au
p (which only depends on H, T ,

and σ̂) as a function of H for p = 0.05, 0.5 and 0.95. In the upper panels, we consider a scenario in

which we estimate σ using 75 years of data. The upper left panel assumes we use annual data (i.e.,

T = 75 years) to estimate σ. When σ̂ = 0.3, we can see that for p = 0.5 and 0.95, Ŵ au
p is very close

to Ŵ u
p . However, for p = 0.05, Ŵ au

p can be up to 10% larger than Ŵ u
p when the investment horizon

is H = 40 years. But if we use 75 years of monthly returns (i.e., T = 900 months) to estimate

σ, the difference between Ŵ au
p and Ŵ u

p becomes negligible. The upper right panel considers this

case, and shows that with a monthly sample standard deviation of σ̂ = 0.3/
√

12 = 0.0866, Ŵ au
p is

almost identical to Ŵ u
p even for H = 480 months and p = 0.05.

However, the difference between Ŵ au
p and Ŵ u

p can be significant when the estimation period is

short. In the lower panels of Figure 2, we consider a scenario in which we estimate σ using only
4For practical situations, the infinite series converges quickly. In all of our calculations, the infinite series converges

after summing up less than 15 terms. A set of Matlab programs for computing various estimators used in this paper
is available upon request.
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Figure 2
This figure plots the ratio of the exact unbiased estimator (Ŵ u

p ) to the approximate unbiased
estimator (Ŵ au

p ) of Wp for three different values of p (0.05, 0.5, and 0.95) as a function of investment
horizon (H), where Wp is the p-th percentile of the terminal wealth at the end of H periods. The
upper panels assume an estimation period of 75 years whereas the lower panels assume an estimation
period of 30 years. The left panels assume the use of annual data whereas the right panels assume
the use of monthly data. The ratios are obtained by assuming the annual sample standard deviation
is 30% or the monthly sample standard deviation is 8.66% (i.e., 0.3/

√
12).
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30 years of data. When we use annual data to estimate σ, the lower left panel shows that Ŵ au
p

and Ŵ u
p can be quite different, especially for long investment horizon and p = 0.5 or p = 0.99.

Even when monthly data are used to estimate σ, the lower right panel shows that Ŵ u
0.05 can still be

5% smaller than Ŵ au
0.05 for H = 480 months. In summary, Figure 2 suggests that instead of using

the more complicated unbiased estimator Ŵ u
p , we can safely use the simpler approximate unbiased

estimator Ŵ au
p when p is large or when the sample size (T ) is relatively large.

The eighth and ninth columns of Table 2 provide Ŵ u
0.05 and Ŵ u

0.95, respectively. These are the

unbiased estimates of the levels that the terminal wealth will not exceed with probabilities 5% and

95%, respectively. Hence, [Ŵ u
0.05, Ŵ

u
0.95] is an unbiased forecast of a range that the terminal wealth

will have a 90% probability of falling within. For comparison, Table 2 also reports the plug-in

estimates of W0.05 and W0.95 in the sixth and seventh columns. At both the 5% and 95% quantiles,

the usual plug-in estimates are biased upwards. The biases are substantial, and are in general of the

same magnitude as the biases observed when estimating the median. For example, for the Italian

equity market, Ŵ0.95 is twice as large as Ŵ u
0.95, so relying on the plug-in method can lead to overly

optimistic forecast of the terminal wealth.

Estimating the Probability of the Terminal Wealth Falling within
a Given Range

Instead of estimating the quantiles of the terminal wealth, an investor may instead want to estimate

the probability that his terminal wealth will be below a certain level. That is, for a given value of

W , he is interested in estimating

p = Prob(W̃ < W ). (22)

If µ and σ are known, it is an easy matter to compute p as

p = Φ
(
w −Hµ√

Hσ

)
, (23)

where w = ln(W ).

Similarly, if an investor would like to estimate the probability that the terminal wealth will be

within a given interval [W1,W2] at time H, he then just needs to compute

Prob(W1 < W̃ < W2) = Φ
(
w2 −Hµ√

Hσ

)
− Φ

(
w1 −Hµ√

Hσ

)
, (24)
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where w1 = ln(W1), w2 = ln(W2).

When µ and σ2 are unknown, we need to estimate p. The standard approach plugs in the

estimates of µ and σ2 to obtain

p̂ = Φ
(
w −Hµ̂√

Hσ̂

)
(25)

To examine the bias of p̂, Figure 3 plots the difference of E[p̂] − p as a function of investment

horizon H.5 When p = 0.05, the two graphs on the left show that p̂ is biased upward. The bias

can be as large as 200% when the sample size (T ) is 30. When p = 0.95, while the biases are of

the same magnitude, they are biased downward, as shown by the two graphs on the right. This is

different from estimating the quantiles where the bias is fairly symmetric around the median. It

should be pointed out the graphs depend only on p and T , and not on the choices of µ and σ.

The unbiased estimator of p for H = 1 is solved in the statistics literature by Kolmogorov (1950)

(see also Barton (1961), Ellison (1964), and Johnson, Kotz, and Balakrishnan (1994, p.141)). Here

we solve the problem for H < T .6

Proposition 2 When H < T , the unbiased estimator of p is

p̂u = Ia

(
T − 2

2
,
T − 2

2

)
, (28)

where

a =
1
2

+
√
T (w −Hµ̂)

2
√
H(T −H)(T − 1)σ̂

, (29)

and Ix(m,n) is the incomplete beta function ratio, and we use the convention that Ix(m,n) = 0

for x < 0 and Ix(m,n) = 1 for x > 1.

The last column of Table 2 reports p̂u, the unbiased estimate of the probability that the terminal

wealth in 30 years will be between $20 and $100 for an initial investment of $1. For comparison, we

5It can be shown that

E[p̂] =

∫ ∞
0

Φ

 Cp(
u

T−1
+ H

T

) 1
2

 f(u)du, (26)

where f(u) is the density function of a chi-squared random variable with T − 1 degrees of freedom.
6When H = T , the unbiased estimator of p is given by

p̂u =

{
1 if Hµ̂ ≤ w,

0 if Hµ̂ > w.
(27)

For H > T , we are unable to obtain an unbiased estimator for p, so we leave this problem for future research.
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Figure 3
This figure plots the bias of p̂, i.e., E[p̂] − p, as a function of investment horizon H, where p =
P [W̃ < Wp] with Wp as the p-th percentile of the terminal wealth at the end of H years, and p̂ is
the sample estimator of p. The upper panels are for an estimation period of T = 75 years. The
lower panels are for an estimation period of T = 30 years. The left panels are for p = 0.05 and the
right panels are for p = 0.95.

13



also report p̂, the standard plug-in estimate of probability in the second last column. The difference

between p̂ and p̂u can be substantial. For example, if the U.K. equity market is the investment

asset, the unbiased estimate of the probability, p̂u, is 86.6% but the plug-in estimate, p̂, suggests

that the probability is only 49.6%, much less than the the unbiased estimate.

Conclusion

Forecasting long-term portfolio value is of great interest to investors and fund managers. Jacquier,

Kane, and Marcus (2003) show that both geometric or arithmetic estimates are substantially biased

for estimating the expected terminal wealth, and they provide an approach to correct the bias.

Hughson, Stutzer, and Yung (2006) point out that the median terminal wealth, rather than the

expected terminal wealth, is often more useful in evaluating the long-term value of a portfolio.

However, the usual plug-in median forecast is overly optimistic. It has a substantial upward

bias that can easily exceed a factor of two. In this paper, we provide unbiased forecasts of the

median as well as the percentiles of the terminal wealth, and the probability of the terminal wealth

falling into any given interval.

Using the U.S. equity market or one of the seven international equity markets as the investment

asset, we show that, even with available 456 months of data (from 1970/1 to 2007/12), the usual

estimates of the median, range and probabilities are substantially biased. In contrast, the unbiased

forecasts provide more accurate assessments of the terminal wealth, and are much more useful for

long-term planning and investment.
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A Appendix A. The Proofs and Unbiased Estimator of Expected
Terminal Wealth

Proof of Proposition 1: Proposition 1 is a special case of obtaining the minimum-variance unbiased

estimator for

θ = exp(aµ+ bσ), (A1)

where a and b are constants. Since aµ̂ ∼ N(aµ, a2σ2/T ), we have

E[exp(aµ̂)] = exp
(
aµ+

a2σ2

2T

)
. (A2)

To eliminate the bias caused by the second term, we need to find an explicit adjustment, which

must be a function of σ̂ alone. Under the normality assumption, σ̂2 ∼ σ2χ2
T−1/(T−1). For r > −n,

we have (see Johnson, Kotz, Balakrishnan (1994, Eq.18.13))

E[(χ2
n)

r
2 ] =

2
r
2 Γ
(
n+r

2

)
Γ
(
n
2

) . (A3)

Hence, the r-th moments of σ̂ is given by

E[σ̂r] =
(

2
T − 1

) r
2 Γ
(
T−1+r

2

)
Γ
(
T−1

2

) σr. (A4)

Now we define a function

g(x) =
∞∑
r=0

r∑
j=0

Γ
(
T−1

2

)
cr−jdjxr+j

j!(r − j)!Γ
(
T−1+r+j

2

) , (A5)

where c and d are constant scalars. The expectation of this function at σ̂ is given by

E[g(σ̂)] =
∞∑
r=0

r∑
j=0

Γ
(
T−1

2

)
cr−jdjE[σ̂r+j ]

j!(r − j)!Γ
(
T−1+r+j

2

)
=

∞∑
r=0

r∑
j=0

(
2

T − 1

) r+j
2 cr−jdjσr+j

j!(r − j)!

= exp

(√
2

T − 1
cσ +

(
2

T − 1

)
dσ2

)
. (A6)

Therefore, if we set

c =

√
T − 1

2
b, d = −a

2(T − 1)
4T

, (A7)
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we have

E[g(σ̂)] = exp
(
bσ − a2σ2

2T

)
. (A8)

Then using the fact that µ̂ and σ̂ are independent of each other, we obtain

E[exp(aµ̂)g(σ̂)] = E[exp(aµ̂)]E[g(σ̂)] = exp(aµ+ bσ). (A9)

This completes the proof of Proposition 1.

Proof of Proposition 2: To prove Proposition 2, we make use of Theorem 1 of Ellison (1964),

which shows that if Y ∼
√
χ2
T−1, U ∼ β

(
T−2

2 , T−2
2

)
, and they are independent of each other, then

Y (2U − 1) ∼ N(0, 1). Based on this theorem, we can establish that, when U is independent of µ̂

and σ̂2,

Z̃ = Hµ̂+

√
H(T −H)(T − 1)

T
σ̂(2U − 1) ∼ N(Hµ,Hσ2). (A10)

This is because the first term is Hµ̂ ∼ N(Hµ,H2σ2/T ) and the second term is√
H(T −H)

T
σY (2U − 1) ∼ N

(
0,
H(T −H)σ2

T

)
, (A11)

with Y =
√
T − 1σ̂/σ ∼

√
χ2
T−1. Then, using the independence between the first and the second

term, we have Z̃ ∼ N(Hµ,Hσ2).

Note that p = P [Z̃ < w], so we have

p = E[P [Z̃ < w|µ̂, σ̂2]] = E[P [U < a|µ̂, σ̂2]] = E[p̂u], (A12)

where the second equality follows because

Z̃ < w ⇒ Hµ̂+

√
H(T −H)(T − 1)

T
σ̂(2U − 1) < w

⇒ 2U − 1 <
√
T (w −Hµ̂)√

H(T −H)(T − 1)σ̂

⇒ U <
1
2

+
√
T (w −Hµ̂)

2
√
H(T −H)(T − 1)σ̂

. (A13)

This completes the proof of Proposition 2.

Finally, since the estimation of the expected terminal wealth is of great interest, we provide the

explicit formula for computing the minimum-variance unbiased estimator of E[W̃ ], to complement
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the earlier studies by Jacquier, Kane, and Marcus (2003, 2006). Jacquier (2006) further analyzes

the impact of using estimated σ. While they use the large sample distribution of σ̂, we use its

exact distribution. Bradu and Mundlak (1970) seems the first to provide such an estimator. Our

presentation below follows from Shimizu and Iwase (1981).

The estimation of E[W̃ ] is a special case of estimating a general function,

θ = exp(aµ+ bσ2) (A14)

with a = H and b = H/2. For these choices of a and b, the unbiased estimator of θ is

θ̂u = eHµ̂0F1

(
T − 1

2
;
(T − 1)(T −H)H

4T
σ̂2

)
, (A15)

where

0F1(m, z) =
∞∑
i=0

1
(m)i

zi

i!
(A16)

is a generalized hypergeometric function. The proof follows from Corollary 3.1 of Shimizu and

Iwase (1980).
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