
The Journal of Futures Markets, Vol. 17, No. 2, 131–160 (1997)
Q 1997 by John Wiley & Sons, Inc. CCC 0270-7314/97/020131-30

A Simple Approach to

Bond Option Pricing

JASON Z. WEI

In the last 15 years or so, tremendous efforts and progress have been
made in valuing interest rate sensitive derivative securities. Broadly speak-
ing, two different approaches have been used. Some authors have mod-
eled interest rates in an equilibrium setting and derived bond prices and
other interest rate derivative securities prices based on the equilibrium
movements of the underlying interest rates. Examples include Vasicek
(1977) and Cox, Ingersoll, and Ross (1985). Others, pioneered by Ho and
Lee (1986) and later generalized by authors such as Black, Derman, and
Toy (1990); Hull and White (1990); and Heath, Jarrow, and Morton
(1992); have developed models which describe the equilibrium move-
ments of the whole term structure by taking the initial term structures as
given. The two approaches differ mainly in that by construction in the
second approach discount bonds are always correctly priced.

In both approaches, formulas for European options on discount
bonds are given, except for Ho and Lee (1986) and Black, Derman, and
Toy (1990) who developed a lattice framework. No attempt was made in
any of these studies to derive closed-form formulas for European options
on coupon-bonds, or for bond portfolios in general. Implicitly, however,
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Hull and White (1990) realized that Jamshidian’s approach (Jamshidian,
1989) can be applied to coupon bonds.

In a seemingly unrelated area, many authors have examined the con-
cept and application of duration and convexity in the context of bond
portfolio management. The literature is so abundant that an exhaustive
list of studies in a limited space is simply impossible. One article worth
mentioning is by Cox, Ingersoll, and Ross (1979). They convincingly show
that when interest rates are stochastic, the traditional definition of du-
ration is not adequate. Instead, they propose an alternate definition with
time as its unit. Their result becomes the key motivation of the pricing
approach proposed in this article. Specifically, the risk measurement
(standard deviation of return) of a bond portfolio is identified using the
duration definition of Cox, Ingersoll, and Ross (1979). This duration is
matched with that of a single discount bond which is used as a proxy for
the original bond portfolio, and an option on the discount bond is priced.
The resulting option price is a close approximation of the true option
price which can be obtained via Jamshidian’s approach.

The idea of linking the standard deviation of bond returns to duration
has been explicitly explored in another article. By proposing a particular
form of bond return standard deviation (i.e., proportional to duration),
Schaefer and Schwartz (1987) developed a framework within which op-
tions on coupon bonds can be priced. Unfortunately, their approach re-
quired the use of numerical procedures. More importantly, their frame-
work depends on an extremely strong and inconsistent assumption: the
short-term interest rate is constant.

This article proposes a very simple approach to pricing European
options on bond portfolios in a one-factor framework. It is shown that as
long as a closed-form formula exists for options on discount bonds, op-
tions on bond portfolios can always be priced using the same formula.
Besides providing an alternative, simple pricing method for coupon bond
options, the article also fills a small gap in the literature by applying the
methodology to an environment with a non-Markovian spot rate. More-
over, the proposed approach can be used to examine bond option pricing
from an alternative angle: impacts of duration and convexity on bond
option prices. This should be valuable to both academics and practition-
ers who are concerned with the effects of bond characteristics on the
bond option prices.

The rest of the article is organized in four sections. It reviews the
basics of Jamshidian’s approach to pricing options on bond portfolios;
introduces an alternative, simple approach; and investigates the perfor-
mance of the proposed simple approach in a variety of parameter settings.
The last section summarizes the article.
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JAMSHIDIAN’S APPROACH1

Suppose a closed-form formula exists for a European call on a discount
bond.2 Following Jamshidian (1989), let C(r, t, T, s,K) denote the price
of a European call on a discount bond which matures at time s. The option
matures at T (T , s) with an exercise price, K. The spot interest rate at
the current time, t, is denoted by r. In addition, let B(r, t, s) denote the
price of the discount bond. Part (c) of Jamshidian’s proposition roughly
states the following:

A European call with maturity T on a bond portfolio consisting of n
discount bonds with distinct maturities si (i 4 1, 2, . . . . , n and T , s1

, s2 , . . . . , , sn) and ai (ai . 0, i 4 1, 2, 3, . . . . , n) issues of each
can be priced as

n

C 4 a C(r, t, T, s , K ) (1)a o i i i
i41

where

n

K 4 B(r*, t, s ) and r* solves a B(r*, T, s ) 4 K.i i o i i
i41

Although the proposition is cast in the context of Vasicek’s interest
rate model [Vasicek, (1977)] it is valid for any one-factor term structure
model, as stated and proved by Jamshidian (1987, 1989). Jamshidian’s
approach says that an option on a bond portfolio can be decomposed into
a portfolio of options. The individual options all have the same time-to-
maturity and are written on the individual discount bonds in the bond
portfolio. The decomposition is achieved by properly spreading the origi-
nal exercise price among all individual options. This exercise price de-
composition, in turn, is motivated by the fact that all discount bond prices
are instantaneously perfectly correlated.

One disadvantage of Jamshidian’s approach is its reliance on an it-
erative procedure. In addition, one must calculate n option prices if there
are n discount bonds in the portfolio. Moreover, it is not immediately

1Using a specific interest rate process proposed by CIR (Cox, Ingersoll, and Ross, 1985); Longstaff
(1993) derived a closed-form formula for European options on coupon bonds. Longstaff (1993)
obtained the formula by directly solving a partial differential equation. Since Jamshidian’s approach
is not restricted to a particular interest rate process and would lead to Longstaff’s formula (after
consolidating terms) in the case of CIR interest rate, this study will examines Jamshidian’s approach
only.
2For brevity, only call options are considered throughout the article. Because put–call parity holds
for both discount bond options and coupon bond options regardless of the specific pricing models,
whatever applies to call options will apply also to puts (after adjusting via put–call parity.)



134 Wei

clear as to how the option can be hedged without holding an array of
discount bonds.

If all discount bonds are instantaneously, perfectly correlated, a bond
portfolio must also be instantaneously, perfectly correlated with other
discount bonds outside the portfolio. There must be a discount bond
which exhibits sufficiently similar risk characteristics as the bond port-
folio. If one can identify this proxy discount bond, then the pricing of
bond portfolio options reduces to the simple pricing of a discount bond
option. The following section shows that a proxy bond can, indeed, be
identified with the help of duration.

A SIMPLE APPROACH

The concept of duration was initially developed for simple movements of
yield curves. The most common definition is

]B 1
D 4 1 (2)

]y B

where y is the yield to maturity of the bond and B is the bond price. As
proved by Ingersoll, Skelton, and Weil (1978), the above duration is a
good measure of risk only when the yield curve is flat and moves in a
parallel fashion. Cox, Ingersoll, and Ross (1979) realized the limitation
of this definition and proposed a different definition of duration, or risk
measure.

To formally introduce their definition, assume that in a one-factor
framework the short-term interest rate follows the following process

dr 4 l (r, t)dt ` r (r, t)dw (3)r r

where lr(r, t) and rr(r, t) are the drift and instantaneous standard devi-
ation of the changes in interest rate and dw is the increment of a standard
Wiener process. To keep the process in (3) sufficiently general, the form
of lr(r, t) and rr(r, t) is not specified. By Ito’s lemma, the process followed
by a discount bond price, B, is given by

dB ]B 1
4 l dt ` r (r, t) dw (4)B rB ]r B

where lB is the drift of the bond return.
For pricing purposes the form of the drift, lB, does not matter.3

Analogous to the Black–Scholes pricing model, what really matters is the

3See footnotes 10 and 11 in Cox, Ingersoll, and Ross (1979).
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volatility. Since rr(r, t) is common to all bonds, the proper risk measure
is then (]B/]r)(1/B). Notice that this expression differs from the definition
in (2) only in one respect: the price change is reflected in the spot rate
instead of the yield-to-maturity. The alternate measure is advantageous
because it is immune to the troubling fact that yields of bonds with dif-
ferent maturities may change by different amounts given a change in the
spot rate.

Cox, Ingersoll, and Ross (1979) then propose that duration should
be defined as the time to maturity of the discount bond, instead of the
quantity (]B/]r)(1/B). Accordingly, a portfolio’s duration is defined as

]Biao i]B 1 ]r1 11 1D 4 f 1 4 f 1 (5)p 1 2]r B a B1 2o i i

where f(s) 4 1[]B(s)/]r][1/B (s)], f 11 is the inverse function for time to
maturity, s, and ai’s (i 4 1, 2 . . .) are the portfolio weights. The above
formula says that the duration of a bond portfolio is the time-to-maturity
of a discount bond, s, whose risk measure, 1[]B(s)/]r][1/B (s)], is equal
to that of the portfolio.4

To understand the intuition behind the above definition, notice that
the process followed by the portfolio price, given the process in (3), is

dP ]P 1
4 l dt ` r (r, t) dwp rP ]r P

]Biao i ]r
4 l dt ` r (r, t) dw (6)p ra Bo i i

where lp is the drift of the portfolio’s return and P 4 RaiBi. Comparing
(6) with (4), it can be seen that the portfolio has the same risk sensitivity
as the discount bond as long as the instantaneous standard deviations are
matched. This forms the basis for the definition in (5).5

This study’s simple approach to pricing European options on port-
folios of discount bonds can be stated as follows:

In a one-factor framework, as long as pricing formulas exist for Eu-
ropean options on discount bonds, approximate pricing formulas exist for

4For brevity, the time-to-maturity argument, s, is dropped whenever it can be inferred from the
context.
5The negative sign in the definition of function f simply conforms to the traditional definition of
duration.
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European options on portfolios of discount bonds. Specifically, the port-
folio’s duration as defined in (5) is calculated. Then, a discount bond is
identified, whose time to maturity is the portfolio’s duration and whose
face value is such that its current value is equal to the portfolio’s value.
Finally, a European option on this discount bond is priced. The option’s
derivatives, such as delta and gamma, can be approximated also using the
same approximating formula.

It should be noted that, in general, a portfolio’s duration depends on
the interest rate level and time. Therefore, the duration matching should
be done each time the option is to be priced.

Sometimes researchers work with bond price processes without spec-
ifying a process for the underlying short-term interest rate. In such a case,
it is possible that the bond price process is a simple one (e.g., lognormal),
but the short-term interest rate is non-Markovian.6 For a non-Markovian
interest rate, it is not possible to write down a single dimension diffusion
process only in terms of the current value of the Wiener process. As a
result, the above duration-matching procedure can not be implemented
directly. Fortunately, a simple solution exists. Recall that the essence of
the approximation procedure proposed above lies in the matching of bond
price volatilities. Hence, when working with discount bond price pro-
cesses, the above procedure boils down to the following matching
equation:

a r (t, t )B(t, t )o i B i i
r (t, s) 4B a B(t, t )o i i

where rB(t, ti) is the volatility of a discount bond with maturity ti. In other
words, one needs to first calculate the weighted average of volatilities of
all the discount bonds in the portfolio (i.e., the right-hand side of the
above equation), and then match it to that of a discount bond whose
maturity, s, is solved for herewith. This discount bond will be the proxy
bond.7 It is important to note that Jamshidian’s approach does not apply
when the short rate is non-Markovian. The Appendix gives an example of
a non-Markovian spot rate where an option on a coupon bond can be
priced using this study’s approach.

The following questions are answered in the next section. How good
is the approximation? Is the approximation robust with respect to param-
eter inputs? Also, why is it an approximation (as opposed to an accurate
solution)?

6For more details, see Carverhill (1994a).
7The volatility matching is exactly equivalent to duration matching when the short rate is Markovian.
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FURTHER INVESTIGATIONS OF THE SIMPLE
APPROACH

The next section begins with an in-depth analysis of a typical option con-
tract. The analysis is then broadened by using more parameter combi-
nations. The purposes are to identify the key source of pricing errors and
to draw a general conclusion in terms of robustness. The Vasicek [Vasicek
(1977)] and CIR [Cox, Ingersoll and Ross (1985)] models are used.

The interest rate process is defined as:

bdr 4 j(l 1 r)dt ` r r dw (7)r

where j, l, and rr are constants. For Vasicek’s model b 4 0. For CIR b

4 0.5. In Vasicek’s model the price of a discount bond maturing at time
s is

E(t,s)r1B(r, t, s) 4 D(t, s) e

where

(s t)1 1j1 1 e
E(t, s) 4

j
2 2 2 2( / /2 )(E(t,s) (s t)) E (t, s)/4l`kr j1r j 1 1 1r jr r rD(t, s) 4 e

and k is the market price of risk. In CIR’s model the price of a discount
bond maturing at time s is

G(t,s)r1B(r, t, s) 4 H(t, s) e

where

2/2jl r( )(s t)/21 rj`k`c2ce
H(t, s) 4 (s t)3 4c 1(j ` k ` c)(e 1 1) ` 2c

(s t)1c2(e 1 1) 2 2 1/2G(t, s) 4 , c 4 ((j ` k) 5 2r ) .r(s t)1c(j ` k ` c)(e 1 1) ` 2c

Pricing formulas for European options on discount bonds are given also
in the Vasicek and CIR models. Those formulas are not duplicated here.
The duration of a bond portfolio can be expressed analytically as:

1 ]P 1
D 4 1 ln 1 ` j , andVasicek ) 1 2)j ]r P
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]P 1
2c1 2]r P1

D 4 1 ln 1 1CIR
c ]P 1) )2 ` (j ` k ` c) 1 2]r P

In the above, ]P/]r 1/P is the risk measure of the portfolio.

In-Depth Analyses Based on a Single Set
of Parameters

A European call on a 15-year bond which pays an annual coupon of 10%
on a face value of $100 is priced. The option has an exercise price of
$100 and matures in 5 years. In each model, two sets of option prices
are calculated at different interest rate levels.8 One set of option prices
is calculated using Jamshidian’s approach, and hence are accurate. The
other set of prices is based on the proposed simple approach. Pricing
errors, both in dollar terms and in percentage forms, are then calculated.
The results are summarized in Tables I and II. It can be seen from Panel
A of Table I and Table II that the approximation works quite well. For
both models pricing errors are within a penny for almost all levels of
interest rates or moneyness of the option. The percentage errors tend to
be high for deep out-of-the-money options. The percentage errors should
be interpreted with caution because the option prices are very small in
those cases and the errors in dollar terms are negligible. Another obser-
vation is that the approximation performs slightly better with the CIR
model.

To see if one can derive a valid hedge ratio based on the approxi-
mating single formula, the first derivative of the option’s price with re-
spect to interest rate is calculated for both approaches.9 The results are
shown in Panel B of Tables I and II. Again, relative to the magnitude of
the derivatives, the errors are small. This is especially true with the CIR
model.

Since it is necessary to hold discount bonds to hedge the option, it
is important to know how well the proposed approach approximates delta
and gamma, the first and second derivatives of the option’s price with
respect to the value of the coupon bond. The Vasicek model is used to

8In each model, a particular set of empirical values for the interest rate process parameters are used.
They are chosen based on the estimation results in Chan, Karolyi, Longstaff, and Sanders (1992).
The market price of risk is set at zero in both models.
9Numerical integration is used to calculate the derivatives in CIR’s model.
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TABLE I

Accurate Versus Approximate Option Prices and Interest Rate Deltas
Vasicek Model

r P/B Accurate Approximate Error ($) Error (%)

Panel A. Option Prices
0.04 116.2254 12.5187 12.5280 0.0093 0.07
0.06 113.3291 9.8515 9.8616 0.0101 0.10
0.08 110.5128 7.5933 7.6033 0.0100 0.13
0.10 107.7740 5.7155 5.7244 0.0089 0.16
0.12 105.1106 4.1885 4.1951 0.0066 0.16
0.14 102.5204 2.9792 2.9828 0.0036 0.12
0.16 100.0013 2.0507 2.0511 0.0004 0.02
0.18 97.5513 1.3620 1.3597 10.0023 10.17
0.20 95.1683 0.8706 0.8663 10.0043 10.49
0.22 92.8504 0.5342 0.5289 10.0053 10.99
0.24 90.5957 0.3139 0.3086 10.0053 11.69
0.26 88.4025 0.1764 0.1717 10.0047 12.66
0.28 86.2689 0.0945 0.0908 10.0037 13.92
0.30 84.1933 0.0483 0.0456 10.0027 15.59

Panel B. First Derivatives with Respect to Interest Rates
0.04 116.2254 1144.0806 1143.8676 0.2130 10.15
0.06 113.3291 1122.8966 1122.6783 0.2183 10.18
0.08 110.5128 1103.1590 1102.9500 0.2090 10.20
0.10 107.7740 84.8608 84.6706 10.1902 10.22
0.12 105.1106 68.1162 67.9467 10.1695 10.25
0.14 102.5204 53.1193 52.9647 10.1546 10.29
0.16 100.0013 40.0780 39.9288 10.1492 10.37
0.18 97.5513 29.1435 28.9910 10.1525 10.52
0.20 95.1683 20.3542 20.1954 10.1588 10.78
0.22 92.8504 13.6118 13.4503 10.1615 11.19
0.24 90.5957 8.6932 8.5376 10.1556 11.79
0.26 88.4025 5.2900 5.1504 10.1396 12.64
0.28 86.2689 3.0613 2.9454 10.1159 13.79
0.30 84.1933 1.6820 1.5931 10.0889 15.29

Interest rate process is Vasicek: dr 4 k(l 1 r)dt ` rdz where k 4 0.2, l 4 0.085, r 4 0.02. Market price of risk, k, is
zero. Call options with a maturity of 5 years and an exercise price of $100 are written on a 15-year coupon bond with a
face value of $100 and a coupon rate of 10%. Coupons are paid annually.
For each level of interest rate (r) and corresponding bond price (divided by the price of a unit discount bond with the same
maturity as the option, P/B), accurate and approximate option prices (Panel A) and their first derivatives with respect to
interest rates (Panel B) are calculated. Absolute and percentage (in terms of the accurate value) errors are shown in the
last two columns.

investigate this aspect. The derivatives based on the single approximate
formula are used for the approximation approach. For the accurate ap-
proach, the chain rule of differentiation is used to calculate the deriva-
tives.10 The results are in Table III. It is seen that the approximated deltas

10Notice that in Jamshidian’s approach the value of the coupon bond does not directly appear in each
component options. Rather, it is decomposed into current values of individual coupons and the face
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TABLE II

Accurate Versus Approximate Option Prices and Interest Rate Delta
CIR Model

r P/B Accurate Approximate Error ($) Error (%)

Panel A. Option Prices

0.04 112.2878 9.1824 9.1835 0.0011 0.01
0.06 110.4667 7.4475 7.4492 0.0017 0.02
0.08 108.6778 5.9400 5.9423 0.0023 0.04
0.10 106.9205 4.6524 4.6550 0.0025 0.06
0.12 105.1942 3.5744 3.5767 0.0024 0.06
0.14 103.4983 2.6915 2.6933 0.0018 0.07
0.16 101.8323 1.9853 1.9862 0.0008 0.05
0.18 100.1957 1.4341 1.4339 10.0002 10.01
0.20 98.5878 1.0144 1.0132 10.0012 10.12
0.22 97.0082 0.7028 0.7007 10.0020 10.30
0.24 95.4564 0.4769 0.4743 10.0026 10.55
0.26 93.9318 0.3171 0.3143 10.0028 10.88
0.28 92.4339 0.2067 0.2040 10.0028 11.31
0.30 90.9622 0.1322 0.1296 10.0025 11.97

Panel B. First Derivatives with Respect to Interest Rates
0.04 112.2878 192.4702 192.4222 0.0480 10.05
0.06 110.4667 180.9267 180.8649 0.0618 10.08
0.08 108.6778 169.7694 169.7004 0.0690 10.10
0.10 106.9205 159.0678 158.9986 0.0692 10.12
0.12 105.1942 148.9779 148.9131 0.0648 10.13
0.14 103.4983 139.6935 139.6344 0.0591 10.15
0.16 101.8323 131.3961 131.3406 0.0554 10.18
0.18 100.1957 124.2147 124.1598 0.0549 10.23
0.20 98.5878 118.2028 118.1459 0.0568 10.31
0.22 97.0082 113.3366 113.2765 0.0601 10.45
0.24 95.4564 9.5254 9.4626 0.0628 10.66
0.26 93.9318 6.6349 6.5715 0.0634 10.96
0.28 92.4339 4.5098 4.4485 0.0614 11.36
0.30 90.9622 2.9933 2.9367 0.0566 11.89

Interest rate process is CIR: dr 4 k(l 1 r)dt ` rurdz where k 4 0.25, l 4 0.085, r 4 0.05. Market price of risk, k, is
zero. Call options with a maturity of 5 years and an exercise price of $100 are written on a 15-year coupon bond with a
face value of $100 and a coupon rate of 10%. Coupons are paid annually.
For each level of interest rate (r) and corresponding bond price (divided by the price of a unit discount bond with the same
maturity as the option, P/B), accurate and approximate option prices (Panel A) and their first derivatives with respect to
interest rates (Panel B) are calculated. Absolute and percentage (in terms of the accurate value) errors are shown in the
last two columns.

and gammas are very close to their true values for all levels of interest
rates or moneyness of the option. (The percentage errors for out-of-the-
money options should again be treated with caution.) The significant im-

value. The chain rule is used, realizing that all discount bonds are affected by the same underlying
factor, the short-term interest rate.
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TABLE III

Accurate Versus Approximate Bond Price Deltas and Gammas
Vasicek Model

r P/B Accurate Approximate Error ($) Error (%)

Panel A. Option Delta
0.04 116.2254 0.3702 0.3697 10.0005 10.14
0.06 113.3291 0.3453 0.3446 10.0006 10.20
0.08 110.5128 0.3168 0.3162 10.0006 10.19
0.10 107.7740 0.2849 0.2843 10.0006 10.21
0.12 105.1106 0.2500 0.2494 10.0006 10.24
0.14 102.5204 0.2131 0.2125 10.0006 10.28
0.16 100.0013 0.1757 0.1751 10.0007 10.34
0.18 97.5513 0.1397 0.1389 10.0007 10.57
0.20 95.1683 0.1066 0.1058 10.0008 10.75
0.22 92.8504 0.0779 0.0770 10.0009 11.16
0.24 90.5957 0.0544 0.0534 10.0010 11.84
0.26 88.4025 0.0361 0.0352 10.0010 12.49
0.28 86.2689 0.0229 0.0220 10.0009 13.93
0.30 84.1933 0.0137 0.0130 10.0007 15.11

Panel B. Option Gamma
0.04 116.2254 0.0030 0.0030 0.0000 0.00
0.06 113.3291 0.0037 0.0037 0.0000 0.00
0.08 110.5128 0.0046 0.0046 0.0000 0.00
0.10 107.7740 0.0056 0.0056 10.0001 0.00
0.12 105.1106 0.0066 0.0066 10.0001 0.00
0.14 102.5204 0.0075 0.0074 10.0001 11.33
0.16 100.0013 0.0081 0.0080 10.0001 11.23
0.18 97.5513 0.0083 0.0083 10.0001 0.00
0.20 95.1683 0.0081 0.0080 10.0001 11.23
0.22 92.8504 0.0075 0.0074 10.0001 11.33
0.24 90.5957 0.0065 0.0064 10.0001 11.54
0.26 88.4025 0.0053 0.0052 10.0001 11.89
0.28 86.2689 0.0041 0.0040 10.0001 12.44
0.30 84.1933 0.0030 0.0029 10.0001 13.33

Interest rate process is Vasicek: dr 4 k(l 1 r)dt ` rdz where k 4 0.2, l 4 0.085, r 4 0.02. Market price of risk, k, is
zero. Call options with a maturity of 5 years and an exercise price of $100 are written on a 15-year coupon bond with a
face value of $100 and a coupon rate of 10%. Coupons are paid annually.
For each level of interest rate (r) and corresponding bond price (divided by the price of a unit discount bond with the same
maturity as the option, P/B), accurate and approximate option deltas (Panel A) and gammas (Panel B) with respect to bond
prices are calculated. Absolute and percentage (in terms of the accurate delta and gamma) errors are shown in the last
two columns.

plication is that one can hedge an option on a bond portfolio by taking a
position in only one discount bond.

To this point it has been shown that the approximation works satis-
factorily for the chosen parameters, but, where do the errors come from?
It is tempting to think that the proposed approach is an accurate approach
and the errors shown are simply calculation errors, because the volatility
of the coupon bond matches that of the proxy discount bond. Unfortu-
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nately, the simple approach is an approximation only. Insights can be
gained from looking at the pattern of pricing errors in Panel A of Tables
I and II.

In both models (Vasicek and CIR) the simple approach always over-
prices (underprices) the option when the bond value is above (below) the
exercise price.11 This error pattern shows that some elements have been
missed in the approximation scheme which systematically affect the op-
tion’s value. The missing element is the convexity of the bond portfolio.

Convexity measures the “curvature” of a bond portfolio and, in this
context, is defined as

2] B 1
C 4 (8)2]r B

The following relationship holds for both discount bonds and bond port-
folios in general:

](1f ) 24 1f ` C (9)
]r

where f is defined before. Notice that (1f ) is a measure of volatility. In
matching the duration, one effectively matches the current values of the
volatilities of the bond portfolio and the proxy discount bond. The sen-
sitivity of the volatility to interest rate and time is left unmatched. This is
where the pricing errors come from.

The left-hand side of (9) measures volatility’s sensitivity to interest
rate. Since the duration has been matched, volatility sensitivity would
also be matched if the convexity is matched. Unfortunately, the matching
of convexity is not automatic upon the matching of duration. To see this,
using the formulas for discount bond prices (given at the end of “A Simple
Approach”) it can be shown that convexities are E2(t, s) and G2(t, s) in
the Vasicek and CIR models, respectively. While f is simply E(t, s) and
G(t, s), respectively. As a result, for both the Vasicek and CIR models, the
sensitivity of a discount bond’s volatility to interest rate is zero. However,
the sensitivity of a portfolio’s volatility to interest rate is not zero in either
model, and it is always positive (i.e., C . f 2 . 0).12 This amounts to a
situation where the underlying asset’s volatility is stochastic and is neg-
atively correlated with the value of the underlying asset. (Keep in mind
that there is a reverse relationship between bond prices and interest
rates.) Thus, when the portfolio’s value is high, the volatility tends to be

11Because European options are considered, the intrinsic value or moneyness is defined with respect
to the present value of the exercise price, which is equivalent to dividing the bond value by the price
of a discount bond with the same maturity as the option.
12This can be shown via Jensen’s inequality.
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low, and vice versa. The proxy discount bond used here fails to capture
this effect and, hence the observed pattern of pricing errors.13

What if one matches both duration and convexity? The size of the
pricing errors should definitely shrink. To see this, a portfolio of two
discount bonds is used to match the original coupon bond for the Vasicek
model.14 Similar calculations as in Tables I and III are then performed.
The results are reported in Tables IV and V. It can be seen that the ap-
proximate price is accurate to the fourth decimal place for all levels of
interest rates. The accuracy of all derivatives is also dramatically im-
proved. The remaining errors are due to the mismatch of the time-sen-
sitivity of the volatilities, whose impacts are very small.

The above discussions are meant to pinpoint the nature of the pro-
posed simple, approximation approach. They do not necessarily suggest
that one ought to use two discount bonds to do the approximation. The
reason for doing it here is to illustrate the source of the errors resulting
from the approximation scheme.

It should also be pointed out that the failure of matching the con-
vexities (or equivalently, the interest rate sensitivity of the volatility) does
not necessarily mean that they are actually far apart. The matching of
duration will, in general, also bring the convexity close, albeit not pre-
cisely matched. This is apparent in Table VI where for the same set of
parameter values used in the previous tables, convexities are calculated
for both the coupon bond and the proxy discount bond. The convexities
hardly vary across different interest rates, and as a result, the size of
mismatch is quite stable.

Analyses Based on a Broader Set of
Parameter Values

The above section demonstrates that the approximation tends to work
satisfactorily and that pricing errors are mainly caused by the mismatch
of convexities. The analysis is broadened in this section to include a va-
riety of different parameter values. Since, the key determining factors for
convexity are the mean-reversion speed, k, and the interest rate volatility,
rr, these two parameters will be varied around their empirical values (used
in Tables I through VI) for both the Vasicek and the CIR models. How

13For more insights on stochastic volatility and its impacts, see Hull and White (1988).
14For convenience, the face value of the discount bond with shorter maturity is set at $50 for all
levels of interest rates. For a given portfolio there are an infinite number of two-bond combinations
which will match the portfolio’s duration and convexity, and, of course, the current value. The match-
ing of both quantities is done by simultaneously solving for the time-to-maturities of both discount
bonds. The two-dimension Newton–Raphson method is used.
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TABLE IV

Accurate Versus Approximate Option Prices and Interest Rate Deltas
Vasicek Model

r P/B Accurate Approximate Error ($) Error (%)

Panel A. Option Prices
0.04 116.2254 12.5187 12.5188 0.0000 0.001
0.06 113.3291 9.8515 9.8515 0.0000 0.000
0.08 110.5128 7.5933 7.5933 0.0000 0.000
0.10 107.7740 5.7155 5.7155 0.0000 0.000
0.12 105.1106 4.1885 4.1884 0.0000 10.002
0.14 102.5204 2.9792 2.9792 10.0001 0.000
0.16 100.0013 2.0507 2.0506 10.0001 10.005
0.18 97.5513 1.3620 1.3620 10.0001 0.000
0.20 95.1683 0.8706 0.8706 0.0000 0.000
0.22 92.8504 0.5342 0.5342 0.0000 0.000
0.24 90.5957 0.3139 0.3139 0.0000 0.000
0.26 88.4025 0.1764 0.1764 0.0000 0.000
0.28 86.2689 0.0945 0.0945 0.0000 0.000
0.30 84.1933 0.0483 0.0483 0.0000 0.000

Panel B. First Derivatives with Respect to Interest
0.04 116.2254 1144.08061 1144.07938 0.00124 10.001
0.06 113.3291 1122.89658 1122.89560 0.00098 10.001
0.08 110.5128 1103.15905 1103.15836 0.00069 10.001
0.10 107.7740 84.86080 84.86034 0.00046 10.001
0.12 105.1106 68.11624 68.11591 0.00032 10.000
0.14 102.5204 53.11927 53.11899 0.00028 10.001
0.16 100.0013 40.07804 40.07776 0.00028 10.001
0.18 97.5513 29.14348 29.14325 0.00023 10.001
0.20 95.1683 20.35419 20.35410 0.00010 10.000
0.22 92.8504 13.61183 13.61196 10.00012 0.001
0.24 90.5957 8.69321 8.69357 10.00036 0.004
0.26 88.4025 5.29002 5.29058 10.00057 0.011
0.28 86.2689 3.06131 3.06198 10.00067 0.022
0.30 84.1933 1.68196 1.68263 10.00067 0.040

Interest rate process is Vasicek: dr 4 k(l 1 r)dt ` rdz where k 4 0.2, l 4 0.085, r 4 0.02. Market price of risk, k, is
zero. Call options with a maturity of 5 years and an exercise price of $100 are written on a 15-year coupon bond with a
face value of $100 and a coupon rate of 10%. Coupons are paid annually.
For each level of interest rate (r) and corresponding bond price (divided by the price of a unit discount bond with the same
maturity as the option, P/B), accurate and approximate option prices (Panel A) and their first derivatives with respect to
interest rates (Panel B) are calculated. Absolute and percentage (in terms of the accurate value) errors are shown in the
last two columns. Approximations are achieved by pricing options on a portfolio of two discount bonds which match the
coupon bond’s duration and convexity.

pricing errors are related to such key factors as the maturity of the option,
the maturity of the underlying bond, and the coupon rate of the bond
will be examined also.

When varying one particular parameter or model input, all other
inputs are kept at the base level (used in Tables I through VI). For con-
venience, the base values of the parameters are summarized as follows:
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TABLE V

Accurate Versus Approximate Option Deltas and Gammas
Vasicek Model

r P/B Accurate Approximate Error

Panel A. Option Delta
0.04 116.2254 0.370219 0.370216 10.000003
0.06 113.3291 0.345262 0.345259 10.000003
0.08 110.5128 0.316843 0.316841 10.000002
0.10 107.7740 0.284934 0.284933 10.000002
0.12 105.1106 0.250012 0.250011 10.000001
0.14 102.5204 0.213112 0.213111 10.000001
0.16 100.0013 0.175743 0.175742 10.000001
0.18 97.5513 0.139669 0.139668 10.000001
0.20 95.1683 0.106604 0.106603 10.000001
0.22 92.8504 0.077905 0.077906 0.000001
0.24 90.5957 0.054366 0.054369 0.000002
0.26 88.4025 0.036148 0.036151 0.000004
0.28 86.2689 0.022854 0.022859 0.000005
0.30 84.1933 0.013718 0.013723 0.000005

Panel B. Option Gamma
0.04 116.2254 0.002998 0.002998 0.000000
0.06 113.3291 0.003743 0.003743 0.000000
0.08 110.5128 0.004637 0.004638 0.000000
0.10 107.7740 0.005631 0.005631 0.000000
0.12 105.1106 0.006630 0.006631 0.000000
0.14 102.5204 0.007506 0.007506 0.000001
0.16 100.0013 0.008117 0.008118 0.000001
0.18 97.5513 0.008347 0.008348 0.000001
0.20 95.1683 0.008135 0.008136 0.000001
0.22 92.8504 0.007497 0.007498 0.000001
0.24 90.5957 0.006521 0.006522 0.000001
0.26 88.4025 0.005348 0.005349 0.000001
0.28 86.2689 0.004131 0.004132 0.000001
0.30 84.1933 0.003004 0.003005 0.000001

Interest rate process is Vasicek: dr 4 k(l 1 r)dt ` rdz where k 4 0.2, l 4 0.085, r 4 0.02. Market price of risk, k, is
zero. Call options with a maturity of 5 years and an exercise price of $100 are written on a 15-year coupon bond with a
face value of $100 and a coupon rate of 10%. Coupons are paid annually.
For each level of interest rate (r) and corresponding bond price (divided by the price of a unit discount bond with the same
maturity as the option, P/B), accurate and approximate option deltas (Panel A) and gammas (Panel B) are calculated.
Absolute errors are shown in the last column. Approximations are achieved by pricing options on a portfolio of two discount
bonds which match the coupon bond’s duration and convexity.

Vasicek Model: l 4 0.085, r 4 0.02, k 4 0.20, k 4 0.00;r r

CIR Model: l 4 0.085, r 4 0.05, k 4 0.25, k 4 0.00.r r

Unless otherwise stated, the option is a call option with a maturity of five
years, written on a 15-year coupon bond with a face value of $100 and a
coupon rate of 10%. Coupons are paid annually. The results are sum-
marized in graphs. In each graph, percentage pricing errors are plotted
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TABLE VI

Accurate Versus Approximate Convexities

r P/B Accurate Approximate Error

Panel B. Vasicek Model
0.04 116.2254 19.7468 19.5728 10.1739
0.06 113.3291 19.7174 19.5419 10.1754
0.08 110.5128 19.6877 19.5108 10.1769
0.10 107.7740 19.6579 19.4794 10.1784
0.12 105.1106 19.6277 19.4478 10.1799
0.14 102.5204 19.5974 19.4159 10.1814
0.16 100.0013 19.5668 19.3838 10.1829
0.18 97.5513 19.5359 19.3515 10.1844
0.20 95.1683 19.5048 19.3189 10.1859
0.22 92.8504 19.4735 19.2862 10.1873
0.24 90.5957 19.4419 19.2531 10.1888
0.26 88.4025 19.4101 19.2199 10.1902
0.28 86.2689 19.3781 19.1864 10.1917
0.30 84.1933 19.3458 19.1527 10.1931

Panel B. CIR Model
0.04 112.2878 13.427930 13.367290 10.060640
0.06 110.4667 13.419390 13.358390 10.060990
0.08 108.6778 13.410790 13.349450 10.061340
0.10 106.9205 13.402150 13.340460 10.061690
0.12 105.1942 13.393470 13.331430 10.062040
0.14 103.4983 13.384730 13.322340 10.062390
0.16 101.8323 13.375950 13.313210 10.062730
0.18 100.1957 13.367110 13.304030 10.063080
0.20 98.5878 13.358230 13.294800 10.063430
0.22 97.0082 13.349310 13.285530 10.063780
0.24 95.4564 13.340330 13.276210 10.064130
0.26 93.9318 13.331310 13.266840 10.064470
0.28 92.4339 13.322240 13.257420 10.064820
0.30 90.9622 13.313120 13.247960 10.065170

Interest rate process is dr 4 k(l 1 r)dt ` rdz for Vasicek where k 4 0.2, l 4 0.085, r 4 0.02, and dr 4 k(l 1 r)dt `

rurdz for CIR where k 4 0.25, l 4 0.085, r 4 0.05. Market price of risk, k, is zero. The underlying bond portfolio is a 15-
year coupon bond with a face value of $100 and a coupon rate of 10%. Coupons are paid annually.
In both models, for each level of interest rate (r) and corresponding bond price (divided by the price of a unit discount
bond with the same maturity as the option, P/B), accurate and approximate convexities are calculated. Absolute errors are
shown in the last column. The approximate convexities are for the proxy discount bond whose duration is matched with
the coupon bond.

against the interest rate levels which go from 1% to 20%.15 (Percentage
pricing errors are calculated in the same way as in, e.g., Table I.) The
exercise price of the option is chosen so that the option is always at-the-
money when the interest rate is 10%, the middle value of the whole range.
Results of the analyses are summarized in eight separate graphs (figures.)

15Since options prices vary widely in different parameter settings, reporting absolute pricing errors
can be misleading and can make comparisons difficult. Reporting percentage pricing errors avoids
both drawbacks. Although not reported, absolute errors are discussed whenever necessary.
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FIGURE 1
Pricing errors under different levels of mean reversion rate, k, (Vasicek Model).

Pricing Errors Versus Mean-Reversion
Rate, k

The mean-reversion rate is a key determinant for a bond’s volatility and
convexity. A higher reversion rate means that the spot rate, whenever
deviating from the long term level, lr, is pulled back quickly. This implies
a lower volatility for the bond price, because the interest rate can not
move too widely. In this case, one would expect the approximation to work
better. The opposite is true with a lower reversion rate. Here, the spot
rate is subject to a less powerful pulling force and can fluctuate more,
causing a higher bond price volatility. One would expect a bigger pricing
error by the approximation model in this case.

The above predictions are confirmed in Figures 1 and 2. Figure 1 is
for the Vasicek model where the reversion rate takes five different values
(0.10, 0.15, 0.20, 0.25, and 0.30). It can be seen that when the reversion
rate is 0.25 or 0.30, the pricing errors are all within 1%.16 When the
reversion speed is 0.20, pricing error is within 2%. But for all three cases

16Since the interest rate level of 10% always corresponds to a bond price equal to the exercise price,
points to the left of 10% interest rate represent in-the-money options, while those to the right rep-
resent out-of-the-money options. It can be seen in all figures that the approximation scheme always
overprice, in-the-money options and underprices out-of-the-money options, which is consistent with
the findings in the tables.



148 Wei

FIGURE 2
Pricing errors under different levels of mean reversion rate, k (CIR Model).

(k 4 0.20, 0.25, and 0.30), the absolute pricing errors (not reported here)
are all within one penny. For a reversion level of 0.15, the percentage
pricing errors are bigger, especially for out-of-the-money options (i.e.,
when interest rates are high). But again, the size of the absolute pricing
errors is generally small. The biggest is 1.3¢ associated with r 4 16%.
For the deep out-of-the-money option (r 4 20%), the percentage pricing
error is 15.53%, but the absolute error is only 10.9¢, which is negligible
for practical purposes. Finally, the percentage pricing errors are even big-
ger when the reversion rate is 0.10 (half of the empirical level, 0.20).
Again, the bigger errors are associated with deep out-of-the-money op-
tions. But the absolute errors are not overly sizable. For example, when r
4 20%, the percentage pricing error is 112.07% while the absolute error
is only 11.38¢, and the option price is about 10¢. In a situation like this,
no model price is “accurate” anyway, because the option price is very close
in size to the bid–ask spread.

It is interesting to observe that pricing errors for in-the-money op-
tions are well within 1% for all levels of the reversion rate. One can con-
clude, that therefore, for the Vasicek model, the approximation is prac-
tically robust to changes in the mean-reversion speed when the option is
in-the-money. When the option is out-of-the-money and when the rever-
sion speed is low, percentage pricing errors are relatively higher. But in
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those cases, the absolute errors tend to be trivial or the option price is
very close to the bid–ask spread. Thus, overall, one can conclude that the
approximation is satisfactory for all reasonable levels of the mean-rever-
sion rate in the Vasicek model.

A similar conclusion can be drawn by examining Figure 2 for the
CIR model. Indeed, the conclusion can be substantially strengthened,
because the biggest percentage error is 17%. In addition, for all reversion
rates and degrees of option’s moneyness, the absolute pricing errors are
all within one penny for the CIR model.

Overall, the performance of the approximation approach is satisfac-
tory in all reasonable levels of the mean-reversion speed. It performs es-
pecially well for in-the-money options, or when the reversion speed is
high.

Pricing Errors Versus Interest Rate
Volatility, rr

Interest rate volatility is a direct input for the bond price volatility. On an
absolute pricing error basis, one would expect the approximation ap-
proach to work better when the interest rate volatility is low. Percentage-
wise, it is hard to establish an a priori pattern because the option price
itself is affected also by the volatility level.

For the Vasicek model, the interest rate volatility is varied from 0.01
to 0.05. For the CIR model, the range is (0.04, 0.08). The results are
summarized in Figures 3 and 4.

Figure 3 is for the Vasicek model. It is interesting to observe that,
the higher the volatility, the smaller the percentage pricing errors. When
the volatility is higher than 0.02, pricing errors are within 2% for out-of-
the-money options and within 1% for in-the-money options. When the
volatility is at 0.01, out-of-the-money options tend to have a bigger per-
centage pricing error, but option prices are very small in those cases.
Absolute pricing errors are all within 0.2¢. One can safely ignore the
misleading percentage errors in this case.

When the volatility increases, the mismatch of convexity increases,
causing a bigger pricing error in dollar terms. However, the option price
also increases when volatility increases. There are lower percentage pric-
ing errors for a higher volatility level because the option price increases
much faster than the pricing errors.

Similar observations can be made in Figure 4 for the CIR model.
Here, all percentage pricing errors are within 2% for out-of-the-money
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FIGURE 3
Pricing errors under different levels of volatility, sigma (Vasicek Model).

FIGURE 4
Pricing errors under different levels of volatility, sigma (CIR Model).
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FIGURE 5
Pricing errors for options on bonds with different coupon rates (Vasicek Model).

options and close to zero for in-the-money options. Although not re-
ported, absolute pricing errors are all within a penny.

Overall, the performance of the approximation scheme is quite sat-
isfactory across different levels of interest rate volatilities for both the
Vasicek and the CIR models. A higher volatility is of no concern, because
the absolute pricing error increases at a much slower rate than the option
price itself and, as a result, the percentage error actually decreases in that
case.

Pricing Errors Versus Coupon Rate

It is well known that for a given yield and maturity, a bond’s convexity is
negatively related to its coupon rate. Since the major source of pricing
errors of the approximation approach is the mismatch of convexity, one
may expect the approximation to be more accurate for higher coupon
bonds (which have a smaller convexity). Surprisingly, this is not the case.

Figures 5 and 6 contain the pricing errors for the Vasicek and the
CIR models for five different coupon rates (5%, 10%, 15%, 20%, and
25%). (Other parameters again take the base values.) Aside from sharing
the common features of other figures such as overpricing in-the-money
options and underpricing out-of-the-money options, Figures 5 and 6 re-
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FIGURE 6
Pricing errors for options on bonds with different coupon rates (CIR Model).

veal that pricing errors are indeed positively related to the coupon rate.
In other words, percentage pricing errors are higher for low-convexity
bonds. Although not reported, the absolute pricing errors exhibit the same
pattern. To understand this “puzzle,” the accurate and approximate con-
vexities are calculated for all five coupon bonds at different interest rates.
It is confirmed that the convexity is negatively related to the coupon rate.
However, it is also revealed that the size of the mismatch is actually pos-
itively related to the coupon rate. In other words, the mismatch is more
severe for low convexity bonds!

To understand this phenomenon, it should be noted that a discount
bond is used to approximate a coupon bond, and that a low-coupon bond
resembles a discount bond more than a high-coupon bond does. At the
extreme, when the coupon rate is close to zero (but not exactly equal to
zero), the coupon bond is almost equivalent to a discount bond. Thus,
one should expect the mismatch of convexity to become bigger as the
coupon rate increases.17

17It should be pointed out that the above observations do not apply to all coupon ranges. Numerical
experiments (not reported here) show that once the coupon rate reaches a certain level (higher than
25% in this case), the mismatch starts to decrease. Again, this should not come as a surprise, because
a bond with extremely high coupons has an almost even cash flow pattern. The discrepancy between
the coupons and the par value is relatively small, making a weighted average (which is essentially the
proxy discount bond) more representative than otherwise.
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FIGURE 7
Pricing errors for options on bonds with different maturities (Vasicek Model).

Now, the size of pricing errors is considered. Figure 5 reveals that
with the Vasicek model, the highest percentage pricing error is associated
with deep out-of-the-money options on high coupon bonds. The per-
centage errors are all within 3%, and the absolute errors for out-of-the-
money options (not reported) are all within 1.5¢. As revealed by Figure
6, the approximation again works better with the CIR model. Percentage
errors are all within 2%, and the absolute errors (not reported here) are
all within one penny.

Overall, caution should be exercised with high-coupon options when
using the approximation, but pricing errors both percentage and absolute
are, on average, small.

Pricing Errors Versus Bond Maturity

Although most bond options are written on long-term bonds, to derive a
conclusive statement about the accuracy of the approximation approach,
it is useful to examine the approximation performance over a whole spec-
trum of bond maturities. To this end, options on bonds with five matur-
ities (7, 10, 15, 20, and 30 years) are priced while keeping the option’s
maturity at five years in all cases. The results are plotted in Figure 7 for
the Vasicek model and Figure 8 for the CIR model.
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FIGURE 8
Pricing errors for options on bonds with different maturities (CIR Model).

In terms of overall pricing error patterns, the two figures are similar
to the previous ones. Here, for both models, the percentage pricing errors
are bigger for options on long-term bonds. (The same also holds for ab-
solute pricing errors.) The intuition is obvious: a discount bond approx-
imates a short-term bond better than a long-term bond. At the extreme,
when there is only one coupon on the bond beyond the option’s maturity,
then the approximation becomes a perfect representation.

In terms of size, all percentage errors are within 3% for the Vasicek
model and 2% for the CIR model. In terms of absolute size, all errors are
trivial for out-of-the-money options. For the Vasicek model, all absolute
errors are within a penny. For the CIR model, no error is bigger than a
half of a penny.

Therefore, it is concluded that bond maturities are not a concern for
the accuracy of the approximation approach.

Pricing Errors Versus Option’s Maturity

So far, all analyses are for options with a five-year maturity. To see how
the approximation performs for options with shorter maturities, five op-
tion maturities of 1, 2, 3, 4, and 5 years are examined. All options are
written on the same 15-year bond with a 10% coupon (i.e., the base case
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bond). For both models (Vasicek and CIR), it is found that the perfor-
mance of the approximation is better with short term options. For in-the-
money options, all percentage errors are within 1%. For out-of-the-money
options, all absolute errors are well within one penny. Since Panel A of
Table I and Table II represents the “worst case” (i.e., longest option’s
maturity), the figures are not reported.

A summary of the results of an examination of five factors (which
may potentially affect the performance of the approximation scheme. (1)
the mean-reversion rate, (2) the interest rate volatility, (3) the coupon
rate, (4) the bond’s maturity, and (5) the option’s maturity) is the
following:

a. the approximation approach always overprices in-the-money options
and underprices out-of-the-money options;

b. the overpricing is less than 1% for all cases;

c. the underpricing is less than 3% for all coupon rates, all bond matur-
ities, and all option maturities, and the absolute errors are within one
penny for most cases; and

d. in the case of underpricing, the largest percentage errors are associ-
ated with the mean-reversion rate, and to a lesser extent, the interest
rate volatility; however, in terms of absolute size, almost all errors are
within one penny.

Therefore, it can be concluded that the proposed approximation
works in all conceivable interest rate environments and for all conceivable
option specifications. If cautions are to be exercised, they should be di-
rected at the (low) mean-reversion rate and the interest rate volatility.

Two additional points should be made. First, the proposed approxi-
mation scheme will undoubtedly save calculation time. Aside from by-
passing the iterations to solve for the critical interest rate, the approach
requires calculation of only one option price. In Jamshidian’s approach,
the number of options to be evaluated is equal to the number of coupons.
Thus, the proposed approach will cut the calculation time by at least n
times if n is the number of coupons. Second, perhaps more importantly,
the proposed approach should be appraised for other benefits such as the
ease of hedging and the potential to bring additional insights into pricing
which are not available otherwise. For instance, this approach indicates
that an option’s value will be either near-zero or the positive difference
between the current value of the portfolio and the present value of the
exercise price if the underlying portfolio’s duration is close to the maturity
of the option. This is true because a discount bond with a face value
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equal to the exercise price and maturity equal to the option’s maturity
will immunize the bond portfolio.

SUMMARY AND CONCLUSIONS

This study presents a simple approach to pricing European options on
bond portfolios. While the traditional approach is to decompose the op-
tion into a portfolio of options on the component discount bonds in the
portfolio, the proposed approach requires only one option value to be
calculated. In addition, no iterative calculations are necessary in the pro-
posed approach, at least for Vasicek and CIR models. Because the un-
derlying bond portfolio is approximated by a single discount bond, hedg-
ing is also simplified. The proposed approach also applies when the short
rate is non-Markovian, which is not possible with the Jamshidian’s
approach.

The essence of the simple approach is to match the volatility of the
bond portfolio with that of a single discount bond. Since the approach
precisely matches only the current value of the volatilities, while leaving
the dynamics of the volatilities only roughly matched, the approach is
only an approximation. Experiments with Vasicek and CIR models in a
variety of parameter settings indicate that the accuracy of the approxi-
mation is quite impressive.

Besides providing a useful methodology for pricing coupon bond op-
tions with a non-Markovian spot rate, the proposed approach can be used
also to examine bond option pricing from an alternative angle: impacts
of duration and convexity on bond option prices. This should be valuable
to both academics and practitioners who are concerned with the effects
of bond characteristics on the bond option prices.

The proposed approach is not limited to Vasicek or CIR models. In
principle, it is valid for all one-factor interest rate models. As long as
closed form formulas exist for options on discount bonds, the approxi-
mation can always be used to price options on any portfolio of discount
bonds (with positive weights). The approach can be generalized also to
multi-factor settings, albeit less elegantly. Essentially, in an n-factor
model, one needs n discount bonds to approximate a portfolio of more
than n discount bonds.

APPENDIX: AN EXAMPLE OF A VOLATILITY
STRUCTURE IMPLYING A NON-MARKOV SPOT
RATE

An examination is conducted on a deterministic bond volatility structure
which admits closed-form pricing formulas for discount bond options but
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does not lead to a Markov spot rate. In this case, the Jamshidian’s ap-
proach cannot be applied. The approximation scheme proposed in the
text is used.

A volatility structure which permits the short-term and long-term
forward rate volatilities to converge to two different nonzero levels is ex-
amined. (In contrast, in the framework of Vasicek or CIR, the long-term
forward rate volatility is simply zero.) Specifically, suppose the forward
rate volatility takes the following form:18

k(T t)1 1r (t, T) 4 r ` (r 1 r ) ef 2 1 2

where k is the mean-reversion speed and r1 and r2 are constant param-
eters. It can be verified that when (T 1 t) approaches zero (infinity), the
forward rate volatility approaches r1 (r2). Now, a discount bond’s vola-
tility can be written as:

T r 1 r1 2 k(T t)1 1r (t, T) 4 r (t, u) du 4 (1 1 e ) ` (T 1 t)rB f 2# kt

As shown by Heath, Jarrow, and Morton (1992) and Carverhill (1994b),
given the above volatility structure, a call option with maturity T1 on a
discount bond with maturity T2 can be priced with the following closed-
form formula:

C 4 B(t, T )N(d ) 1 XB(t, T )N(d )2 1 1 2

where

2B(t, T ) r2ln ` (T 1 t)1XB(t, T ) 21d 4 , d 4 d 1 r T 1 t,!1 2 1 1
r T 1 t! 1
T112 2r 4 [r (u, T ) 1 r (u, T )] duB 2 B 1#T 1 t t1

2(r 1 r )1 22 2 2 24 r (T 1 T ) ` [(1 1 a) 1 (b 1 c) ]2 2 1 22k (T 1 t)1

2(r 1 r )r (T 1 T )1 2 2 2 1` [1 1 a 1 b ` c],2k (T 1 t)1
k(T T ) k(T t) k(T t)1 1 1 1 1 12 1 1 2a 4 e , b 4 e , c 4 e

Since the volatility of a discount bond is deterministic, a coupon bond

18This volatility structure was discussed in Carverhill (1994b).
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can be approximated by a single discount bond whose volatility is equal
to the weighted average of the individual volatilities of the discount bonds,
as illustrated in the text. Thus, an option on a coupon bond can be priced
as an option on this proxy discount bond.

It is shown below that the proposed volatility structure implies a non-
Markov spot rate, and, as a result, the Jamshidian’s approach cannot be
applied.

According to Jeffrey (1995), the necessary and sufficient condition
for a volatility structure to imply a Markov spot rate can be summarized
as the following:

A forward rate volatility structure, rf(r, t, T), will lead to a Markov
spot rate if and only if there exists a pair of functions, h(r, t) and h(t, T),
so that

T rr (r, t, T) ] r (R, t, T)f fr (r, t, T) r (r, t, v)dv 4 h(r, t) ` dRf f# 3# 4r (r, t, t) ]t r (R, t, t)t 0f f

1 ] r (r, t, T)f2` h(t, T) ` r (r, t, t) .f 3 42 ]t r (r, t, t)f

In other words, for the spot rate to be Markov, one must be able to identify
a pair of functions, h(r, t) and h(t, T), which satisfy the above equation.
Notice here that h(r, t) must be independent of the maturity date, T, and
h(t, T) must be independent of the spot rate, r. Now, substituting the
expression for the forward rate volatility proposed at the beginning of this
appendix into the above equation, one obtains:

r 1 r1 2 k(T t)1 1e r
kr1h(r, t) 4 1

r r2 2 k(T t)1 1` 1 1 e1 2r r1 1

(r 1 r )r1 2 1 k(T t)1 1r (t, T) r (t, T) 1 e 1 h(t, T)f B 2k
`

r r2 2 k(T t)1 1` 1 1 e1 2r r1 1

It can be seen that no matter how the function h(t, T) is chosen, h(r, t)
will always depend on the maturity date, T. In other words, it is impossible
to find a pair of h(t, T) and h(r, t) which satisfies the necessary and suf-
ficient condition. Thus, the volatility structure proposed here does not
admit a Markov spot rate. In this case, a bond price cannot be written
simply as a function of the spot rate. It will also depend on the whole
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path that the spot rate has taken. This will make the Jamshidian’s ap-
proach impossible to apply.

To further illustrate the above point, let f(0, s) represent the initial
forward rate curve for the period, 0 # s # T. The corresponding discount
bond price is denoted by B(0, s). The single underlying factor under the
equivalent martingale measure is a standard Wiener process denoted by
w(t). Then, according to Heath, Jarrow, and Morton (1992), the drift of
the forward rate process is

T

u (t, T) 4 r (t, T) r (t, s) dsf f f#t
which is a deterministic function under the forward rate volatility struc-
ture. With the above specifications and the identity definitions in (2), (4),
and (5) of Heath, Jarrow, and Morton (1992), it can be shown that the
time t price of a bond maturing at time T takes the following form:

t

f (0, t) ` l (u, t)duf#T t 0B(0, T)
B(t, T) 4 exp 1 ds l (u, s) du `f# #B(0, t) kt 05

tr(t) r11 ` w(t) ` [(t 1 u) r 1 r (u, T)] dw(u)2 B#k k 0 6
where r(t) is the spot interest rate at time t.19 It can be seen that the bond
price B(t, T) not only depends on the spot rate r(t), but also depends on
the path of the interest rate which is captured by the last term in the
exponential, the stochastic integral. This path-dependency renders the
solving of a critical interest rate impossible, because the interest rate itself
does not solely capture all the randomness. Consequently, the Jamshi-
dian’s approach is not applicable.

BIBLIOGRAPHY

Black, F., Derman, E., and Toy, W. (1990): “A One-Factor Model of Interest
Rates and its Application to Treasury Bond Options.” Financial Analysts
Journal, Jan–Feb:33–39.

Carverhill, A. (1994a): “When is the Short Rate Markovian?”, Mathematical Fi-
nance, 4(4):305–312.

19Readers who are interested in the detailed derivations are welcome to contact the author.



160 Wei

Carverhill, A. (1994b): “A Note on the Models of Hull and White for Pricing
Options on the Term Structure,” Working Paper, Hong Kong University of
Science and Technology.

Chan, K. C., Karolyi, G. A., Longstaff, F. A., and Sanders, A. (1992): “An Em-
pirical Comparison of Alternative Models of the Short-Term Interest Rate,”
Journal of Finance, 47:1209–1227.

Cox, J. C., Ingersoll Jr., J. E., and Ross, S. A. (1979): “Duration and the Mea-
surement of Basis Risk,” Journal of Business, 52(1):51–61.

Cox, J. C., Ingersoll Jr., J. E., and Ross, S. A. (1985): “A Theory of The Term
Structure of Interest Rates,” Econometrica, 53(2):385, 407.

Heath, D., Jarrow, R., and Morton, A. (1992): “Bond Pricing and the Term Struc-
ture of the Interest Rates: A New Methodology,” Econometrica, 60(1):77–
105.

Ho, T. S. Y., and Lee, S. (1986): “Term Structure Movements and Pricing Inter-
est Rate Contingent Claims,” Journal of Finance, 41:1011–1029.

Hull, J., and White, A. (1988): “An Analysis of the Bias in Option Pricing Caused
by a Stochastic Volatility,” Advances in Futures and Options Research, 3:29–
61.

Hull, J., and White, A. (1990): “Pricing Interest Rate Derivative Securities,” The
Review of Financial Studies, 3(4):573–592.

Ingersoll, S., Skelton, J., and Weil, R. (1978): “Duration Forty Years Later,” Jour-
nal of Financial and Quantitative Analysis, 13:627–650.

Jamshidian, F. (1987, June): “Pricing of Contingent Claims in the One Factor
Term Structure Model,” Working Paper, Merrill Lynch Capital Markets.

Jamshidian, F. (1989): “An Exact Bond Option Formula,” Journal of Finance,
44:205, 209.

Jeffrey, A. (1995): “Single Factor Heath–Jarrow–Morton Term Structure Models
Based on Markov Spot Interest Rate Dynamics,” Journal of Financial and
Quantitative Analysis, 30(4):619–642.

Longstaff, F. A. (1993): “The Valuation of Options on Coupon Bonds,” Journal
of Banking and Finance, 17:27–42.

Schaefer, S. M., and Schwartz, E. (1987): “Time-Dependent Variance and the
Pricing of Bond Options,” Journal of Finance, 42:1113–1128.

Vasicek, O. (1977): “An Equilibrium Characterization of the Term Structure,”
Journal of Financial Economics, 5:177, 188.


