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A
mong the credit derivatives traded
since 1991, credit default swaps
(CDS) account for the vast majority
of trading. Like interest rate swap-

tions in the interest rate marketplace, credit
default swaptions represent a potentially impor-
tant derivative product for credit markets,

A CDS that is cancelabie includes an
embedded credit default swaption, A cance-
lable long CDS position (where long means
that the CDS trader is paying a fixed swap rate
and is thus the buyer of credit protection) is a
package of a straight (non-cancelable) long
CDS plus a put-style CDS swaption—an
option to enter a CDS short and thus close
the outstanding long position, A cancelable
short CDS represents a combination ofa short
position in a straight CDS plus a call-style CDS
swaption,'

To the extent that a CDS is cancelable—
and most are in practice—ignoring the value
of the embedded CDS swaption can lead to
pricing errors and thus arbitrage opportuni-
ties. We believe that methods used to establish
initial swap rates on cancelable CDS, as well
as methods used to value seasoned CDS that
are cancelable, typically ignore the embedded
swaption to terminate the position, so these
CDS may be mispriced,^

Our purposes are threefold: to describe
CDS swaptions; to illustrate some of their
applications; and, most important, to present
accessible valuation models.

I. PRODUCT DESCRIPTION

We describe CDS swaptions using an
example. Assume that all counterparties
(dealers and buy side) are AA-rated, which
could be through credit enhancements such
as collateral, midmarket, or netting agreements.

Assume the CDS that underlies the
swaption has a three-year maturity, semian-
nual payment dates, and a swap rate (the strike
rate on the swaption) of 150 basis points (bp).
The strike rate assumes semiannual com-
pounding—the same periodicity (or tenor) of
the CDS, The credit default swap underlying
the reference credit asset is a BB-rated ten-
year 8% coupon bond with $100 lnillion par.
The CDS swaption is a call, European-style,
with a maturity of six months. Thus the CDS
swaption owner has the right, in six months,
to enter the underlying CDS long, that is,
paying 150 bp.

Suppose that in six months, when the
swaption matures, the bid-offer swap rates on
newly minted three-year credit default swaps
(with semiannual tenors)—on the same refer-
ence credit asset (or pari passu asset)—are 200
bp by 220 bp,̂  The underlying bond has thus
exhibited credit deterioration, perhaps having
been downgraded to a weak single B, The call
swaption is exercised, meaning that its owner
can now long the same swap payingjust 150 bp.

By engaging in a reversing trade (enter-
ing a short CDS), the swaption owner locks
in an annuity of 50 bp (the bid of 200 bp less
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the strike rate of 150 bp) on $50 million for the next six
semiannual periods. This annuity is present-valued (mon-
etized) at the interest rate swap midrate on a new three-
year semi-annual (s,a,) dollar-LIBOR swap since both
counterparties are AA-rated,

lfthe swaption is a put and at expiration new CDS
rates are 100 bp by 110 bp (perhaps because the bond is
now a weak single A), the payoff to the CDS swaption
would be the present value (again, discounted at the three-
year interest rate swap midrate) of six annuity payments
of $50 million times 40 bp (the strike rate of 150 bp less
the offer of 110 bp),-*

CDS swaptions that are traded outright are likely to
be European, but a cancelable CDS will entail either an
American or Bermudan swaption. For example, consider a
long CDS giving the buyer of credit protection the option
to terminate the swap every six months. Assume the under-
lying reference credit asset is unique and illiquid, and has
no pari passu substitutes. Then this CDS represents a package
ofa straight CDS plus a potentially valuable Bermudan put
swaption—the ability to short the CDS, at six-month inter-
vals, thus closing the original long position,

lfthe reference credit asset (our 8% coupon bond) has
a default-triggering event (such as a missed coupon date)
before the six-month maturity ofthe swaption, the CDS
would be terminated by physical or cash settlement, which
means we have a CDS swaption with no underlying, lfthe
CDS swaption is a put, the issue is moot; the put swaption
owner would not want to exercise, because the credit spread
on the defaulted bond would presumably explode to some-
thing well above the original (150 bp) strike rate.

If it is a call swaption, the owner would want to exer-
cise. The call owner therefore needs a mechanism to cap-
ture value, European-style CDS call swaptions permit early
exercise in the event of a default-triggering event for the
reference credit asset before maturity ofthe CDS swaption,'

lfthe CDS call swaption is exercised early because of
default of the reference credit asset, the swaption owner
ought to be required to make a payment to the writer. Such
a payment represents a type of premium accrual on a default
insurance policy written on the reference credit asset. In
our illustration, if at inception of the swaption there is a
six-month bond insurance policy costing 10 bp of face value
that pays the difference between the face value and the
recovery value of the bond, then, assuming the reference
credit asset defaults midway through the life ofthe swap-
tion, the CDS call swaption owner (or its bond insurance
company) would be required to pay 5 bp of $100 million.

Note that a pari passu provision on the underlying

CDS does not eliminate the need for the call swaption
owner to exercise in the event of default ofthe reference
credit asset. Finally, these circumstances do not affect can-
celable CDS, A default-triggering event terminates the CDS
and therefore the embedded option to cancel the CDS,

Besides plain vanilla CDS swaptions—whether
American, Bermudan, European, calls, puts, outright, or
embedded in cancelable CDS—there are a variety of more
exotic CDS swaptions, such as swaptions written on binary
and basket CDS, or barrier CDS swaptions. It will be
interesting to watch changes in the market for CDS swap-
tions as the market for credit derivatives in general con-
tinues to grow in size and innovation,

II. PRODUCT APPLICATION

To illustrate the use of CDS swaptions, we consider
three product applications: to reduce a bank's regulatory
capital; to create a synthetic credit-linked note; and to
create a synthetic collateralized debt obligation.

Reducing Bank Regulatory Capital

Suppose a bank is carrying so many commercial
loans as to compromise its regulatory capital. The bank
cannot sell all the loans because most are not assignable;
it needs to reduce its regulatory capital requirements.

The bank can sell one loan and use the proceeds to
purchase a call credit default swaption whose underlying
reference credit asset is a portfolio ofthe remaining loans
(or a highly correlated basket of them). By purchasing this
basket CDS call swaption, the bank should obtain regu-
latory capital relief much like being long a basket CDS,

The principal advantage of buying the CDS call
swaption (versus entering a long position in a basket CDS)
is the returns earned on the loans should their credit
quality improve. The principal disadvantage ofthe swap-
tion is its cost.

Creating a Synthetic Credit-Linked Note

Suppose a hedge fund buys a four-year floating-rate
note issued by a highly rated bank sponsor. The note pays
s,a, dollar-LIBOR plus 5 bp. The fund manager can
enhance the coupon to s,a, $LIBOR plus 45 bp if she
agrees to bear the default risk associated with an alto-
gether different bond (in addition to the credit risk ofthe
note she is buying). This is a common credit-linked note
(representing a way dealers lay off their credit risk from
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engaging in short CDS positions).
Instead, the manager can effectively enhance the

coupon on the note by writing a put CDS swaption on
the same/second bond. By purchasing the floating-rate
note and writing the put CDS swaption, the hedge fund
manager is long a synthetic credit-linked note.

Creating a Synthetic
Collateralized Debt Obligation

Suppose an asset manager wants to create a synthetic
collateralized debt obligation (CDO), so he issues or spon-
sors a $200 million CDO (through a special-purpose vehicle)
with four debt tranches and one equity tranche, $175 mil-
lion represents the debt tranches and $25 million represents
the equity tranche, which the sponsor keeps. The $200 mil-
lion is then invested in high-quality agency securities.

The lnanager then shorts a CDS (as a credit pro-
tection seller) on 20 different high-yield bonds with an
average notional principal of $10 million each. For writing
these credit default swaps, the CDO will receive an average
of 520 bp per year. The average yield on the agency bonds
held is 4,41%, Thus, with the pick up of 5,20 percentage
points, the synthetic high-yield assets are yielding 9,61%,

Suppose further that the funding costs (the debt
tranches ofthe CDO) have an average yield of 5,63%,
The manager wins if the losses from default are less than
398 bp per year. The losses will be determined by the
number and amount ofthe high-yield bonds that default
and the recovery rates on those defaulted bonds.

This CDO is said to be synthetic because the yield
enhancement (on the agency bonds) is occasioned by
shorting CDS, rather than holding junk bonds. But instead
of shorting CDS, the sponsor could write a call CDS
swaption whose underlying CDS references the same
basket of high-yield bonds. Buying agency bonds and
writing CDS call swaptions is an alternative way to create
a synthetic CDO,

III. PRICING CDS SWAPTIONS

We first address the pricing of European CDS swap-
tions, and discuss how to obtain the two critical model
inputs, the forward CDS swap rate and the forward
volatility. We then illustrate the valuation of Bermudan
CDS swaptions,

Schonbucher [2000], Jamshidian [2002], and Schmidt
[2004] develop other valuation models for CDS swap-
tions that we fmd less accessible.

European CDS Swaption Pricing

If the forward credit default swap midrate is log-
normal, European CDS swaptions can be priced using a
straightforward modification of Black's [1976] model,^
That is, the CDS swaption can be priced using a model
that prices interest rate swaptions.

The notation is as follows:

Rg = relevant forward CDS swap rate, expressed
with compounding of m periods per year,
at time 0;

Rj, = strike rate on the CDS swaption, also expressed
with compounding of m periods per year;

T = maturity ofthe CDS swaption;
O = standard deviation ofthe change in the nat-

ural logarithm of RQ, i,e., the forward vol;
n = maturity ofthe underlying CDS;

m = periodicity (or tenor) ofthe underlying CDS;
P(0, Tj) = price at time 0 ofa $1 face value, pure dis-

count bond maturing at times T ,̂ i = 1 to
mn; and

L = notional principal of the underlying CDS,
commonly the face value of the reference
credit asset.

The model to value a European CDS call swaption,
C ,̂ is given by:

(1)

where A — (l/m)Z P(0, Tj) (for the summation 1 through
mn);

N(x) =

^) + O^T/2]/G\/T; and

d2 = dl - aVT,

The corresponding model to value a European CDS
put swaption, P ,̂ is:̂

(2)

Suppose the forward CDS swap rate is 150 bp (with
semiannual compounding), so the call swaption is struck
at the money. Assume the forward vol is 12%, Finally,
assume that the interest rate swap curve is fiat at 3% per
year with continuous compounding.
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With L = $100 million, m = 2, n = 3, Rg = 0,015
s,a,, R^ = 0,015 s,a,, CT = 0,12, and T = 0,50;

IS,

A = (1/2) [e
g(-0.03x2.5) g(-0.03 x 3.0)-j = 2 ,785295

d, = [ln(0,015/0,015) + (0,12)2(0,50)/2]/
(0,12)V050] = 0,04246

dj = 0,04246 - (O,12)VS5O = -0,04239
N(0,04246) = 0,51696 and N(-0,04239) = 0,48307

C'== $141,590,

The value ofthe put is the same, that is, P"̂  = $141,590,
since both are struck at the money.

Note that a long (short) position in a CDS call swap-
tion combined with a short (long) position in a corre-
sponding CDS put swaption creates a synthetic long (short)
forward-starting CDS (starting at time T and with swap
rate R^), This in turn impHes that we can use combina-
tions of CDS swaptions to infer default rates and recovery
rates for the underlying reference credit assets (see Hull
[2003, p, 641]),

Obtaining Rg and c

The critical inputs in CDS swaption valuation are
the relevant forward CDS swap rate RQ and the forward
vol CT, One can readily compute the forward CDS swap
rate if there is a CDS swap curve for the reference credit
(or pari passu) asset. The methodology is analogous to
obtaining a forward interest rate swap rate from an interest
rate swap curve.

In practice, there is typically a term structure of CDS
swap rates. For example, in January 2001, Enron's rating
was Baal (Moody's), and the bid-offer midrates on Enron
three-, five-, seven-, and ten-year credit default swaps were
115 bp, 125 bp, 137 bp, and 207 bp, respectively.

If a CDS swap rate term structure is not available on
the reference credit (or pari passu) asset, one must gen-
erate a credit spread term structure using a model such as
Jarrow, Lando, and TurnbuU [1997],

Obtaining the forward vol CT in practice is much
more difficult. For interest rate swaptions, forward vols
can be gleaned from the prices of actively traded over-
the-counter dollar-LIBOR options, but there are now no
other actively traded options on CDS from which to imply
vols, vol term structures, and forward vols. Hence, one
must generate a volatility term structure using historic data
(on credit spreads) and an econometric time series model.

An example using historic data and a G A R C H

(1, 1) model to forecast forward vols is in Hull [2003,
Chapter 17],**

IV. AMERICAN AND BERMUDAN
CDS SWAPTION PRICING

The pricing of American and Bermudan CDS swap-
tions (interest rate swaptions) depends on the evolution of
the entire relevant credit default swap rate term structure
(interest rate swap curve), rather than a single credit default
swap rate (interest rate swap rate) expected to prevail at
option maturity, A no-arbitrage term structure model of
credit default swap rates makes the pricing of American
and Bermudan swaptions extremely complicated.

For the popularly traded Bermudan interest rate swap-
tion, which permits the swaption owner to exercise on the
net payment dates, most professional traders use a one-factor
no-arbitrage interest rate term structure model. While some
experts have argued that such an approach is prudent
(Andersen and Andreasan [2001]), others contend it leads
to substantial pricing error (Longstaff, Santa-Clara, and
Schwartz [2001]), The pricing of American and European
CDS swaptions is no less complicated and controversial.

Fortunately, end user demand for CDS swaptions is
heavily concentrated in the European swaptions. And for
cancelable CDS, the value of the embedded American or
Bermudan option to terminate is largely minimized, or com-
pletely eliminated, if the underlying reference credit asset,
or pari passu asset, is liquid (permitting a trader in a CDS
to close the position by executing a reversing or opposite
trade in a new CDS written on the same or pari passu asset).

We first discuss pricing using a one-factor credit
spread term structure model, A second alternative is to
price American and Bermudan CDS swaptions using a
richer credit spread term structure model in conjunction
with Monte Carlo simulation,

One-Factor Model Approach

In a simple one-factor model of credit spreads, in
continuous time, the one factor would be the instanta-
neous credit spread. The model does not permit mean-
reversion in the credit spread. It assumes a flat credit spread
volatility term structure; that is, all credit spreads, whether
short-dated or long-dated, have the same volatility,'

And as a one-factor model, it does not permit the
possibility of short-term and long-term credit spreads
moving in opposite directions contemporaneously (a credit
spread twist). The model permits the credit spread term
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structure to shift in non-parallel ways, and it accommo-
dates a level effect in that credit spreads become more
(less) volatile with a rise (fall) in credit spreads.

We examine a discrete-time version of the model
with a time increment equal to 0.5 years, so the one factor
is the six-month credit spread. The reference credit assets
are a series of risky high-yield bonds such as emerging
market bonds. Given the credit quality ofthe bonds' issuer,
suppose current (time 0) credit spreads (out to two years)
are 554 basis points for a 0,5-year maturity, 545 bp for a
1,0-year maturity, 547 bp for a 1,5-year maturity, and 550
bp for a 2,0-year maturity.

These four credit spreads represent the relevant credit
spread term structure. The rates are expressed with semi-
annual compounding and have been purged of any con-
taminating factors such as embedded options in the
reference credit assets.

The change in the short-term six-month one-factor
credit spread is given by the multiplicative term:

(3)

where m represents a drift term (or mean), h represents
a time increment, and O represents the volatility of the
credit spread (the standard deviation of the percentage
change in the natural logarithm ofthe credit spread).

Equation (3) implies a recombining binomial frame-
work in that the one factor—the short-term credit spread
—and therefore the entire credit spread term structure
can move up or down after a discrete increment of time
(h), which here = 0.5, We will assume that a = 0,17; the
volatility ofthe credit spread (ofany maturity) is 17% per
year, a high volatility accompanying a substantial average
credit spread (due to the level effect).

The drift terms m,, m^ and are non-sto-
chastic but can change each period. These terms are para-
meterized by forcing the model to fit the current credit
spread term structure (a no-arbitrage approach). We also
force the risk-neutral probabilities ofthe up jumps (and
down jumps) in the single factor (and therefore entire
credit spread term structure) to be 50%,

Given the initial credit spread term structure, we
have the values: m, = -0,0797, m2 = 0,0422, m^ = 0,0169,
and m^ = 0,0015, These values are obtained via no-arbi-
trage arguments. For example, nî  is calculated from:

Q5rgO-5ra,4.0.17705 _|_ eCS

(1 + 0.0545/2)'
(1 + 0,0554/2)

- 1

Exhibit 1 reports the resulting tree of credit spread
term structures for the high-yield emerging market bonds.
The top number in each node represents the prevailing (at
time 0) or subsequently prevailing (depending on the jump
in the term structure) 0,5-year credit spread. The second
number (if there is one) represents the prevailing or subse-
quently prevailing 1,0-year credit spread. The third number
represents the prevailing or subsequently prevailing 1,5-year
credit spread; and the fourth number at time 0 is the cur-
rent 2,0-year credit spread. The probabilities of upward and
downward movements in the term structure are 50% each.

We can use this tree of credit spread term structures
to value a Bermudan CDS swaption that permits exercise
every six months,'"

For illustration, consider a Bermudan CDS put
swaption with two-year maturity and strike rate 550 bp
(with semiannual compounding), whose underlying is an
originally two-year CDS entailing $100 million face value
ofthe reference credit asset having two-year maturity. In
other words, the CDS swaption permits its owner—every
six months for two years—to opt to sell credit protection
and to receive 5,50% s,a,, until year 2, The swaption grants
the right to short the CDS for zero; that is, enter a no-
cost short position in the CDS (receiving 5,5% s,a, and
paying an amount contingent upon default of the two-
year emerging market bond),

For simplicity, assume the relevant interest rate curve
(used for discounting all cash flows) is flat at 3% s,a,, so
every forward rate is also 3% s,a,, and each expected six-
month discounting factor (d^j) is 1/[1 + (0,03/2)] =
0.9852, Assume also for simphcity that the volatihty of
each forward rate is zero (of course unrealistic). We relax
this assumption later.

Given the binomial term structure. Exhibit 2 shows
the tree of values (in $millions) for a short position in the

E X H I B I T 1
Tree of Credit Spread Term Structures

Time 0 Time 0,5 Time 1,0

5,54%
5,45%
5,47%
5,50%

6,004%
6,089%
6,147%

4,721%
4,788%
4,834%

6,915%
6,968%

5,437%
5,479%

4,275%
4,308%
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4,862%

3,823%
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underlying CDS, It assumes that at any node, the short
CDS party can reverse-trade by entering a long CDS
position, and therefore lock in an annuity of future inflows
(or outflows) to be discounted at (here) 3% s.a, (the zero-
volatility forward swap rate). The annuity itself is given
by the difference between the original CDS rate (5,50%
s,a,) and the new rate, times one-half of $100 million.
The new rate is the appropriate swap rate on the new/long
CDS, The length ofthe annuity is obvious—the remaining
maturity ofthe original CDS or, equivalently, the matu-
rity ofthe new/long CDS,

Determining the new swap rate is rather straight-
forward in this simplified environment. For example, at
time 1,5 in the up-up-up-state (uuu), the new credit spread
is 7,864%, As at this time there is just one more period
remaining in the original swap, the reversing trade would
entail assuming a long position in a 0,5-year CDS whose
correct swap midrate must be 7,864%, Thus the short CDS
IS valued at (5,50% - 7,864%)($50MM)(0,9852) =
—$1,1645MM. The same procedure produces the values
presented in nodes uud, udd, and ddd of Exhibit 2,

Now consider an interior node like ud in Exhibit 2,
Here we have a credit spread term structure (from Exhibit
1) of 5,437% (0,5-year) and 5,479% (1,0-year), These rates
imply discount factors of dg 3 = 0,9735 and d, Q = 0,9474,
The par rate occasioned by these rates (the yield to matu-
rity implied, which is also the correct CDS swap rate) is
2(1 - 0,9474)/(0,9735 + 0.9474) = 0,05478, Thus the
value ofthe short CDS in node ud of Exhibit 2 is given
by two payments of (5,50% - 5,478%)($50MM), each dis-
counted at 3% s.a, for a total of $0,021MM,

The other values (at nodes uu, dd, u, d, and at time
0) in Exhibit 2 are calculated in an analogous fashion,"

We can now compute in Exhibit 3 the four pos-
sible put swaption values at time 1,5, This is the first time
point necessary to value the put swaption in the illustra-
tion (because the underlying CDS expires at the same
time as the swaption, so the last time that any exercise
would occur is at the 1,5-year mark).

We then compute in Exhibit 4 the three possible
put swaption values at the 1.0-year mark, while checking
for the prospect of early exercise. This entails comparing
the "wait value" (if any) to the early exercise value and
entering in each node the higher ofthe two values.

This process is repeated at times 0,5 and 0 in order
to obtain the value of the Bermudan put swaption.
Exhibits 5 (time 0,5) and 6 (time 0) give the value ofthe
swaption at $498,200,

Exhibits 4 through 6 present intuitive results. The

E X H I B I T 2
Tree of Values for a Short CDS ($millions)

TimeO Time 0,5 Time 1,0 Time 1,5

+0,0019

u
-0,9377

d
+0,9727

uu
-1,3867

ud
+0,0210

dd
+ 1,4552

uuu
-1,1645

uud
-0,3369

udd
+0,1595

ddd
+0,4193

E X H I B I T 3
Put Swaption at Time 1.5 ($millions)

Short CDS
Time 1,5

-1,1645

-0,3369

+0,1595

+0,4193

Put Swaption
Time 1,5

Max[-1,1645,01=0

Max[- 0,3369,0] = 0

Max[+0,1595,0] =0,1595

Max[+0,4193,0] =0,4193

value ofthe swaption will change (directly) with a. From
these results we can compute the swaption's relevant risk
metrics (delta or DVOl, gamma, and vega),

Jarrow-Lando-Turnbull Model

To overcome the concern that the one-factor model
assumes a flat credit spread volatility term structure, we
suggest a multifactor version of the Markov model as
developed by Jarrow, Lando, and Turnbull [1997] (a sim-
ilar credit spread term structure model is presented in
Kijima [1998]), It permits a richer credit spread environ-
ment, and can be used to capture the potential evolution
ofthe credit spread.

To permit the possibility of early exercise, we sug-
gest using the Monte Carlo method of either Longstaff
and Schwartz [2001] or Andersen [2000], These methods
are suitable because they accommodate American and
Bermudan options that depend on two or more stochastic
variables. Either method requires a procedure to correct
for a suboptimal exercise boundary suggested by Andersen
andBroadie [2001],
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E X H I B I T 4

Put Swaption at Time 1.0 ($millions)

Short CDS Put Swaption
Time 1,0 Time 1,0

Exercise value < 0
-1,3867 Wait value = 0

Swaption value = 0

Exercise value = 0,0210
+0,0210 Wait value = [0,5(0 + 0,1595)1(0,9852)

Swaption vaiue = 0,0786

Exercise vaiue = 1,4552
+ 1,4552 Wait vaiue = [0,5(0,1595 + 0,4193)1(0,9852)

Swaption value = 1,4552

Time i,5
0

0,1595

0,4193

E X H I B I T 5
Put Swaption at Time 0.5 ($millions)
Short CDS Put Swaption
Time 0,5 Time 0,5

Exercise value < 0
-0,9377 Wait value = [0,5(0 + 0,0786)1(0,9852)

Swaption vaiue = 0,0387
0,0786

Exercise vaiue = 0,9727
+0,9727 Wait value = [0,5(0,0786 + l,4552)](0,9852)

Swaption vaiue = 0,9727
i,4552

E X H I B I T 6
Put Swaption at Time 0 ($millions)
Short CDS Put Swaption
Time 0,5 Time 0 Time 0,5

0,0387
Exercise value = 0,0019

+0,0019 Wait value = [0,5(0,0387 + 0,9727)](0,9852)
Swaption value = 0.4982

0,9727

V. CONCLUSION

There is growing interest in credit default swaptions.
We have offered some illustrations of their application to
achieve a variety of fmancial goals and discussed valuation
models. Two avenues for future research might include
implying the default probabilities and recovery rates of
the underlying reference credit assets from the market
prices of CDS swaptions, and valuing more complex CDS
swaptions such as swaptions written on or embedded in
binary and basket credit default swaps.

ENDNOTES

'See Hull [2003, Chapter 27] for a discussion of straight
credit default swaps,

^CDS are commonly cancelable because they are written
on a particular reference credit asset such as a junk bond. To
reverse-trade a CDS without an embedded option to cancel,
the trader would have to find another counterparty willing to
execute a CDS on the particular reference credit asset. This
may not be realistic for liquidity reasons,

Â CDS that is physically setded commonly requires the
long trader to deliver to the short the reference credit asset, or
an equivalent asset, known as a pari passu asset. The short trader
then pays the long the face value of the reference credit asset
(the notional on the CDS), A cash-setded CDS requires the
short trader to pay the long the difference between the face
value and the post-defauit value ofthe reference credit asset, as
determined by a calculation agent. The agent typically ascribes
a value by taking the mean of the bid and offer prices quoted
by dealers of the reference credit asset, CDS dealers tend to
prefer physical setdement because they feel they can obtain
better value than that indicated by the calculation agent.

The ability to trade pari passu assets tends to mitigate the
value ofthe embedded swaption to terminate a CDS, It gives
the CDS greater secondary market liquidity,

••Our illustradons ignore the day-count convendon, and
assume markets operate continually and time can be divided
into perfect one-half year intervals. The usual day-count con-
vention for a CDS or CDS swaption is actual/360,

'This is, of course, different from implying that the CDS
call swapdon is American-style, An American or Bermudan
call swaption could be exercised prematurely for reasons other
than the termination ofthe underlying CDS occasioned by the
default ofthe reference credit asset,

''Another possibility is to assume the credit spread fol-
lows a process analogous to the interest rate process in the
LIBOR market model of Brace, Gatarek, and Musiela [1997],
Jamshidian [1997], and Miltersen, Sandmann, and Sondermann
[1997], There may be an analydc approximation for the pricing
of European credit default swapdons, Hull and White [2000]
derive an analytic approximation for the pricing of European
interest rate swaptions whose swap reference interest rate is
described by the LIBOR market model,

'Proofs of all equations are available on request. Note
that the dynamic and size of the recovery rate are already
reflected in the forward CDS swap rate. The formulas also
abstract from the cancelable feature,

**See Engie [1982], BoUerslev [1986], Nelson [1990], and
Cumby, Figlewski, and Hasbrook [1993],

'If each yield constituting the credit spread is itself niean-
reverdng, then, by definidon, the credit spread itself will be
mean-reverting, but probably at a much slower rate, so the
degree of mean reversion may be nominal. It is probable also

94 CK.ED1T DEFAULT SWAPTIONS JUNE 2005



that shorter-term credit spreads are more volatile than longer-
term credit spreads,

'"To value a quarterly Bermudan CDS swaption, one
would need to change the value of h (to 0,25), To value an
American CDS swaption, h would be much smaller, e,g,, a
single trading day, so one could frequently test for early exer-
cise and thus obtain an accurate price,

"Note that the time 0 value ofthe short CDS in our
illustration is not quite zero but $1,900, The at-market swap
rate is slightly lower than 5,50% s,a, at 5,499% s,a,
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