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This paper computes parametric estimates of a time-varying risk premium model and compares 
the one-step-ahead forecasts implied by that model with those given by a nonparametric kernel 
estimator of the conditional mean function. The conditioning information used for the nonpara- 
metric analysis is that implied by the theoretical model of time-varying risk. Thus, the kernel 
estimator is used, in conjunction with a nonparametric diagnostic test for in-sample residual 
nonlinear structure, to assess the adequacy of the parametric model in capturing any structure in 
the excess returns. 

Our results support the parametric specification of an asset pricing model in which the 
conditional beta is the ratio of the relevant components of the conditional covariance matrix of 
returns modelled as a bivariate generalized ARCH process. Although the predictable compo- 
nent of the conditional moments is relatively small, the parametric estimator of the risk premia 
has somewhat more out-of-sample forecasting ability than does the kernel estimator. Hence, the 
superior in-sample performance of the latter may be attributed to overfitting. 

1. Introduction 

The issue of forecastability of out-of-sample values of the conditional mean 
of asset returns occupies a large literature. Linear unpredictability has long 
been maintained as an implication of efficient markets, although predictabil- 
ity of returns could also be consistent with the efficient markets hypothesis if 
it reflects time-varying risk. In practice, the difficulty in finding a model of 
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first moments which out-forecasts a random walk [Meese and Rogoff (1983) 
provide evidence of this type for the exchange rate case] has frequently led to 
a martingale process being maintained as the preferred model of asset price 
dynamics. 

Volatility clustering has also been recognized in the literature, at least 
since Mandelbrot (1963). The ARCH model of Engle (1982) presented a 
parsimonious structure with which to model this time-varying volatility and 
has led to substantial evidence of conditional heteroskedasticity associated 
with various financial asset returns [for references see the survey by 
Bollerslev, Chou, and Kroner (1992)]. In addition, some part of this time- 
varying volatility is generally predictable [for example, Engle, Hong, and 
Kane (19901, Pagan and Schwert (199011. 

The above discussion suggests that while the second moment is pre- 
dictable, at least in part, the first moment may not be. In fact, Diebold and 
Nason (1990) present evidence that temporal dependence in nominal ex- 
change rates is due to persistence in the conditional variance which is not 
exploitable for point prediction of the first moment. However, in the case of 
equity returns, there is some evidence [for example, Fama (1990) and 
references therein] that there may be a component of returns which is 
predictable. 

While temporal dependence in higher-order moments could be structural,’ 
it is well-known that it could also be the result of misspecification of the 
conditional mean. Indeed both sources could be present. Suppose there is 
temporal dependence in the second moments and also a time-varying risk 
premium such that the conditional mean is a nonlinear function of condi- 
tional second moments. In this case, modelling the conditional mean as a 
linear function of the information set will ignore predictable nonlinear 
components. 

Of course, the class of potential nonlinear alternatives is large. Therefore, 
this paper computes parametric estimates of a time-varying risk premium 
model and assesses its adequacy in capturing the structure of asset returns, 
both within-sample and for out-of-sample forecasts. In particular, two types 
of nonparametric diagnostic testing are pursued. The first involves within- 
sample testing for the presence of residual nonlinear structure, and the 
second compares the one-step-ahead forecasts implied by the parametric 
model with those given by a nonparametric kernel estimator [Robinson 
(198311 of the conditional mean function. 

The within-sample evaluation includes a nonparametric test developed by 
Brock, Dechert, and Scheinkman (1987), hereafter referred to as the BDS 

‘For example, Gallant, Hsieh, and Tauchen (1989) allow serial dependence in the mixing 
variable (information arrival) of a mixture model for returns. This generates dependence in 
higher-order conditional moments of the returns. 
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test, which has been applied recently as a diagnostic for the presence of 
nonlinear structure in asset prices data [for example, Hsieh (1989), Prescott 
and Stengos (1989)]. This test may detect structure which is not captured by 
more traditional diagnostics which look for deviations from the null of an 
i.i.d. process in specific directions. This diagnostic is also used to ensure that 
the kernel specification captures the nonlinearity of the error structure 
adequately within sample. 

The second stage, which compares the forecasts implied by the parametric 
versus the nonparametric estimators of the conditional mean, investigates 
whether the identified structure has any forecastable component.’ The condi- 
tioning information used for the nonparametric analysis is that implied by the 
theoretical model of time-varying risk. Therefore, unlike standard implemen- 
tations of the kernel estimator for conditional means, we add the squares and 
cross-products of the conditioning variables in order to reflect the potential 
contribution of the conditional variance and covariance to the conditional 
mean through time-varying risk. This transformation of the regression func- 
tion is introduced as a simple method of bias reduction. 

Given its flexibility within the sample, the kernel estimator of the condi- 
tional mean constitutes a benchmark for the parametric model. On the other 
hand, any tendency for the nonparametric structure to overfit will be evalu- 
ated by a comparison of the out-of-sample forecasts. Commonly kernel 
estimates are used in two-step estimation procedures [for example, Pagan 
and Hong (198911. In our case, the two methods are self-contained and 
provide competing specifications. 

Our empirical application is to a sample of monthly equity returns from 
1970 to 1988 inclusive. The conditional-beta capital asset pricing model [for 
example, Bollerslev, Engle, and Wooldridge (19881, Harvey (19911, Mark 
(1988), and McCurdy and Morgan (1991all is used to price time-varying 
systematic risk for an equity portfolio with respect to an international 
benchmark portfolio. 

Section 2 reviews the asset pricing paradigm used to evaluate equilibrium 
returns. Section 3.1 outlines the methods used for in-sample estimation, 
including the test equation system for the maximum likelihood estimation in 
subsection 3.1.1 and that for the nonparametric kernel estimation in 3.1.2. 
Subsection 3.1.3 reviews the BDS nonparametric test for residual nonlinear 
dependence. The results for the parametric and nonparametric estimators 
are presented in subsections 3.2.1 and 3.2.2, respectively, while the out-of- 
sample forecast comparisons are summarized in section 4. Concluding com- 
ments are offered in section 5. 

‘In this paper we are concerned with point forecasts and not with the implications of the 
time-varying conditional variances for forecast confidence intervals, etc., as discussed in Baillie 
and Bollerslev (1990) and references therein. 
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2. A model of time-varying risk premia 

2.1. Notation and data sources 

We assume perfect markets in a single good, pure exchange model with a 
representative consumer. As in Lucas (1982) and Hansen and Hodrick (1983), 
all prices are expressed in units of domestic currency (U.S. dollars) and the 
interest rates are nominal. Let: 

c t = number of units of the good consumed at t, 

Pt = price per unit of the consumption good at t, 
M l-l,1 = intertemporal marginal rate of substitution of domestic currency 

between time t - 1 and time t, 
R B, f = one plus the monthly rate of return on a benchmark portfolio 

which is conditionally mean-variance efficient, 
R 1. 1 = one plus the monthly rate of return on the Morgan Stanley 

Capital International (MSCI) Japanese equity index in U.S. dol- 
lars with net dividends reinvested (source: MSCI), 

R w. 1 = one plus the monthly rate of return on the MSCI World equity 
index in U.S. dollars with net dividends reinvested (source: MSCI), 

R,-1 = one plus the rate of return on U.S. Treasury bills for the month t 
computed from the average of bid and ask prices for the Treasury 
bills with maturity closest to 30 days on the last trading day of 
month t - 1 (source: CRSP Risk Free Rate File). 

2.2. Evaluation of equity portfolio returns 

Subtracting the equilibrium condition for a one-dollar investment in a 
one-period (nominally riskfree) bond from that associated with a position in 
the Japanese equity portfolio and expanding, using the definition of covari- 
ante, yields 

E~_~[R~,~] -R,_,= -R,-lcov,-l[M,-l,,,Rj,,Il 

in which E, _ , refers to expectations conditional on information at time t - 1. 
Note that the expected nominal return on the equity position in excess of 

the (nominally) riskfree rate will be zero under risk neutrality and a deter- 
ministic price level.3 Alternatively, this ex ante risk premium is a function of 
the conditional covariance of the (nominal) intertemporal marginal rate of 
substitution and the equity return. 

-‘A stochastic price level will affect the nominal equity premium even under risk neutrality. For 
more details see, for example, Engel (1990) and Labadie (1989). 
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For empirical implementation, we use a conditional-beta representation of 
the consumption-based asset pricing relation (1). Following Hansen and 
Richard (1987), our single-beta asset pricing relation will be expressed in 
terms of a benchmark portfolio which is hypothesized to be on the con&- 
tional mean-variance frontier. For example, if there exists an asset or 
portfolio return R, which is perfectly conditionally correlated with the 
intertemporal marginal rate of substitution, then portfolios which yield re- 
turns R, which are a linear combination of R, and the riskfree return will 
be conditionally mean-variance efficient. This implies that the equilibrium 
expected return on any asset will be a function of its conditional beta with 
that benchmark portfolio and we can re-express (1) as the conditional 
single-beta asset pricing relation, 

E,_, [ Rj,,] - R,_, = co’:;;ry;; “;“I (L,[RB,tl -Rt-1). (2) 

B.1 

Several approaches to measuring such a benchmark portfolio have been 
proposed. For example, Campbell (1987), Engle, Ng, and Rothschild (1990), 
Hansen and Hodrick (19831, and Giovannini and Jorion (1987) treat the 
benchmark portfolio as unobservable and use either a latent variable ap- 
proach or factor representing portfolios to estimate the benchmark portfolio 
returns. Breeden, Gibbons, and Litzenberger (19891 proceed by constructing 
a portfolio which has returns which are maximally correlated with the growth 
rate of consumption. McCurdy and Morgan (1991b) use benchmark portfolios 
for both consumption (a maximum correlation portfolio) and wealth (a world 
equity portfolio) in an empirical implementation motivated by nonexpected 
utility explanations of asset prices. 

In this paper, we use the return on the MSCI world equity index as the 
benchmark portfolio return, replacing R, in (2) by R,. Choosing an equity- 
based index, as in Mark (1988) and Harvey (19911, is clearly open to the Roll 
(1977) critique. Nevertheless, the MSCI world index represents extensive 
international diversification. The issue of whether or not this choice for the 
benchmark portfolio in the single-beta formulation of the conditional pricing 
relation (2) is adequate to price all the relevant risk will be addressed further 
during our evaluation of the empirical model. 

3. In-sample estimation 

3.1. Methods 

3. I. 1. Parametric test equation system for maximum likelihood estimation 

The conditional asset pricing relation (2) specifies that the excess returns 
on the Japanese equity portfolio, RE, = (Rj, f - R,_ , >, are expected to be 
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proportional to the excess returns on the benchmark portfolio. The latter are 
represented in our mode1 by excess returns on the world equity portfolio, 

R*,,, = R,,, - R,_l. The time-varying proportionality factor is the conditional 
beta which is a function of the conditional second moments of the joint 
returns process. This specification suggests a bivariate mode1 which jointly 
estimates the first and second conditional moments of those returns. In this 
section, we briefly outline the test equation system used for our quasi-maxi- 
mum likelihood estimation (QMLE) of (2). 

Maintaining rational expectations, we replace expected values in (2) by 
realized values minus forecast errors. The rational expectations assumption 
implies that forecast errors have conditional means of zero. Using the 
notation h, f for the conditional variance of RTt, h, , for the conditional 
variance of ‘R;k, ,, hj,, f for the conditional covariance between RTt and R*, t, 
p for a parameter that can be set at zero in order to exclude the risk 
premium term from the model, xi, f_, and x,,, _ , for vectors of explanatory 
variables known at time t - 1, the system of test equations is, analogous to 
that in McCurdy and Morgan (1991a), 

hjw* , 

K,t=~;xw.,-I +dww,,-, +&w,t, E:lI,_, - N(f), Hz), (4) 

that is, conditional on information at t - 1, the errors &: = [“j,, F,,,] are 
hypothesized to be normally distributed with covariance matrix 

H,=C’C+A’E,_,E:~,A+B’H~_,B, (5) 

in which C, A, and B are symmetric parameter matrices. 
The bivariate specification of the conditional means, given by (3) and (4), 

includes the vectors of potential explanatory variables x~.~_, and x, I _ ,. 
Except for the intercepts, which are included in the estimated model, those 
variables are primarily used for the omitted variable tests discussed below. 
For example, in the case of (3), xj is used to test for the potential importance 
of variables which might have explanatory power under alternative specifica- 
tions of the time-varying risk premium model. Therefore, the estimated 
mode1 for RT includes an intercept and the conditional risk premium. 

For the case of the world index excess return in (4), in addition to an 
intercept, x, includes a domestic dividend yield variable4 in excess of the 
U.S. riskfree rate, DYdTr_,, which has been shown to have predictive value 

4Computed, as in Fama (19YO), by summing monthly dividends associated with the value- 
weighted NYSE portfolio for the twelve months preceding t - 1 and dividing by the value of the 
portfolio at t - 1. 
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for U.S. equity returns [see, for example, Fama (19901 and references 
therein] and for the MSCI world equity index return [Harvey (1991)]. An 
MA(l) term has also been included in (4) in order to capture any serial 
dependence due to nonsynchronous trading of the components of the index 
[for example, French, Schwert, and Stambaugh (1987) and Chou (1988)l. 

Time variation in the conditional second moments of financial data has 
been extensively documented [for references see the survey by Bollerslev, 
Chou, and Kroner (1992)]. We parameterize the variance-covariance struc- 
ture in (5) using the Baba, Engle, Kraft, and Kroner (1989) form of the 
generalized ARCH structure [Engle (19821, Bollerslev (1986)]. This structure 
ensures that the conditional variance-covariance matrix is positive definite 
and is also relatively parsimonious with respect to the number of parameters. 
When conducting omitted variable tests, the structure in (5) is augmented by 
the inclusion of variables from the information set at time t - 1. 

This empirical specification of the test equation system allows the risk 
premia to vary as a result of time variation in the expected benchmark 
portfolio returns and also time variation in both the variance and covariance 
components of the equity beta. This also means that the price of covariance 
risk is allowed to vary - unlike most implementations of vector GARCH-M 
models of risk premia. QMLE is implemented with standard errors computed 
to allow robust inference in the presence of potential departures from 
conditional normality’ [Bollerslev and Wooldridge (1988), Weiss (19861, 
White (1982)].h 

3.1.2. Nonparametric kernel estimation 

Silverman (1986) presents a general introduction to nonparametric density 
estimation, while Ullah (1988) focuses on nonparametric estimation of econo- 
metric functionals. The conditional mean of a random variable y, given a 
vector of conditioning variables X, can be written as E(y1.x) = M(x). In 
parametric estimation M(x) is typically assumed to be linear in x, but in the 
nonparametric approach M(x) remains a general functional form. 

Consider now the time series process {y,] and in particular the problem of 
estimating the mean of y, conditional on (y,_i,. . . , y,_J. Robinson (1983) 
derives the asymptotic distribution of the nonparametric kernel estimator of 
the joint density of the time series data-generating process (DGP) of (y,, x,> 
and of the conditional mean of y,, given (y,_ ,, . . . , y,_,,, x,, . . .,x,-J. Let 
f(z) be the multivariate DGP of the (p + l)-dimensional random vector z, 

5Potential loss of efficiency from such QMLE has been evaluated by Engle and Gonzalez- 
Rivera (1990) who propose a more efficient semiparametric approach. 

*Software used for this QMLE was developed by LG. Mcrgan and T.H. McCurdy with the 
underlying optimization routines of Numerical Algorithms Group. 
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which we write as z = ( y,, x,1, where X, = ( y,_ ,, . . . , y,_,,). The kernel esti- 
mator of the joint density is 

where the kernel function K satisfies certain conditions, including 
/K(z*)dz* = 1, jlK(z*>l dz* <co, and llz*IIP+‘IK(~*)l +O as llz*(I +oo 
for z* = (z - zl>/h and IIz*II as the usual Euclidean norm of z*. Since it is 
possible to choose the function K so that it is continuous, the resulting 
kernel estimator of the density function will also be continuous. In the 
present paper, the kernel is chosen to be the standard multivariate normal 
density function. 

An important consideration in the literature is the choice of the bandwidth 
parameter h. Too large a value of h induces bias and too small a value 
induces imprecise estimates. Robinson (1983) and Ullah (19881, among 
others, summarize the conditions that the kernel function and the bandwidth 
parameter h will have to satisfy to obtain the asymptotic properties of the 
regression function estimator. 

One of the ways to ensure bias reduction for particular choices of h are 
the so-called ‘higher-order’ kernels, proposed by Bartlett (1963) and intro- 
duced in the econometric literature by Robinson (1988) in a semiparametric 
context. The higher-order kernels are of the form K(z) = ~~/=?“-2)~j~2K(~), 
where K(z) is the Gaussian kernel. The constants cj satisfy a system of linear 
equations. However, in a pure nonparametric context the higher-order ker- 
nels require a very large data set for a noticeable bias improvement and at 
the same time they can introduce a lot of additional variance in the esti- 
mates. Robinson (1988) discusses alternative bias reduction methods that 
have been proposed in the statistics literature. 

In this paper, using a priori information from the economic model, we 
include the squares and cross-products of the regressors in an attempt to 
linearize the regression function. The reason behind the inclusion of these 
terms is that if the true regression function is linear and the regressors are 
uniformly distributed, the kernel estimates will be nearly unbiased. 

The estimator of the regression function can be derived to be 

&YlX) = k y,rt, (7) 
t=1 

where 
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with K2(x*) = jK(y*, x*)dy, x* = (x -x,)/h, and y” = (y -y,)/h. The 
above expression can be evaluated at any value of x to yield the nonparamet- 
ric estimator of the regression function. Clearly, out-of-sample forecasts 
conditional on a set of known x values can be calculated [see, for example, 

Moschini, Prescott, and Stengos (198811. 
For the conditional variance of y given x the kernel estimator is derived to 

be 

(8) 
t=1 

where j%ylx) and T,(X) are defined in (7). 
The response or regression coefficient of y with respect to changes in a 

regressor, sayA.xj, is defined to be /3(x) = aE:(ylx>/axj. The kernel estimator 
of /3(x), say p(x), is defined as 

B(x) = f: Yt(rlr -r*r), (9) 
I=1 

where 

r,, =K’(xT> it K(xT), I t=1 

and 

K’( XT) = dK( XT)/dXj. 

In this paper the fixed response or fixed regression coefficient estimates 
were obtained by estimating &XI, where X is the sample mean. However, 
the speed for adjustment of &X> is (&z”+~)“~, which is slower than the 
usual n’/’ rate of adjustment that one obtains with parametric estimation, 
since h + 0 as II + W. This slower rate of convergence implies that the 
standard errors of the nonparametric estimates typically turn out to be larger 
than their corresponding parametric counterparts and test statistics based on 
them are less efficient. One could obtain n’12 consistency (that is, the 
parametric rate of convergence! by averaging over all 6(x>. However, Ullah 
(1988) argues that, although p(X) may be less efficient than the average 
derivative estimate, it may be more robust. 

In applications, the investigator must choose the window width h as well as 
the kernel function. The choice of the window width is important since bias is 



234 T. McCurdy and T. Stengos, Comparison of Risk-Premium Forecasts 

an increasing function of h while variance is a decreasing function of h. 
Ullah (1988) suggests setting the window width hi in the following way: 

h.=sin-‘/(4+P) for i= l,...,p, r (10) 

where si denotes the standard deviation of xi. 

3.1.3. Testing for nonlinearities 

The BDS statistic is designed to test the null hypothesis that a time series 
is i.i.d. against a variety of alternative nonlinear hypotheses. Below we will 
discuss briefly its structure and the intuition behind it. 

Let (y,: t= 1,2,..., T} be a sequence of observations that are i.i.d. From 
this series, construct the m-dimensional vector, or ‘m-history’ 

y,“= (Yt,Yl+l,...,Yt+m-,l. 

Using these m-histories we can compute the following quantity, known as the 
correlation integral: 

2 
C,(E) = lim Cl,(Y,“,Y,“)> 

r+= TAT, - 1) f<S 
(11) 

where T,,, = (T - m + 1) and Z,(y,“, ysm) is an indicator function that equals 
unity if Jy, - y,l < E. Here 1 . I is the supnorm. The correlation integral 
measures the proportion of the m-dimensional points that are ‘close’ to each 
other, where ‘close’ is defined in terms of the supnorm criterion. 

Given a sample of size T, the following sample correlation dimension 
statistic can be computed: 

2 
CA&, T) = c 4( Y,“, Y,“). 

T,(T, - 1) f<S 
(12) 

Brock, Dechert, and Scheinkman (1987) show that, if {x,} is i.i.d. with a 
nondegenerate density f( .I, then, for fixed m and E, 

CA&, T) ---) [wr with probability 1 as T + m. 

Furthermore, 

\IT(C,(G) -C,(EJ)~) -+N(O,K&)). 
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The standardized form of the above is the BDS statistic and it is given by 

W,(&,T) =JT(C&J-) -CI(dy/dK(+ (13) 

The derivation of the asymptotic distribution is based on results from the 
theory of U-statistics [see Serfling (198011. 

The parameter E plays a similar role as the bandwidth does in the case of 
kernel estimation. There are no results, however, suggesting an optimal 
choice of E. Additionally m is a choice parameter as well. For a given value 
m, E should not be too small, otherwise the sample correlation integral will 
capture too few points. Similarly, E should not be chosen to be too large. 
Since there is no unique choice for these two parameters, users report a 
number of statistics. Although these statistics are not independent, a battery 
of significant BDS statistics does provide strong evidence against the null 
hypothesis. 

Monte Carlo simulations by Brock, Dechert, and Scheinkman (1987) pro- 
vide evidence that the BDS statistic has good power against a variety of 
nonlinear alternatives. More recently, extensive simulations by Brock, Hsieh, 
and LeBaron (1991) indicate that the BDS statistic has good size and power 
characteristics even in moderately sized samples. Moreover, the statistic has 
good power against a wide variety of nonlinear alternatives, including tent 
map chaotic processes and stochastic processes such as autoregressive, 
threshold autoregressive, nonlinear moving average, and ARCH. 

There is a note of caution when one applies the BDS in practice. In 
empirical work, the BDS is usually applied to residuals from some prelimi- 
nary estimation of the regression function. The ‘nuisance parameter’ problem 
affects the behaviour of the BDS statistic in finite samples and leads in 
general to an actual size of the test that is greater than the nominal one. The 
problem persists in larger samples when the residuals come from an 
ARCH/GARCH model. The BDS in this case lacks power to reject the false 
model. 

3.2. In-sample results 

3.2.1. Parametric model estimates and evaluation 

The first 16.5 years of the sample (2nd month of 1970 to the 6th month of 
1986) are used for in-sample estimation. The remaining 2.5 years of data are 
used to evaluate out-of-sample forecasts. The in-sample quasi-maximum 
likelihood results are summarized in tables 1 to 3. Table 1 presents the 
coefficient and robust standard error estimates for the test equation system 
(3) to (5). Table 2 summarizes the in-sample fit and tests associated with the 
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Table 1 

Parametric model estimates.a 

Japanese equity excess returns 

hj,, t 
R:r=Yoj+CL~(Y”w+Y~w’Y~~-~+~‘w”w.~-~)+E,,~ 

W., 

PO, P 
0.0068 1.7869 

(0.0047) (0.5186) 

Benchmark portfolio excess returns 

R*,x I= yaw +Ylw~~~,-,+*,&,,,-I+E,,, 

iOW ih 6% 

0.0175 0.0534 0.1141 

(0.0044) (0.0184) (0.0962) 

Conditional variance-covariance matrix 

* A A A 
CJ ClW c, a1 *I, a, 

0.0325 0.0235 0.0040 0.1029 - 0.0701 0.3549 

(0.0170) (0.0039) (0.0116) (0.1246) (0.1017) (0.0640) 

6, ijw 6, 

0.7356 - 0.0940 0.7975 

(0.2535) (1.6550) (0.0950) 

aRobust standard errors are in parentheses below the coefficient estimates. 

importance of time-varying risk term, while table 3 reports the results of our 
statistical evaluation of the model. 

The conditional risk premium model maintained in (2) implied that ya. = 0 
and 1 = 1 in (3). The first panel of estimates in table 1 indicate that neither 
of these restrictions can be rejected on the basis of robust t-tests. The second 
panel of results, for the excess return on the world portfolio, Rz, shows that 
the estimated coefficients for the intercept Y,~ and for the variable DYd*, the 
domestic dividend yield in excess of the riskfree rate, are both significantly 
positive. The MA(l) term is positive in sign but is insignificantly different 
from zero. 

The final panel of table 1 reports the estimates for the conditional 
variance-covariance structure. Although the cross-equation restrictions asso- 
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Table 2 

Evidence concerning fit and risk premia for the model in table l.a 

Risk premium, 
Risk premiumi 

+ Intercept RT R*, 

Average 0.00606 0.01286 0.01189 0.00367 
Standard deviation 0.01701 0.01701 0.05891 0.04038 

Total sum of squares 0.70809 0.32221 
Residual sum of squares 0.63146 0.2925 1 

p=o 15.94 
p-value K).OOO) 

“Sample means are expressed as monthly returns. The last row reports the likelihood ratio test 
statistic associated with restricting the conditional beta risk premium in (5) to be zero (p = 0 
versus unrestricted). 

ciated with the quadratic structure make it difficult to associate persistence 
with a particular parameter, there is clearly significant conditional het- 
eroskedasticity for both returns. In addition, the conditional covariance 
between the two returns is statistically significant. For the in-sample esti- 
mates reported in table 1, a likelihood ratio test does not reject a restriction 
that the off-diagonal elements of A and B, ajw and bj, respectively, are zero. 
However, the model with those two parameters included did somewhat better 
out-of-sample, perhaps due to the outliers associated with the market crash 
in October 1987. For this reason, we did not restrict the coefficient matrices 
A and B to be diagonal. 

Table 2 summarizes evidence concerning the statistical importance of the 
estimated risk premium in explaining the Japanese equity excess return as 
well as some summary statistics relating to the in-sample fit of the model 
reported in table 1. The likelihood ratio test associated with restricting the 
conditional beta risk premium to be zero (p = 0 versus I_L unrestricted) has a 
very low p-value indicating that we can convincingly reject the zero risk 
premium hypothesis. This result, together with the estimates for yq and p in 
table 1, lend support to the conditional beta formulation of the time-varying 
risk premia for this sample. Note that the sample average of the ex ante risk 
premia is about one half as large as the average ex post excess return over 
the sample.’ However, the standard deviation of RF is over three times 
larger than the sample standard deviation of the risk premia. Fig. 1 plots the 
estimated conditional beta for the in-sample period. The beta is clearly 
time-varying. The estimated price of covariance risk, E,_ ,( R*,,,)/h,,,, is also 
time-varying. Therefore, it appears to be important to allow each of the 
components of the conditional risk premia to vary. 

‘If the estimated intercept, i,,J, is added to the average conditional risk premium, this sample 
mean of the predicted RT is similar in size to that of the ex post RT. 
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Table 3 

Statistical evaluation of the parametric model reported in table 1.” 

1. Specification checks 

j jw W 

R - 0.06 - 1.17 
(0.95) (0.24) 

QW 6.60 11.11 
(0.76) (0.35) 

Q*(lOJ 4.48 5.55 
(0.92) (0.85) 

Qj,(lO) 5.92 
(0.82) 

SK 9.19 0.02 
(0.00) (0.89) 

KU 0.99 2.52 
(0.32) (0.11) 

2. OPG LM tests for variables omitted from RT, 

Mean Variance 

RT,-I 

‘C.,-I 

R,-, 

January 

0.96 
(0.33) 

3.20 
(0.07) 

0.10 
(0.75) 

1.34 
(0.25) 

0.26 
(0.61) 

2.33 
(0.15) 

0.86 
(0.35) 

0.09 
(0.76) 

aR is the test statistic for runs above the mean, SK and KU are conditional moment tests for 
skewness and excess kurtosis, Q(lOJ the Ljung-Box form of the portmanteau statistic for 
autocorrelation in the first 10 lags of the standardized residuals, Q*(lOJ the same for the squared 
standardized residuals, and Q,,(lOJ is the portmanteau statistic for the autocorrelation function 
for the cross-products of the standardized residuals of the two series. The square of the variable 
listed is used for the OPG tests associated with the variance. The p-values, shown in parenthe- 
ses, are for the chi-square distribution except for R where they are for the unit normal 
two-tailed test. 

The specification tests reported in the first panel of table 3 do not indicate 
any statistical problems with the model reported in table 1, except for 
skewness associated with the residuals from (3). These tests include: a 
nonparametric runs test; portmanteau statistics: for autocorrelation in the 
first ten lags of the standardized residuals, .s for remaining heteroskedasticity 

‘The vector of raw residuals E, is standardized as u, = H;‘/*e,, where H,-‘/* is obtained 
from orthonormal transformation of the conditional covariance matrix H,. We thank Michael 
Durland for providing code for this transformation. 
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in the same number of lags of the squared standardized residuals; and for 
neglected heterogeneity using the cross-products of the standardized residu- 
als of the two series. Although these portmanteau tests may be affected by 
the presence of predetermined regressors and any remaining time variation 
in higher-order moments [see, for example, Cumby and Huizinga (198811, the 
associated p-values are sufficiently large to suggest that the persistence in the 
first two conditional moments has been adequately captured. In particular, 
note that the Qj,(lO> result indicates that the parameterization (5) ade- 
quately captures any persistence in the conditional covariances. Further 
evidence that the model specified in (3) to (5) captures the persistence in the 
data is given in the second and third columns of table 5 where the BDS test 
rejects the i.i.d. hypothesis for RT but fails to do so for the stundardized 
residuals from the parametric model. 

The bottom panel of table 3 reports results of some OPG LM tests for the 
potential importance of variables which might have explanatory power under 
alternative specifications of the time-varying risk premium model or, of 
course, some other alternative model. While the model passes these tests, it 
is possible that a more flexible functional form and/or a more general 
parameterization of the first two conditional moments of the joint returns 
series might improve the fit of the conditional risk premia.” For example, 
more extensive tests might indicate that the MSCI world equity portfolio 
excess return is an inadequate measure for Ri, or that there are additional 
risk factors which are not priced by the conditional-beta model specified by 
(2) [see, for example, McCurdy and Morgan (1991c)l. The nonparametric 
specification reported in the next section has been designed to alleviate some 
restrictions implied by the parametric formulation. 

3.2.2. Nonparametric estimates 

In this section we evaluate the nonparametric regression and present the 
in-sample estimates. The dependent variable is RT. The independent vari- 
ables that enter the kernel regression include the lagged excess return 
variables and their squares and cross-products. In other words, the informa- 
tion sets for the parametric and nonparametric specifications are comparable 
since they contain similar information. Table 4 presents the estimates of the 
derivatives of the regression function evaluated at the sample means. Also 
the standard errors of these estimates are reported. Since these estimates 
only incorporate information at one point of the sample space, they are less 
efficient that the parametric estimates which incorporate information from 
the whole sample. Alternatively, one could compute the mean of all the 

‘Pagan and Schwert (1990) provide evidence that the EGARCH parameterization proposed 
by Nelson (1991) outperforms the GARCH specification for conditional variances of monthly 
U.S. stock returns for the sample 1834-1925. 
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Table 4 

Kernel estimates at sample means.” 

Independent variables Coefficient estimates 
.~_._____ 

G-1 - 0.0012 
(0.0035) 

R:I-, 0.0060 
(0.0034) 

(R*,,,_,)* - 0.0001 
(0.0019) 

(R;,~,)’ 0.0001 
(0.0002) 

(R*,,,~IW~~) - 0.0017 
(0.0026) 

Mean of dependent variable 0.01189 
Total sum of squares 0.70809 
Residual sum of squares 0.53034 

“The numbers below the estimates are standard 
errors. 

partial derivative estimates, hence using information from the whole sample. 
Ullah (1988) argues that such mean estimates, although more efficient, are 
nevertheless less robust than the estimates of these derivatives at the sample 
means of the regressors. The nonparametric estimates are indeed quite 
inefficient. Only the lagged dependent variable appears to the significant at 
the 10% level. The choice of h was proportional to n-l/“. Different choices 

Table 5 

BDS statistics from the parametric and nonparametric specifications? 

Embedding dimension Raw series Parametric residuals Kernel residuals 

E = normalized standard deviation 

3 1.4208 - 0.8359 - 0.9476 
5 2.0378 0.2290 -0.1170 
7 2.6651 1.1762 0.2056 
9 2.3362 I .6864 0.0529 

E = normalized standard deviation scaled by 1.25 

3 1.2306 - 0.6748 -0.1122 
5 1.7131 - 0.1479 - 0.6933 
7 1.9790 0.4502 0.0021 
9 1.8987 0.9165 -0.1709 

“The BDS statistics are distributed as standard normal variates. The residuals from the 
parametric formulation are the standardized residuals. The B is chosen to be proportional to the 
standard deviation of each of the series divided by its range. 
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of h, slightly larger or smaller than the above, led to qualitatively similar 
results. 

The BDS statistics of the kernel residuals, reported in table 5, suggest that 
there is no linear or nonlinear dependence present and that the model is 
adequately specified. An additional point that needs some emphasis is that 
the total fit of the kernel regression is quite good, with a considerable 
reduction of the sum of squared residuals when compared with the paramet- 
ric regression. However, the in-sample superiority of the nonparametric fit 
should be viewed with caution, since it does not lead to superior forecasts as 
will be seen in the next section. Hence, part of the in-sample performance of 
the kernel regression should be attributed to ‘overfitting’, a problem that is 
encountered often in nonparametric regression. 

4. Out-of-sample forecasts 

4.1. Eualuation of parametric r:ersus nonparametric forecasts 

To examine the predictive ability of the parametric and nonparametric 
specifications we generated a sample of 30 out-of-sample, one-step-ahead 
forecasts. Both the parametric and nonparametric formulations were fitted to 
a subset of the data (the last 30 observations were deleted) and a single 
one-period-ahead forecast was computed and stored. The estimation sample 
was then increased by one observations and the models were re-estimated 
and used to compute a forecast for a single period. In this way we generated 
the sequence of 30 out-of-sample, one-step-ahead forecasts. 

Table 6 

Regression of actual values on one-step-ahead forecasts.” 

Kernel Parametric 

Constant 

Forecast 

0.0215 
(0.0148) 

1.2493 
(1.1160) 

Mean of dependent variable 0.0284 
Total sum of squares 0.1824 
Residual sum of squares 0.1514 
R2 0.0428 
MSE 0.0056 
Log L 36.7658 

In-sample fit for the same subsample 

Residual sum of squares 0.1093 
R2 0.3088 

- 0.0089 
(0.0311) 

1 s370 
(1.1614) 

0.0284 
0.1824 
0.1489 
0.0589 
0.0050 

37.0191 

0.1503 
0.0500 

___~__ 
“Standard errors are shown in parentheses below the coefficient estimates. 
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The results from regressing the actual values on the forecasts appear in 
table 6. Both the R2s from these regressions and the mean squared errors 
suggest that the parametric forecasts are somewhat superior to the nonpara- 
metric ones. This contrasts to the in-sample fit for which the kernel estimator 
did considerably better. The second panel of table 6 shows the in-sample fit 
achieved by the two estimators for the same subsample over which the 
one-step-ahead forecasts were computed. This demonstrates that the poorer 
performance of the kernel estimator out-of-sample was not due to the 
characteristics of that particular time period. These comparisons suggest that 
the kernel estimator is overfitting within sample for this application. 

Both sets of forecasts are unbiased, although numerically the nonparamet- 
ric estimate is closer to unity than the parametric one. Residual-based 
diagnostics from these regressions did not uncover any remaining structure. 
The nonparametric forecasts serve as a benchmark in evaluating the ability of 
the parametric model to detect any structure exploitable for out-of-sample 
forecasts. The kernel forecasts were no better than the parametric ones 
which seems to suggest that the parametric model has adequately captured 
the underlying structure of the DGP. 

5. Concluding comments 

This paper presents results that support the parametric formulation of a 
time-varying risk premium for the excess returns of a Japanese equity 
portfolio. A battery of diagnostics, including the BDS nonparametric test for 
residual structure, support this claim. 

In addition, a nonparametric model was estimated using kernel regression. 
This nonparametric specification allows for flexible functional form. Given its 
flexibility within sample, the kernel estimator of the conditional mean consti- 
tuted a benchmark for the parametric model. A tendency for the nonpara- 
metric structure to overfit was revealed by a comparison of the out-of-sample 
forecasts. 

The out-of-sample forecasts suggest that the parametric specification is 
well-specified and produces unbiased forecasts with a lower MSE than the 
nonparametric forecasts. The out-of-sample performance of the parametric 
model acts as a validation for its good performance in-sample. 
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