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a b s t r a c t

This paper investigates whether risks associated with time-varying arrival of jumps and
their effect on the dynamics of higher moments of returns are priced in the conditional
mean of daily market excess returns. We find that jumps and jump dynamics are
significantly related to the market equity premium. The results from our time-series
approach reinforce the importance of the skewness premium found in cross-sectional
studies using lower-frequency data; and offer a potential resolution to sometimes
conflicting results on the intertemporal risk-return relationship. We use a general utility
specification, consistent with our pricing kernel, to evaluate the relative value of
alternative risk premium models in an out-of-sample portfolio performance application.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

This paper evaluates whether jumps contribute to the
dynamics of the equity premium for a broadly diversified
portfolio of U.S. stocks. Motivated by a generalized utility
specification (Kimball, 1990) and nonlinear pricing kernel
(Harvey and Siddique, 2000; Dittmar, 2002, Chabi-Yo,
Ghysels, and Renault, 2007; Guidolin and Timmermann,
2008), we test whether risks due to dynamics of the
conditional variance, skewness, and kurtosis are priced in
aggregate stock returns. Our focus is the effect of jumps on
the dynamics of the conditional moments and conse-
quently, if priced, on the dynamics of expected excess
returns (the equity premium) associated with the market
portfolio. We derive a mapping between our estimated
prices of risk and the generalized preferences to evaluate
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the relative utility of alternative risk premium models in
an out-of-sample portfolio performance application.

Our model filters daily market excess returns into large
versus smaller changes, simultaneously with estimation of
all of the parameters of the conditional distribution. In our
parameterization, large changes in daily returns (jumps)
contribute to the dynamics of conditional variance, the
dynamics of conditional skewness and kurtosis, and con-
sequently, the dynamics of expected return through pri-
cing of the associated risks. This allows expected jumps to
have an impact (whether or not they occur) on the shape
and location of the distribution of market excess returns.

We model innovations of the return process using a
Generalized Autoregressive Conditional Heteroskedastic
(GARCH)-jump mixture model. The jump component of
the innovation follows a compound Poisson–Normal dis-
tribution with an autoregressive jump intensity and a
normal jump size distribution. The diffusive component
of the innovation is directed by an asymmetric two-
component GARCH process, and allows the persistence of
jump effects on variance to be different than that of the
diffusive component. These features are important for our
pricing application since the second GARCH component
helps control for noise associated with daily returns and,
as such, improves the sorting into jumps versus diffusive
components.

Flexible modeling of the conditional variance, skew-
ness, and kurtosis dynamics will undoubtedly improve the
explanatory power of the model for capturing the chan-
ging shape of the distribution. However, the focus of this
paper is concerned with whether the dynamics of the
(standardized) higher moments of returns are associated
with time-varying expected returns. Are the risks asso-
ciated with the arrival of jumps, and their effect on the
higher moments of returns, priced in the mean?

Studies on jumps often assume that the compensation
for jump risk is a linear function of the jump intensity,
mostly to make risk-neutral pricing (of options) tractable.
In contrast, using a pricing kernel associated with general-
ized preferences to derive our equity premium specifica-
tion, prices of risk are not restricted by a single parameter
of relative risk aversion and jump risk is priced linearly
through the conditional dynamics of variance, and
nonlinearly through conditional skewness and kurtosis.
To the best of our knowledge, this is the first study to find
significant pricing of both jump risk and diffusive risk, as
well as realistic total equity premium estimates, using only
a time-series of equity return data.

Our empirical results show that higher-order moments
are significantly priced in the equity premium. First of all,
we find a positive risk-return tradeoff associated with the
traditional risk for the market measured by the conditional
variance. The pricing of the conditional variance is robust
across our proposed time-varying jump model specifica-
tions. When we restrict the model to have no jumps and
only include one GARCH component, the variance
dynamics are not significantly priced.

By fixing the GARCH component of volatility, we are
able to analyze the marginal effect of jumps on the equity
premium. We show that the latter is positive at all levels of
the GARCH volatility. The equity premium is increasing in

the conditional jump frequency and this increase is great-
est for low jump-arrival rates and for low levels of the
GARCH variance component. For our parameterization and
sample, if the expected number of jumps increases by one
per year, a representative investor will demand, on aver-
age, 0.1062% additional expected return for taking on the
extra jump risk. This implies that the equity premium
associated with jumps is about 3.61% per annum on
average. All higher-order moments can be affected by
jumps to returns. According to our parameter estimates,
on average, jumps contribute 1.06% to the equity premium
through the variance dynamics and also add 2.55% to the
equity premium through their contribution to skewness.

We find robust pricing of both the conditional variance
and the conditional skewness in the market equity pre-
mium. The equity premium associated with skewness is
about 3.4% per annum. This is very close to the 3.6% per
annum risk premium compensation for systematic skew-
ness found by Harvey and Siddique (2000) who study the
conditional skewness in a cross-section of monthly stock
returns. When we impose the preference restriction of a
nonnegative price associated with risk due to dynamics of
kurtosis, our findings show that this price is close to zero;
although, conditional kurtosis is significantly priced with a
positive sign when the skewness factor is not included.
At least at the market level, any contribution of kurtosis to
the equity premium has already been largely captured by
dynamics of the conditional skewness.

Our results offer an explanation for the conflicting
results in the literature on market risk and market
expected return. We find a significantly positive equity
premium but the positive relationship between condi-
tional variance and return only occurs when the GARCH
variance component is at or above average levels. An
increase in GARCH variance increases both the conditional
variance and the conditional skewness (st has a smaller
negative value), leading to offsetting effects on the equity
premium. During calm times (low level of the GARCH
variance component), the skewness effect dominates. In
more volatile times, the variance premium effect domi-
nates and we will be able to see a positive risk-variance
tradeoff, whether we include conditional skewness in the
equity premium specification or not.

Solving for the functional relationship between the
parameters of our assumed general utility function and
the prices of risk associated with the asset pricing model,
we are able to calibrate the implied utility parameters to
the empirical estimates for our equity premium specifica-
tion. We then evaluate the out-of-sample realized utility
and certainty-equivalent returns associated with a simple
portfolio allocation application. Compared to several spe-
cial case benchmarks, including one that does not include
jumps, our maintained prudence model generates higher
realized utility and certainty-equivalent returns.

Finally, we check the robustness of our results by
extending the model to include a variance risk term as
defined by Chabi-Yo (2012). The variance risk is not
significantly priced in our maintained model which
includes the premium of conditional skewness. When we
exclude the contribution of conditional skewness to equity
premium, the price of variance risk becomes significant.
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This is similar to the cross-sectional result in Boguth and
Kuehn (2013) who use a recursive utility derivation to
evaluate the premium associated with variance risk of the
consumption growth rate. We appeal to the assumptions
in Campbell (1993) and derive a time-series application for
the market portfolio, and discuss our results in the context
of a recursive utility setting.

Our paper differs from the existing literature on pricing
jump risk in several important dimensions. Firstly, our
parametric model differs from those which employ non-
parametric methods to estimate realized jumps from high-
frequency data, for example, Bollerslev and Todorov
(2011), in that we estimate both the jump intensity and
jump-size distribution at the same time, along with the
other parameters of the conditional distribution. Our
approach allows us to filter returns into large changes
and smaller changes, based on their different dynamic
properties, simultaneously with estimation of all of the
parameters of the conditional distribution. Large changes
in daily returns contribute to the dynamics of conditional
variance, the dynamics of conditional skewness and kur-
tosis, and consequently, the dynamics of expected return
through pricing of the associated risks. This allows
expected jumps to have an impact on the shape and
location of the distribution, whether or not they occur
(the peso problem).

Secondly, studies using both underlying asset returns
and options are generally based on no-arbitrage (risk-
neutral) pricing (for example, Pan, 2002; Conrad,
Dittmar, and Ghysels, 2013; Christoffersen, Jacobs, and
Ornthanalai, 2012); whereas our specification of the equity
premium is based on equilibrium asset pricing theory.
Consequently, we only need the index return data to
estimate the jump risk component of the equity premium.
Studies which require options data or very high-frequency
data will be restricted to shorter samples due to data
availability. In some cases, the price of jump risk for the
underlying is restricted to be zero, in some others it is
imprecisely estimated, or implies an equity premium that
is counterfactually large. Learning about tail events and
jump dynamics will require a long span of calendar data
such as used in our paper.

Thirdly, our equity premium specification allows jumps
to be priced linearly through the conditional variance and
nonlinearly through the higher-order (standardized)
moments. In contrast, papers relying on options data
typically assume that the compensation for jump risk is a
linear function of the jump intensity, in order to have
tractable option pricing formula. As we will demonstrate
in our results section, not having the nonlinear pricing of
jumps could be a potential source of misspecification that
makes many papers fail to find significant pricing of both
jump risk and diffusive risk, especially when only equity
data are available.

Finally, in contrast to many existing papers focusing on
option pricing, we allow jump arrival to be directed by a
different process than squared-return innovations. By
introducing this additional source of dynamics, our
approach is more flexible than those that parameterize
jump arrival as an affine function of the time-varying
volatility.

2. Derivation of our model

The focus of our paper is on the potential effects of
large changes in return (jumps) on the equity premium.
We build on Harvey and Siddique (2000), Dittmar (2002),
and Guidolin and Timmermann (2008) who provide an
asset pricing derivation for an empirical specification that
tests whether or not higher-order moments of returns are
priced as risk factors.1 In our case, the dynamics of the
conditional 3rd and 4th central moments are driven by an
autoregressive jump-arrival process; and the conditional
variance dynamics are driven by both jumps and a two-
component GARCH process. Further, standardizing the
conditional 3rd and 4th central moments by functions of
the conditional variance (that is, pricing conditional skew-
ness and conditional kurtosis) allows a separation of
variance effects from asymmetry effects and allows jump
risk to be priced both linearly and nonlinearly. Using
results from equilibrium pricing theory, prices of risk are
associated with a more general utility function rather than
being restricted by the single parameter of relative risk
aversion.

2.1. Parameterization of the equity premium

We begin by taking a fourth-order Taylor-series expan-
sion of a general utility function UðWtþ1Þ in which Wtþ1 is
aggregate wealth at time t+1. Defining RW

tþ1 as the simple
net return on wealth and using the equality Wtþ1 ¼
Wtð1þ RW

tþ1Þ, we expand UðWtþ1Þ around Wtð1þ CtÞ,
where Ct is an arbitrary return:

U Wtþ1ð Þ � ∑
4

n ¼ 0

UðnÞðWtð1þ CtÞÞ
n!

ðWtþ1�Wtð1þ CtÞÞn

¼ ∑
4

n ¼ 0

UðnÞðWtð1þ CtÞÞ
n!

ðWtðRW
tþ1�CtÞÞn: ð1Þ

Without loss of generality, assuming the known initial
wealth Wt¼1, the Taylor-series expansion of marginal
utility is

U′ Wtþ1ð Þ � ∑
3

n ¼ 0

Uðnþ1Þð1þ CtÞ
n!

ðRW
tþ1�CtÞn: ð2Þ

This implies that the pricing kernel, Mtþ1 � U′ðWtþ1Þ=
U′ðWtÞ, can be approximated by

Mtþ1 � ∑
3

n ¼ 0

Uðnþ1Þð1þ CtÞ
U′ð1Þn! ðRW

tþ1�CtÞn

¼ g0t þ g1tðRW
tþ1�CtÞ þ g2tðRW

tþ1�CtÞ2 þ g3tðRW
tþ1�CtÞ3;

ð3Þ

1 Early examples of three-moment Capital Asset Pricing Model
(CAPM) applications include Kraus and Litzenberger (1976), Friend and
Westerfield (1980), Sears and Wei (1985), Lim (1989), Harvey and
Siddique (1999), Hwang and Satchell (1999), and Smith (2007). Chang,
Christoffersen, and Jacobs (2013) use the Intertemporal Capital Asset
Pricing Model (ICAPM) to motivate their evaluation of whether market
skewness is priced in the cross-section of stock returns. Nonparametric
asset pricing models, for example, Bansal and Viswanathan (1993),
Chapman (1997), and Rossi and Timmermann (2010) approximate the
pricing kernel using a flexible functional form.
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in which gnt ¼ ðUðnþ1Þð1þ CtÞ=U′ð1ÞÞ1=n!¼ ðUðnþ1Þð1þ CtÞ
=U′ð1þ CtÞn!ÞU′ð1þ CtÞ=U′ð1Þ for n¼0, 1, 2, 3. The corre-
sponding four-moment asset pricing model becomes

Et ½RW
tþ1��Rf

t ¼ κ1t CovtðRW
tþ1;R

W
tþ1�CtÞ

þκ2t CovtðRW
tþ1; ðRW

tþ1�CtÞ2Þ þ κ3t CovtðRW
tþ1; ðRW

tþ1�CtÞ3Þ;
ð4Þ

κnt ¼�gntð1þ Rf
t Þ and Rft is the net return on the

riskfree asset.
As in Dittmar (2002), U′40;Uð2Þo0;Uð3Þ40, and

Uð4Þo0, that is, positive marginal utility, risk aversion,
decreasing absolute risk aversion, and decreasing absolute
prudence,2 respectively, imply that g1to0; g2t40; g3to0
while g0t ¼ 1 for Ct¼0. Since the utility approximation is
truncated at N¼4, gnt ¼ 0 for n43. With these preference
restrictions, κ1t40; κ2to0, and κ3t40 in Eq. (4).

One frequently used expansion point is Ct¼0. This has
been used by Harvey and Siddique (2000), Dittmar (2002),
Guidolin and Timmermann (2008), and others. In what
follows, we will discuss an alternative expansion point,
Ct ¼ Et ½RW

tþ1�, also used by Chabi-Yo, Ghysels, and Renault
(2007) and Chabi-Yo (2012). As noted in the latter, this is
equivalent to Samuelson's small noise expansion. To see
this connection, write RW

tþ1 as

RW
tþ1�Et ½RW

tþ1� ¼ ϵYtþ1; ð5Þ
then we can see that as ϵ approaches zero, RW

tþ1 will
approach Et ½RW

tþ1�.
Simplifying notation to

Rtþ1 � RW
tþ1�Rf

t ;

ϵtþ1 � RW
tþ1�Et ½RW

tþ1� ¼ ðRW
tþ1�Rf

t Þ�ðEt ½RW
tþ1��Rf

t Þ ¼ Rtþ1�Et ½Rtþ1�;

and setting Ct ¼ Et ½RW
tþ1�, the expected excess return will be

a function of the centralized moments, that is,

Et ½Rtþ1� ¼ at VartðRtþ1Þ þ bt CovtðRtþ1; ϵ
2
tþ1Þ

þct CovtðRtþ1; ϵ
3
tþ1Þ

¼ at Vartðϵtþ1Þ þ btEt ½ϵ3tþ1� þ ctEt ½ϵ4tþ1�; ð6Þ
where

at ��Uð2Þð1þ CtÞ
U′ð1þ CtÞ

U′ð1þ CtÞð1þ Rf
t Þ

U′ð1Þ ; ð7Þ

bt ��Uð3Þð1þ CtÞ
2U′ð1þ CtÞ

U′ð1þ CtÞð1þ Rf
t Þ

U′ð1Þ ; ð8Þ

ct ��Uð4Þð1þ CtÞ
6U′ð1þ CtÞ

U′ð1þ CtÞð1þ Rf
t Þ

U′ð1Þ : ð9Þ

Expanding around Ct¼0 and abstracting from changes in
Rt
f
, these coefficients are constant; but, in that case, the test

Eq. (6) will not be a function of the central moments.
For our empirical model, we label the continuously

compounded market equity premium expected for period
t+1, given information at time t, as mt. Defining
vt � Vartðϵtþ1Þ; st � Et ½ϵ3tþ1�=v

3=2
t ; kt � Et ½ϵ4tþ1�=v2t , that is,

the conditional variance, conditional skewness, and con-
ditional kurtosis, Eq. (6) becomes

mt ¼ ψv;tvt þ ψ s;tst þ ψk;tkt ; ψv;tZ0; ψ s;tr0; ψk;tZ0; ð10Þ

and

ψv;t ¼ at ;

ψ s;t ¼ btv
3=2
t ;

ψk;t ¼ ctv2t : ð11Þ

Following Guidolin and Timmermann (2008) and Chabi-Yo
(2012), we make an additional assumption to estimate an
empirical version of the model. In our case,

mt ¼ ψvvt þ ψ sst þ ψkkt ; ψvZ0;ψ sr0;ψkZ0: ð12Þ
The sample coefficient estimates in Eq. (12) can be viewed as
the unconditional mean of the corresponding time-varying
coefficients on the right-hand side (RHS) of Eqs. (11).

We estimate this conditional equity premium with and
without an intercept and the restriction on ψv. The
restrictions on the parameters in Eq. (12), notably that
ψ sr0 and ψkZ0, follow from the preference specification
and the associated approximation to the pricing kernel
described above. Appendix A.3 below also shows how we
use our empirical estimates to calibrate the utility para-
meters for our out-of-sample portfolio application.

The special case of power utility, as in Duan and Zhang
(2010), is also consistent with the restrictions ψ sr0;
ψkZ0. This parameterization is

mt ¼ ψvvt þ ψ sv
3=2
t st þ ψkv

2
t kt where ð13Þ

ψv ¼ ðγ�0:5Þ; ψ s ¼�ð3γ2�3γ þ 1Þ=6; ψk ¼ ð4γ3�6γ2 þ 4γ�1Þ=24:
ð14Þ

For robustness, we also estimate an unrestricted ver-
sion with no restrictions on the coefficients ψv;ψ s;ψk

associated with the conditional market equity premium
parameterization given by Eq. (12). However, our focus is
to evaluate whether jumps contribute to the dynamics of
the premium as parameterized in Eq. (12) or special cases
thereof. Note that we include the effects of jumps on the
conditional variance vt, as well as on the higher-order
standardized conditional moments st and kt.

2.2. Dynamics of continuously compounded returns

We define the continuously compounded excess return
on the market index as

rt � rm;t�rf ;t ; ð15Þ

in which rm;t is the continuously compounded return
(including distributions) on the market index and rf ;t is
the continuously compounded riskfree rate. Henceforth,
we will usually refer to rt, the excess continuously com-
pounded return on the market, as the log return. In the
following, the information set is Φt ¼ fr1;…; rtg.

Assume that the dynamics of realized log returns are
driven by

rtþ1 ¼mt þ utþ1; ð16Þ

2 As derived in Kimball (1990, 1993), decreasing absolute prudence
implies that as wealth increases, the precautionary savings motive
declines.
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where

utþ1 ¼ ρ1ut þ ρ2ut�1 þ ϵtþ1: ð17Þ
That is, utþ1 has a predictable autoregressive component
due to stale prices,3 or missing pricing factors, and a mean-
zero return innovation ϵtþ1.

Combining Eqs. (16) and (17), and decomposing the
total return innovation ϵtþ1 into two components, we can
rewrite realized log returns as

rtþ1 ¼mt þ ρ1ðrt�mt�1Þ þ ρ2ðrt�1�mt�2Þ þ ϵ1;tþ1 þ ϵ2;tþ1; ð18Þ
in which mt is the continuously compounded market equity
premium expected for period t+1, given information, Φt ,
available at time t. In addition, we assume that log returns
are driven by two stochastic innovations ϵ1;tþ1 and ϵ2;tþ1. In
particular: ϵ2;tþ1 is a jump innovation to returns, compensated
so that it is mean zero; ϵ1;tþ1 is a mean-zero normal
innovation to returns directed by a conditional normal
process; ϵ1;tþ1 and ϵ2;tþ1 are contemporaneously independent.

Note that the conditional mean of the log return
process is

E½rtþ1jΦt � ¼mt þ ρ1ðrt�mt�1Þ þ ρ2ðrt�1�mt�2Þ; ð19Þ
but it is the market equity premium mt (the conditional
mean net of any remaining serial correlation due to, for
example, stale prices) that we evaluate below using an
asset pricing framework.

2.3. Parameterization of the jump component

The mean-zero (compensated) innovation to returns
from jumps is labeled ϵ2;tþ1. This innovation is directed by
a conditional compound Poisson–Normal distribution
reflecting a conditional Poisson jump-arrival process com-
bined with a conditional normal jump-size distribution.

2.3.1. Time-varying arrival of jumps
Define the discrete-valued number of jumps over the

interval ðt; t þ 1Þ as ntþ1A0;1;2;… . The conditional dis-
tribution of ntþ1 is Poisson with parameter λt , that is,

Pðntþ1 ¼ j Φtj Þ ¼ expð�λtÞλjt
j!

; j¼ 0;1;2;… : ð20Þ

The conditional arrival rate of jumps, λt , is the expected
number of jumps for period t+1 given information at time
t, that is,

E½ntþ1jΦt � ¼ λt : ð21Þ
In other words, the number of jumps in period t+1, ntþ1, is
directed by a conditional Poisson process with a time-
varying jump-arrival rate λt .4

As in Chan and Maheu (2002) and Maheu and McCurdy
(2004), we parameterize the time-series dynamics of λt as an
autoregressive process (labeled ARJI for autoregressive jump
intensity):

λt ¼ γ0 þ γ1λt�1 þ γ2ζt ; ð22Þ
in which the jump-arrival innovation for period t is defined as

ζt ¼ E½nt jΦt ��λt�1 ð23Þ

ζt ¼ E½nt jΦt ��E½nt jΦt�1�: ð24Þ
Jumps are latent; the expected number of jumps is computed
using the estimation filter. The jump-arrival innovation is the
update in the expected number of jumps for period t, when
information is updated from period t�1 to period t. The time-
series parameterization for the expected number of jumps, λt ,
given by Eq. (22), has a smoothing or persistence coefficient,
γ1, associated with the expected number of jumps for the
previous period, as well as a news-impact coefficient, γ2,
associated with the jump-arrival innovation.

It is important to note that we allow jump arrival to be
directed by a different process than squared-return inno-
vations. Instead, the autoregressive jump frequency is
directed by measurable jump-arrival innovations. This
allows the impact and persistence of time-varying jump
arrival on expected variance dynamics to be different than
that captured by the GARCH component of variance.

2.3.2. The jump innovation to returns
The compensated jump innovation to returns, ϵ2;tþ1, is

given by

ϵ2;tþ1 ¼ Jtþ1�θλt ; ð25Þ
where the total size of jumps in period t+1, Jtþ1, is

Jtþ1 ¼ ∑
ntþ1

k ¼ 1
Ytþ1;k; ð26Þ

in which Ytþ1;k is the size of jump k in period t+1 which is
drawn from a normal distribution with mean θ and
variance δ2 as in

Ytþ1;k �Nðθ; δ2Þ: ð27Þ
Note that we estimate the moments of this jump-size
distribution which, for example, contributes to skewness
of the return distribution by allowing the average jump
size to be different from zero.

Since

E½Jtþ1jΦt � ¼ θλt ; ð28Þ
the compensated jump innovation is mean zero, that is,

E½ϵ2;tþ1jΦt � ¼ E½Jtþ1jΦt ��θλt ¼ 0: ð29Þ

2.4. Parameterization of the normal innovation component

The normal innovation to returns, ϵ1;tþ1, is assumed to
be directed by a two-component GARCH specification5

with feedback from jumps. This specification, which

3 As described in Section 3.1 below, our data are daily index returns,
the components of which do not all trade every day. See Campbell, Lo,
and MacKinlay (1997) for a derivation of the resulting autoregressive
structure in realized returns. In Table 5 we show that our results with
respect to the equity premium are robust to whether or not we include
this autoregressive structure.

4 Early examples of time-varying jump arrival include Johannes,
Kumar, and Polson (1999), Bates (2000), Andersen, Benzoni, and Lund
(2002), Pan (2002), and Eraker (2004).

5 Other component GARCH-type models include Engle and Lee
(1999), Maheu and McCurdy (2007), and Chan and Feng (2012).
Chernov, Gallant, Ghysels, and Tauchen (2003) suggest that either a
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generalizes that in Maheu and McCurdy (2004), is para-
meterized as follows:

ϵ1;tþ1 ¼ stztþ1; ztþ1 �NIDð0;1Þ; ϵ1;tþ1jΦt �Nð0; s2t Þ; ð30Þ
where s2t is directed by a two-component GARCH process
specified as

s2t ¼ s21;t þ s22;t ; ð31Þ

s21;t ¼ ωþ g1ðA1;ΦtÞϵ2t þ β1s
2
1;t�1; ð32Þ

s22;t ¼ g2ðA2;ΦtÞϵ2t þ β2s
2
2;t�1; ð33Þ

ϵt ¼ ϵ1;t þ ϵ2;t : ð34Þ

The long-run component is captured by s21;t while the
transitory moves in the GARCH conditional variance are
modeled by s22;t . To help visualize their properties using
our maintained model estimates, we plot the paths of
these two components for 2007 in Fig. 1. Having the
second component helps capture the diffusive volatility
better. More importantly, for our purpose, the second
component helps control the noisy or transitory part of
the diffusive volatility, without which the noise could
potentially be sorted as jumps, making jumps less pre-
cisely estimated.

The generalized news-impact coefficient giðAi;ΦtÞ for
the ith GARCH component, i¼1,2, allows asymmetric
impact from good versus bad news, as well as from jump
versus normal innovations. That is,

giðAi;ΦtÞ ¼ expðαi þ IðϵtÞðαa;j;iE½nt jΦt � þ αa;iÞÞ; i¼ 1;2;

IðϵtÞ ¼ 1 if ϵto0; otherwise 0: ð35Þ

Recall that E½nt jΦt � is the expected number of jumps at
time t given Φt , provided by our estimation filter.

Therefore, jumps are allowed to affect variance
dynamics in several ways. The direct effect originates from
dynamics associated with the autoregressive jump fre-
quency which is directed by measurable jump-arrival
innovations. There is also a feedback effect of jumps
through the GARCH parameterization of the impact of
squared-return innovations on future variance. We allow
return innovations to have asymmetric impact and persis-
tence effects on future variance depending on whether the
source of the innovations was from jumps or normal
innovations and whether or not it was associated with
good or bad news.

2.5. Dynamics of higher-order conditional moments

Extending Das and Sundaram (1997) and Maheu and
McCurdy (2004) for the ARJI-GARCH specification, the
conditional variance (vt), conditional skewness (st), and
conditional kurtosis (kt) are

vt ¼ s21;t þ s22;t þ λtðθ2 þ δ2Þ; ð36Þ

st ¼
λtðθ3 þ 3θδ2Þ

ðs21;t þ s22;t þ λtθ
2 þ λtδ

2Þ3=2
; ð37Þ

kt ¼ 3þ λtðθ4 þ 6θ2δ2 þ 3δ4Þ
ðs21;t þ s22;t þ λtδ

2 þ λtθ
2Þ2

: ð38Þ

Clearly, jumps affect all of the conditional moments. As
indicated in Eq. (36), the moments of the jump-size
distribution and jump arrival have a direct impact, mea-
sured by λtðθ2 þ δ2Þ, on the conditional variance. Clustering
of jump arrival, as parameterized in Eq. (22), contributes to
volatility clustering. As Eq. (35) shows, jumps also con-
tribute to volatility clustering through the news-impact
coefficient in the GARCH specification.

Time-varying jump arrival will be the source of time-
variation in the conditional 3rd and 4th moments
(numerators of Eqs. (37) and (38), respectively), whereas
the conditional skewness and kurtosis statistics, st and kt,
will also be affected by time-variation in the variance
clustering component s2t which is the total GARCH effect
augmented by any persistence in the jump impacts.

Note that if jump arrival was constant but nonzero,
λt � λ40, we would still have time-varying and non-
normal levels of skewness and kurtosis, as measured by
st and kt. On the other hand, if there were no jumps
expected, λt ¼ 0 for all t, conditional skewness and condi-
tional kurtosis would be the same as that for a conditional
normal distribution. We estimate both of these special
cases as part of our robustness analyses.

3. Data and estimation

3.1. Data

Our data are returns including distributions from a
broadly diversified equity index, that is, the CRSP (Center
for Research in Security Prices) NYSE/Amex/Nasdaq
value-weighted index (vwretd from dsix) for the period
January 2, 1926 to December 31, 2011. These returns are
converted to continuously compounded daily returns. For
the riskfree rates, we convert 30-day Treasury bill returns
(t30ret from mcti) to continuously compounded monthly

07−Jan 07−Mar 07−Jun 07−Sep 08−Jan
0

0.2

0.4

0.6
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1.2

1.4
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Two−component GARCH dynamics

Long−run component
Short−run component

Fig. 1. Long-run and short-run components of the diffusive volatility.
This figure plots the paths of the long-run and short-run components of
the diffusive volatility from our maintained model estimation.

(footnote continued)
two-component parameterization of stochastic volatility (SV) or an SV-
jump (SV-J) diffusion can capture the volatility dynamics.
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returns and divide by 22 to approximate daily riskfree
continuously compounded rates. These are subtracted
from the continuously compounded daily index returns
resulting in our full sample of 22,785 daily excess log
returns. Descriptive statistics are reported in Table 1.

3.2. Estimation method

As in Maheu and McCurdy (2004), analytical filtering
allows one to infer probabilities associated with the
unobservable jumps. The filter can be constructed as

Pðntþ1 ¼ j Φtþ1;Θ
�� Þ ¼ f ðrtþ1jntþ1 ¼ j;Φt ;ΘÞPðntþ1 ¼ jjΦt ;ΘÞ

f ðrtþ1jΦt ;ΘÞ
;

j¼ 0;1;2;… : ð39Þ

This filter provides an ex post distribution for the number
of jumps, ntþ1. One method to assess whether or not a
jump occurred in a particular period would be to use the
filter to find the probability that at least one jump
occurred. This is, Pðntþ1Z1jΦtþ1Þ ¼ 1�Pðntþ1 ¼ 0jΦtþ1Þ,
which is directly available from model estimation.

The model can be estimated by maximum likelihood.
This involves integrating out the number of unobserved
jumps. Given the number of jumps j and the parameter
vector Θ, the conditional density of returns f ðrtþ1jΦt ;Θ;
ntþ1 ¼ jÞ is

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðs2t þ jδ2Þ

q

�exp �1
2
ðrtþ1�mt�ρ1ðrt�mt�1Þ�ρ2ðrt�1�mt�2Þ�ðj�λtÞθÞ2

s2t þ jδ2

 !
;

ð40Þ

where jAf0;1;2;…g. The full likelihood contribution in
terms of rtþ1 is then

f ðrtþ1jΦt ;ΘÞ ¼ ∑
1

j ¼ 0
f ðrtþ1jΦt ;Θ;ntþ1 ¼ jÞPðntþ1 ¼ jjΦt ;ΘÞ;

ð41Þ

where the second term in the summation is the prob-
ability density function (p.d.f.) of the time-varying Poisson
distribution in (20). Finally, the full sample loglikelihood is
l¼∑T

t ¼ 1 log f ðrtþ1jΦt ;ΘÞwhich is maximized with respect
to Θ by a quasi-Newton routine.

The terms in the likelihood and filter involve an infinite
summation. To make estimation feasible, we truncated this
summation at 25. In practice, for our model estimates, we
found that the conditional Poisson distribution had zero
probability in the tail for values of ntZ10.

4. Results

4.1. Parameter estimates

Table 3 provides parameter estimates for the full model
with alternative specifications for the conditional market
equity premium, mt. Column 2, labeled ‘prudence’, reports
estimates for our maintained parameterization of mt given
in Eq. (12). Column 3, labeled ‘intercept’, provides esti-
mates for the same model including an intercept, μ, in the
conditional mean. Column 4, labeled ‘unrestricted’,
removes the sign restrictions on skewness and kurtosis
implied by decreasing absolute prudence. Column 5,
labeled ‘variance’, just prices the conditional variance, vt;
column 6, labeled ‘skewness’, prices both the conditional
variance and conditional skewness; and column 7, labeled
‘kurtosis’ prices both the conditional variance and condi-
tional kurtosis. As described below, we try pricing these
components separately due to the strong negative correla-
tion between skewness and kurtosis.

In order to focus on the alternative specifications for
the equity premium, all of the models reported in Table 3
include an AR(2) dynamic in the conditional mean to
capture remaining serial correlation, have an identical
GARCH specification for volatility clustering, and have
the same parameterization for jump dynamics.

The estimation results in Table 3 reveal significant risk
pricing associated with the market equity premium. In our
maintained specification (column 2), the coefficient on the
conditional variance is 0.026 ðψvÞ with a significant t-stat
of 3.4. The skewness coefficient ψ s is �0.027 with a
significant t-stat of �3.4, implying a significant negative
price associated with skewness. If the skewness statistic,
st, is also negative, which it is in our sample, this implies
that investors will be compensated with extra expected
return for being exposed to negative skewness. Exposure
to dynamics of kurtosis, however, does not seem to be

Table 1
Summary statistics for daily excess returns rt.
The daily excess returns rt are scaled by 100.

Obs Mean StDev Skewness Kurtosis Min Max

22,785 0.021 1.071 �0.436 20.447 �18.823 14.412

Table 2
Model summary.

rtþ1 ¼mt þ ρ1ðrt�mt�1Þ þ ρ2ðrt�1�mt�2Þ þ ϵ1;tþ1 þ ϵ2;tþ1,
‘Prudence’ model: mt � ψvvt þ ψ sst þ ψkkt , ψ sr0;ψkZ0,
‘Intercept’ model: mt � μþ ψvvt þ ψ sst þ ψkkt , ψ sr0;ψkZ0,
‘Unrestricted’ model: mt � μþ ψvvt þ ψ sst þ ψkkt ,

ϵ1;tþ1 ¼ stztþ1; ztþ1 �NIDð0;1Þ,
s2t ¼ s21;t þ s22;t ,

s21;t ¼ωþ g1ðA1;Φt Þϵ2t þ β1s
2
1;t�1,

s22;t ¼ g2ðA2 ;Φt Þϵ2t þ β2s
2
2;t�1,

ϵt ¼ ϵ1;t þ ϵ2;t ,
giðAi ;Φt Þ ¼ expðαi þ Iðϵt Þðαa;j;iE½nt jΦt � þ αa;iÞÞ for i¼1,2;,
Iðϵt Þ ¼ 1 if ϵto0, otherwise 0,
ϵ2;tþ1 ¼∑ntþ1

k ¼ 1Ytþ1;k�θλt , Ytþ1;k �Nðθ; δ2Þ,
λt ¼ E½ntþ1jΦt �, λt ¼ γ0 þ γ1λt�1 þ γ2ζt ,
vt ¼ s2t þ λt ðθ2 þ δ2Þ,

st ¼ λt ðθ3 þ 3θδ2Þ
ðs2t þ λtθ

2 þ λtδ
2Þ3=2

,

kt ¼ 3þ λt ðθ4 þ 6θ2δ2 þ 3δ4Þ
ðs2t þ λtδ

2 þ λtθ
2Þ2

.
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priced in the presence of the skewness premium. For the
‘intercept’ case (column 3), the intercept μ, which is used
to capture missing pricing factors, has a t-stat �2.2.
Returns are very volatile for several months following
September 2008. For this subperiod, the diffusive variance
captures a relatively larger proportion of the variability.
This significantly higher variance than average implies that
a negative intercept is required to fit the average premium
for the entire sample. If one were to end the sample prior

to 2008, the intercept is insignificantly different from zero
supporting our maintained specification given by Eq. (12)
with results reported in column 2.6

Table 3
Parameter estimates: alternative specifications of the equity premium.

Parameters refer to the model summarized in Table 2. Restrictions are: μ¼ 0; ψ sr0; ψkZ0, for the ‘prudence’ model; ψ sr0;ψkZ0, for the ‘intercept’
model; ψ s ¼ 0;ψk ¼ 0, for the ‘variance’ model; ψk ¼ 0, for the ‘skewness’ model; and ψ s ¼ 0, for the ‘kurtosis’ model. t-Stats are in parentheses. lgl is the
loglikelihood.

Pricing models

Parameter Prudence Intercept Unrestricted Variance Skewness Kurtosis

μ �0:041
ð�2:247Þ

�0:021
ð�1:186Þ

0:020
ð3:337Þ

�0:041
ð�2:248Þ

�0:022
ð�1:194Þ

ψv 0:026
ð3:396Þ

0:045
ð4:051Þ

0:053
ð5:190Þ

0:022
ð2:216Þ

0:045
ð4:052Þ

0:034
ð3:151Þ

ψ s �0:027
ð�3:423Þ

�0:069
ð�3:014Þ

�0:270
ð�4:064Þ

�0:069
ð�3:015Þ

ψk 0:000
ð0:000Þ

0:000
ð0:000Þ

�0:022
ð�3:228Þ

0:005
ð2:295Þ

ρ1 0:148
ð21:080Þ

0:147
ð21:012Þ

0:154
ð21:382Þ

0:149
ð21:240Þ

0:147
ð21:012Þ

0:149
ð21:225Þ

ρ2 �0:046
ð�6:828Þ

�0:047
ð�6:867Þ

�0:051
ð�7:325Þ

�0:045
ð�6:615Þ

�0:047
ð�6:867Þ

�0:046
ð�6:713Þ

ω 0:000
ð0:154Þ

0:000
ð0:402Þ

0:000
ð0:547Þ

0:000
ð0:480Þ

0:000
ð0:403Þ

0:000
ð0:278Þ

α1 �4:672
ð�29:386Þ

�4:752
ð�28:003Þ

�4:781
ð�28:978Þ

�4:657
ð�29:089Þ

�4:752
ð�28:013Þ

�4:687
ð�29:195Þ

β1 0:973
ð351:850Þ

0:976
ð338:501Þ

0:977
ð395:158Þ

0:972
ð350:061Þ

0:976
ð338:244Þ

0:974
ð341:294Þ

α2 �8:195
ð�3:700Þ

�8:140
ð�3:980Þ

�8:110
ð�3:722Þ

�8:249
ð�3:457Þ

�8:145
ð�3:803Þ

�8:197
ð�3:950Þ

β2 0:781
ð46:827Þ

0:788
ð53:014Þ

0:795
ð60:768Þ

0:775
ð41:523Þ

0:788
ð53:027Þ

0:781
ð46:595Þ

αa;j;1 �2:523
ð�4:826Þ

�2:935
ð�4:490Þ

�3:752
ð�4:231Þ

�2:188
ð�5:450Þ

�2:935
ð�4:502Þ

�2:490
ð�4:746Þ

αa;1 1:376
ð6:338Þ

1:250
ð5:744Þ

1:216
ð6:211Þ

1:483
ð7:475Þ

1:250
ð5:747Þ

1:379
ð6:280Þ

αa;j;2 �0:122
ð�1:123Þ

�0:217
ð�2:128Þ

�0:306
ð�3:452Þ

�0:044
ð�0:422Þ

�0:217
ð�2:129Þ

�0:124
ð�1:120Þ

αa;2 6:293
ð2:841Þ

6:355
ð3:106Þ

6:408
ð2:939Þ

6:234
ð2:609Þ

6:360
ð2:969Þ

6:298
ð3:031Þ

γ0 0:005
ð2:789Þ

0:003
ð2:324Þ

0:002
ð3:025Þ

0:007
ð3:395Þ

0:003
ð2:324Þ

0:006
ð2:750Þ

γ1 0:959
ð88:165Þ

0:972
ð100:115Þ

0:979
ð163:297Þ

0:948
ð82:171Þ

0:972
ð100:120Þ

0:959
ð85:437Þ

γ2 0:132
ð3:524Þ

0:100
ð3:612Þ

0:067
ð4:178Þ

0:169
ð3:848Þ

0:100
ð3:615Þ

0:135
ð3:499Þ

θ �0:482
ð�9:101Þ

�0:471
ð�8:519Þ

�0:455
ð�8:077Þ

�0:508
ð�9:845Þ

�0:471
ð�8:520Þ

�0:491
ð�9:281Þ

δ 0:977
ð15:927Þ

1:026
ð15:281Þ

1:047
ð16:112Þ

0:948
ð16:870Þ

1:026
ð15:283Þ

0:982
ð15:637Þ

lgl �26,386.791 �26,384.271 �26,378.504 �26,390.700 �26,384.270 �26,387.465

6 Note that our results are not driven by the potential structural
break at the end of the 1930s. Estimation using subsamples 1940 to 2011
and 1963 to 2011 give similar results.
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The GARCH components of the variance are very
similar across models. The first GARCH component cap-
tures the long-run dynamics (highly persistent with a β1
estimate of 0.97); while the second GARCH component has
a β2 of about 0.78 indicating lower persistence. As reported
in the third row of Panel B in Table 6, a one-component
GARCH specification is rejected (p-value 4.13e�52) in favor
of the maintained two-component GARCH parameterization.

The next set of parameters (fourth panel Table 3)
capture volatility asymmetry with respect to the sign of
the return innovation and the inferred number of jumps as
parameterized in Eq. (35). These asymmetries enter both
the short-run and long-run components of the GARCH
specification. Again, parameter estimates are very similar
across models. In each case, a negative return innovation
(bad news) results in a significant increase in the condi-
tional variance (αa;1 and αa;2 are positive) while an inferred
jump contributes to a drop in the GARCH variance (αa;j;1
and αa;j;2 are negative). That is, jump innovations to returns
get incorporated into prices more quickly than normal
innovations. This effect ðαa;j;1Þ is strongest for the long-run
component.

Despite a rich two-component GARCH specification,
there remains strong evidence of jump dynamics in daily
returns. The arrival of jumps is autocorrelated with a γ1 of
0.96 which is highly significant. Jumps tend to arrive in
clusters and this will have important implications for the
dynamics of the higher-order conditional moments of
returns as summarized in Eqs. (36)–(38). The likelihood
ratio (LR) test for no autocorrelation in jump arrival is
decisively rejected with a p-value of 3.7e�23. The arrival
of jumps is infrequent, on average. That is, according to the
parameter estimates, the unconditional jump-arrival rate,
E½λt � ¼ γ0=ð1�γ1Þ, is 0.13 which implies about 33 jumps on
average per year in the long run. Also, on average, jumps
result in a drop in the market price, that is, the mean of the
jump-size distribution, θ, is significantly negative.

4.1.1. Alternative equity premium specifications
We explore additional pricing specifications in columns

5–7 of Table 3. In column 5 we report results from a
parameterization that imposes the restriction that skew-
ness and kurtosis are not priced, that is, ψ s ¼ ψk ¼ 0. In this
special case, the conditional variance (which includes
jump effects) is still significantly priced. However, the LR
test presented in Table 6 Panel A rejects ψ s ¼ ψk ¼ 0.7

It is interesting that if we estimate the power utility
special case of our maintained model, that is, Eqs. (13)
and (14), the results are very similar to our special case of
pricing risk captured by the conditional variance. That is,
estimating a risk premium specification under the power
utility assumption gives essentially the same results as in
column 5 of Table 3 since ψ s and ψk associated with Eqs.
(13) and (14) are estimated to be close to zero and
statistically insignificant in our sample. Note that this

special case implies a coefficient of relative risk aversion
of about 2.7.8

Column 4 of Table 3 reveals that if we remove the
restriction that ψ sr0;ψkZ0 implied by the preference
theory in Dittmar (2002) and others, both skewness and
kurtosis are significantly priced in the equity premium, but
the price, ψk, associated with kurtosis is negative. This is
counterintuitive and at odds with the preference-based
restrictions.

If we only price the conditional variance and condi-
tional skewness (column 6), the results are essentially the
same as in column 3 with the difference due to numerical
approximation errors. If we only price conditional variance
and conditional kurtosis (column 7), then both these risk
factors are also significantly priced in the equity premium.
More importantly, the coefficient on the kurtosis becomes
significantly positive. Taken together, our results suggest
that skewness and kurtosis at the market level seem to
pick up the same source of risk.

Investigating the correlation of the estimated skewness
and kurtosis (from both our model and sample counter-
part), we find a high negative correlation between skew-
ness and kurtosis (�0.96 from our model and �0.93 from
the sample estimate computed using a 15-year moving
window of the historical returns). A negative correlation
between risk-neutral skewness and kurtosis is also docu-
mented in Bakshi, Kapadia, and Madan (2003) in a study of
the effect of skewness and kurtosis on the slope of the
volatility surface. Chang, Christoffersen, and Jacobs (2013)
also find a large negative correlation between risk-neutral
skewness and kurtosis, a price of skewness robust to
different specifications, but no robust pricing result on
kurtosis in a cross-sectional study. This supports our
conclusion gleaned from estimating the alternative special
cases and also supports the preference-based restrictions
associated with our maintained specification in column 2.

4.1.2. Importance of nonlinear pricing of jumps
To demonstrate the importance of having a nonlinear

pricing structure for jumps in the equity premium, we
estimate a model with the full dynamics as in our
‘prudence’ model but with the equity premium specified
as follows:

mt ¼ ψvs
2
t þ ψ jλt : ð42Þ

This linear pricing specification is typically assumed in the
studies that use both equity and options to identify the
pricing of jump risk (e.g., Pan, 2002). We label this
specification of the equity premium as the ‘linear’ model.

Table 4 presents a comparison of the results for the
linear versus our nonlinear specification of the equity
premium. The parameter estimates for the GARCH and
jump dynamics of the ‘linear’ model are quite similar to
those in the ‘prudence’ model. Therefore, we only report
the estimates of the pricing coefficients to facilitate

7 The test statistic is 12.858; the p-value of 0.0016 corresponds to
two degrees of freedom (two restrictions). However, as shown in Table 3,
the skewness and the kurtosis factors are both capturing the same risk
from a pricing perspective so this is effectively a one degree-of-freedom
test in which case the p-value would be even lower.

8 As derived in our Appendix, the coefficient on the variance for the
risk premium, associated with simple as opposed to continuously
compounded returns, is 100� ψv þ 0:5.
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comparison. In the ‘linear’ model, we have ψ̂ j ¼ 0:188
(t-stat¼2.47) and ψ̂ v ¼ 0:017 (t-stat¼1.44), i.e., jump risk
is significantly priced whereas diffusive risk is not.
Furthermore, the likelihood (�26,392.3) of the ‘linear’
model is smaller than that (�26,386.8) of the ‘prudence’
model, despite the rich dynamics in the ‘linear’ model. The
pricing result of the ‘linear’ model is quite similar to what
Pan (2002) finds in a continuous time framework with
stochastic volatility and time-varying jumps. In addition,
both equity and options are used in Pan (2002).

This comparison highlights the importance of having a
nonlinear pricing structure for jumps in the equity pre-
mium. Having jumps priced through higher-order
moments not only works well empirically but, theoreti-
cally, is also consistent with more general preferences as
derived in Appendix A.3.

4.1.3. Alternative specifications of dynamics
Table 5 provides estimates for alternative specifications

of the volatility and jump dynamics. For example, remov-
ing jumps from our parameterization results in the special
cases of either a one-component or a two-component
GARCH-in-Mean (GIM) specification (columns 2 and 3,
respectively). As evident from the resulting likelihoods in
Table 5, compared with our maintained model in columns
2 or 3 of Table 3, including jumps results in a much
superior fit. As reported in Panel B of Table 6, the LR test
statistics of 1,879.9 and 1,465.1 reject the no-jump one-
component and two-component GIM special cases with
extremely small p-values.

Nevertheless, even with our most general specification
of jumps, the second GARCH component is still very
important; the LR test reported in Panel B of Table 6
comparing column 3 of Table 3 with a special case without
the second GARCH component has a p-value of 4.13e�52.

The asymmetric feedback from jumps to diffusive
volatility is also very important as revealed by the test of

the restriction αa;j;1 ¼ αa;j;2 ¼ 0 reported in the first line of
Panel B of Table 6.

Column 4 of Table 5 shows the results of assuming
constant jump arrival. The LR test reported in Panel B of
Table 6 decisively rejects constant jump arrival in favor of
our autoregressive parameterization of the jump-arrival
process (p-value of 3.74e�23).

Finally, column 5 of Table 5 confirms that the equity
premium pricing structure is robust to the specification
without an AR(2) structure in the conditional mean.
The pricing coefficients are similar to those of our main-
tained specification in columns 2 or 3 of Table 3: both ψv

and ψ s are significantly priced and ψk is close to zero.

4.2. Risk and the equity premium

Jumps contribute to the dynamics of the total condi-
tional variance and also drive the dynamics of conditional
skewness and conditional kurtosis in our maintained
model. The results for that model, reported in column 2
of Table 3, reveal a positive coefficient on the variance and
negative coefficient on skewness. Apparently, jumps con-
tribute to the pricing of the equity premium. However,
since both jumps and the GARCH volatility enter our
parameterizations of the conditional variance, conditional
skewness, and conditional kurtosis, the net contribution of
jumps versus GARCH volatility to the dynamics of equity
premium is difficult to disentangle. To this end, in this
subsection we focus on these two contributions to risk and
attempt to isolate their net effects on the equity premium.

Using the variance forecast as a measure of risk for the
market as a whole follows the long tradition from Merton
(1980). Given that we estimate constant moments for the
jump-size distribution, the contribution of jumps to the
dynamics of the equity premium is driven by λt . A larger λt
indicates a larger probability of a jump event. Jump events
are generally realizations in the tails of the distribution
and, according to our estimate of the jump-size distribu-
tion, they are more likely to be the left tail.

We compute the marginal effect of these two components
using the partial derivative of the equity premium mt with
respect to λt and st , respectively. Fig. 2 displays the partial
derivative of mt with respect to λt for a range of empirically
realistic values of λt . This is done for three different levels of
the GARCH volatility component. Note that the equity pre-
mium always increases in response to an increase in jump
risk ðλtÞ. However, the size of the effect differs depending on
the level of the GARCH volatility and the current value of λt .
A unit increase in λt yields the largest increase in the
premium when the GARCH volatility is low and when jump
activity is expected to be low. In more volatile times, as
measured by larger st and/or larger λt , the effect of an
increase in jump risk is still positive but much smaller.

In order to get some idea of the magnitude of the effect
of jump risk on the equity premium mt, we compute the
partial derivative of mt with respect to λt at each t. The
sample mean of this derivative is around 0.1062, suggest-
ing that one more jump in a year increases the equity
premium by 0.1062%. The average jump-arrival rate
ðλ ¼ 0:1361Þ implies about 34 jumps a year. Therefore,

Table 4
Importance of pricing jumps nonlinearly.

Model specifications are summarized in Table 2. The ‘prudence’ model
estimates are from the second column of Table 3. The ‘linear’ model
assumes that the equity premium is ψvs

2
t þ ψ jλt , with other dynamics the

same as in the ‘prudence’ model. t-Stats are in parentheses. lgl is the
loglikelihood.

Pricing models

Parameter prudence linear

ψv 0:026
ð3:40Þ

0:017
ð1:44Þ

ψ s �0:027
ð�3:42Þ

ψk 0:000
ð0:000Þ

ψ j 0:188
ð2:47Þ

lgl �26,386.79 �26,392.30

J.M. Maheu et al. / Journal of Financial Economics 110 (2013) 457–477466



Author's personal copy

based on our maintained model reported in column 2 of
Table 3, the contribution of jumps to the market equity
premium is about 3.61% per annum. Note that Pan (2002)
and Elkamhi and Ornthanalai (2009) report jump risk premia
of approximately 3.5% and 3.18%, respectively, by jointly
estimating return dynamics and option dynamics. Bollerslev
and Todorov (2011) obtain a median jump risk premium of
5.2% using options data and a nonparametric approach to
estimate realized jumps from high-frequency data.

The solid line in Fig. 3 reports the level of the equity
premium for different levels of the diffusive (GARCH)
volatility st , holding the jump-arrival rate at its average
level λ. The dotted line shows the equity premium due to
the total variance, that is, ψv � vt . Finally, the dashed line
shows the equity premium component due to skewness,
that is, ψ s � st . Interestingly, in contrast to the effect of an
increase in λt on mt, an increase in GARCH volatility has a
negative effect on the premium for small values of st and

Table 5
Parameter estimates: alternative specifications of dynamics.

Parameters refer to the model summarized in Table 2. The model label ‘GIM-1’ refers to a GARCH-in-Mean model with one variance component and no
jumps; ‘GIM-2’ refers to a GARCH-in-Mean specification with two variance components and no jumps; ‘constant λ’ refers to the ‘intercept’ model from
Table 3 but with a constant jump arrival rate λ; and the ‘no AR(2)’ specification is the ‘intercept’model with no autoregressive terms in the mean. t-Stats are
in parenthesis. lgl is the loglikelihood.

Pricing models

Parameter GIM-1 GIM-2 constant λ no ARð2Þ

μ 0:028
ð4:241Þ

0:019
ð2:938Þ

0:010
ð0:806Þ

�0:053
ð�2:952Þ

ψv 0:001
ð0:123Þ

0:023
ð2:690Þ

0:017
ð1:652Þ

0:043
ð4:213Þ

ψ s �0:013
ð�0:981Þ

�0:107
ð�3:660Þ

ψk 0:000
ð0:000Þ

0:000
ð0:000Þ

ρ1 0:158
ð21:613Þ

0:158
ð21:355Þ

0:150
ð21:301Þ

ρ2 �0:026
ð�3:661Þ

�0:030
ð�4:207Þ

�0:045
ð�6:640Þ

ω 0:013
ð12:937Þ

0:001
ð7:163Þ

0:000
ð1:713Þ

0:000
ð�0:379Þ

α1 �3:393
ð�33:523Þ

�4:467
ð�39:724Þ

�4:375
ð�34:660Þ

�4:789
ð�26:000Þ

β1 0:896
ð193:941Þ

0:982
ð583:814Þ

0:973
ð296:804Þ

0:978
ð335:339Þ

α2 �8:302
ð�2:352Þ

�8:303
ð�3:329Þ

�8:165
ð�4:070Þ

β2 0:805
ð79:699Þ

0:799
ð68:915Þ

0:798
ð56:954Þ

αa;j;1 �5:729
ð�1:539Þ

�3:031
ð�5:307Þ

αa;1 1:459
ð15:119Þ

�1:643
ð�3:545Þ

0:621
ð0:839Þ

1:199
ð5:588Þ

αa;j;2 �0:578
ð�6:580Þ

�0:241
ð�2:472Þ

αa;2 6:686
ð1:894Þ

6:857
ð2:748Þ

6:340
ð3:160Þ

γ0 0:126
ð6:317Þ

0:003
ð2:171Þ

γ1 0:980
ð127:773Þ

γ2 0:092
ð4:198Þ

θ �0:382
ð�8:035Þ

�0:454
ð�8:789Þ

δ 0:895
ð15:433Þ

1:048
ð16:913Þ

lgl �27,324.196 �27,116.827 �26,426.173 �26,615.734
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a positive effect for average to larger values of GARCH
volatility. The negative effect originates from the fact that
an increase in st increases both the conditional variance
and the skewness (decreases the negative skewness).9

Therefore, our results suggest that in relatively calm
times (small st), an increase in st has a stronger effect on
the equity premium from our skewness measure than
from the variance. Intuitively, investors value the increase
in skewness (st has a smaller negative value) and the
potential increase in upside more, therefore they demand
a smaller equity premium. In more volatile times, the
equity premium effect of st through the variance channel
dominates that from the skewness and investors demand a
higher equity premium for an increase in st .

We also present a numerical example in Table 7 to help
capture the intuition. To illustrate, we set the jump
intensity at the sample average. This table presents the
results on two low-volatility days. Suppose on one day the
diffusive volatility is 0.07 (annualized), then according to
our ‘prudence’ model estimation, the equity premium
from conditional variance is 2.3% (annualized) and the
equity premium from the conditional skewness is 6.5%
(annualized), resulting in a total equity premium of 8.8%
(annualized) for this particular day. It is clear that the

skewness component dominates in this case because the
magnitude of the skewness is quite high (�1.0). Skewness
at the market level illustrates the left-tail risk as measured
by the distributional asymmetry relative to the dispersion
of the distribution (where the latter is measured by
volatility). When the dispersion of the distribution is low,
a moderate amount of jump risk (to the left tail, on
average) could generate a significant asymmetry in
the distribution. When the dispersion increases, e.g.,
s increases from 0.07 to 0.1, the magnitude of the skew-
ness drops significantly to �0.5, resulting in a total equity
premium of 7.0%, despite an increase in the equity pre-
mium due to the variance (from 2.3% to 3.7%). Therefore, if

Table 6
Likelihood ratio tests.

Null specification: Table 3 column 3.
Alternative special cases:
ψv ¼ ψ s ¼ ψk ¼ 0: no pricing of higher-order moments;
ψ s ¼ ψk ¼ 0: no pricing of skewness or kurtosis;
αa;j;1 ¼ αa;j;2 ¼ 0: no asymmetry associated with jump innovations;
γ1 ¼ γ2 ¼ 0: constant jump arrival;
g2ðΛ;Φt�1Þ ¼ β2 ¼ 0: no second GARCH component;
λt ¼ 0: no jumps;
λt ¼ g2ðΛ;Φt�1Þ ¼ β2 ¼ 0: no jumps and no second GARCH component;
ρ1 ¼ ρ2 ¼ 0 no AR(2) structure for return innovations (stale pricing).
nnn Indicates that the alternative hypothesis is rejected at the 1% level.

Panel A: Equity premium specification

H1 Test statistic

ψv ¼ ψ s ¼ ψk ¼ 0 17:746nnn

ψ s ¼ ψk ¼ 0 12:858nnn

Panel B: Specification of dynamics

αa;j;1 ¼ αa;j;2 ¼ 0 27:804nnn

γ1 ¼ γ2 ¼ 0 83:804nnn

g2ðΛ;Φt�1Þ ¼ β2 ¼ 0 288:97nnn

λt ¼ 0 1465:1nnn

λt ¼ g2ðΛ;Φt�1Þ ¼ β2 ¼ 0 1879:9nnn

ρ1 ¼ ρ2 ¼ 0 462:93nnn

 

Fig. 2. Sensitivity of mt to λt at different levels of st . Low st ¼ 0:35 is the
5th percentile of the estimated st , corresponding to an annualized 5.47%.
Average st ¼ 0:79 is the mean of the estimated st , corresponding to an
annualized 12.44%. High st ¼ 1:83 is the 95th percentile of the estimated
st , corresponding to an annualized 28.89%.

Fig. 3. mt as a function of st at average λt . This figure plots the level of the
equity premium (the solid line) for different levels of the diffusive
(GARCH) volatility st , holding the jump-arrival rate at its average level.
The dotted line shows the equity premium due to the total variance. The
dashed line shows the equity premium component due to skewness.

9 This can be verified from Eqs. (36) to (38) and the fact that the
estimated jump-size mean θ is negative. That is

∂m=∂s¼ ∂ðψ̂ v � v̂ þ ψ̂ s � ŝ þ ψ̂ k � k̂Þ=∂s
� ∂ðψ̂ v � v̂ þ ψ̂ s � ŝÞ=∂s
¼ ψ̂ v|{z}

40

� ∂v̂=∂s|fflffl{zfflffl}
40

þ ψ̂ s|{z}
o0

� ∂ŝ=∂s|fflffl{zfflffl}
40

:

Note that ŝo0 since θ̂o0; so ∂ŝ=∂s40 refers to a decrease in negative
skewness.
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we omit the skewness component of the equity premium,
an increase of s from 0.07 to 0.1 corresponds to a decrease
in the equity premium, m, from 8.8% to 7.0%. In contrast, in
more volatile times, an increase in s will correspond to an
increase in m because the equity premium will then be
dominated by the variance. Even if the jump risk were
higher in more volatile times, the return distribution could
actually be less asymmetric than in less volatile times so
that the variance component of the equity premium
dominates.

These results offer a potential resolution to the con-
flicting results in the literature on risk and expected return
for the market as a whole. In this literature, higher-order
moments are not considered as part of the risk. A positive
relationship between conditional variance and return only
occurs when the GARCH variance component is at or above
average levels. During calm times (low level of the GARCH
variance component), the skewness premium effect dom-
inates. For these periods if we were to omit conditional
skewness from the equity premium specification, due to
the missing skewness factor we could, inappropriately,
estimate a negative relationship between the equity pre-
mium and the conditional variance at low levels of the
latter. In more volatile times, the variance premium effect
dominates and we will be able to see a positive risk-
variance tradeoff, whether we include conditional skew-
ness in the equity premium specification or not.

4.3. Equity premium size and dynamics

Table 8 presents the descriptive statistics of the equity
premium from our maintained model in column 2 of
Table 3, as well as those for the unrestricted model in
column 4 of the same table. The median (average) equity
premium estimate is about 7.5% (10%) per annum for the
maintained prudence model and 6.6% (9.8%) for
the unrestricted parameterization.10 Fig. 4 illustrates the
time-series dynamics of the equity premium for our
prudence specification. The restriction implied from pre-
ference theory for the prudence model ensures that the
(expected) equity premium is always positive. Notice that
the average premium will be affected by a few large
outliers associated particularly with 2008, 1987, and the

1930s. Note though, as mentioned above, our results with
respect to the significance of the variance and skewness
components of the equity premium are robust for the
post-1930s (1940–2011) subsample.

According to our parameter estimates, the average
expected number of jumps per year is 34. Combining this
with the average impact of a change in jump risk implies
that the equity premium associated with jumps is about
3.61% per annum on average.

In our parameterization all higher-order moments can
incorporate jumps. According to our parameter estimates
for the maintained model (column 2 of Table 3), using the
average of the estimated jump-arrival rate λ, jumps con-
tribute 1.06% to the equity premium through the variance
dynamics11 and 2.55% associated with the skewness
premium.

In addition to the significant pricing of variance with
respect to the market equity premium, we find robust
pricing of skewness for the market equity premium. The
equity premium contributed by the premium for skewness
is, on average, 3.4%, which contributes about 34% of the
overall equity premium for our sample.12 This is very close
to the 3.6% per annum risk premium compensation for
systematic skewness found by Harvey and Siddique (2000)
who study the conditional skewness in a cross-section of

Table 7
Risk-return tradeoff with higher-order moments.

This example presents the equity premium at two different daily
diffusive volatility levels. In this example, the parameter estimates are
all taken from the ‘prudence’ model. We fix the jump intensity at the
sample average to facilitate comparison. All the numbers are annualized.

s s ψv � v ψ s � s m

0.07 �1.0 2.3% 6.5% 8.8%
0.10 �0.5 3.7% 3.3% 7.0%

Table 8
Summary statistics: daily equity premium mt.

‘Prudence’ and ‘unrestricted’ models in columns 2 and 4 of Table 3.

Equity premium Median Mean StDev

mprudence 0.030 0.040 0.039
munrestricted 0.026 0.039 0.070

1930 1940 1950 1960 1970 1980 1990 2000 2010
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Daily equity premium in percentage
Avg premium =0.040

Fig. 4. Prudence model: dynamics of the conditional equity premium mt .
This figure plots the time series of the daily conditional equity premium
estimated from the prudence model. The time period is from January
1926 to December 2011.

10 Daily returns were scaled by 100. Therefore, to annualize the
median or average daily premiums reported in Table 8, we scale by (252/
100).

11 ψv � ðλ � ðθ2 þ δ2ÞÞ � 2:52¼ 0:026� ð0:136� ðð�0:482Þ2þ
0:9772ÞÞ � 2:52.

12 We have ψ s ¼�0:028, average st¼�0.496. Therefore, the skew-
ness premium is �0:027ð Þ � �0:496ð Þ � 252

100 ¼ 0:034 or 3.4% per annum.

J.M. Maheu et al. / Journal of Financial Economics 110 (2013) 457–477 469



Author's personal copy

monthly stock returns. In our parameterization of the
time-series of daily market excess returns, jumps account
for about 76% of that skewness premium.

As noted above, when we impose the preference
restriction of a nonnegative price associated with kurtosis,
our findings show that this price is close to zero. We find
that this is due to the high negative correlation between
the conditional skewness and conditional kurtosis in the
market index. Conditional kurtosis is significantly priced
with a positive sign when the skewness factor is not
included.

Table 9 reports summary statistics for our estimated
higher-order moments for both the maintained prudence
model and the unrestricted model (columns 2 and 4 of
Table 3, respectively). The former are plotted in Fig. 5.

Table 10 reports the average jump-arrival rate λ and the
percentage of total variance due to the jump component
versus the diffusive component. As noted in Section 4.1
above, the large increase in return variability in the final
quarter of 2008 implies that total variance was much
higher. Although the frequency of jumps was also much
higher for that subperiod relative to the entire sample, the
proportion of the total variance due to the diffusive
component increased dramatically to 95% relative to 74%
on average for the entire sample.

5. Out-of-sample asset allocation performance

In this section, we evaluate the value-added associated
with out-of-sample forecasts that incorporate priced risks
associated with time-varying arrival of jumps through
their effect on the dynamics of conditional variance,
skewness, and kurtosis. We do this by evaluating the
realized utility and certainty-equivalent returns associated
with a simple portfolio allocation application. As our
model is on the market index, we assume that an investor
is making investment decisions between the market
portfolio and the riskfree asset. We derive optimal portfo-
lio weights using the forecasts associated with our main-
tained model versus several alternative benchmarks.

Building on Harvey and Siddique (2000) and Guidolin
and Timmermann (2008), we use a Taylor-series approx-
imation to a general utility function which is consistent
with the pricing kernel used to derive our maintained risk
premium specification. Determining the additional para-
meters associated with a more general utility function is

challenging. However, the equity premium associated with
our maintained prudence model, summarized in Section 2.1,
provides additional parameters (prices of risk) associated with
the higher-order terms in the risk premium specification. As

Table 9
Summary statistics: higher-order moments.
‘Prudence’ and ‘unrestricted’ models in columns 2 and 4 of Table 3.

Median Mean StDev

‘Prudence model’
Variance 0.541 1.042 1.658
Skewness �0.444 �0.496 0.338
Kurtosis 4.670 5.317 2.278

‘Unrestricted model’
Variance 0.535 1.053 1.766
Skewness �0.408 �0.458 0.324
Kurtosis 4.710 5.385 2.379

Fig. 5. Prudence model: dynamics of the conditional moments. This
figure plots the time series of the daily conditional variance, conditional
skewness, and conditional kurtosis estimated from the prudence model.
The time period is from January 1926 to December 2011.

Table 10
Summary statistics for jump intensity and total variance.

Sample period λ v v Due to
jump part

v Due to
diffusive

part

1926:01–2011:12 0.136 1.042 26% 74%
1926:01–1939:12 0.161 2.192 18% 82%
1940:01–2011:12 0.131 0.784 27% 73%
2008:01–2011:12 0.199 2.796 14% 86%
2008:09–2009:01 0.345 9.563 5% 95%
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shown in Appendix A.3, we obtain the functional relationship
between these parameters and the coefficients for the Taylor-
series expansion of a general utility function. We can then
solve for the coefficients of that approximation to general
utility and calibrate the implied utility coefficients to the
empirical estimates associated with our equity premium
specification. This provides an approximation to general utility
for our performance application that is consistent with our
asset pricing model and empirical estimates.

We compare the out-of-sample portfolio performance
based on four different models of the market index return.
The four models are the prudence model (our maintained
model), the variance model, the GIM-1 model, and a constant
model which assumes a constant equity premium. The
prudence, variance, and constant models share the same jump
dynamics and associated time-varying variance, skewness,
and kurtosis. The prudence and variance models are reported
in columns 2 and 5 of Table 3. The GIM-1 model, which is the
traditional single-component GARCH-in-Mean model, is
reported in column 2 of Table 5. For each of the models, we
estimate the parameters using the data up to the end of
2001; using data from 2002 to the end of 2011 to evaluate the
out-of-sample performance.

The out-of-sample portfolio performance results are
reported in Table 11. For comparison with other studies,
such as Guidolin and Timmermann (2008), the
asset allocation performance results are performed using
daily returns scaled to a monthly equivalent. As is clear
from Table 11, the prudence model dominates the other
three benchmark models. It results in higher average
realized utility, lower standard deviation of realized utility,
and a higher annualized certainty equivalent return
(CEQ).13 There are clear benefits to pricing jumps (pru-
dence versus GIM-1), and to pricing higher-order moments
(prudence versus variance).

6. Robustness and alternative interpretations

6.1. Variance risk

In our maintained (prudence) model, derived and
estimated above, we evaluated the potential importance
of equity premium components due to the dynamics of
conditional variance, skewness, and kurtosis. Following
Chabi-Yo (2012) and Chabi-Yo, Ghysels, and Renault
(2007), we derive (see our Appendix A.4 below) a two-
period intertemporal parametrization of our model in
order to add variance risk to our equity premium specifi-
cation. As shown in Appendix A.5, abstracting from con-
ditional kurtosis which is not significantly priced in our
maintained (prudence) model, the conditional equity pre-
mium in this extended model is

mt ¼ ψvvt þ ψ sst þ ψζ
Covtðvtþ1; ϵtþ1Þ

v3=2t

; ð43Þ

where the first two terms are premium components due to
the dynamics of conditional variance and conditional

skewness and the last term captures the premium due
to variance risk. Note that due to conditioning on
time t information, Covtðvtþ1; ϵtþ1Þ is equivalent to Covt
ðΔvtþ1; ϵtþ1Þ. When an investor is facing a multi-horizon
portfolio allocation problem, the uncertainty in future
variance matters. As shown in our Appendices A.4 and
A.5, the variance risk term in Eq. (43) captures the
covariation of a future return innovation with those
changes in conditional variance.

For our sample, the average variance risk is negative
and the estimated price, ψ̂ ζ , is statistically insignificant, as
in Chabi-Yo (2012) who uses generalized method of
moments (GMM) estimation in a cross-section of stock
returns. Our conclusion is based on a likelihood ratio test
which shows the expanded model to be insignificantly
different ðψζ ¼ 0Þ than the prudence model.

6.2. Recursive utility

Our analyses have focused on the time-separable utility
framework. In this framework, our empirical model could
be linked to investors’ preferences over higher-order
moments and volatility risk. Many asset pricing models
have used time non-separable utility, particularly recursive
utility as in Epstein and Zin (1989), Bansal and Yaron
(2004), and Routledge and Zin (2010). For example, Boguth
and Kuehn (2013) examine consumption volatility risk
using a cross-section of stock returns and conclude that
the pricing of consumption volatility risk reflects investors'
preference for early resolution of uncertainty; that is, that
the elasticity of intertemporal substitution (EIS) is greater
than the inverse of the relative risk aversion parameter (1/
RRA). Their average beta associated with variance risk for
the median portfolio sorted by this beta is negative (�0.05
in Table V of Boguth and Kuehn, 2013).14 The price of
variance risk is also negative (�0.12) in their Fama-
MacBeth cross-sectional regression. For the market, the
premium should then be positive.

In Appendix A.6 below, following the parametrization
in Boguth and Kuehn (2013), we show that our model can
also be linked to a pricing equation derived from a
parametric recursive utility framework. Appealing to the

Table 11
Out-of-sample portfolio performance.

Realized utility CEQ Portfolio weight

Model Mean Std Mean Std

Prudence 3.32E�03 5.05E�02 4.005 0.220 0.046
Variance 3.09E�03 5.73E�02 3.719 0.266 0.078
GIM�1 2.88E�03 5.51E�02 3.469 0.276 0.101
Constant 2.80E�03 5.70E�02 3.375 0.275 0.096

13 As in Guidolin and Timmermann (2008), the certainty equivalent
return is calculated based on the average realized utility.

14 Average beta for the whole sample is not reported but can be
inferred from the sample average of their five quintile portfolios. The
inferred number would be ð�0:32�0:15�0:05þ 0:05þ 0:15Þ=5¼�0:052.
The beta for a value-weighted portfolio should be ð�0:32Þ � 12:19%þ
ð�0:15Þ � 18:54%þð�0:05Þ � 23:13%þ0:05� 24:39%þ0:21� 21:74%¼
�0:021.
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assumptions in Campbell (1993), we derive a time-series
application for the market portfolio and discuss our results
in the context of a recursive utility setting. In this case, the
equity premium specification is

Et ½Rm;tþ1��Rf ¼ ~ψv VartðRm;tþ1Þ þ ~ψη Covtðstþ1;Rm;tþ1Þ: ð44Þ
This is analogous to a special case of our prudence model,
that is, the variance model reported in column 5 of Table 3,
extended to include variance risk.

If we estimate a model with variance only (no inter-
cept), the loglikelihood is �26,395.149, compared to
�26,388.651 for the model with variance and variance
risk. That is, variance risk is significantly priced if no
higher-order moments are present (p-value is 0.0003 for
the LR test). For this parametrization, the average value of
variance risk and the coefficient for variance risk are both
negative so, as in Boguth and Kuehn (2013), the premium
due to variance risk is positive.

In the previous subsection we discussed a parametriza-
tion which extends our more general prudence model to
include variance risk. In that case, we found that adding
variance risk did not improve the fit of our maintained
prudence model for which conditional skewness is sig-
nificantly priced.15 Furthermore, the loglikelihood for our
prudence model (�26,386.791) is better than that
(�26,388.651) for the case which includes variance risk
but excludes higher-order moments.

7. Concluding comments

In this paper we demonstrate that jump risk is priced in
the market index and contributes to the equity premium.
Jump risk potentially gets priced through the time-varying
conditional variance, skewness, and kurtosis. The time-
varying conditional moments of excess returns are gener-
ated by the time-varying jump-arrival process and two-
component GARCH dynamics.

Empirically, we find that the conditional variance and
skewness are priced in the market equity premium. Our
results highlight the importance of having a nonlinear
pricing structure for jumps in the equity premium. Having
jumps priced through higher-order moments not only
works well empirically but, theoretically, is also consistent
with more general preferences. The results are robust to
different specifications of the equity premium and/or the
volatility and jump dynamics.

We compute the marginal effect of jumps on the equity
premium and find that, on average, one more jump per year
would increase the equity premium by 0.1062%. The average
number of jumps per year according to our parameterization
and sample is 34 which implies an overall jump risk premium
of 3.61% per annum. Jump risk is priced in the market equity
premium both through the jump component of variance
dynamics and skewness contributing 1.06% and 2.55%, respec-
tively, to those premiums.

The total skewness premium is about 3.4% per annum.
Our maintained model imposes a nonnegative coefficient
on conditional kurtosis as implied by decreasing absolute
prudence preferences. In this case, we find the price of the
kurtosis to be close to zero in the presence of the skewness
factor. We explore different specifications of the equity
premium by pricing skewness and kurtosis separately and
find them to have the expected signs. At the market level,
any contribution of conditional kurtosis to the equity
premium seems to be largely captured by dynamics of
the conditional skewness.

Finally, we check the robustness of our results by
extending the model to include a variance risk term as
proposed by Chabi-Yo (2012). We find that the variance
risk is not significantly priced in our maintained model
which includes the contribution of conditional skewness
to the equity premium. On the other hand, including
variance risk in a special case of our model which excludes
the contribution of conditional skewness and kurtosis does
result in a significant price of variance risk, as in the cross-
sectional results in Ang, Hodrick, Xing, and Zhang (2006)
and Boguth and Kuehn (2013). To explore this further, we
derive and estimate a special case of our model in a
recursive utility setting applied to our time-series of
market returns, and discuss our results in the context of
those in the cross-sectional application in Boguth and
Kuehn (2013). Nevertheless, our prudence model which
prices higher-order moments still fits the data better than
this recursive utility parameterization which includes
variance risk but excludes higher-order moments.

Our study has some important implications for the
literature on estimation of the risk-return relationship
with high-frequency data. Identifying jump risk and the
associated intertemporal risk-return tradeoff has been
found to be difficult in prior studies unless one also uses
options data. Our results show that it is possible to identify
jump risk and its contribution to the market risk-return
tradeoff using equity data only.

Appendix A. Technical appendix

A.1. Scaling returns

Empirically, we find that we need to scale the daily
returns rt in order to get numerically stable estimates.
Assuming that ρ1 ¼ ρ2 ¼ 0 and suppressing the time index
for convenience of notation, recall from Section 2 that

r ¼mþ ϵ1 þ ϵ2; ð45Þ

m¼ μþ ψvvþ ψ ssþ ψkk; ð46Þ
where ϵ1 �Nð0; s2Þ, ϵ2 ¼ J�λθ, and J ¼∑n

k ¼ 1Yk follows a
compound Poisson distribution with parameters ðλ; θ; δÞ.
λ is the arrival rate for the Poisson distributed variate n and
the jump size is distributed normally as Yk �Nðθ; δ2Þ.

Scaling r by 100 and denoting the scaled return by r100,

r100 ¼m100 þ ϵ1;100 þ ϵ2;100; ð47Þ
in which

m100 � 100m¼ 100ðμþ ψvvþ ψ ssþ ψkkÞ; ð48Þ

15 The conditional skewness and quantity of variance risk are highly
correlated. To the extent that they capture similar variation, our main-
tained empirical model (prudence model) can also be interpreted in the
recursive utility framework as supporting the assumption that EIS is
greater than 1/RRA.
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ϵ1;100 � 100ϵ1; ð49Þ

ϵ2;100 � 100ϵ2: ð50Þ
Estimating Eq. (47) is equivalent to estimating Eq. (45)
using maximum likelihood estimation.

One can verify that

100ϵ1 �Nð0;1002s2Þ: ð51Þ
Also, 100ϵ2 follows a compound Poisson distribution with
parameters ðλ;100θ;100δÞ. The Poisson distribution that
governs the number of jumps does not change whereas
the jump size is scaled by 100. That is,

100Yk �Nð100θ;1002δ2Þ: ð52Þ
First, we define the parameters of ϵ1;100 and ϵ2;100 in the

following way:

s100 ¼ 100s ð53Þ

λ100 ¼ λ ð54Þ

θ100 ¼ 100θ ð55Þ

δ100 ¼ 100δ; ð56Þ
where the parameters with subscript 100 are for the scaled
returns r100. After the reparametrization, ϵ1;100 �Nð0; s2100Þ
and ϵ2;100 follows a compound Poisson distribution with
parameters ðλ100; θ100; δ100Þ and Yk;100 �Nðθ100; δ2100Þ.

Using Eqs. (53)–(56), it is straightforward to see that

v100 ¼ s2100 þ λ100ðθ2100 þ δ2100Þ ð57Þ

v100 ¼ 1002s2 þ λð1002θ2 þ 1002δ2Þ ¼ 10;000v; ð58Þ

s100 ¼
λ100ðθ3100 þ 3θ100δ2100Þ

ðs2100 þ λ100θ
2
100 þ λ100δ

2
100Þ3=2

¼ s; ð59Þ

k100 ¼ 3þ λ100ðθ4100 þ 6θ2100δ
2
100 þ 3δ4100Þ

ðs2100 þ λ100δ
2
100 þ λ100θ

2
100Þ2

¼ k: ð60Þ

Note that in the estimation, we only use the scaled return
r100, therefore, in Eq. (48)

m100 ¼ 100ðμþ ψvvþ ψ ssþ ψkkÞ;
we need to replace v with v100 using v100 ¼ 10;000v,
replace s with s100 using s100 ¼ s, and replace k with k100
using k100 ¼ k. After this operation we have

m100 ¼ 100μþ 0:01ψvv100 þ 100ψ ss100 þ 100ψkk100: ð61Þ
Therefore, we scale the parameters in m100 as

μ100 ¼ 100μ; ð62Þ

ψv;100 ¼ 0:01ψv; ð63Þ

ψ s;100 ¼ 100ψ s; ð64Þ

ψk;100 ¼ 100ψk; ð65Þ

and obtain

m100 ¼ μ100 þ ψv;100v100 þ ψ s;100s100 þ ψk;100k100: ð66Þ

Combining all of the rescaled terms:

r100 ¼ μ100 þ ψv;100v100 þ ψ s;100s100 þ ψk;100k100 þ ϵ1;100 þ ϵ2;100:

ð67Þ

A.2. Simple risk premium

Eq. (12) specifies the conditional equity risk premium
associated with excess continuously compounded returns
for a market-wide index. Often the equity premium is
computed using simple returns, that is, compounded per
period rather than continuously.

For our specification, the conditional simple equity risk
premium, labeled as ms;t , is

ms;t ¼ E½expðrtþ1�ρ1ðrt�mt�1Þ�ρ2ðrt�1�mt�2ÞÞjΦt ��1 ð68Þ

ms;t ¼ E½expðmt þ ϵ1;tþ1 þ ϵ2;tþ1ÞjΦt ��1: ð69Þ

To derive this conditional simple equity premium ms;t ,
we need to find E½expðϵ1;tþ1ÞjΦt � and E½expðϵ2;tþ1ÞjΦt �. Using
the characteristic function of the normal distribution and
the fact that ϵ1;tþ1jΦt �Nð0;s2t Þ,

E½expðϵ1;tþ1ÞjΦt � ¼ expð0:5s2t Þ: ð70Þ

Recall from Section 2.3.1 that the compensated jump
innovation is

ϵ2;tþ1 ¼ Jtþ1�θλt ¼ ∑
ntþ1

k ¼ 1
Ytþ1;k�θλt ;

and Jtþ1 ¼∑ntþ1
k ¼ 1Ytþ1;k is directed by a compound Poisson

distribution with parameters ðλt ; θ; δÞ. Note that

E½expðϵ2;tþ1ÞjΦt � ¼ E½expðJtþ1ÞjΦt �expð�θλtÞ
¼ expðλtðE½expðYÞjΦt ��1Þ�θλtÞ:

As noted in Eq. (27), the jump-size distribution is normal,
in which case

E½exp Yð Þ Φtj � ¼ exp θ þ 1
2
δ2

� �
;

so that

E½exp ϵ2;tþ1
� �

Φtj � ¼ exp λt exp θ þ 1
2
δ2

� �
�1�θ

� �� �
¼ exp λtξð Þ:

ð71Þ
Therefore, the conditional risk premium ms;t is

E½expðrtþ1�ρ1ðrt�mt�1Þ�ρ2ðrt�1�mt�2ÞjΦt ��1 ð72Þ

¼ expðms;tÞE½expðϵ1;tþ1ÞjΦt �E½expðϵ2;tþ1ÞjΦt �
� ��1

¼ ðexpðμþ ψvvt þ ψ sst þ ψkkt þ 0:5s2t þ λtξÞ�1Þ ð73Þ

in which

ξ¼ exp θ þ δ2

2

� �
�1�θ:

Written in terms of returns scaled by 100, this is the daily
risk premium expressed as a percentage.
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A.3. Calibrating utility coefficients to model estimates

To conduct our out-of-sample portfolio allocation ana-
lysis, we calibrate the utility coefficients to our model
estimates. We have the following mapping between the
coefficients of the Taylor-series expansion of the general
utility and the estimated prices of risk:

Uð2Þð1þ CtÞ
U′ð1Þ ¼� at

1þ Rf
t

¼� ψv

1þ Rf
t

; ð74Þ

Uð3Þð1þ CtÞ
U′ð1Þ ¼� 2bt

1þ Rf
t

¼�2ψ sv
�3=2
t

1þ Rf
t

; ð75Þ

Uð4Þð1þ CtÞ
U′ð1Þ ¼� 6ct

1þ Rf
t

¼�6ψkv�2
t

1þ Rf
t

: ð76Þ

In our out-of-sample portfolio allocation evaluation, we fix
vt and Rft on the RHS at their sample averages. Note that
the utility coefficients given by the above equations are
underdetermined for the coefficients required for the
approximation to the level of utility as expressed in the
above equations. However, without loss of generality, since
initial wealth is fixed and normalized to Wt¼1, we can set
U′ð1Þ to a constant and solve for Uð2Þð1þ CtÞ, Uð3Þð1þ CtÞ,
and Uð4Þð1þ CtÞ accordingly.

A.4. Taylor expansion at arbitrary returns for a two-period
model

Following Chabi-Yo (2012), we assume that a represen-
tative agent maximizes the expected utility in a two-
period model as

max
fωt g

Et max
fωtþ1g

Etþ1½UðWtþ2Þ�
� �

; ð77Þ

where the investor wealth is

Wtþ2 ¼Wtð1þ Rf
t þ ωtR

e
tþ1Þð1þ Rf

tþ1 þ ωtþ1R
e
tþ2Þ ð78Þ

The weights in N individual risky assets are represented by
the 1�N vectors ωt ;ωtþ1. The Re

tþ1;R
e
tþ2 are the N � 1

excess return vectors for individual assets. By construction,
we have the market excess return as

RW
tþ1�Rf

t ¼ωtR
e
tþ1; ð79Þ

RW
tþ2�Rf

tþ1 ¼ωtþ1R
e
tþ2: ð80Þ

Without loss of generality, we assume Wt¼1. Note that the
wealth at t þ 1; t þ 2 can also be expressed as

Wtþ1 ¼ ð1þ RW
tþ1Þ ð81Þ

Wtþ2 ¼Wtþ1ð1þ RW
tþ2Þ ¼ ð1þ RW

tþ1Þð1þ RW
tþ2Þ: ð82Þ

In this two-period intertemporal model, the marginal
utility can be approximated using a recursive univariate
Taylor-series expansion, or equivalently, the following

bivariate Taylor-series expansion for f ðx; yÞ:

f x; yð Þ � f x0; y0
� �þ ∂f

∂x

���
ðx0 ;y0Þ

x�x0ð Þ þ ∂f
∂y

���
ðx0 ;y0Þ

y�y0
� �

þ 1
2
∂2f
∂x2

���
ðx0 ;y0Þ

ðx�x0Þ2

þ1
2
∂2f
∂y2

���
ðx0 ;y0Þ

ðy�y0Þ2 þ
∂2f
∂x∂y

���
ðx0 ;y0Þ

x�x0ð Þ y�y0
� �

: ð83Þ

Applying this bivariate expansion to our case, we expand
U′ðWtþ2Þ around ð1þ RW

tþ1;1þ RW
tþ2Þ at arbitrary returns

ð1þ Ct ;1þ Ctþ1Þ, that is
U′ Wtþ2ð Þ �U′ 1þ Ctð Þ 1þ Ctþ1ð Þ	 

þ U″ 1þ Ctð Þ 1þ Ctþ1ð Þ	 


1þ Ctþ1ð Þ RW
tþ1�Ct

� �
þU″ 1þ Ctð Þ 1þ Ctþ1ð Þ	 


1þ Ctð Þ RW
tþ2�Ctþ1

� �
þ1
2
U‴ 1þ Ctð Þ 1þ Ctþ1ð Þ	 
ð1þ Ctþ1Þ2ðRW

tþ1�CtÞ2

þ1
2
U‴ 1þ Ctð Þ 1þ Ctþ1ð Þ	 
ð1þ CtÞ2ðRW

tþ2�Ctþ1Þ2

þðU‴½ð1þ CtÞð1þ Ctþ1Þ�ð1þ CtÞð1þ Ctþ1Þ
þU″½ð1þ CtÞð1þ Ctþ1Þ�Þ � ðRW

tþ1�CtÞðRW
tþ2�Ctþ1ÞÞ:

The first-order condition with respect to ωt is

Et ½U′½Wtþ2�ðRktþ1�Rf
t Þ� ¼ 0; ð84Þ

and we can get the expected return expression for asset k as

Et Rktþ1�Rf
t

h i
¼�Covt

U′½Wtþ2�
Et ½U′½Wtþ2��

;Rktþ1

� �
: ð85Þ

Substituting the bivariate Taylor-series expansion of U′
½Wtþ2� into the expected return equation. We have

Et Rktþ1�Rf
t

h i
��U″½ð1þ CtÞð1þ Ctþ1Þ�

Et ½U′½Wtþ2��
1þ Ctþ1ð Þ

�Covt RW
tþ1�Ct

� �
;Rktþ1

� �
�U″½ð1þ rtÞð1þ Ctþ1Þ�

Et ½U′½Wtþ2��
1þ Ctð Þ

�Covt RW
tþ2�Ctþ1

� �
;Rktþ1

� �
�1
2
U‴½ð1þ CtÞð1þ Ctþ1Þ�

Et ½U′½Wtþ2��
ð1þ Ctþ1Þ2

Covt ðRW
tþ1�CtÞ2;Rktþ1

� �
�1
2
U‴½ð1þ CtÞð1þ Ctþ1Þ�

Et ½U′½Wtþ2��
ð1þ CtÞ2

Covt ðRW
tþ2�Ctþ1Þ2;Rktþ1

� �
� ðU‴½ð1þ CtÞð1þ Ctþ1Þ�ð1þ CtÞð1þ Ctþ1Þ þ U″½ð1þ CtÞð1þ Ctþ1Þ�Þ

Et ½U′½Wtþ2��

�

�CovtððRW
tþ1�CtÞðRW

tþ2�Ctþ1Þ;Rktþ1Þ
�
;

where

at ¼�U″½ð1þ CtÞð1þ Ctþ1Þ�
Et ½U′½Wtþ2��

1þ Ctþ1ð Þ ð86Þ

a1t ¼�U″½ð1þ CtÞð1þ Ctþ1Þ�
Et ½U′½Wtþ2��

1þ Ctð Þ ð87Þ

bt ¼�1
2
U‴½ð1þ CtÞð1þ Ctþ1Þ�

Et ½U′½Wtþ2��
ð1þ Ctþ1Þ2 ð88Þ

b1t ¼�1
2
U‴½ð1þ CtÞð1þ Ctþ1Þ�

Et ½U′½Wtþ2��
ð1þ CtÞ2 ð89Þ
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ht ¼�ðU‴½ð1þ CtÞð1þ Ctþ1Þ�ð1þ CtÞð1þ Ctþ1Þ þ U″½ð1þ CtÞð1þ Ctþ1Þ�Þ
Et ½U′½Wtþ2��

:

ð90Þ
We assume that the coefficients depend on time t informa-
tion. Note that this is equivalent to assuming the time
t+1 variation is canceling out in these coefficients. In some
power utility cases, this cancelation can be exact. Another
special case is where Ct ¼ Ctþ1 ¼ 0, in which case we have
constant coefficients:

at ¼ a1t ¼�U″½1�
U′½1� ð91Þ

bt ¼ b1t ¼�1
2
U‴½1�
U′½1� ð92Þ

ht ¼�ðU‴½1� þ U″½1�Þ
U′½1� : ð93Þ

However, the corresponding expected return equation
under Ct ¼ Ctþ1 ¼ 0 becomes more complicated for a
time-series application for which it is useful to use cen-
tralized moments. If we have CovtððRW

tþ1Þ2;RW
tþ1Þ on the RHS

of the expected aggregate return equation, we need to
know the expected aggregate return first in order to
compute CovtððRW

tþ1Þ2;RW
tþ1Þ. Therefore, in our case, we do

the Taylor-series expansion around Ct ¼ Et ½RW
tþ1�;Ctþ1 ¼

Etþ1½RW
tþ2�.

Recall that the expected return equation for asset k is

Et ½Rktþ1�Rf
t � ¼ at CovtððRW

tþ1�CtÞ;Rktþ1Þ
þ a1t CovtððRW

tþ2�Ctþ1Þ;Rktþ1Þ
þbt CovtððRW

tþ1�CtÞ2;Rktþ1Þ þ b1t CovtððRW
tþ2�Ctþ1Þ2;Rktþ1Þ

þht CovtððRW
tþ1�CtÞðRW

tþ2�Ctþ1Þ;Rktþ1Þ: ð94Þ
When Ct ¼ Et ½RW

tþ1�;Ctþ1 ¼ Etþ1½RW
tþ2�, we have

CovtððRW
tþ2�Ctþ1Þ;Rktþ1Þ ¼ CovtðEtþ1ðRW

tþ2�Ctþ1Þ;Rktþ1Þ ¼ 0;

ð95Þ

CovtððRW
tþ1�CtÞðRW

tþ2�Ctþ1Þ;Rktþ1Þ
¼ CovtðEtþ1½ðRW

tþ1�CtÞðRW
tþ2�Ctþ1Þ�;Rktþ1Þ ¼ 0; ð96Þ

and the expected return equation becomes

Et ½Rktþ1�Rf
t � ¼ at CovtððRW

tþ1�CtÞ;Rktþ1Þ
þbt CovtððRW

tþ1�CtÞ2;Rktþ1Þ
þb1t CovtððRW

tþ2�Ctþ1Þ2;Rktþ1Þ: ð97Þ
For the aggregate return, we have

Et ½RW
tþ1�Rf

t � ¼ at Vartðϵtþ1Þ þ btEt ½ϵ3tþ1�
þb1t CovtðVartþ1ðϵtþ2Þ; ϵtþ1Þ ð98Þ

Et RW
tþ1�Rf

t

h i
¼ atvt þ btv

3=2
t st þ b1tv

3=2
t

Covtðvtþ1; ϵtþ1Þ
v3=2t

: ð99Þ

Let ζt � Covtðvtþ1; ϵtþ1Þ=v3=2t and if we make the following
assumptions:

at ¼ ψv;

btv
3=2
t ¼ ψ s;

b1tv
3=2
t ¼ ψζ ;

then we have

mt ¼ ψvvt þ ψ sst þ ψζζt : ð100Þ

A.5. Implementation of volatility risk

To take into account the variance risk in a two-period
model, we need to evaluate

Covtðvtþ1; ϵtþ1Þ; ð101Þ
where all the expectations are evaluated with respect to
information at time t. In our model, the closed-form
formula for this quantity is not easy to obtain. We know
that

vtþ1 ¼ s2tþ1 þ λtþ1ðθ2 þ δ2Þ ð102Þ

s2tþ1 ¼ωþ ½g1ðA1;Φtþ1Þ þ g2ðA2;Φtþ1Þ�ϵ2tþ1 þ β1s
2
1;t þ β2s

2
2;t

ð103Þ

giðAi;Φtþ1Þ ¼ expðαi þ Iðϵtþ1Þ½αa;j;iEðntþ1jΦtþ1Þ þ αa;i�Þ ð104Þ

λtþ1 ¼ γ0 þ γ1λt þ γ2½Eðntþ1jΦtþ1Þ�λt �: ð105Þ
Therefore, the volatility risk can be expanded as

Covtðvtþ1; ϵtþ1Þ ¼ Covtð½g1ðA1;Φtþ1Þ þ g2ðA2;Φtþ1Þ�ϵ2tþ1; ϵtþ1Þ

þγ2ðθ2 þ δ2Þ CovtðEðntþ1jΦtþ1Þ; ϵtþ1Þ; ð106Þ
where we have used the fact that s21;t ; s

2
1;t ; λt are known at

time t. We need to evaluate the following two terms:

Covtð½g1ðA1;Φtþ1Þ
þ g2ðA2;Φtþ1Þ�ϵ2tþ1; ϵtþ1Þ and CovtðEðntþ1jΦtþ1Þ; ϵtþ1Þ:

ð107Þ
We know that

Eðntþ1jΦtþ1Þ ¼ ∑
1

j ¼ 0
jPðntþ1 ¼ jjΦtþ1Þ ð108Þ

Pðntþ1 ¼ j Φtþ1
�� Þ ¼ f ðrtþ1jntþ1 ¼ j;ΦtÞPðntþ1 ¼ jjΦtÞ

f ðrtþ1jΦtÞ
ð109Þ

f ðrtþ1 ntþ1 ¼ j;Φt
�� Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðs2t þ jδ2Þ
q exp � ½ϵtþ1�ðj�λtÞθ�2

2ðs2t þ jδ2Þ

" #

ð110Þ

f ðrtþ1jΦtÞ ¼ ∑
1

j ¼ 0
f ðrtþ1jntþ1 ¼ j;ΦtÞPðntþ1 ¼ jjΦtÞ; ð111Þ

and then

CovtðE ntþ1 Φtþ1
�� Þ; ϵtþ1

� �¼ ∑
1

j ¼ 0
j Covt P ntþ1 ¼ j Φtþ1

�� Þ; ϵtþ1
� ��

¼ ∑
1

j ¼ 0
j P ntþ1 ¼ j Φtj ÞCovt

f ðrtþ1jntþ1 ¼ j;ΦtÞ
f ðrtþ1jΦtÞ

; ϵtþ1

� �
:

�
ð112Þ

It appears that

Covt
f ðrtþ1jntþ1 ¼ j;ΦtÞ

f ðrtþ1jΦtÞ
; ϵtþ1

� �
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would be difficult to evaluate directly as both f ðrtþ1jntþ1 ¼
j;ΦtÞ and f ðrtþ1jΦtÞ are nonlinear functions and involve
exponential function of ϵtþ1. Taylor-series expansion of

f ðrtþ1jntþ1 ¼ j;ΦtÞ
f ðrtþ1jΦtÞ

in terms of ϵtþ1 is also not straightforward to obtain as the
denominator f ðrtþ1jΦtÞ is the summation of an infinite
series. The other key term

Covtð½g1ðA1;Φtþ1Þ þ g2ðA2;Φtþ1Þ�ϵ2tþ1; ϵtþ1Þ
is perhaps more difficult to obtain in closed-form because
giðAi;Φtþ1Þ involves an asymmetric random indicator
Iðϵtþ1Þ and an exponential function of Eðntþ1jΦtþ1Þ. We
need to rely on simulations to evaluate these terms.

Finally, to incorporate this extra variance risk term in
our empirical model, the return dynamics would be

rtþ1 ¼mt þ ρ1ðrt�mt�1Þ þ ρ2ðrt�1�mt�2Þ þ ϵtþ1; ð113Þ
and

mt ¼ ψvvt þ ψ sst þ ψζ
Covtðvtþ1; ϵtþ1Þ

v3=2t

; ð114Þ

where the first two terms are conditional variance and
conditional skewness and the last term captures the
variance risk. The information set is at time t.

A.6. Pricing kernel for a recursive utility example

Following Boguth and Kuehn (2013), the pricing kernel
can be written as

mtþ1 � k�γΔctþ1�ð1�θÞΔztþ1; ð115Þ
where γ is the relative risk aversion (RRA), Δctþ1 is the
consumption growth rate, θ¼ ð1�γÞ=ð1�1=ψÞ, ψ is the EIS,
and Δztþ1 is the changes in the logarithm of the wealth
consumption ratio. The corresponding asset pricing equa-
tion is

Et Ri;tþ1
	 
�Rf ¼

γ

Rf
Covt Δctþ1;Ri;tþ1

� �
þð1�θÞ

Rf
Covt Δztþ1;Ri;tþ1

� �
: ð116Þ

Since the consumption wealth ratio is not available in
closed-form, Boguth and Kuehn (2013) use an affine
approximation as

Δztþ1 ¼ AΔμc;tþ1 þ BΔsc;tþ1; ð117Þ
where Δμc;tþ1 is the changes in the mean consumption
growth rate, Δsc;tþ1 is the changes in the consumption
growth volatility. With this approximation, the asset pri-
cing equation becomes

Et Ri;tþ1
	 
�Rf ¼

γ

Rf
Covt Δctþ1;Ri;tþ1

� �
þAð1�θÞ

Rf
Covt Δμc;tþ1;Ri;tþ1

� �
þBð1�θÞ

Rf
Covt Δsc;tþ1;Ri;tþ1

� �
: ð118Þ

Empirically, they test the asset pricing equation using a
cross-section of portfolio and stock returns and find that
the price of risk for changes in the mean consumption

growth rate is not priced whereas the changes in con-
sumption growth volatility is significantly priced. There-
fore, we can adapt the following empirical asset pricing
model from Boguth and Kuehn (2013):

Et Ri;tþ1
	 
�Rf ¼

γ

Rf
Covt Δctþ1;Ri;tþ1

� �
þBð1�θÞ

Rf
Covt Δsc;tþ1;Ri;tþ1

� �
: ð119Þ

If the market return is a scaled process of the consumption
process (Campbell, 1993), then the above equation
becomes

Et ½Ri;tþ1��Rf ¼ ~ψv CovtðΔRm;tþ1;Ri;tþ1Þ þ ~ψη CovtðΔstþ1;Ri;tþ1Þ;
ð120Þ

in which we have substituted the coefficients ~ψv and ~ψη for
monotone transformations of γ=Rf and Bð1�θÞ=Rf , respec-
tively. Applied to the market itself, we have

Et ½Rm;tþ1��Rf ¼ ~ψv CovtðΔRm;tþ1;Rm;tþ1Þ
þ ~ψη CovtðΔstþ1;Rm;tþ1Þ

¼ ~ψv VartðRm;tþ1Þ þ ~ψη Covtðstþ1;Rm;tþ1Þ:
ð121Þ

The market price of risk for volatility risk is captured by
~ψη Varðstþ1Þ and is estimated to be negative by Boguth and
Kuehn (2013). This supports the common assumption that
has been used in the long-run risk literature, that the EIS is
greater than 1/RRA.
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