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1. Introduction

This paper evaluates whether jumps contribute to the dynamics of the equity premium

for a broadly diversified portfolio of U.S. stocks. Motivated by a generalized utility specifica-

tion (Kimball, 1990) and nonlinear pricing kernel (Harvey and Siddique, 2000; Dittmar, 2002;

Chabi-Yo, Ghysels, and Renault, 2007; Guidolin and Timmermann, 2008), we test whether

risks due to dynamics of the conditional variance, skewness, and kurtosis are priced in ag-

gregate stock returns. Our focus is the effect of jumps on the dynamics of the conditional

moments and consequently, if priced, on the dynamics of expected excess returns (the equity

premium) associated with the market portfolio. We derive a mapping between our estimated

prices of risk and the generalized preferences to evaluate the relative utility of alternative risk

premium models in an out-of-sample portfolio performance application.

Our model filters daily market excess returns into large versus smaller changes, simultane-

ously with estimation of all of the parameters of the conditional distribution. In our param-

eterization, large changes in daily returns (jumps) contribute to the dynamics of conditional

variance, the dynamics of conditional skewness and kurtosis, and consequently, the dynamics

of expected return through pricing of the associated risks. This allows expected jumps to

have an impact (whether or not they occur) on the shape and location of the distribution of

market excess returns.

We model innovations of the return process using a Generalized Autoregressive Conditional

Heteroskedastic (GARCH)-jump mixture model. The jump component of the innovation

follows a compound Poisson-Normal distribution with an autoregressive jump intensity and a

normal jump size distribution. The diffusive component of the innovation is directed by an

asymmetric two-component GARCH process, and allows the persistence of jump effects on

variance to be different than that of the diffusive component. These features are important for

our pricing application since the second GARCH component helps control for noise associated

with daily returns and, as such, improves the sorting into jumps versus diffusive components.

Flexible modeling of the conditional variance, skewness, and kurtosis dynamics will un-

doubtedly improve the explanatory power of the model for capturing the changing shape of

the distribution. However, the focus of this paper is concerned with whether the dynamics

of the (standardized) higher moments of returns are associated with time-varying expected

returns. Are the risks associated with the arrival of jumps, and their effect on the higher

moments of returns, priced in the mean?

Studies on jumps often assume that the compensation for jump risk is a linear function

of the jump intensity, mostly to make risk-neutral pricing (of options) tractable. In contrast,

using a pricing kernel associated with generalized preferences to derive our equity premium

specification, prices of risk are not restricted by a single parameter of relative risk aversion

and jump risk is priced linearly through the conditional dynamics of variance, and nonlinearly

through conditional skewness and kurtosis. To the best of our knowledge, this is the first
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study to find significant pricing of both jump risk and diffusive risk, as well as realistic total

equity premium estimates, using only a time-series of equity return data.

Our empirical results show that higher-order moments are significantly priced in the equity

premium. First of all, we find a positive risk-return tradeoff associated with the traditional risk

for the market measured by the conditional variance. The pricing of the conditional variance

is robust across our proposed time-varying jump model specifications. When we restrict the

model to have no jumps and only include one GARCH component, the variance dynamics are

not significantly priced.

By fixing the GARCH component of volatility, we are able to analyze the marginal effect

of jumps on the equity premium. We show that the latter is positive at all levels of the

GARCH volatility. The equity premium is increasing in the conditional jump frequency and

this increase is greatest for low jump-arrival rates and for low levels of the GARCH vari-

ance component. For our parameterization and sample, if the expected number of jumps

increases by one per year, a representative investor will demand, on average, 0.1062% addi-

tional expected return for taking on the extra jump risk. This implies that the equity premium

associated with jumps is about 3.61% per annum on average. All higher-order moments can

be affected by jumps to returns. According to our parameter estimates, on average, jumps

contribute 1.06% to the equity premium through the variance dynamics and also add 2.55%

to the equity premium through their contribution to skewness.

We find robust pricing of both the conditional variance and the conditional skewness in

the market equity premium. The equity premium associated with skewness is about 3.4% per

annum. This is very close to the 3.6% per annum risk premium compensation for systematic

skewness found by Harvey and Siddique (2000) who study the conditional skewness in a cross-

section of monthly stock returns. When we impose the preference restriction of a nonnegative

price associated with risk due to dynamics of kurtosis, our findings show that this price is

close to zero; although, conditional kurtosis is significantly priced with a positive sign when

the skewness factor is not included. At least at the market level, any contribution of kurtosis

to the equity premium has already been largely captured by dynamics of the conditional

skewness.

Our results offer an explanation for the conflicting results in the literature on market risk

and market expected return. We find a significantly positive equity premium but the positive

relationship between conditional variance and return only occurs when the GARCH variance

component is at or above average levels. An increase in GARCH variance increases both the

conditional variance and the conditional skewness (st has a smaller negative value), leading

to offsetting effects on the equity premium. During calm times (low level of the GARCH

variance component), the skewness effect dominates. In more volatile times, the variance

premium effect dominates and we will be able to see a positive risk-variance tradeoff, whether

we include conditional skewness in the equity premium specification or not.
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Solving for the functional relationship between the parameters of our assumed general

utility function and the prices of risk associated with the asset pricing model, we are able

to calibrate the implied utility parameters to the empirical estimates for our equity premium

specification. We then evaluate the out-of-sample realized utility and certainty-equivalent

returns associated with a simple portfolio allocation application. Compared to several special

case benchmarks, including one that does not include jumps, our maintained prudence model

generates higher realized utility and certainty-equivalent returns.

Finally, we check the robustness of our results by extending the model to include a variance

risk term as defined by Chabi-Yo (2012). The variance risk is not significantly priced in our

maintained model which includes the premium of conditional skewness. When we exclude the

contribution of conditional skewness to equity premium, the price of variance risk becomes

significant. This is similar to the cross-sectional result in Boguth and Kuehn (2013) who use

a recursive utility derivation to evaluate the premium associated with variance risk of the

consumption growth rate. We appeal to the assumptions in Campbell (1993) and derive a

time-series application for the market portfolio, and discuss our results in the context of a

recursive utility setting.

Our paper differs from the existing literature on pricing jump risk in several important

dimensions. Firstly, our parametric model differs from those which employ nonparametric

methods to estimate realized jumps from high-frequency data, for example, Bollerslev and

Todorov (2011), in that we estimate both the jump intensity and jump-size distribution at

the same time, along with the other parameters of the conditional distribution. Our approach

allows us to filter returns into large changes and smaller changes, based on their different

dynamic properties, simultaneously with estimation of all of the parameters of the conditional

distribution. Large changes in daily returns contribute to the dynamics of conditional variance,

the dynamics of conditional skewness and kurtosis, and consequently, the dynamics of expected

return through pricing of the associated risks. This allows expected jumps to have an impact

on the shape and location of the distribution, whether or not they occur (the peso problem).

Secondly, studies using both underlying asset returns and options are generally based on

no-arbitrage (risk-neutral) pricing (for example, Pan, 2002; Conrad, Dittmar, and Ghysels,

2013; and Christoffersen, Jacobs, and Ornthanalai, 2012); whereas our specification of the

equity premium is based on equilibrium asset pricing theory. Consequently, we only need

the index return data to estimate the jump risk component of the equity premium. Studies

which require options data or very high-frequency data will be restricted to shorter samples

due to data availability. In some cases, the price of jump risk for the underlying is restricted

to be zero, in some others it is imprecisely estimated, or implies an equity premium that is

counterfactually large. Learning about tail events and jump dynamics will require a long span

of calendar data such as used in our paper.

Thirdly, our equity premium specification allows jumps to be priced linearly through the
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conditional variance and nonlinearly through the higher-order (standardized) moments. In

contrast, papers relying on options data typically assume that the compensation for jump risk

is a linear function of the jump intensity, in order to have tractable option pricing formula. As

we will demonstrate in our results section, not having the nonlinear pricing of jumps could be

a potential source of misspecification that makes many papers fail to find significant pricing

of both jump risk and diffusive risk, especially when only equity data are available.

Finally, in contrast to many existing papers focusing on option pricing, we allow jump

arrival to be directed by a different process than squared-return innovations. By introducing

this additional source of dynamics, our approach is more flexible than those that parameterize

jump arrival as an affine function of the time-varying volatility.

2. Derivation of our model

The focus of our paper is on the potential effects of large changes in return (jumps) on the

equity premium. We build on Harvey and Siddique (2000), Dittmar (2002), and Guidolin and

Timmermann (2008) who provide an asset pricing derivation for an empirical specification that

tests whether or not higher-order moments of returns are priced as risk factors.1 In our case,

the dynamics of the conditional 3rd and 4th central moments are driven by an autoregressive

jump-arrival process; and the conditional variance dynamics are driven by both jumps and a

two-component GARCH process. Further, standardizing the conditional 3rd and 4th central

moments by functions of the conditional variance (that is, pricing conditional skewness and

conditional kurtosis) allows a separation of variance effects from asymmetry effects and allows

jump risk to be priced both linearly and nonlinearly. Using results from equilibrium pricing

theory, prices of risk are associated with a more general utility function rather than being

restricted by the single parameter of relative risk aversion.

2.1. Parameterization of the equity premium

We begin by taking a fourth-order Taylor-series expansion of a general utility function

U(Wt+1) in which Wt+1 is aggregate wealth at time t + 1. Defining RW
t+1 as the simple net

return on wealth and using the equality Wt+1 = Wt(1 + RW
t+1), we expand U(Wt+1) around

1Early examples of three-moment Capital Asset Pricing Model (CAPM) applications include Kraus and
Litzenberger (1976), Friend and Westerfield (1980), Sears and Wei (1985), Lim (1989), Harvey and Siddique
(1999), Hwang and Satchell (1999), and Smith (2007). Chang, Christoffersen, and Jacobs (2013) use the
Intertemporal Capital Asset Pricing Model (ICAPM) to motivate their evaluation of whether market skewness
is priced in the cross-section of stock returns. Nonparametric asset pricing models, for example, Bansal and
Viswanathan (1993), Chapman (1997), and Rossi and Timmermann (2010) approximate the pricing kernel
using a flexible functional form.
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Wt(1 + Ct), where Ct is an arbitrary return:

U(Wt+1) ≈
4∑

n=0

U (n)(Wt(1 + Ct))

n!
(Wt+1−Wt(1+Ct))

n =
4∑

n=0

U (n)(Wt(1 + Ct))

n!
(Wt(R

W
t+1−Ct))

n.

(1)

Without loss of generality, assuming the known initial wealth Wt = 1, the Taylor-series

expansion of marginal utility is:

U ′(Wt+1) ≈
3∑

n=0

U (n+1)(1 + Ct)

n!
(RW

t+1 − Ct)
n. (2)

This implies that the pricing kernel, Mt+1 ≡ U ′(Wt+1)
U ′(Wt)

, can be approximated by

Mt+1 ≈
3∑

n=0

U (n+1)(1 + Ct)

U ′(1)n!
(RW

t+1 − Ct)
n

= g0t + g1t(R
W
t+1 − Ct) + g2t(R

W
t+1 − Ct)

2 + g3t(R
W
t+1 − Ct)

3, (3)

in which gnt =
U(n+1)(1+Ct)

U ′(1)
1
n!

= U(n+1)(1+Ct)
U ′(1+Ct)n!

U ′(1+Ct)
U ′(1)

for n = 0, 1, 2, 3. The corresponding four-

moment asset pricing model becomes

Et[R
W
t+1]−R

f
t = κ1tCovt(R

W
t+1, R

W
t+1−Ct)+κ2tCovt(R

W
t+1, (R

W
t+1−Ct)

2)+κ3tCovt(R
W
t+1, (R

W
t+1−Ct)

3),

(4)

κnt = −gnt(1 +Rf
t ) and R

f
t is the net return on the riskfree asset.

As in Dittmar (2002), U ′ > 0, U (2) < 0, U (3) > 0, and U (4) < 0, that is, positive marginal

utility, risk aversion, decreasing absolute risk aversion, and decreasing absolute prudence,2

respectively, imply that g1t < 0, g2t > 0, g3t < 0 while g0t = 1 for Ct = 0. Since the utility

approximation is truncated at N = 4, gnt = 0 for n > 3. With these preference restrictions,

κ1t > 0, κ2t < 0, and κ3t > 0 in Eq. (4).

One frequently used expansion point is Ct = 0. This has been used by Harvey and Siddique

(2000), Dittmar (2002), Guidolin and Timmermann (2008), and others. In what follows, we

will discuss an alternative expansion point, Ct = Et[R
W
t+1], also used by Chabi-Yo, Ghysels, and

Renault (2007) and Chabi-Yo (2012). As noted in the latter, this is equivalent to Samuelson’s

small noise expansion. To see this connection, write RW
t+1 as

RW
t+1 − Et[R

W
t+1] = ϵYt+1, (5)

then we can see that as ϵ approaches zero, RW
t+1 will approach Et[R

W
t+1].

2As derived in Kimball (1990, 1993), decreasing absolute prudence implies that as wealth increases, the
precautionary savings motive declines.
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Simplifying notation to

Rt+1 ≡ RW
t+1−R

f
t , ϵt+1 ≡ RW

t+1−Et[R
W
t+1] = (RW

t+1−R
f
t )− (Et[R

W
t+1]−R

f
t ) = Rt+1−Et[Rt+1],

and setting Ct = Et[R
W
t+1], the expected excess return will be a function of the centralized

moments, that is,

Et[Rt+1] = atVart(Rt+1) + btCovt(Rt+1, ϵ
2
t+1) + ctCovt(Rt+1, ϵ

3
t+1)

= atVart(ϵt+1) + btEt[ϵ
3
t+1] + ctEt[ϵ

4
t+1], (6)

where

at ≡ −U
(2)(1 + Ct)

U ′(1 + Ct)

U ′(1 + Ct)(1 +Rf
t )

U ′(1)
, (7)

bt ≡ −U
(3)(1 + Ct)

2U ′(1 + Ct)

U ′(1 + Ct)(1 +Rf
t )

U ′(1)
, (8)

ct ≡ −U
(4)(1 + Ct)

6U ′(1 + Ct)

U ′(1 + Ct)(1 +Rf
t )

U ′(1)
. (9)

Expanding around Ct = 0 and abstracting from changes in Rf
t , these coefficients are constant;

but, in that case, the test Eq. (6) will not be a function of the central moments.

For our empirical model, we label the continuously compounded market equity premium

expected for period t + 1, given information at time t, as mt. Defining vt ≡ Vart(ϵt+1), st ≡
Et[ϵ3t+1]

v
3/2
t

, kt ≡
Et[ϵ4t+1]

v2t
, that is, the conditional variance, conditional skewness, and conditional

kurtosis, Eq. (6) becomes:

mt = ψv,tvt + ψs,tst + ψk,tkt, ψv,t ≥ 0, ψs,t ≤ 0, ψk,t ≥ 0, (10)

and

ψv,t = at,

ψs,t = btv
3/2
t ,

ψk,t = ctv
2
t . (11)

Following Guidolin and Timmermann (2008) and Chabi-Yo (2012), we make an additional

assumption to estimate an empirical version of the model. In our case,

mt = ψvvt + ψsst + ψkkt, ψv ≥ 0, ψs ≤ 0, ψk ≥ 0. (12)

The sample coefficient estimates in Eq. (12) can be viewed as the unconditional mean of the

corresponding time-varying coefficients on the right-hand side (RHS) of equations (11).
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We estimate this conditional equity premium with and without an intercept and the re-

striction on ψv. The restrictions on the parameters in Eq. (12), notably that ψs ≤ 0 and

ψk ≥ 0, follow from the preference specification and the associated approximation to the

pricing kernel described above. Appendix A.3 below also shows how we use our empirical

estimates to calibrate the utility parameters for our out-of-sample portfolio application.

The special case of power utility, as in Duan and Zhang (2010), is also consistent with the

restrictions ψs ≤ 0, ψk ≥ 0. This parameterization is:

mt = ψvvt + ψsv
3
2
t st + ψkv

2
t kt, where (13)

ψv = (γ − 0.5), ψs = −(3γ2 − 3γ + 1)/6, ψk = (4γ3 − 6γ2 + 4γ − 1)/24. (14)

For robustness, we also estimate an unrestricted version with no restrictions on the co-

efficients ψv, ψs, ψk associated with the conditional market equity premium parameterization

given by Eq. (12). However, our focus is to evaluate whether jumps contribute to the dynamics

of the premium as parameterized in Eq. (12) or special cases thereof. Note that we include

the effects of jumps on the conditional variance vt, as well as on the higher-order standardized

conditional moments st and kt.

2.2. Dynamics of continuously compounded returns

We define the continuously compounded excess return on the market index as

rt ≡ rm,t − rf,t, (15)

in which rm,t is the continuously compounded return (including distributions) on the market

index and rf,t is the continuously compounded riskfree rate. Henceforth, we will usually refer

to rt, the excess continuously compounded return on the market, as the log return. In the

following, the information set is Φt = {r1, . . . , rt}.
Assume that the dynamics of realized log returns are driven by

rt+1 = mt + ut+1, (16)

where

ut+1 = ρ1ut + ρ2ut−1 + ϵt+1. (17)

That is, ut+1 has a predictable autoregressive component due to stale prices,3 or missing

pricing factors, and a mean-zero return innovation ϵt+1.

3As described in Section 3.1 below, our data are daily index returns, the components of which do not all
trade every day. See Campbell, Lo, and MacKinlay (1997) for a derivation of the resulting autoregressive
structure in realized returns. In Table 5 we show that our results with respect to the equity premium are
robust to whether or not we include this autoregressive structure.
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Combining Eqs. (16) and (17), and decomposing the total return innovation ϵt+1 into two

components, we can rewrite realized log returns as

rt+1 = mt + ρ1(rt −mt−1) + ρ2(rt−1 −mt−2) + ϵ1,t+1 + ϵ2,t+1, (18)

in which mt is the continuously compounded market equity premium expected for period t+1,

given information, Φt, available at time t. In addition, we assume that log returns are driven

by two stochastic innovations ϵ1,t+1 and ϵ2,t+1. In particular: ϵ2,t+1 is a jump innovation to

returns, compensated so that it is mean zero; ϵ1,t+1 is a mean-zero normal innovation to returns

directed by a conditional normal process; ϵ1,t+1 and ϵ2,t+1 are contemporaneously independent.

Note that the conditional mean of the log return process is

E[rt+1|Φt] = mt + ρ1(rt −mt−1) + ρ2(rt−1 −mt−2), (19)

but it is the market equity premium mt (the conditional mean net of any remaining serial

correlation due to, for example, stale prices) that we evaluate below using an asset pricing

framework.

2.3. Parameterization of the jump component

The mean-zero (compensated) innovation to returns from jumps is labeled ϵ2,t+1. This

innovation is directed by a conditional compound Poisson-Normal distribution reflecting a

conditional Poisson jump-arrival process combined with a conditional normal jump-size dis-

tribution.

2.3.1. Time-varying arrival of jumps

Define the discrete-valued number of jumps over the interval (t, t+ 1) as nt+1 ∈ 0, 1, 2, ....

The conditional distribution of nt+1 is Poisson with parameter λt, that is,

P (nt+1 = j|Φt) =
exp(−λt)λjt

j!
, j = 0, 1, 2, .... (20)

The conditional arrival rate of jumps, λt, is the expected number of jumps for period t + 1

given information at time t, that is,

E[nt+1|Φt] = λt. (21)

In other words, the number of jumps in period t+1, nt+1, is directed by a conditional Poisson

process with a time-varying jump-arrival rate λt.
4

4Early examples of time-varying jump arrival include Johannes, Kumar, and Polson (1999), Bates (2000),
Andersen, Benzoni, and Lund (2002), Pan (2002), and Eraker (2004).
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As in Chan and Maheu (2002) and Maheu and McCurdy (2004), we parameterize the

time-series dynamics of λt as an autoregressive process (labeled ARJI for autoregressive jump

intensity):

λt = γ0 + γ1λt−1 + γ2ζt, (22)

in which the jump-arrival innovation for period t is defined as

ζt = E[nt|Φt]− λt−1 (23)

= E[nt|Φt]− E[nt|Φt−1]. (24)

Jumps are latent; the expected number of jumps is computed using the estimation filter. The

jump-arrival innovation is the update in the expected number of jumps for period t, when

information is updated from period t−1 to period t. The time-series parameterization for the

expected number of jumps, λt, given by Eq. (22), has a smoothing or persistence coefficient,

γ1, associated with the expected number of jumps for the previous period, as well as a news-

impact coefficient, γ2, associated with the jump-arrival innovation.

It is important to note that we allow jump arrival to be directed by a different process

than squared-return innovations. Instead, the autoregressive jump frequency is directed by

measurable jump-arrival innovations. This allows the impact and persistence of time-varying

jump arrival on expected variance dynamics to be different than that captured by the GARCH

component of variance.

2.3.2. The jump innovation to returns

The compensated jump innovation to returns, ϵ2,t+1, is given by

ϵ2,t+1 = Jt+1 − θλt, (25)

where the total size of jumps in period t+ 1, Jt+1, is

Jt+1 =

nt+1∑
k=1

Yt+1,k, (26)

in which Yt+1,k is the size of jump k in period t+1 which is drawn from a normal distribution

with mean θ and variance δ2 as in:

Yt+1,k ∼ N(θ, δ2). (27)

Note that we estimate the moments of this jump-size distribution which, for example, con-

tributes to skewness of the return distribution by allowing the average jump size to be different

from zero.
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Since

E[Jt+1|Φt] = θλt, (28)

the compensated jump innovation is mean zero, that is,

E[ϵ2,t+1|Φt] = E[Jt+1|Φt]− θλt = 0. (29)

2.4. Parameterization of the normal innovation component

The normal innovation to returns, ϵ1,t+1, is assumed to be directed by a two-component

GARCH specification5 with feedback from jumps. This specification, which generalizes that

in Maheu and McCurdy (2004), is parameterized as follows:

ϵ1,t+1 = σtzt+1, zt+1 ∼ NID(0, 1), ϵ1,t+1|Φt ∼ N(0, σ2
t ), (30)

where σ2
t is directed by a two-component GARCH process specified as:

σ2
t = σ2

1,t + σ2
2,t, (31)

σ2
1,t = ω + g1(A1,Φt)ϵ

2
t + β1σ

2
1,t−1, (32)

σ2
2,t = g2(A2,Φt)ϵ

2
t + β2σ

2
2,t−1, (33)

ϵt = ϵ1,t + ϵ2,t. (34)

The long-run component is captured by σ2
1,t while the transitory moves in the GARCH con-

ditional variance are modeled by σ2
2,t. To help visualize their properties using our maintained

model estimates, we plot the paths of these two components for 2007 in Fig. 1. Having the

second component helps capture the diffusive volatility better. More importantly, for our

purpose, the second component helps control the noisy or transitory part of the diffusive

volatility, without which the noise could potentially be sorted as jumps, making jumps less

precisely estimated.

[Insert Figure 1 about here.]

The generalized news-impact coefficient gi(Ai,Φt) for the i
th GARCH component, i = 1, 2,

allows asymmetric impact from good versus bad news, as well as from jump versus normal

innovations. That is,

gi(Ai,Φt) = exp(αi + I(ϵt)(αa,j,iE[nt|Φt] + αa,i)), i = 1, 2, (35)

I(ϵt) = 1 if ϵt < 0, otherwise 0.

5Other component GARCH-type models include Engle and Lee (1999), Maheu and McCurdy (2007), and
Chan and Feng (2012). Chernov, Gallant, Ghysels, and Tauchen (2003) suggest that either a two-component
parameterization of stochastic volatility (SV) or an SV-jump (SV-J) diffusion can capture the volatility dy-
namics.
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Recall that E[nt|Φt] is the expected number of jumps at time t given Φt, provided by our

estimation filter.

Therefore, jumps are allowed to affect variance dynamics in several ways. The direct effect

originates from dynamics associated with the autoregressive jump frequency which is directed

by measurable jump-arrival innovations. There is also a feedback effect of jumps through the

GARCH parameterization of the impact of squared-return innovations on future variance. We

allow return innovations to have asymmetric impact and persistence effects on future variance

depending on whether the source of the innovations was from jumps or normal innovations

and whether or not it was associated with good or bad news.

2.5. Dynamics of higher-order conditional moments

Extending Das and Sundaram (1997) and Maheu and McCurdy (2004) for the ARJI-

GARCH specification, the conditional variance (vt), conditional skewness (st), and conditional

kurtosis (kt) are:

vt = σ2
1,t + σ2

2,t + λt(θ
2 + δ2), (36)

st =
λt(θ

3 + 3θδ2)

(σ2
1,t + σ2

2,t + λtθ2 + λtδ2)3/2
, (37)

kt = 3 +
λt(θ

4 + 6θ2δ2 + 3δ4)

(σ2
1,t + σ2

2,t + λtδ2 + λtθ2)2
. (38)

Clearly, jumps affect all of the conditional moments. As indicated in Eq. (36), the moments

of the jump-size distribution and jump arrival have a direct impact, measured by λt(θ
2+δ2), on

the conditional variance. Clustering of jump arrival, as parameterized in Eq. (22), contributes

to volatility clustering. As Eq. (35) shows, jumps also contribute to volatility clustering

through the news-impact coefficient in the GARCH specification.

Time-varying jump arrival will be the source of time-variation in the conditional 3rd and

4th moments (numerators of Eq. (37) and (38), respectively), whereas the conditional skew-

ness and kurtosis statistics, st and kt, will also be affected by time-variation in the variance

clustering component σ2
t which is the total GARCH effect augmented by any persistence in

the jump impacts.

Note that if jump arrival was constant but nonzero, λt ≡ λ > 0, we would still have

time-varying and non-normal levels of skewness and kurtosis, as measured by st and kt. On

the other hand, if there were no jumps expected, λt = 0 for all t, conditional skewness and

conditional kurtosis would be the same as that for a conditional normal distribution. We

estimate both of these special cases as part of our robustness analyses.
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3. Data and estimation

3.1. Data

Our data are returns including distributions from a broadly diversified equity index, that

is, the CRSP (Center for Research in Security Prices) NYSE/Amex/Nasdaq value-weighted

index (vwretd from dsix) for the period January 2, 1926 to December 31, 2011. These returns

are converted to continuously compounded daily returns. For the riskfree rates, we convert

30-day Treasury bill returns (t30ret from mcti) to continuously compounded monthly returns

and divide by 22 to approximate daily riskfree continuously compounded rates. These are

subtracted from the continuously compounded daily index returns resulting in our full sample

of 22,785 daily excess log returns. Descriptive statistics are reported in Table 1.

[Insert Table 1 about here.]

3.2. Estimation method

As in Maheu and McCurdy (2004), analytical filtering allows one to infer probabilities

associated with the unobservable jumps. The filter can be constructed as,

P (nt+1 = j|Φt+1,Θ) =
f(rt+1|nt+1 = j,Φt,Θ)P (nt+1 = j|Φt,Θ)

f(rt+1|Φt,Θ)
j = 0, 1, 2, . . . . (39)

This filter provides an ex post distribution for the number of jumps, nt+1. One method to

assess whether or not a jump occurred in a particular period would be to use the filter to find

the probability that at least one jump occurred. This is, P (nt+1 ≥ 1|Φt+1) = 1 − P (nt+1 =

0|Φt+1), which is directly available from model estimation.

The model can be estimated by maximum likelihood. This involves integrating out the

number of unobserved jumps. Given the number of jumps j and the parameter vector Θ, the

conditional density of returns f(rt+1|Φt,Θ, nt+1 = j) is

1√
2π(σ2

t + jδ2)
exp

(
−1

2

(rt+1 −mt − ρ1(rt −mt−1)− ρ2(rt−1 −mt−2)− (j − λt)θ)
2

σ2
t + jδ2

)
, (40)

where j ∈ {0, 1, 2, . . . }. The full likelihood contribution in terms of rt+1 is then

f(rt+1|Φt,Θ) =
∞∑
j=0

f(rt+1|Φt,Θ, nt+1 = j)P (nt+1 = j|Φt,Θ), (41)

where the second term in the summation is the probability density function (p.d.f.) of

the time-varying Poisson distribution in (20). Finally, the full sample loglikelihood is l =∑T
t=1 log f(rt+1|Φt,Θ) which is maximized with respect to Θ by a quasi-Newton routine.
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The terms in the likelihood and filter involve an infinite summation. To make estimation

feasible, we truncated this summation at 25. In practice, for our model estimates, we found

that the conditional Poisson distribution had zero probability in the tail for values of nt ≥ 10.

4. Results

4.1. Parameter estimates

Table 3 provides parameter estimates for the full model with alternative specifications for

the conditional market equity premium, mt. Column 2, labeled ‘prudence’, reports estimates

for our maintained parameterization of mt given in Eq. (12). Column 3, labeled ‘intercept’,

provides estimates for the same model including an intercept, µ, in the conditional mean. Col-

umn 4, labeled ‘unrestricted’, removes the sign restrictions on skewness and kurtosis implied

by decreasing absolute prudence. Column 5, labeled ‘variance’, just prices the conditional

variance, vt; column 6, labeled ‘skewness’, prices both the conditional variance and condi-

tional skewness; and column 7, labeled ‘kurtosis’ prices both the conditional variance and

conditional kurtosis. As described below, we try pricing these components separately due to

the strong negative correlation between skewness and kurtosis.

[Insert Table 2 about here.]

[Insert Table 3 about here.]

In order to focus on the alternative specifications for the equity premium, all of the models

reported in Table 3 include an AR(2) dynamic in the conditional mean to capture remaining

serial correlation, have an identical GARCH specification for volatility clustering, and have

the same parameterization for jump dynamics.

The estimation results in Table 3 reveal significant risk pricing associated with the market

equity premium. In our maintained specification (column 2), the coefficient on the conditional

variance is 0.026 (ψv) with a significant t-stat of 3.4. The skewness coefficient ψs is -0.027 with

a significant t-stat of -3.4, implying a significant negative price associated with skewness. If

the skewness statistic, st, is also negative, which it is in our sample, this implies that investors

will be compensated with extra expected return for being exposed to negative skewness.

Exposure to dynamics of kurtosis, however, does not seem to be priced in the presence of

the skewness premium. For the ‘intercept’ case (column 3), the intercept µ, which is used to

capture missing pricing factors, has a t-stat -2.2. Returns are very volatile for several months

following September 2008. For this subperiod, the diffusive variance captures a relatively

larger proportion of the variability. This significantly higher variance than average implies

that a negative intercept is required to fit the average premium for the entire sample. If
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one were to end the sample prior to 2008, the intercept is insignificantly different from zero

supporting our maintained specification given by Eq. (12) with results reported in column 2.6

The GARCH components of the variance are very similar across models. The first GARCH

component captures the long-run dynamics (highly persistent with a β1 estimate of 0.97); while

the second GARCH component has a β2 of about 0.78 indicating lower persistence. As reported

in the third row of Panel B in Table 6, a one-component GARCH specification is rejected (p-

value 4.13e-52) in favor of the maintained two-component GARCH parameterization.

The next set of parameters (fourth panel Table 3) capture volatility asymmetry with

respect to the sign of the return innovation and the inferred number of jumps as parameterized

in Eq. (35). These asymmetries enter both the short-run and long-run components of the

GARCH specification. Again, parameter estimates are very similar across models. In each

case, a negative return innovation (bad news) results in a significant increase in the conditional

variance (αa,1 and αa,2 are positive) while an inferred jump contributes to a drop in the

GARCH variance (αa,j,1 and αa,j,2 are negative). That is, jump innovations to returns get

incorporated into prices more quickly than normal innovations. This effect (αa,j,1) is strongest

for the long-run component.

Despite a rich two-component GARCH specification, there remains strong evidence of

jump dynamics in daily returns. The arrival of jumps is autocorrelated with a γ1 of 0.96

which is highly significant. Jumps tend to arrive in clusters and this will have important

implications for the dynamics of the higher-order conditional moments of returns as sum-

marized in Eqs. (36) to (38). The likelihood ratio (LR) test for no autocorrelation in jump

arrival is decisively rejected with a p-value of 3.7e-23. The arrival of jumps is infrequent, on

average. That is, according to the parameter estimates, the unconditional jump-arrival rate,

E[λt] = γ0/(1 − γ1), is 0.13 which implies about 33 jumps on average per year in the long

run. Also, on average, jumps result in a drop in the market price, that is, the mean of the

jump-size distribution, θ, is significantly negative.

4.1.1. Alternative equity premium specifications

We explore additional pricing specifications in columns 5 to 7 of Table 3. In column 5 we

report results from a parameterization that imposes the restriction that skewness and kurtosis

are not priced, that is, ψs = ψk = 0. In this special case, the conditional variance (which

includes jump effects) is still significantly priced. However, the LR test presented in Table 6

Panel A rejects ψs = ψk = 0.7

6Note that our results are not driven by the potential structural break at the end of the 1930s. Estimation
using subsamples 1940 to 2011 and 1963 to 2011 give similar results.

7The test statistic is 12.858; the p-value of 0.0016 corresponds to two degrees of freedom (two restrictions).
However, as shown in Table 3, the skewness and the kurtosis factors are both capturing the same risk from a
pricing perspective so this is effectively a one degree-of-freedom test in which case the p-value would be even
lower.
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It is interesting that if we estimate the power utility special case of our maintained model,

that is, Eqs. (13) and (14), the results are very similar to our special case of pricing risk

captured by the conditional variance. That is, estimating a risk premium specification under

the power utility assumption gives essentially the same results as in column 5 of Table 3 since

ψs and ψk associated with Eqs. (13) and (14) are estimated to be close to zero and statistically

insignificant in our sample. Note that this special case implies a coefficient of relative risk

aversion of about 2.7.8

Column 4 of Table 3 reveals that if we remove the restriction that ψs ≤ 0, ψk ≥ 0 implied

by the preference theory in Dittmar (2002) and others, both skewness and kurtosis are signif-

icantly priced in the equity premium, but the price, ψk, associated with kurtosis is negative.

This is counterintuitive and at odds with the preference-based restrictions.

If we only price the conditional variance and conditional skewness (column 6), the results

are essentially the same as in column 3 with the difference due to numerical approximation

errors. If we only price conditional variance and conditional kurtosis (column 7), then both

these risk factors are also significantly priced in the equity premium. More importantly, the

coefficient on the kurtosis becomes significantly positive. Taken together, our results suggest

that skewness and kurtosis at the market level seem to pick up the same source of risk.

Investigating the correlation of the estimated skewness and kurtosis (from both our model

and sample counterpart), we find a high negative correlation between skewness and kurtosis

(-0.96 from our model and -0.93 from the sample estimate computed using a 15-year moving

window of the historical returns). A negative correlation between risk-neutral skewness and

kurtosis is also documented in Bakshi, Kapadia, and Madan (2003) in a study of the effect

of skewness and kurtosis on the slope of the volatility surface. Chang, Christoffersen, and

Jacobs (2013) also find a large negative correlation between risk-neutral skewness and kur-

tosis, a price of skewness robust to different specifications, but no robust pricing result on

kurtosis in a cross-sectional study. This supports our conclusion gleaned from estimating the

alternative special cases and also supports the preference-based restrictions associated with

our maintained specification in column 2.

4.1.2. Importance of nonlinear pricing of jumps

To demonstrate the importance of having a nonlinear pricing structure for jumps in the

equity premium, we estimate a model with the full dynamics as in our ‘prudence’ model but

with the equity premium specified as follows:

mt = ψvσ
2
t + ψjλt. (42)

8As derived in our Appendix, the coefficient on the variance for the risk premium, associated with simple
as opposed to continuously compounded returns, is 100× ψv + 0.5.
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This linear pricing specification is typically assumed in the studies that use both equity and

options to identify the pricing of jump risk (e.g., Pan, 2002). We label this specification of

the equity premium as the ‘linear’ model.

Table 4 presents a comparison of the results for the linear versus our nonlinear specification

of the equity premium. The parameter estimates for the GARCH and jump dynamics of the

‘linear’ model are quite similar to those in the ‘prudence’ model. Therefore, we only report

the estimates of the pricing coefficients to facilitate comparison. In the ‘linear’ model, we have

ψ̂j = 0.188 (t-stat=2.47) and ψ̂v = 0.017 (t-stat=1.44), i.e., jump risk is significantly priced

whereas diffusive risk is not. Furthermore, the likelihood (-26392.3) of the ‘linear’ model is

smaller than that (-26386.8) of the ‘prudence’ model, despite the rich dynamics in the ‘linear’

model. The pricing result of the ‘linear’ model is quite similar to what Pan (2002) finds in

a continuous time framework with stochastic volatility and time-varying jumps. In addition,

both equity and options are used in Pan (2002).

[Insert Table 4 about here.]

This comparison highlights the importance of having a nonlinear pricing structure for

jumps in the equity premium. Having jumps priced through higher-order moments not only

works well empirically but, theoretically, is also consistent with more general preferences as

derived in Appendix A.3.

4.1.3. Alternative specifications of dynamics

Table 5 provides estimates for alternative specifications of the volatility and jump dynam-

ics. For example, removing jumps from our parameterization results in the special cases of

either a one-component or a two-component GARCH-in-Mean (GIM) specification (columns

2 and 3, respectively). As evident from the resulting likelihoods in Table 5, compared with

our maintained model in columns 2 or 3 of Table 3, including jumps results in a much superior

fit. As reported in Panel B of Table 6, the LR test statistics of 1879.9 and 1465.1 reject the

no-jump one-component and two-component GIM special cases with extremely small p-values.

[Insert Table 5 about here.]

Nevertheless, even with our most general specification of jumps, the second GARCH com-

ponent is still very important; the LR test reported in Panel B of Table 6 comparing column

3 of Table 3 with a special case without the second GARCH component has a p-value of

4.13e-52.

The asymmetric feedback from jumps to diffusive volatility is also very important as re-

vealed by the test of the restriction αa,j,1 = αa,j,2 = 0 reported in the first line of Panel B of

Table 6.
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Column 4 of Table 5 shows the results of assuming constant jump arrival. The LR test

reported in Panel B of Table 6 decisively rejects constant jump arrival in favor of our autore-

gressive parameterization of the jump-arrival process (p-value of 3.74e-23).

[Insert Table 6 about here.]

Finally, column 5 of Table 5 confirms that the equity premium pricing structure is robust to

the specification without an AR(2) structure in the conditional mean. The pricing coefficients

are similar to those of our maintained specification in columns 2 or 3 of Table 3: both ψv and

ψs are significantly priced and ψk is close to zero.

4.2. Risk and the equity premium

Jumps contribute to the dynamics of the total conditional variance and also drive the

dynamics of conditional skewness and conditional kurtosis in our maintained model. The

results for that model, reported in column 2 of Table 3, reveal a positive coefficient on the

variance and negative coefficient on skewness. Apparently, jumps contribute to the pricing

of the equity premium. However, since both jumps and the GARCH volatility enter our

parameterizations of the conditional variance, conditional skewness, and conditional kurtosis,

the net contribution of jumps versus GARCH volatility to the dynamics of equity premium is

difficult to disentangle. To this end, in this subsection we focus on these two contributions to

risk and attempt to isolate their net effects on the equity premium.

Using the variance forecast as a measure of risk for the market as a whole follows the long

tradition from Merton (1980). Given that we estimate constant moments for the jump-size

distribution, the contribution of jumps to the dynamics of the equity premium is driven by

λt. A larger λt indicates a larger probability of a jump event. Jump events are generally

realizations in the tails of the distribution and, according to our estimate of the jump-size

distribution, they are more likely to be the left tail.

We compute the marginal effect of these two components using the partial derivative of

the equity premium mt with respect to λt and σt, respectively. Fig. 2 displays the partial

derivative of mt with respect to λt for a range of empirically realistic values of λt. This is done

for three different levels of the GARCH volatility component. Note that the equity premium

always increases in response to an increase in jump risk (λt). However, the size of the effect

differs depending on the level of the GARCH volatility and the current value of λt. A unit

increase in λt yields the largest increase in the premium when the GARCH volatility is low

and when jump activity is expected to be low. In more volatile times, as measured by larger

σt and/or larger λt, the effect of an increase in jump risk is still positive but much smaller.

[Insert Figure 2 about here.]
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In order to get some idea of the magnitude of the effect of jump risk on the equity premium

mt, we compute the partial derivative of mt with respect to λt at each t. The sample mean

of this derivative is around 0.1062, suggesting that one more jump in a year increases the

equity premium by 0.1062%. The average jump-arrival rate (λ̄ = 0.1361) implies about 34

jumps a year. Therefore, based on our maintained model reported in column 2 of Table 3, the

contribution of jumps to the market equity premium is about 3.61% per annum. Note that

Pan (2002) and Elkamhi and Ornthanalai (2009) report jump risk premia of approximately

3.5% and 3.18%, respectively, by jointly estimating return dynamics and option dynamics.

Bollerslev and Todorov (2011) obtain a median jump risk premium of 5.2% using options

data and a nonparametric approach to estimate realized jumps from high-frequency data.

The solid line in Fig. 3 reports the level of the equity premium for different levels of the

diffusive (GARCH) volatility σt, holding the jump-arrival rate at its average level λ̄. The

dotted line shows the equity premium due to the total variance, that is, ψv × vt. Finally,

the dashed line shows the equity premium component due to skewness, that is, ψs × st.

Interestingly, in contrast to the effect of an increase in λt on mt, an increase in GARCH

volatility has a negative effect on the premium for small values of σt and a positive effect for

average to larger values of GARCH volatility. The negative effect originates from the fact

that an increase in σt increases both the conditional variance and the skewness (decreases the

negative skewness).9

Therefore, our results suggest that in relatively calm times (small σt), an increase in σt has

a stronger effect on the equity premium from our skewness measure than from the variance.

Intuitively, investors value the increase in skewness (st has a smaller negative value) and the

potential increase in upside more, therefore they demand a smaller equity premium. In more

volatile times, the equity premium effect of σt through the variance channel dominates that

from the skewness and investors demand a higher equity premium for an increase in σt.

[Insert Figure 3 about here.]

We also present a numerical example in Table 7 to help capture the intuition. To illustrate,

we set the jump intensity at the sample average. This table presents the results on two low-

volatility days. Suppose on one day the diffusive volatility is 0.07 (annualized), then according

to our ‘prudence’ model estimation, the equity premium from conditional variance is 2.3%

9This can be verified from Eqs. (36) to (38) and the fact that the estimated jump-size mean θ is negative.
That is:

∂m/∂σ = ∂
(
ψ̂v × v̂ + ψ̂s × ŝ+ ψ̂k × k̂

)
/∂σ

≈ ∂
(
ψ̂v × v̂ + ψ̂s × ŝ

)
/∂σ

= ψ̂v︸︷︷︸
>0

× ∂v̂/∂σ︸ ︷︷ ︸
>0

+ ψ̂s︸︷︷︸
<0

× ∂ŝ/∂σ︸ ︷︷ ︸
>0

.

Note that ŝ < 0 since θ̂ < 0; so ∂ŝ/∂σ > 0 refers to a decrease in negative skewness.
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(annualized) and the equity premium from the conditional skewness is 6.5% (annualized),

resulting in a total equity premium of 8.8% (annualized) for this particular day. It is clear

that the skewness component dominates in this case because the magnitude of the skewness

is quite high (−1.0). Skewness at the market level illustrates the left-tail risk as measured

by the distributional asymmetry relative to the dispersion of the distribution (where the

latter is measured by volatility). When the dispersion of the distribution is low, a moderate

amount of jump risk (to the left tail, on average) could generate a significant asymmetry

in the distribution. When the dispersion increases, e.g., σ increases from 0.07 to 0.1, the

magnitude of the skewness drops significantly to −0.5, resulting in a total equity premium

of 7.0%, despite an increase in the equity premium due to the variance (from 2.3% to 3.7%).

Therefore, if we omit the skewness component of the equity premium, an increase of σ from

0.07 to 0.1 corresponds to a decrease in the equity premium, m, from 8.8% to 7.0%. In

contrast, in more volatile times, an increase in σ will correspond to an increase in m because

the equity premium will then be dominated by the variance. Even if the jump risk were higher

in more volatile times, the return distribution could actually be less asymmetric than in less

volatile times so that the variance component of the equity premium dominates.

[Insert Table 7 about here.]

These results offer a potential resolution to the conflicting results in the literature on risk

and expected return for the market as a whole. In this literature, higher-order moments

are not considered as part of the risk. A positive relationship between conditional variance

and return only occurs when the GARCH variance component is at or above average levels.

During calm times (low level of the GARCH variance component), the skewness premium

effect dominates. For these periods if we were to omit conditional skewness from the equity

premium specification, due to the missing skewness factor we could, inappropriately, estimate

a negative relationship between the equity premium and the conditional variance at low levels

of the latter. In more volatile times, the variance premium effect dominates and we will be

able to see a positive risk-variance tradeoff, whether we include conditional skewness in the

equity premium specification or not.

4.3. Equity premium size and dynamics

Table 8 presents the descriptive statistics of the equity premium from our maintained model

in column 2 of Table 3, as well as those for the unrestricted model in column 4 of the same

table. The median (average) equity premium estimate is about 7.5% (10%) per annum for the

maintained prudence model and 6.6% (9.8%) for the unrestricted parameterization.10 Fig. 4

illustrates the time-series dynamics of the equity premium for our prudence specification. The

10Daily returns were scaled by 100. Therefore, to annualize the median or average daily premiums reported
in Table 8, we scale by (252/100).
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restriction implied from preference theory for the prudence model ensures that the (expected)

equity premium is always positive. Notice that the average premium will be affected by a

few large outliers associated particularly with 2008, 1987, and the 1930s. Note though, as

mentioned above, our results with respect to the significance of the variance and skewness

components of the equity premium are robust for the post-1930s (1940–2011) subsample.

[Insert Table 8 about here.]

According to our parameter estimates, the average expected number of jumps per year is

34. Combining this with the average impact of a change in jump risk implies that the equity

premium associated with jumps is about 3.61% per annum on average.

In our parameterization all higher-order moments can incorporate jumps. According to

our parameter estimates for the maintained model (column 2 of Table 3), using the average

of the estimated jump-arrival rate λ̄, jumps contribute 1.06% to the equity premium through

the variance dynamics11 and 2.55% associated with the skewness premium.

In addition to the significant pricing of variance with respect to the market equity pre-

mium, we find robust pricing of skewness for the market equity premium. The equity premium

contributed by the premium for skewness is, on average, 3.4%, which contributes about 34%

of the overall equity premium for our sample.12 This is very close to the 3.6% per annum risk

premium compensation for systematic skewness found by Harvey and Siddique (2000) who

study the conditional skewness in a cross-section of monthly stock returns. In our parameter-

ization of the time-series of daily market excess returns, jumps account for about 76% of that

skewness premium.

As noted above, when we impose the preference restriction of a nonnegative price associated

with kurtosis, our findings show that this price is close to zero. We find that this is due to

the high negative correlation between the conditional skewness and conditional kurtosis in

the market index. Conditional kurtosis is significantly priced with a positive sign when the

skewness factor is not included.

[Insert Figure 4 about here.]

Table 9 reports summary statistics for our estimated higher-order moments for both the

maintained prudence model and the unrestricted model (columns 2 and 4 of Table 3, respec-

tively). The former are plotted in Fig. 5.

[Insert Table 9 about here.]

[Insert Figure 5 about here.]

11ψv × (λ̄× (θ2 + δ2))× 2.52 = 0.026× (0.136× ((−0.482)2 + 0.9772))× 2.52.
12We have ψs = −0.028, average st = -0.496. Therefore, the skewness premium is (−0.027)×(−0.496)× 252

100 =
.034 or 3.4% per annum.
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Table 10 reports the average jump-arrival rate λ̄ and the percentage of total variance due to

the jump component versus the diffusive component. As noted in Section 4.1 above, the large

increase in return variability in the final quarter of 2008 implies that total variance was much

higher. Although the frequency of jumps was also much higher for that subperiod relative

to the entire sample, the proportion of the total variance due to the diffusive component

increased dramatically to 95% relative to 74% on average for the entire sample.

[Insert Table 10 about here.]

5. Out-of-sample asset allocation performance

In this section, we evaluate the value-added associated with out-of-sample forecasts that

incorporate priced risks associated with time-varying arrival of jumps through their effect on

the dynamics of conditional variance, skewness, and kurtosis. We do this by evaluating the

realized utility and certainty-equivalent returns associated with a simple portfolio allocation

application. As our model is on the market index, we assume that an investor is making

investment decisions between the market portfolio and the riskfree asset. We derive optimal

portfolio weights using the forecasts associated with our maintained model versus several

alternative benchmarks.

Building on Harvey and Siddique (2000) and Guidolin and Timmermann (2008), we use a

Taylor-series approximation to a general utility function which is consistent with the pricing

kernel used to derive our maintained risk premium specification. Determining the additional

parameters associated with a more general utility function is challenging. However, the equity

premium associated with our maintained prudence model, summarized in Section 2.1, pro-

vides additional parameters (prices of risk) associated with the higher-order terms in the risk

premium specification. As shown in Appendix A.3, we obtain the functional relationship be-

tween these parameters and the coefficients for the Taylor-series expansion of a general utility

function. We can then solve for the coefficients of that approximation to general utility and

calibrate the implied utility coefficients to the empirical estimates associated with our equity

premium specification. This provides an approximation to general utility for our performance

application that is consistent with our asset pricing model and empirical estimates.

We compare the out-of-sample portfolio performance based on four different models of the

market index return. The four models are the prudence model (our maintained model), the

variance model, the GIM-1 model, and a constant model which assumes a constant equity

premium. The prudence, variance, and constant models share the same jump dynamics and

associated time-varying variance, skewness, and kurtosis. The prudence and variance models

are reported in columns 2 and 5 of Table 3. The GIM-1 model, which is the traditional

single-component GARCH-in-Mean model, is reported in column 2 of Table 5. For each of
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the models, we estimate the parameters using the data up to the end of 2001; using data from

2002 to the end of 2011 to evaluate the out-of-sample performance.

[Insert Table 11 about here.]

The out-of-sample portfolio performance results are reported in Table 11. For comparison

with other studies, such as Guidolin and Timmermann (2008), the asset allocation performance

results are performed using daily returns scaled to a monthly equivalent. As is clear from

Table 11, the prudence model dominates the other three benchmark models. It results in higher

average realized utility, lower standard deviation of realized utility, and a higher annualized

certainty equivalent return (CEQ).13 There are clear benefits to pricing jumps (prudence versus

GIM-1 ), and to pricing higher-order moments (prudence versus variance).

6. Robustness and alternative interpretations

6.1. Variance risk

In our maintained (prudence) model, derived and estimated above, we evaluated the poten-

tial importance of equity premium components due to the dynamics of conditional variance,

skewness, and kurtosis. Following Chabi-Yo (2012) and Chabi-Yo, Ghysels, and Renault

(2007), we derive (see our Appendix A.4 below) a two-period intertemporal parametrization

of our model in order to add variance risk to our equity premium specification. As shown in

Appendix A.5, abstracting from conditional kurtosis which is not significantly priced in our

maintained (prudence) model, the conditional equity premium in this extended model is:

mt = ψvvt + ψsst + ψζ
Covt(vt+1, ϵt+1)

v
3/2
t

, (43)

where the first two terms are premium components due to the dynamics of conditional vari-

ance and conditional skewness and the last term captures the premium due to variance

risk. Note that due to conditioning on time t information, covt(vt+1, ϵt+1) is equivalent to

covt(∆vt+1, ϵt+1). When an investor is facing a multi-horizon portfolio allocation problem, the

uncertainty in future variance matters. As shown in our Appendices A.4 and A.5, the variance

risk term in Eq. (43) captures the covariation of a future return innovation with those changes

in conditional variance.

For our sample, the average variance risk is negative and the estimated price, ψ̂ζ , is statis-

tically insignificant, as in Chabi-Yo (2012) who uses generalized method of moments (GMM)

estimation in a cross-section of stock returns. Our conclusion is based on a likelihood ratio test

13As in Guidolin and Timmermann (2008), the certainty equivalent return is calculated based on the average
realized utility.

22



which shows the expanded model to be insignificantly different (ψζ = 0) than the prudence

model.

6.2. Recursive utility

Our analyses have focused on the time-separable utility framework. In this framework,

our empirical model could be linked to investors’ preferences over higher-order moments and

volatility risk. Many asset pricing models have used time non-separable utility, particularly

recursive utility as in Epstein and Zin (1989), Bansal and Yaron (2004), and Routledge and

Zin (2010). For example, Boguth and Kuehn (2013) examine consumption volatility risk using

a cross-section of stock returns and conclude that the pricing of consumption volatility risk

reflects investors’ preference for early resolution of uncertainty; that is, that the elasticity

of intertemporal substitution (EIS) is greater than the inverse of the relative risk aversion

parameter (1/RRA). Their average beta associated with variance risk for the median portfolio

sorted by this beta is negative [-0.05 in Table V of Boguth and Kuehn (2013)].14 The price

of variance risk is also negative (-0.12) in their Fama-MacBeth cross-sectional regression. For

the market, the premium should then be positive.

In Appendix A.6 below, following the parametrization in Boguth and Kuehn (2013), we

show that our model can also be linked to a pricing equation derived from a parametric

recursive utility framework. Appealing to the assumptions in Campbell (1993), we derive a

time-series application for the market portfolio and discuss our results in the context of a

recursive utility setting. In this case, the equity premium specification is:

Et[Rm,t+1]−Rf = ψ̃vVart(Rm,t+1) + ψ̃ηCovt(σt+1, Rm,t+1). (44)

This is analogous to a special case of our prudence model, that is, the variance model reported

in column 5 of Table 3, extended to include variance risk.

If we estimate a model with variance only (no intercept), the loglikelihood is -26395.149,

compared to -26388.651 for the model with variance and variance risk. That is, variance risk is

significantly priced if no higher-order moments are present (p-value is 0.0003 for the LR test).

For this parametrization, the average value of variance risk and the coefficient for variance

risk are both negative so, as in Boguth and Kuehn (2013), the premium due to variance risk

is positive.

In the previous subsection we discussed a parametrization which extends our more general

prudence model to include variance risk. In that case, we found that adding variance risk

did not improve the fit of our maintained prudence model for which conditional skewness is

14Average beta for the whole sample is not reported but can be inferred from the sample average of their
five quintile portfolios. The inferred number would be (−0.32 − 0.15 − 0.05 + 0.05 + 0.15)/5 = −0.052. The
beta for a value-weighted portfolio should be (−0.32)×12.19%+(−0.15)×18.54%+(−0.05)×23.13%+0.05×
24.39% + 0.21× 21.74% = −0.021.
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significantly priced.15 Furthermore, the loglikelihood for our prudence model (−26386.791) is

better than that (−26388.651) for the case which includes variance risk but excludes higher-

order moments.

7. Concluding comments

In this paper we demonstrate that jump risk is priced in the market index and contributes

to the equity premium. Jump risk potentially gets priced through the time-varying conditional

variance, skewness, and kurtosis. The time-varying conditional moments of excess returns are

generated by the time-varying jump-arrival process and two-component GARCH dynamics.

Empirically, we find that the conditional variance and skewness are priced in the market

equity premium. Our results highlight the importance of having a nonlinear pricing structure

for jumps in the equity premium. Having jumps priced through higher-order moments not

only works well empirically but, theoretically, is also consistent with more general preferences.

The results are robust to different specifications of the equity premium and/or the volatility

and jump dynamics.

We compute the marginal effect of jumps on the equity premium and find that, on average,

one more jump per year would increase the equity premium by 0.1062%. The average number

of jumps per year according to our parameterization and sample is 34 which implies an overall

jump risk premium of 3.61% per annum. Jump risk is priced in the market equity premium

both through the jump component of variance dynamics and skewness contributing 1.06% and

2.55%, respectively, to those premiums.

The total skewness premium is about 3.4% per annum. Our maintained model imposes

a nonnegative coefficient on conditional kurtosis as implied by decreasing absolute prudence

preferences. In this case, we find the price of the kurtosis to be close to zero in the presence

of the skewness factor. We explore different specifications of the equity premium by pricing

skewness and kurtosis separately and find them to have the expected signs. At the market

level, any contribution of conditional kurtosis to the equity premium seems to be largely

captured by dynamics of the conditional skewness.

Finally, we check the robustness of our results by extending the model to include a variance

risk term as proposed by Chabi-Yo (2012). We find that the variance risk is not significantly

priced in our maintained model which includes the contribution of conditional skewness to

the equity premium. On the other hand, including variance risk in a special case of our model

which excludes the contribution of conditional skewness and kurtosis does result in a significant

price of variance risk, as in the cross-sectional results in Ang, Hodrick, Xing, and Zhang (2006)

and Boguth and Kuehn (2013). To explore this further, we derive and estimate a special case

15The conditional skewness and quantity of variance risk are highly correlated. To the extent that they
capture similar variation, our maintained empirical model (prudence model) can also be interpreted in the
recursive utility framework as supporting the assumption that EIS is greater than 1/RRA.

24



of our model in a recursive utility setting applied to our time-series of market returns, and

discuss our results in the context of those in the cross-sectional application in Boguth and

Kuehn (2013). Nevertheless, our prudence model which prices higher-order moments still fits

the data better than this recursive utility parameterization which includes variance risk but

excludes higher-order moments.

Our study has some important implications for the literature on estimation of the risk-

return relationship with high-frequency data. Identifying jump risk and the associated in-

tertemporal risk-return tradeoff has been found to be difficult in prior studies unless one also

uses options data. Our results show that it is possible to identify jump risk and its contribution

to the market risk-return tradeoff using equity data only.

Appendix A. Technical appendix

A.1. Scaling returns

Empirically, we find that we need to scale the daily returns rt in order to get numerically

stable estimates. Assuming that ρ1 = ρ2 = 0 and suppressing the time index for convenience

of notation, recall from Section 2 that

r = m+ ϵ1 + ϵ2, (45)

m = µ+ ψvv + ψss+ ψkk, (46)

where ϵ1 ∼ N(0, σ2), ϵ2 = J − λθ, and J =
∑n

k=1 Yk follows a compound Poisson distribution

with parameters (λ, θ, δ). λ is the arrival rate for the Poisson distributed variate n and the

jump size is distributed normally as Yk ∼ N(θ, δ2).

Scaling r by 100 and denoting the scaled return by r100,

r100 = m100 + ϵ1,100 + ϵ2,100, (47)

in which

m100 ≡ 100m = 100(µ+ ψvv + ψss+ ψkk), (48)

ϵ1,100 ≡ 100ϵ1, (49)

ϵ2,100 ≡ 100ϵ2. (50)

Estimating Eq. (47) is equivalent to estimating Eq. (45) using maximum likelihood estimation.

One can verify that

100ϵ1 ∼ N(0, 1002σ2). (51)

Also, 100ϵ2 follows a compound Poisson distribution with parameters (λ, 100θ, 100δ). The
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Poisson distribution that governs the number of jumps does not change whereas the jump size

is scaled by 100. That is,

100Yk ∼ N(100θ, 1002δ2). (52)

First, we define the parameters of ϵ1,100 and ϵ2,100 in the following way:

σ100 = 100σ (53)

λ100 = λ (54)

θ100 = 100θ (55)

δ100 = 100δ, (56)

where the parameters with subscript 100 are for the scaled returns r100. After the reparametriza-

tion, ϵ1,100 ∼ N(0, σ2
100) and ϵ2,100 follows a compound Poisson distribution with parameters

(λ100, θ100, δ100) and Yk,100 ∼ N(θ100, δ
2
100).

Using Eqs. (53) to (56), it is straightforward to see that

v100 = σ2
100 + λ100(θ

2
100 + δ2100) (57)

= 1002σ2 + λ(1002θ2 + 1002δ2) = 10000v, (58)

s100 =
λ100(θ

3
100 + 3θ100δ

2
100)

(σ2
100 + λ100θ2100 + λ100δ2100)

3/2
= s, (59)

k100 = 3 +
λ100(θ

4
100 + 6θ2100δ

2
100 + 3δ4100)

(σ2
100 + λ100δ2100 + λ100θ2100)

2
= k. (60)

Note that in the estimation, we only use the scaled return r100, therefore, in Eq. (48)

m100 = 100(µ+ ψvv + ψss+ ψkk),

we need to replace v with v100 using v100 = 10000v, replace s with s100 using s100 = s, and

replace k with k100 using k100 = k. After this operation we have

m100 = 100µ+ 0.01ψvv100 + 100ψss100 + 100ψkk100. (61)

Therefore, we scale the parameters in m100 as

µ100 = 100µ, (62)

ψv,100 = 0.01ψv, (63)

ψs,100 = 100ψs, (64)

ψk,100 = 100ψk, (65)
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and obtain

m100 = µ100 + ψv,100v100 + ψs,100s100 + ψk,100k100. (66)

Combining all of the rescaled terms:

r100 = µ100 + ψv,100v100 + ψs,100s100 + ψk,100k100 + ϵ1,100 + ϵ2,100. (67)

A.2. Simple risk premium

Eq. (12) specifies the conditional equity risk premium associated with excess continuously

compounded returns for a market-wide index. Often the equity premium is computed using

simple returns, that is, compounded per period rather than continuously.

For our specification, the conditional simple equity risk premium, labeled as ms,t, is:

ms,t = E[exp(rt+1 − ρ1(rt −mt−1)− ρ2(rt−1 −mt−2))|Φt]− 1 (68)

= E[exp(mt + ϵ1,t+1 + ϵ2,t+1)|Φt]− 1. (69)

To derive this conditional simple equity premium ms,t, we need to find E[exp(ϵ1,t+1)|Φt]

and E[exp(ϵ2,t+1)|Φt]. Using the characteristic function of the normal distribution and the

fact that ϵ1,t+1|Φt ∼ N(0, σ2
t ),

E[exp(ϵ1,t+1)|Φt] = exp(0.5σ2
t ). (70)

Recall from Section 2.3.1 that the compensated jump innovation is

ϵ2,t+1 = Jt+1 − θλt =

nt+1∑
k=1

Yt+1,k − θλt,

and Jt+1 =
∑nt+1

k=1 Yt+1,k is directed by a compound Poisson distribution with parameters

(λt, θ, δ). Note that

E[exp(ϵ2,t+1)|Φt] = E[exp(Jt+1)|Φt] exp(−θλt)

= exp(λt(E[exp(Y )|Φt]− 1)− θλt).

As noted in Eq. (27), the jump-size distribution is normal, in which case

E[exp(Y )|Φt] = exp(θ +
1

2
δ2),

so that

E[exp(ϵ2,t+1)|Φt] = exp(λt(exp(θ +
1

2
δ2)− 1− θ)) = exp(λtξ). (71)
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Therefore, the conditional risk premium ms,t is

E[exp(rt+1 − ρ1(rt −mt−1)− ρ2(rt−1 −mt−2)|Φt]− 1 (72)

= (exp(ms,t)E[exp(ϵ1,t+1)|Φt]E[exp(ϵ2,t+1)|Φt])− 1

=
(
exp

(
µ+ ψvvt + ψsst + ψkkt + 0.5σ2

t + λtξ
)
− 1
)

(73)

in which

ξ = exp(θ +
δ2

2
)− 1− θ.

Written in terms of returns scaled by 100, this is the daily risk premium expressed as a

percentage.

A.3. Calibrating utility coefficients to model estimates

To conduct our out-of-sample portfolio allocation analysis, we calibrate the utility coeffi-

cients to our model estimates. We have the following mapping between the coefficients of the

Taylor-series expansion of the general utility and the estimated prices of risk:

U (2)(1 + Ct)

U ′(1)
= − at

1 +Rf
t

= − ψv

1 +Rf
t

, (74)

U (3)(1 + Ct)

U ′(1)
= − 2bt

1 +Rf
t

= −2ψsv
−3/2
t

1 +Rf
t

, (75)

U (4)(1 + Ct)

U ′(1)
= − 6ct

1 +Rf
t

= −6ψkv
−2
t

1 +Rf
t

. (76)

In our out-of-sample portfolio allocation evaluation, we fix vt and Rf
t on the RHS at their

sample averages. Note that the utility coefficients given by the above equations are underde-

termined for the coefficients required for the approximation to the level of utility as expressed

in the above equations. However, without loss of generality, since initial wealth is fixed and

normalized to Wt = 1, we can set U ′(1) to a constant and solve for U (2)(1 +Ct), U
(3)(1 +Ct),

and U (4)(1 + Ct) accordingly.

A.4. Taylor expansion at arbitrary returns for a two-period model

Following Chabi-Yo (2012), we assume that a representative agent maximizes the expected

utility in a two-period model as

max
{ωt}

Et

(
max
{ωt+1}

Et+1 [U(Wt+2)]

)
, (77)
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where the investor wealth is

Wt+2 =Wt(1 +Rf
t + ωtR

e
t+1)(1 +Rf

t+1 + ωt+1R
e
t+2) (78)

The weights in N individual risky assets are represented by the 1 × N vectors ωt, ωt+1. The

Re
t+1, R

e
t+2 are the N × 1 excess return vectors for individual assets. By construction, we have

the market excess return as

RW
t+1 −Rf

t = ωtR
e
t+1, (79)

RW
t+2 −Rf

t+1 = ωt+1R
e
t+2. (80)

Without loss of generality, we assume Wt = 1. Note that the wealth at t+1, t+2 can also be

expressed as

Wt+1 = (1 +RW
t+1) (81)

Wt+2 = Wt+1(1 +RW
t+2) = (1 +RW

t+1)(1 +RW
t+2). (82)

In this two-period intertemporal model, the marginal utility can be approximated using

a recursive univariate Taylor-series expansion, or equivalently, the following bivariate Taylor-

series expansion for f(x, y):

f(x, y) ≈ f(x0, y0) +
∂f

∂x
|(x0,y0)(x− x0) +

∂f

∂y
|(x0,y0)(y − y0) +

1

2

∂2f

∂x2
|(x0,y0)(x− x0)

2

+
1

2

∂2f

∂y2
|(x0,y0)(y − y0)

2 +
∂2f

∂x∂y
|(x0,y0)(x− x0)(y − y0). (83)

Applying this bivariate expansion to our case, we expand U ′(Wt+2) around (1+RW
t+1, 1+R

W
t+2)

at arbitrary returns (1 + Ct, 1 + Ct+1), that is:

U
′
(Wt+2) ≈ U

′
[(1 + Ct)(1 + Ct+1)] + U

′′
[(1 + Ct)(1 + Ct+1)](1 + Ct+1)(R

W
t+1 − Ct)

+ U
′′
[(1 + Ct)(1 + Ct+1)](1 + Ct)(R

W
t+2 − Ct+1)

+
1

2
U

′′′
[(1 + Ct)(1 + Ct+1)](1 + Ct+1)

2(RW
t+1 − Ct)

2

+
1

2
U

′′′
[(1 + Ct)(1 + Ct+1)](1 + Ct)

2(RW
t+2 − Ct+1)

2

+
(
U

′′′
[(1 + Ct)(1 + Ct+1)](1 + Ct)(1 + Ct+1) + U

′′
[(1 + Ct)(1 + Ct+1)]

)
× (RW

t+1 − Ct)(R
W
t+2 − Ct+1)

)
.

The first-order condition with respect to ωt is

Et[U
′
[Wt+2](Rkt+1 −Rf

t )] = 0, (84)
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and we can get the expected return expression for asset k as

Et[Rkt+1 −Rf
t ] = −Covt

(
U

′
[Wt+2]

Et[U
′ [Wt+2]]

, Rkt+1

)
. (85)

Substituting the bivariate Taylor-series expansion of U
′
[Wt+2] into the expected return equa-

tion. we have

Et[Rkt+1 −Rf
t ] ≈ −U

′′
[(1 + Ct)(1 + Ct+1)]

Et[U
′ [Wt+2]]

(1 + Ct+1)Covt((R
W
t+1 − Ct), Rkt+1)

− U
′′
[(1 + rt)(1 + Ct+1)]

Et[U
′ [Wt+2]]

(1 + Ct)Covt((R
W
t+2 − Ct+1), Rkt+1)

− 1

2

U
′′′
[(1 + Ct)(1 + Ct+1)]

Et[U
′ [Wt+2]]

(1 + Ct+1)
2Covt((R

W
t+1 − Ct)

2, Rkt+1)

− 1

2

U
′′′
[(1 + Ct)(1 + Ct+1)]

Et[U
′ [Wt+2]]

(1 + Ct)
2Covt((R

W
t+2 − Ct+1)

2, Rkt+1)

−

((
U

′′′
[(1 + Ct)(1 + Ct+1)](1 + Ct)(1 + Ct+1) + U

′′
[(1 + Ct)(1 + Ct+1)]

)
Et[U

′ [Wt+2]]

× Covt((R
W
t+1 − Ct)(R

W
t+2 − Ct+1), Rkt+1)

)
,

where

at = −U
′′
[(1 + Ct)(1 + Ct+1)]

Et[U
′ [Wt+2]]

(1 + Ct+1) (86)

a1t = −U
′′
[(1 + Ct)(1 + Ct+1)]

Et[U
′ [Wt+2]]

(1 + Ct) (87)

bt = −1

2

U
′′′
[(1 + Ct)(1 + Ct+1)]

Et[U
′ [Wt+2]]

(1 + Ct+1)
2 (88)

b1t = −1

2

U
′′′
[(1 + Ct)(1 + Ct+1)]

Et[U
′ [Wt+2]]

(1 + Ct)
2 (89)

ht = −
(
U

′′′
[(1 + Ct)(1 + Ct+1)](1 + Ct)(1 + Ct+1) + U

′′
[(1 + Ct)(1 + Ct+1)]

)
Et[U

′ [Wt+2]]
. (90)

We assume that the coefficients depend on time t information. Note that this is equivalent to

assuming the time t+ 1 variation is canceling out in these coefficients. In some power utility

cases, this cancelation can be exact. Another special case is where Ct = Ct+1 = 0, in which
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case we have constant coefficients:

at = a1t = −U
′′
[1]

U ′ [1]
(91)

bt = b1t = −1

2

U
′′′
[1]

U ′ [1]
(92)

ht = −
(
U

′′′
[1] + U

′′
[1]
)

U ′ [1]
. (93)

However, the corresponding expected return equation under Ct = Ct+1 = 0 becomes more

complicated for a time-series application for which it is useful to use centralized moments. If

we have Covt((R
W
t+1)

2, RW
t+1) on the RHS of the expected aggregate return equation, we need to

know the expected aggregate return first in order to compute Covt((R
W
t+1)

2, RW
t+1). Therefore,

in our case, we do the Taylor-series expansion around Ct = Et[R
W
t+1], Ct+1 = Et+1[R

W
t+2].

Recall that the expected return equation for asset k is

Et[Rkt+1 −Rf
t ] = atCovt((R

W
t+1 − Ct), Rkt+1) + a1tCovt((R

W
t+2 − Ct+1), Rkt+1)

+ btCovt((R
W
t+1 − Ct)

2, Rkt+1) + b1tCovt((R
W
t+2 − Ct+1)

2, Rkt+1)

+ htCovt((R
W
t+1 − Ct)(R

W
t+2 − Ct+1), Rkt+1). (94)

When Ct = Et[R
W
t+1], Ct+1 = Et+1[R

W
t+2], we have

Covt((R
W
t+2 − Ct+1), Rkt+1) = Covt(Et+1(R

W
t+2 − Ct+1), Rkt+1) = 0, (95)

Covt((R
W
t+1 − Ct)(R

W
t+2 − Ct+1), Rkt+1) = Covt(Et+1[(R

W
t+1 − Ct)(R

W
t+2 − Ct+1)], Rkt+1) = 0,

(96)

and the expected return equation becomes

Et[Rkt+1 −Rf
t ] = atCovt((R

W
t+1 − Ct), Rkt+1) + btCovt((R

W
t+1 − Ct)

2, Rkt+1)

+ b1tCovt((R
W
t+2 − Ct+1)

2, Rkt+1). (97)

For the aggregate return, we have

Et[R
W
t+1 −Rf

t ] = atVart(ϵt+1) + btEt[ϵ
3
t+1] + b1tCovt(Vart+1(ϵt+2), ϵt+1) (98)

= atvt + btv
3/2
t st + b1tv

3/2
t

Covt(vt+1, ϵt+1)

v
3/2
t

. (99)
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Let ζt ≡ Covt(vt+1,ϵt+1)

v
3/2
t

and if we make the following assumptions

at = ψv,

btv
3/2
t = ψs,

b1tv
3/2
t = ψζ ,

then we have

mt = ψvvt + ψsst + ψζζt. (100)

A.5. Implementation of volatility risk

To take into account the variance risk in a two-period model, we need to evaluate

Covt(vt+1, ϵt+1), (101)

where all the expectations are evaluated with respect to information at time t. In our model,

the closed-form formula for this quantity is not easy to obtain. We know that

vt+1 = σ2
t+1 + λt+1(θ

2 + δ2) (102)

σ2
t+1 = ω + [g1(A1,Φt+1) + g2(A2,Φt+1)] ϵ

2
t+1 + β1σ

2
1,t + β2σ

2
2,t (103)

gi(Ai,Φt+1) = exp (αi + I(ϵt+1) [αa,j,iE(nt+1|Φt+1) + αa,i]) (104)

λt+1 = γ0 + γ1λt + γ2 [E(nt+1|Φt+1)− λt] . (105)

Therefore, the volatility risk can be expanded as

Covt(vt+1, ϵt+1) = Covt([g1(A1,Φt+1) + g2(A2,Φt+1)] ϵ
2
t+1, ϵt+1)

+ γ2(θ
2 + δ2)Covt(E(nt+1|Φt+1), ϵt+1),

(106)

where we have used the fact that σ2
1,t, σ

2
1,t, λt are known at time t. We need to evaluate the

following two terms:

Covt([g1(A1,Φt+1) + g2(A2,Φt+1)] ϵ
2
t+1, ϵt+1) and Covt(E(nt+1|Φt+1), ϵt+1). (107)
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We know that

E(nt+1|Φt+1) =
∞∑
j=0

jP(nt+1 = j|Φt+1) (108)

P(nt+1 = j|Φt+1) =
f(rt+1|nt+1 = j,Φt)P(nt+1 = j|Φt)

f(rt+1|Φt)
(109)

f(rt+1|nt+1 = j,Φt) =
1√

2π(σ2
t + jδ2)

exp

[
− [ϵt+1 − (j − λt)θ]

2

2(σ2
t + jδ2)

]
(110)

f(rt+1|Φt) =
∞∑
j=0

f(rt+1|nt+1 = j,Φt)P(nt+1 = j|Φt), (111)

and then

Covt(E(nt+1|Φt+1), ϵt+1) =
∞∑
j=0

jCovt (P(nt+1 = j|Φt+1), ϵt+1)

=
∞∑
j=0

jP(nt+1 = j|Φt)Covt

(
f(rt+1|nt+1 = j,Φt)

f(rt+1|Φt)
, ϵt+1

)
.(112)

It appears that

Covt

(
f(rt+1|nt+1 = j,Φt)

f(rt+1|Φt)
, ϵt+1

)
would be difficult to evaluate directly as both f(rt+1|nt+1 = j,Φt) and f(rt+1|Φt) are nonlinear

functions and involve exponential function of ϵt+1. Taylor-series expansion of

f(rt+1|nt+1 = j,Φt)

f(rt+1|Φt)

in terms of ϵt+1 is also not straightforward to obtain as the denominator f(rt+1|Φt) is the

summation of an infinite series. The other key term

Covt([g1(A1,Φt+1) + g2(A2,Φt+1)] ϵ
2
t+1, ϵt+1)

is perhaps more difficult to obtain in closed-form because gi(Ai,Φt+1) involves an asymmetric

random indicator I(ϵt+1) and an exponential function of E(nt+1|Φt+1). We need to rely on

simulations to evaluate these terms.

Finally, to incorporate this extra variance risk term in our empirical model, the return

dynamics would be:

rt+1 = mt + ρ1(rt −mt−1) + ρ2(rt−1 −mt−2) + ϵt+1, (113)
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and

mt = ψvvt + ψsst + ψζ
Covt(vt+1, ϵt+1)

v
3/2
t

, (114)

where the first two terms are conditional variance and conditional skewness and the last term

captures the variance risk. The information set is at time t.

A.6. Pricing kernel for a recursive utility example

Following Boguth and Kuehn (2013), the pricing kernel can be written as

mt+1 ≈ k − γ∆ct+1 − (1− θ)∆zt+1, (115)

where γ is the relative risk aversion (RRA), ∆ct+1 is the consumption growth rate, θ = 1−γ

1− 1
ψ

,

ψ is the EIS, and ∆zt+1 is the changes in the logarithm of the wealth consumption ratio. The

corresponding asset pricing equation is

Et[Ri,t+1]−Rf =
γ

Rf

Covt(∆ct+1, Ri,t+1) +
(1− θ)

Rf

Covt(∆zt+1, Ri,t+1). (116)

Since the consumption wealth ratio is not available in closed-form, Boguth and Kuehn (2013)

use an affine approximation as

∆zt+1 = A∆µc,t+1 +B∆σc,t+1, (117)

where ∆µc,t+1 is the changes in the mean consumption growth rate, ∆σc,t+1 is the changes

in the consumption growth volatility. With this approximation, the asset pricing equation

becomes

Et[Ri,t+1]−Rf =
γ

Rf

Covt(∆ct+1, Ri,t+1)+
A(1− θ)

Rf

Covt(∆µc,t+1, Ri,t+1)+
B(1− θ)

Rf

Covt(∆σc,t+1, Ri,t+1).

(118)

Empirically, they test the asset pricing equation using a cross-section of portfolio and stock

returns and find that the price of risk for changes in the mean consumption growth rate is not

priced whereas the changes in consumption growth volatility is significantly priced. Therefore,

we can adapt the following empirical asset pricing model from Boguth and Kuehn (2013):

Et[Ri,t+1]−Rf =
γ

Rf

Covt(∆ct+1, Ri,t+1) +
B(1− θ)

Rf

Covt(∆σc,t+1, Ri,t+1). (119)
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If the market return is a scaled process of the consumption process (Campbell, 1993), then

the above equation becomes

Et[Ri,t+1]−Rf = ψ̃vCovt(∆Rm,t+1, Ri,t+1) + ψ̃ηCovt(∆σt+1, Ri,t+1), (120)

in which we have substituted the coefficients ψ̃v and ψ̃η for monotone transformations of γ
Rf

and B(1−θ)
Rf

, respectively. Applied to the market itself, we have

Et[Rm,t+1]−Rf = ψ̃vCovt(∆Rm,t+1, Rm,t+1) + ψ̃ηCovt(∆σt+1, Rm,t+1)

= ψ̃vVart(Rm,t+1) + ψ̃ηCovt(σt+1, Rm,t+1). (121)

The market price of risk for volatility risk is captured by ψ̃ηVar(σt+1) and is estimated to be

negative by Boguth and Kuehn (2013). This supports the common assumption that has been

used in the long-run risk literature, that the EIS is greater than 1/RRA.
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Table 1: Summary statistics for daily excess returns rt
The daily excess returns rt are scaled by 100.

Obs Mean StDev Skewness Kurtosis Min Max
22785 0.021 1.071 -0.436 20.447 -18.823 14.412

Fig. 1. Long-run and short-run components of the diffusive volatility. This figure plots the
paths of the long-run and short-run components of the diffusive volatility from our maintained
model estimation.
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Table 2: Model summary

rt+1 = mt + ρ1(rt −mt−1) + ρ2(rt−1 −mt−2) + ϵ1,t+1 + ϵ2,t+1,

‘prudence’ model: mt ≡ ψvvt + ψsst + ψkkt, ψs ≤ 0, ψk ≥ 0,
‘intercept’ model: mt ≡ µ+ ψvvt + ψsst + ψkkt, ψs ≤ 0, ψk ≥ 0,

‘unrestricted’ model: mt ≡ µ+ ψvvt + ψsst + ψkkt,

ϵ1,t+1 = σtzt+1, zt+1 ∼ NID(0, 1),

σ2
t = σ2

1,t + σ2
2,t,

σ2
1,t = ω + g1(A1,Φt)ϵ

2
t + β1σ

2
1,t−1,

σ2
2,t = g2(A2,Φt)ϵ

2
t + β2σ

2
2,t−1,

ϵt = ϵ1,t + ϵ2,t,

gi(Ai,Φt) = exp(αi + I(ϵt)(αa,j,iE[nt|Φt] + αa,i)), for i = 1,2;,

I(ϵt) = 1 if ϵt < 0, otherwise 0,

ϵ2,t+1 =
∑nt+1

k=1 Yt+1,k − θλt, Yt+1,k ∼ N(θ, δ2),

λt = E[nt+1|Φt], λt = γ0 + γ1λt−1 + γ2ζt,

vt = σ2
t + λt(θ

2 + δ2),

st =
λt(θ3+3θδ2)

(σ2
t+λtθ2+λtδ2)3/2

,

kt = 3 + λt(θ4+6θ2δ2+3δ4)

(σ2
t+λtδ2+λtθ2)2

.
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Table 3: Parameter estimates: alternative specifications of the equity premium

Parameters refer to the model summarized in Table 2. Restrictions are: µ = 0, ψs ≤ 0, ψk ≥ 0,
for the ‘prudence’ model; ψs ≤ 0, ψk ≥ 0, for the ‘intercept’ model; ψs = 0, ψk = 0, for the
‘variance’ model; ψk = 0, for the ‘skewness’ model; and ψs = 0, for the ‘kurtosis’ model. t-stats
are in parentheses. lgl is the loglikelihood.

Pricing models
Parameter prudence intercept unrestricted variance skewness kurtosis

µ
-0.041

( -2.247)
-0.021

( -1.186)
0.020

( 3.337)
-0.041

( -2.248)
-0.022

( -1.194)

ψv
0.026

( 3.396)
0.045

( 4.051)
0.053

( 5.190)
0.022

( 2.216)
0.045

( 4.052)
0.034

( 3.151)

ψs
-0.027

( -3.423)
-0.069

( -3.014)
-0.270

( -4.064)
-0.069

( -3.015)

ψk
0.000

( 0.000)
0.000

( 0.000)
-0.022

( -3.228)
0.005

( 2.295)

ρ1
0.148

( 21.080)
0.147

( 21.012)
0.154

( 21.382)
0.149

( 21.240)
0.147

( 21.012)
0.149

( 21.225)

ρ2
-0.046

( -6.828)
-0.047

( -6.867)
-0.051

( -7.325)
-0.045

( -6.615)
-0.047

( -6.867)
-0.046

( -6.713)

ω
0.000

( 0.154)
0.000

( 0.402)
0.000

( 0.547)
0.000

( 0.480)
0.000

( 0.403)
0.000

( 0.278)

α1
-4.672

( -29.386)
-4.752

( -28.003)
-4.781

( -28.978)
-4.657

( -29.089)
-4.752

( -28.013)
-4.687

( -29.195)

β1
0.973

( 351.850)
0.976

( 338.501)
0.977

( 395.158)
0.972

( 350.061)
0.976

( 338.244)
0.974

( 341.294)

α2
-8.195

( -3.700)
-8.140

( -3.980)
-8.110

( -3.722)
-8.249

( -3.457)
-8.145

( -3.803)
-8.197

( -3.950)

β2
0.781

( 46.827)
0.788

( 53.014)
0.795

( 60.768)
0.775

( 41.523)
0.788

( 53.027)
0.781

( 46.595)

αa,j,1
-2.523

( -4.826)
-2.935

( -4.490)
-3.752

( -4.231)
-2.188

( -5.450)
-2.935

( -4.502)
-2.490

( -4.746)

αa,1
1.376

( 6.338)
1.250

( 5.744)
1.216

( 6.211)
1.483

( 7.475)
1.250

( 5.747)
1.379

( 6.280)

αa,j,2
-0.122

( -1.123)
-0.217

( -2.128)
-0.306

( -3.452)
-0.044

( -0.422)
-0.217

( -2.129)
-0.124

( -1.120)

αa,2
6.293

( 2.841)
6.355

( 3.106)
6.408

( 2.939)
6.234

( 2.609)
6.360

( 2.969)
6.298

( 3.031)

γ0
0.005

( 2.789)
0.003

( 2.324)
0.002

( 3.025)
0.007

( 3.395)
0.003

( 2.324)
0.006

( 2.750)

γ1
0.959

( 88.165)
0.972

( 100.115)
0.979

( 163.297)
0.948

( 82.171)
0.972

( 100.120)
0.959

( 85.437)

γ2
0.132

( 3.524)
0.100

( 3.612)
0.067

( 4.178)
0.169

( 3.848)
0.100

( 3.615)
0.135

( 3.499)

θ
-0.482

( -9.101)
-0.471

( -8.519)
-0.455

( -8.077)
-0.508

( -9.845)
-0.471

( -8.520)
-0.491

( -9.281)

δ
0.977

( 15.927)
1.026

( 15.281)
1.047

( 16.112)
0.948

( 16.870)
1.026

( 15.283)
0.982

( 15.637)
lgl -26386.791 -26384.271 -26378.504 -26390.700 -26384.270 -26387.465
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Table 4: Importance of pricing jumps nonlinearly

Model specifications are summarized in Table 2. The ‘prudence’
model estimates are from the second column of Table 3. The
‘linear’ model assumes that the equity premium is ψvσ

2
t + ψjλt,

with other dynamics the same as in the ‘prudence’ model. t-stats
are in parentheses. lgl is the loglikelihood.

Pricing models
Parameter prudence linear

ψv
0.026
( 3.40)

0.017
( 1.44)

ψs
-0.027
( -3.42)

ψk
0.000

( 0.000)

ψj
0.188
( 2.47)

lgl -26386.79 -26392.30

Fig. 2. Sensitivity of mt to λt at different levels of σt. Low σt = 0.35 is the 5th percentile of
the estimated σt, corresponding to an annualized 5.47%. Average σt = 0.79 is the mean of the
estimated σt, corresponding to an annualized 12.44%. High σt = 1.83 is the 95th percentile of
the estimated σt, corresponding to an annualized 28.89%.
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Table 5: Parameter estimates: alternative specifications of dynamics

Parameters refer to the model summarized in Table 2. The model label
‘GIM-1’ refers to a GARCH-in-Mean model with one variance compo-
nent and no jumps; ‘GIM-2’ refers to a GARCH-in-Mean specification
with two variance components and no jumps; ‘constant λ’ refers to the
‘intercept’ model from Table 3 but with a constant jump arrival rate
λ; and the ‘no AR(2)’ specification is the ‘intercept’ model with no
autoregressive terms in the mean. t-stats are in parenthesis. lgl is the
loglikelihood.

Pricing models
Parameter GIM-1 GIM-2 constant λ no AR(2)

µ
0.028

( 4.241)
0.019

( 2.938)
0.010

( 0.806)
-0.053

( -2.952)

ψv
0.001

( 0.123)
0.023

( 2.690)
0.017

( 1.652)
0.043

( 4.213)

ψs
-0.013

( -0.981)
-0.107

( -3.660)

ψk
0.000

( 0.000)
0.000

( 0.000)

ρ1
0.158

( 21.613)
0.158

( 21.355)
0.150

( 21.301)

ρ2
-0.026

( -3.661)
-0.030

( -4.207)
-0.045

( -6.640)

ω
0.013

( 12.937)
0.001

( 7.163)
0.000

( 1.713)
0.000

( -0.379)

α1
-3.393

( -33.523)
-4.467

( -39.724)
-4.375

( -34.660)
-4.789

( -26.000)

β1
0.896

( 193.941)
0.982

( 583.814)
0.973

( 296.804)
0.978

( 335.339)

α2
-8.302

( -2.352)
-8.303

( -3.329)
-8.165

( -4.070)

β2
0.805

( 79.699)
0.799

( 68.915)
0.798

( 56.954)

αa,j,1
-5.729

( -1.539)
-3.031

( -5.307)

αa,1
1.459

( 15.119)
-1.643

( -3.545)
0.621

( 0.839)
1.199

( 5.588)

αa,j,2
-0.578

( -6.580)
-0.241

( -2.472)

αa,2
6.686

( 1.894)
6.857

( 2.748)
6.340

( 3.160)

γ0
0.126

( 6.317)
0.003

( 2.171)

γ1
0.980

( 127.773)

γ2
0.092

( 4.198)

θ
-0.382

( -8.035)
-0.454

( -8.789)

δ
0.895

( 15.433)
1.048

( 16.913)
lgl -27324.196 -27116.827 -26426.173 -26615.734

43



Table 6: Likelihood ratio tests
Null specification: Table 3 column 3
Alternative special cases:
ψv = ψs = ψk = 0: no pricing of higher-order moments;
ψs = ψk = 0: no pricing of skewness or kurtosis;
αa,j,1 = αa,j,2 = 0: no asymmetry associated with jump innovations;
γ1 = γ2 = 0: constant jump arrival;
g2(Λ,Φt−1) = β2 = 0: no second GARCH component;
λt = 0: no jumps;
λt = g2(Λ,Φt−1) = β2 = 0: no jumps and no second GARCH component;
ρ1 = ρ2 = 0 no AR(2) structure for return innovations (stale pricing).
*** Indicates that the alternative hypothesis is rejected at the 1% level.

Panel A: Equity premium specification
H1 Test statistic
ψv = ψs = ψk = 0 17.746∗∗∗

ψs = ψk = 0 12.858∗∗∗

Panel B: Specification of dynamics
αa,j,1 = αa,j,2 = 0 27.804∗∗∗

γ1 = γ2 = 0 83.804∗∗∗

g2(Λ,Φt−1) = β2 = 0 288.97∗∗∗

λt = 0 1465.1∗∗∗

λt = g2(Λ,Φt−1) = β2 = 0 1879.9∗∗∗

ρ1 = ρ2 = 0 462.93∗∗∗

Table 7: Risk-return tradeoff with higher-order moments
This example presents the equity premium at two different daily diffusive
volatility levels. In this example, the parameter estimates are all taken
from the ‘prudence’ model. We fix the jump intensity at the sample
average to facilitate comparison. All the numbers are annualized.

σ s ψv × v ψs × s m
0.07 −1.0 2.3% 6.5% 8.8%
0.10 −0.5 3.7% 3.3% 7.0%

Table 8: Summary statistics: daily equity premium mt

‘Prudence’ and ‘unrestricted’ models in columns 2 and 4 of Table 3.

Equity premium Median Mean StDev
mprudence 0.030 0.040 0.039
munrestricted 0.026 0.039 0.070

Table 9: Summary statistics: higher-order moments

‘Prudence’ and ‘unrestricted’ models in columns 2 and 4 of Table 3.

Median Mean StDev
‘Prudence model’

Variance 0.541 1.042 1.658
Skewness -0.444 -0.496 0.338
Kurtosis 4.670 5.317 2.278

‘Unrestricted model’
Variance 0.535 1.053 1.766
Skewness -0.408 -0.458 0.324
Kurtosis 4.710 5.385 2.379
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Table 10: Summary statistics for jump intensity and total variance

Sample period λ̄ v̄ v due to jump part v due to diffusive part
1926:01–2011:12 0.136 1.042 26% 74%
1926:01–1939:12 0.161 2.192 18% 82%
1940:01–2011:12 0.131 0.784 27% 73%
2008:01–2011:12 0.199 2.796 14% 86%
2008:09–2009:01 0.345 9.563 5% 95%

Table 11: Out-of-sample portfolio performance

Realized utility CEQ Portfolio weight
Model Mean Std Mean Std
Prudence 3.32E-03 5.05E-02 4.005 0.220 0.046
Variance 3.09E-03 5.73E-02 3.719 0.266 0.078
GIM-1 2.88E-03 5.51E-02 3.469 0.276 0.101
Constant 2.80E-03 5.70E-02 3.375 0.275 0.096

Fig. 3. mt as a function of σt at average λt. This figure plots the level of the equity premium
(the solid line) for different levels of the diffusive (GARCH) volatility σt, holding the jump-
arrival rate at its average level. The dotted line shows the equity premium due to the total
variance. The dashed line shows the equity premium component due to skewness.
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Fig. 4. Prudence model: dynamics of the conditional equity premium mt. This figure plots
the time series of the daily conditional equity premium estimated from the prudence model.
The time period is from January 1926 to December 2011.
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Fig. 5. Prudence model: dynamics of the conditional moments. This figure plots the time se-
ries of the daily conditional variance, conditional skewness, and conditional kurtosis estimated
from the prudence model. The time period is from January 1926 to December 2011.
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