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Abstract

Existing methods of partitioning the market index into bull and bear regimes do not
identify market corrections or bear market rallies. In contrast, our probabilistic model
of the return distribution allows for rich and heterogeneous intra-regime dynamics. We
focus on the characteristics and dynamics of bear market rallies and bull market correc-
tions, including, for example, the probability of transition from a bear market rally into
a bull market versus back to the primary bear state. A Bayesian estimation approach
accounts for parameter and regime uncertainty and provides probability statements re-
garding future regimes and returns. We show how to compute the predictive density of
long-horizon returns and discuss the improvements our model provides over benchmarks.
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1 Introduction

There is a widespread belief both by investors, policy makers and academics that low frequency

trends do exist in the stock market. Traditionally these positive and negative low frequency

trends have been labelled as bull and bear markets respectively. We propose a model that

provides answers to typical questions such as, ’Are we in a bull market or a bear market rally?’

or ’Will this bull market correction become a bear market?’. We propose a latent 4-state

Markov-switching model for weekly stock returns. Our focus is on modeling the component

states of bull and bear market regimes in order to identify and forecast bull, bull correction,

bear and bear rally states.

Traditional methods of identifying bull and bear markets are based on an ex post assess-

ment of the peaks and troughs of the price index. Formal dating algorithms based on a set

of rules for classification are found, for example, in Gonzalez, Powell, Shi, and Wilson (2005),

Lunde and Timmermann (2004) and Pagan and Sossounov (2003). Some of this work is related

to the dating methods used to identify turning points in the business cycle (Bry and Boschan

(1971)). A drawback is that a turning point can only be identified several observations after

it occurs. Ex post dating methods cannot be used for statistical inference on returns or for

investment decisions which require more information from the return distribution, such as

changing risk assessments. For adequate risk management and investment decisions, we need

a probability model for returns and one for which the distribution of returns changes over

time.

Stock markets are perceived to have a cyclical pattern which can be captured with regime-

switching models. For example, Hamilton and Lin (1996) relate business cycles and stock

market regimes, Chauvet and Potter (2000) and Maheu and McCurdy (2000a) use a duration-

dependent Markov-switching parameterization to analyze properties of bull and bear market

regimes extracted from aggregate stock market returns. Lunde and Timmermann (2004)

study duration dependence after sorting stock returns into either a bull or bear market using

their dating algorithm. Ntantamis (2009) explores potential explanatory variables for stock

market regimes’ duration. Applications that explore the implications of nonlinearities due to

regimes switches for asset allocation and/or predictability of returns include Turner, Startz,

and Nelson (1989), van Norden and Schaller (1997), Maheu and McCurdy (2000b), Perez-

Quiros and Timmermann (2001), Ang and Bekaert (2002) and Guidolin and Timmermann

(2007).

In a related literature that investigates cyclical patterns in a broader class of assets,

Guidolin and Timmermann (2005) use a 3-state regime-switching model to identify bull and

bear markets in monthly UK stock and bond returns and analyze implications for predictabil-

ity and optimal asset allocation. Guidolin and Timmermann (2006) add an additional state

in order to model the nonlinear joint dynamics of monthly returns associated with small and

large cap stocks and long-term bonds. Kim, Nelson, and Startz (1998) find 3 states in the
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variance of monthly stock returns provides a good fit.

Higher data frequencies tend to obscure any structure in the conditional mean in favor of

the conditional variance dynamics. Our objective is to use higher-frequency weekly data and

to provide a real-time approach to identifying phases of the market that relate to investors’

perceptions of primary and secondary trends in aggregate stock returns. Existing approaches

do not explicitly model bull market corrections and bear market rallies.

The bear and bear rally states govern the bear regime; the bull correction and bull states

govern the bull regime. Therefore each regime consists of two primitive states. The model can

accommodate short-term reversals (secondary trends) within each regime of the market. For

example, in the bull regime it is possible to have a series of persistent negative returns (a bull

correction), despite the fact that the expected long-run return (primary trend) is positive in

that regime. Analogously, bear markets often exhibit persistent rallies which are subsequently

reversed as investors take the opportunity to sell with the result that the average return in

that regime is still negative.

It is important to note that our additional states allow for both intra and inter-regime

transitions. A bear rally is allowed to move back to the bear state or to exit the bear regime

by moving to a bull state. Likewise, a bull correction can move back to the bull state or exit

the bull regime by transitioning to a bear state. A bull regime can be characterized by a

combination of bull states and bull corrections. Similarly, a bear regime can consist of several

episodes of the bear state and the bear rally state, exactly as many investors feel we observe

in the data. Because, the realization of states in a regime will differ over time, bull and bear

regimes can be heterogeneous over time. These important intra and inter-regime dynamics

are absent in the existing literature.

Our Bayesian estimation approach accounts for parameter and regime uncertainty and

provides probability statements regarding future regimes and returns. An important contri-

bution of this paper is to show how to compute the predictive density for cumulative returns

over long horizons. Model comparison based on the density of long-horizon returns is very

informative in differentiating models and shows the importance of a richer specification of bull

and bear phases.

Applied to 125 years of data our model provides superior identification of trends in stock

prices. One important difference with our specification is that the richer dynamics in each

regime, facilitated by our 4-state model, allow us to extract bull and bear markets in higher

frequency data. A two-state Markov-switching model applied to higher frequency data results

in too many switches between the high and low return states. It is incapable of extracting the

low frequency trends in the market. In high frequency data it is important to allow for short-

term reversals in the regime of the market. Relative to a two-state model we find that market

regimes are more persistent and there is less erratic switching. According to Bayes factors,

our 4-state model of bull and bear markets is strongly favored over alternatives, including an

unrestricted 4-state model.
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Bull regimes have an average duration of just under 5 years, while the duration of a bull

correction is 4 months on average and a bear rally is just over half a year. The cumulative

return mean of the bull market state is 7.88% but bull corrections offset this by 2.13% on

average. Average cumulative return in the bear market state is -12.4% but bear market rallies

counteract that steep decline by yielding a cumulative return of 7.1% on average. Note that

these states are combined into bull and bear market regimes in heterogeneous patterns over

time yielding an average cumulative return in the bull market regime of 33% (average duration

of 5 years) while that for the bear market regime is about -10% (average duration of 1.5 years).

Although the average cumulative return in the bear rally state is not much less than in the

bull market state, the latter state’s standard deviation is 50% less. This result highlights the

importance of also considering assessments of volatility associated with the alternative states,

for example, when identifying bear market rallies versus bull markets.

The model identifies in real time a transition from a bull market correction to a bear market

in early October 2008. The bear rally and bull correction states are critical to modeling turning

points between regimes; our results show that most transitions between bull and bear regimes

occur through these states. This is consistent with investors’ perceptions. Further, we find

asymmetries in intra-regime dynamics, for example, a bull market correction returns to the

bull market state more often than a bear market rally reverts to the bear state. These are

important features that the existing literature on bull and bear markets ignores.

In contrast to many Markov-switching applications that estimate a model and then label

states, ex post, as bull and bear markets, we start with a model that imposes prior restrictions

corresponding to practitioner descriptions of the phases of the market, including bull correc-

tions and bear rallies. The paper then shows that the states of the market that are identified

are realistic and useful, not only from the perspective of describing market dynamics, but also

for forecasting long-horizon return densities. Bear rallies and bull corrections have important

implications for cumulative returns. Compared to alternatives, including an unrestricted 4-

state model, our 4-state model provides superior density forecasts for long-horizon returns.

We also show the importance of the model in a Value-at-Risk application.

The next section describes the data and models. The latter summarizes the benchmark

2-state model and develops our proposed 4-state specification. Estimation and model com-

parison are discussed in Section 3. Section 4 presents results including: parameter estimates;

probabilistic identification of the market states and regimes including real time bear market

forecasts; Value-at-Risk forecasts; and out-of-sample long-horizon density forecasts. Section 5

concludes. A web appendix collects additional results.

2 Data and Models

We begin with 125 years of daily capital gain returns on a broad market equity index. Our

source for the period 1926-2008 inclusive is the value-weighted return excluding dividends
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associated with the CRSP S&P 500 index. The 1885:02-1925 daily capital gain returns are

courtesy of Bill Schwert (see Schwert (1990)). For 2009-2010, we use the daily rates of change

of the S&P 500 index level (SPX) obtained from Reuters.

Returns are converted to daily continuously compounded returns from which we construct

weekly continuously compounded returns by summing daily returns from Wednesday close to

Wednesday close of the following week. If a Wednesday is missing, we use Tuesday close. If

the Tuesday is also missing, we use Thursday. Weekly realized variance (RV) is computed as

the sum of daily (intra-week) squared returns.

Weekly returns are scaled by 100 so they are percentage returns. Unless otherwise in-

dicated, henceforth returns refer to weekly continuously compounded returns expressed as

a percentage. We have 6498 weekly observations covering the period February 25, 1885 to

January 20, 2010. Summary statistics are shown in Table 1.

We now briefly review a benchmark two-state model, our proposed 4-state model, and

some alternative specifications of the latter used to evaluate robustness of our best model.

2.1 Two-State Markov-Switching Model

The concept of bull and bear markets suggests cycles or trends that get reversed. Since those

regimes are not observable, as discussed in Section 1, two-state latent-variable MS models

have been applied to stock market data. A two-state 1st-order Markov model can be written

rt|st ∼ N(µst , σ
2
st) (2.1)

pij = p(st = j|st−1 = i) (2.2)

i = 1, 2, j = 1, 2. We impose µ1 < 0 and µ2 > 0 so that st = 1 is the bear market and st = 2

is the bull market.

Modeling of the latent regimes, regime probabilities, and state transition probabilities,

allows explicit model estimation and inference. In addition, in contrast to dating algorithms

or filters, forecasts are possible. Investors can base their investment decisions on the posterior

states or the whole forecast density.

2.2 MS-4 to allow Bull Corrections and Bear Rallies

Consider the following general K-state first-order Markov-switching model for returns

rt|st ∼ N(µst , σ
2
st) (2.3)

pij = p(st = j|st−1 = i) (2.4)

i = 1, ..., K, j = 1, ..., K. We explore a 4-state model, K = 4, in order to focus on modeling

potential phases of the aggregate stock market. Without any additional restrictions we can-
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not identify the model and relate it to market phases. Therefore, we consider the following

restrictions. First, the states st = 1, 2 are assumed to govern the bear market; we label these

two states as the bear regime. The states st = 3, 4 are assumed to govern the bull market;

these two states are labelled the bull regime. Each regime has 2 states which allows for positive

and negative periods of price growth within each regime. In particular we impose

Bear regime

µ1 < 0 (bear market state),

µ2 > 0 (bear market rally),
(2.5)

Bull regime

µ3 < 0 (bull market correction),

µ4 > 0 (bull market state).

This structure can capture short-term reversals in market trends. Each state can have

a different variance and can accommodate autoregressive heteroskedasticity in returns. In

addition, conditional heteroskedasticity within each regime can be captured.

Consistent with the 2 states in each regime the full transition matrix is

P =


p11 p12 0 p14

p21 p22 0 p24

p31 0 p33 p34

p41 0 p43 p44

 . (2.6)

This structure allows for several important features that are excluded in the Markov-switching

models in the literature which have fewer states. First, a bear regime can feature several

episodes of the bear state and bear rally state, exactly as many investors feel we observe in

the data. Similarly, the bull regime can be characterized by a combination of bull states and

bull corrections. Because, the realization of states in a regime will differ over time, both bull

and bear regimes can be heterogeneous over time. For instance, based on returns, a bear

regime lasting 5 periods made of the states

st = 1, st+1 = 1, st+2 = 1, st+3 = 2, st+4 = 2, st+5 = 2, st+6 = 4

will look very different than

st = 1, st+1 = 1, st+2 = 1, st+3 = 2, st+4 = 1, st+5 = 1, st+6 = 4.

A second important contribution is that a bear rally is allowed to move either into the

bull state or back to the bear state; analogously, a bull correction can move to a bear state

or back to the bull state. We restrict the movement of a bull (bear) regime to a bear rally

(bull correction) state for identification. These important inter and intra-regime dynamics are

absent in the existing literature and as we show are supported by the data.
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The unconditional probabilities associated with P can be solved (Hamilton (1994))

πππ = (A′A)−1A′e (2.7)

where A′ = [P′ − I, ιιι] and e′ = [0, 0, 0, 0, 1] and ιιι = [1, 1, 1, 1]′.

Using the matrix of unconditional state probabilities given by (2.7), we impose the following

conditions on long-run returns in the bear and bull regimes respectively

E[rt|bear regime, st = 1, 2] =
π1

π1 + π2

µ1 +
π2

π1 + π2

µ2 < 0 (2.8)

E[rt|bull regime, st = 3, 4] =
π3

π3 + π4

µ3 +
π4

π3 + π4

µ4 > 0. (2.9)

We do not impose any constraint on the variances.

The equations (2.5) and (2.6), along with equations (2.8) and (2.9), serve to identify bull

and bear regimes in the MS-4 model. The bull (bear) regime has a long-run positive (negative)

return. Each market regime can display short-term reversals that differ from their long-run

mean. For example, a bear regime can display a bear market rally (temporary period of

positive returns), even though its long-run return is negative. Similarly for the bull market.

2.3 Other Models for Robustness Checks

Besides the 2-state and 4-state model we consider several other specifications and provide

model comparisons among them. The dependencies in the variance of returns are the most

dominate feature of the data. This structure may adversely dominate dynamics of the condi-

tional mean. The following specifications are included to investigate this issue.

1. Restricted 4-state model. This is identical to the 4-state model in Section 2.2 except that

inside a regime the return innovations are homoskedastic. That is, σ2
1 = σ2

2 and σ2
3 = σ2

4.

In this case, the variance within each regime is restricted to be constant although the

overall variance of returns can change over time due to switches between regimes.

2. Markov-Switching with Decoupled Conditional Mean and Variance. In this model, the

mean and variance dynamics are decoupled and directed by independent latent Markov

chains. This is a robustness check to determine to what extent the variance dynamics

might be driving the regime transitions. This specification has the following structure

rt|st, wt ∼ N(µst , σ
2
wt
) (2.10)

pij = p(st = j|st−1 = i), i, j = 1, ..., K (2.11)

qij = p(wt = j|wt−1 = i), i, j = 1, ..., L. (2.12)

We focus on the case K = 4 and L = 4, again to allow us to capture at least four phases

of cycles for aggregate stock returns. The conditional means have the same restriction
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imposed as the MS-4; to identify the conditional variances, σ1 > σ2 > σ3 > σ4 is

imposed.

3. A GARCH(1,1) model

rt|It−1 ∼ N(µ, σ2
t ) (2.13)

σ2
t = ω + α(rt−1 − µ)2 + βσ2

t−1 (2.14)

where It−1 = {r1, ..., rt−1}. This model captures volatility dynamics but does not model

changes in the conditional mean.

4. MS-4 with p24 = p31 = 0 which restricts the moves between bull and bear regime to be

from state 1 to 4 and state 4 to 1.

5. An unrestricted 4-state model labelled MS-4 unrestricted. In this case all 16 elements

of P are estimated and no restrictions are put on the state or regime means. To identify

the model σ1 > σ2 > σ3 > σ4 is imposed.

3 Estimation and Model Comparison

3.1 Estimation

In this section we discuss Bayesian estimation for the most general model introduced in Sec-

tion 2.2 assuming there are K states, k = 1, ..., K. The other models are estimated in a similar

way with minor modifications.

There are 3 groups of parameters M = {µ1, ..., µK}, ΣΣΣ = {σ2
1, ..., σ

2
K}, and the elements of

the transition matrix PPP . Let θθθ = {M,ΣΣΣ,P} and given data IT = {r1, ..., rT} we augment the

parameter space to include the states S = {s1, ..., sT} so that we sample from the full posterior

p(θθθ,S|IT ). Assuming conditionally conjugate priors µi ∼ N(mi, n
2
i ), σ−2

i ∼ G(vi/2, wi/2)

and each row of P following a Dirichlet distribution, allows for a Gibbs sampling approach

following Chib (1996). Gibbs sampling iterates on sampling from the following conditional

densities given startup parameter values: S|M,ΣΣΣ,P; M|ΣΣΣ,P,S; ΣΣΣ|M,P,S, and P|M,ΣΣΣ,S.

Sequentially sampling from each of these conditional densities results in one iteration of

the Gibbs sampler. Dropping an initial set of draws to remove any dependence from startup

values, the remaining draws {S(j),M(j),ΣΣΣ(j),P(j)}Nj=1 are collected to estimate features of the

posterior density. Simulation consistent estimates can be obtained as sample averages of

the draws. For example, the posterior mean of the state dependent mean is estimated as
1
N

∑N
j=1 µ

(j)
k for k = 1, ..., K and are simulation consistent estimates of E[µk|IT ].

The first sampling step of S|M,ΣΣΣ,P involves a joint draw of all the states. Chib (1996)

shows that this can be done by a so-called forward and backward smoother. The second and

third sampling steps are straightforward and use results from the linear regression model.
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Given the conjugate Dirichlet prior on each row of P, the final step is to sample P|M,ΣΣΣ,S

from the Dirichlet distribution (Geweke (2005)).

An important byproduct of Gibbs sampling is an estimate of the smoothed state proba-

bilities p(st|IT ) which can be estimated as ̂p(st = i|IT ) = 1
N

∑N
j=1 1st=i(S

(j)) for i = 1, ..., K.

At each step, if a parameter draw violates any of the prior restrictions in (2.5), (2.6),

(2.8) and (2.9), then it is discarded. For the 4-state model we set the independent priors

as µ1 ∼ N(−0.7, 1), µ2 ∼ N(0.2, 1), µ3 ∼ N(−0.2, 1), µ4 ∼ N(0.3, 1), σ−2
i ∼ G(0.5, 0.05),

i = 1, 2, 3, 4, {p11, p12, p14} ∼ Dir(8, 1.5, 0.5), {p21, p22, p24} ∼ Dir(1.5, 8, 0.5), {p31, p33, p34} ∼
Dir(0.5, 8, 1.5), {p41, p43, p44} ∼ Dir(0.5, 1.5, 8). These priors are informative but cover a wide

range of empirically relevant parameter values.

3.2 Model Comparison

If the marginal likelihood can be computed for a model it is possible to compare models based

on Bayes factors. Non-nested models can be compared as well as specifications with a different

number of states. Note that the Bayes factor compares the out-of-sample prediction record

of models and penalizes over-parameterized models that do not deliver improved predictions.

This is referred to as an Ockham’s razor effect. See Kass and Raftery (1995) for a discussion

on the benefits of Bayes factors. For the general Markov-switching model with K states, the

marginal likelihood for model Mi is defined as

p(r|Mi) =

∫
p(r|Mi, θθθ)p(θθθ|Mi)dθθθ (3.1)

which integrates out parameter uncertainty. p(θθθ|Mi) is the prior and

p(r|Mi, θθθ) =
T∏
t=1

f(rt|It−1, θθθ) (3.2)

is the likelihood which has S integrated out according to

f(rt|It−1, θ) =
K∑
k=1

f(rt|It−1, θθθ, st = k)p(st = k|θθθ, It−1). (3.3)

The term p(st = k|θθθ, It−1) is available from the Hamilton filter. Due to the prior restrictions

we use Chib and Jeliazkov (2001) to compute the marginal likelihood. For details on this see

that paper and Chib (1995).

A log-Bayes factor between model Mi and Mj is defined as

log(BFij) = log(p(r|Mi))− log(p(r|Mj)). (3.4)

Kass and Raftery (1995) suggest interpreting the evidence for Mi versus Mj as: not worth
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more than a bare mention for 0 ≤ log(BFij) < 1; positive for 1 ≤ log(BFij) < 3; strong for

3 ≤ log(BFij) < 5; and very strong for log(BFij) ≥ 5.

3.3 Predictive Density

An important feature of our probabilistic approach is that a predictive density of future returns

can be computed by integrating out all uncertainty regarding states and parameters. We first

discuss the predictive density of the one-period-ahead return. Then we show how to compute

the predictive density of multiperiod returns (cumulative log-returns). Model comparison

based on the density of multiperiod returns is a new result and as we show very informative

in differentiating models.

The predictive density for future returns based on current information at time t is computed

as

p(rt+1|It) =
∫

f(rt+1|It, θθθ)p(θθθ|It)dθθθ (3.5)

which involved integrating out both state and parameter uncertainty using the posterior dis-

tribution p(θθθ|It). From the Gibbs sampling draws {S(j),M(j),ΣΣΣ(j),P(j)}Nj=1 based on data It

we approximate the predictive density as

̂p(rt+1|It) =
1

N

N∑
i=1

K∑
k=1

f(rt+1|θθθ(i), st+1 = k)p(st+1 = k|s(i)t , θθθ(i)) (3.6)

where f(rt+1|θθθ(i), st = k) follows N(µ
(i)
k , σ

2(i)
k ) and p(st+1 = k|s(i)t , θθθ(i)) is the transition proba-

bility.

The probability of a future state st+1 can also be easily estimated by simulating from

the distribution p(st+1|s(i)t , θθθ(i)) a state s
(j)
t+1 for each state and parameter draw s

(i)
t , θθθ(i). The

proportion of draws for which st+1 = k is an estimate of P (st+1 = k|It).
The predictive density can also be computed for cumulative returns over long horizons.

Define the h-period return as rt,h =
∑h

i=1 rt+i. Then the predictive density for the multiperiod

return is

p (rt,h|It) =
∫ [h−1∏

j=1

f(rt+j|θθθ, st+j)

]
f

(
rt,h −

h−1∑
j=1

rt+j

∣∣∣∣θθθ, st+h

)

×

[
h∏

j=2

p(st+j|st+j−1, θθθ)

]
p(st+1|It, θθθ)p(θθθ|It)dθθθdst+1 . . . dst+hdrt+1 . . . drt+h−1. (3.7)

This integrates out all parameter uncertainty and future state uncertainty as well as all possible

sample paths of returns {rt+1, . . . , rt+h−1} such that rt,h =
∑h

i=1 rt+i. The predictive density
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can be approximated as

̂p(rt,h|It) =
1

N

N∑
i=1

f

(
rt,h −

h−1∑
j=1

r
(i)
t+j

∣∣∣∣θθθ(i), s(i)t+h

)

Given θθθ(i), s
(i)
t from the posterior we simulate out {s(i)t+j, r

(i)
t+j}h−1

j=1 and s
(i)
t+h from the MS-4 and

evaluate the sum above at the data rt,h. Similar calculations are used for the other models we

compare to.

Evaluating the predictive density at the data rt,h gives the predictive likelihood. Models

can be compared on their out-of-sample performance for observations τ1 to τ2, τ1 < τ2 based

on the cumulative log predictive likelihood,

τ2∑
t=τ1

log( ̂p(rt,h|It)). (3.8)

To compute this the model must be re-estimated at each point in the out-of-sample period.

As with the marginal likelihood, better models will have a larger cumulative log predictive

likelihood value. A model with a larger value is better able to account for the data.

4 Results

4.1 Parameter Estimates and Implied Distributions

Model estimates for the 2-state Markov-switching (MS-2) model are found in Table 2. State

1 has a negative conditional mean along with a high conditional variance whereas state 2

displays a high conditional mean with a low conditional variance. Both regimes are very

persistent. These results are consistent with the sorting of bull and bear regimes in Maheu

and McCurdy (2000a) and Guidolin and Timmermann (2005).

Estimates for our proposed 4-state model (MS-4) are found in Table 3. All parameters are

precisely estimated indicating that the data are quite informative. Recall that states st = 1, 2

capture the bear regime while states st = 3, 4 capture the bull regime. Each regime contains

a state with a positive and a negative conditional mean. We label states 1 and 2 the bear and

bear rally states respectively; states 3 and 4 are the bull correction and bull states.

Consistent with the MS-2 model, volatility is highest in the bear regime. In particular,

the highest volatility occurs in the bear regime in state 1. This state also delivers the lowest

average return. The highest average return and lowest volatility is in state 4 which is part

of the bull regime. The bear rally state (st = 2) delivers a conditional mean of 0.23 and

conditional standard deviation of 2.63. However, this mean is lower and the volatility higher

than the bull positive growth state (st = 4). Analogously, the bull correction state (st = 3)

has a larger conditional mean (−0.13 > −0.94) and smaller volatility (2.18 < 6.01) than the
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bear state 1.

State 4 provides the most favorable risk-return tradeoff followed by state 2, 3 and 1. Note

that the bull state 4 delivers a larger expected return with a standard deviation that is 50%

smaller than the bear rally (state 2). Even though the bear rally delivers a positive expected

return, that return is much more variable than in the bull state.

All states display high persistence (pii is high for all i). However, the transition probabilities

display some asymmetries. For example, the probability of a bear rally moving back to the

bear state 1 (p21 = 0.015) is a little lower than changing regime to a bull market (p24 = 0.019).

On the other hand, the probability of a bull correction returning to a bull market (p34 = 0.051)

is considerably higher than changing regime to the bear state (p31 = 0.010).

What do the dynamics of the MS-4 model imply for investors? First, the probability of a

positive return in any state is high with P (rt > 0|st) = 0.44, 0.53, 0.48, and 0.59 respectively

for states st = 1, 2, 3, 4. Second, investing in any state eventually results in future returns

being positive. For instance, the H = argmin{E(rt+H |st) > 0} is 37 (st = 1), 1 (st = 2),

15 (st = 3) and 1 (st = 4). Therefore, investors concerned with long investment horizons or

obtaining a high probability of a positive return may find investing in states 1 and 3 desirable.

Table 4 reports the unconditional probabilities for the states. On average the market

spends 0.157 of time in a bear rally while 0.304 in a bull correction. The most time is spent

in the bull growth state 4. The unconditional probability of the bull regime is 0.773.

A comparison of the regime statistics implied by the parameter estimates for the MS-2

and MS-4 models is found in Table 5. The expected duration of regimes is much longer in the

4-state model. That is, by allowing heterogeneity within a regime in our 4-state model, we

switch between bull and bear markets less frequently. For instance, in a MS-2 parameterization

the bull market has a duration of only 82.6 weeks, about 18 months, while the richer MS-4

model has a bull duration of just under 5 years. As we will see below, there is much more

switching between regimes in the MS-2 model.

In the 2-state model, the expected return and variance are fixed within a regime. For the

bear regime in the MS-2 model, the expected variance is E[Var(rt|st = 1)] = 19.6. In contrast,

the average variance for each regime in the 4-state model can be attributed to changes in the

conditional mean as well as to the average conditional variance of the return innovations. For

instance, the average variance of returns in the bear regime can be decomposed as Var(rt|st =
1, 2) = Var(E[rt|st]|st = 1, 2) + E[Var(rt|st)|st = 1, 2] = 0.31 + 16.1, with a similar result for

the bull regime. For the bull and bear phase, the mean dynamics account for a small share,

2% of the total variance.

The MS-2 model assumes normality in both market regimes while the MS-4 shows that

the data is at odds with this assumption. Skewness in present in bear markets while excess

kurtosis is found in both bull and bear regimes. Overall the bear market deviates more from

a normal distribution; it has thicker tails and captures more extreme events.

Table 6 summarizes features of the MS-4 parameterization for both the regimes and their
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component states derived from the posterior parameter estimates. The bear regime duration

is 77.8 weeks, much shorter than the bull regime duration of 256.0 weeks. The average

cumulative return in the bear (bull) regime is -9.94 (33.0). The volatility in the bear market

is more than twice that in the bull market. The third panel provides a breakdown of cumulative

return means in each of the component states of the market regimes. The bear rally yields

a cumulative return of 7.10 on average which partially offsets the average decline of -12.4

in state 1. On the other hand the bull correction has a cumulative return mean of -2.13

which diminishes the average cumulative return of 7.88 in state 4. Note that these states are

combined into bull and bear market regimes in heterogeneous patterns over time yielding the

statistics for regimes summarized in the first two panels of Table 6.

Although the stock market spends most of the time in the bull regime (states 3 and 4),

in terms of individual states it is state 2 that has the longest duration but this state 2 is

visited less often so its unconditional probability is low relative to the others (π2 = 0.157 from

Table 4).

4.2 Model Comparisons

We conduct formal model comparisons based on the marginal likelihoods reported in Table 7.

The constant mean and variance model performs the worst (has the lowest marginal likeli-

hood). The next model is the MS-2 followed by the restricted MS-4, σ2
1 = σ2

2, σ
2
3 = σ2

4 (model

1 in Section 2.3). Next is the decoupled model with 4 states in the conditional mean and

an independent 4 states in the conditional variance (model 2 in Section 2.3). Following this

is a GARCH(1,1) model (model 3 in Section 2.3) and the MS-4 with p24 = p31 = 0 (model

4 in Section 2.3). Following this is an unrestricted 4-state model labelled MS-4 unrestricted

(model 5 in Section 2.3). The last specification is our preferred MS-4 model and the final

column of the Table presents log-Bayes factor for this model against the alternatives.

The log-Bayes factor between the 2-state MS and the 4-state MS in the conditional mean

restricted to have only a 2-state conditional variance is large at 53.4 = −13849.9−(−13903.3).

This improved fit comes when additional conditional mean dynamics (going from 2 to 4

states) are added to the basic 2-state MS model. The best model is the 4-state Markov-

switching (MS-4) model. The log-Bayes factor in support of the 4-state versus the 2-state

model is 162.9 = −13740.4 − (−13903.3). The zero restrictions in the transition matrix

(2.6) are also strongly supported by the data. For instance, the log-Bayes factor is 6.8 =

−13740.4 − (−13747.2) in support of our MS-4 model compared to an unrestricted 4-state

model. The evidence is also against additional restrictions on P such as p24 = p31 = 0 relative

to our MS-4 parameterization with Pmatrix (2.6). The data favor the more flexible transitions

of our MS-4 between bull and bear regimes.

Our preferred 4-state model also dominates the more flexible model with 4 states for

conditional mean and 4 independent states for the conditional variance (decoupled 4 state
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model). Similarly our MS-4 model improves upon the GARCH(1,1) model.

Overall, there is very strong evidence that the 4-state specification of Section 2.2 provides

the best fit to weekly returns. The comparisons also show that this improved fit comes from

improved fit to both the conditional mean and variance. Not only does our MS-4 model

provide a better economic characterization of differences in stock market cycles but the model

statistically dominates other alternatives.

In the web appendix the Lunde and Timmermann (2004) dating algorithm is used as a lens

to view both the S&P500 data and data simulated from our preferred MS-4 model. Although

our model provides a richer 4-state description of bull and bear markets, it does account for

all of the data statistics associated with a simpler 2-state view of the market using the LT

dating algorithm.

4.3 Identification of Historical Turning Points in the Market

The dating of the market regimes using the LT dating algorithm are found in the top panel of

Figure 1. Below this panel is the smoothed probability of a bull market, p(st = 3|IT )+ p(st =

4|IT ) for the MS-4 model. The final plot in Figure 1 is the smoothed probability of a bull

market, p(st = 2|IT ) from the 2-state model. The 4-state model produces less erratic shifts

between market regimes, closely matches the trends in prices, and generally corresponds to

the dating algorithm. The 2-state model is less able to extract the low frequency trends in

the market. In high frequency data it is important to allow intra-regime dynamics, such as

short-term reversals.

Note that the success of our model should not be based on how well it matches the

results from dating algorithms. Rather this comparison is done to show that the latent-

state MS models can identify bull and bear markets with similar features to those identified

by conventional dating algorithms. Beyond that, the Markov-switching models presented in

this paper provide a superior approach to modeling stock market trends as they deliver a

full specification of the distribution of returns along with latent market dynamics. Such an

approach permits out-of-sample forecasting which we turn to in Section 4.4.

Illustrating the 1927-1939 subperiod, Figure 2 displays the log-price and the realized

volatility (square root of realized variance) in the top panel, the smoothed states of the

MS-4 model in the second panel, and the posterior probability of the bull market, p(st =

3|IT ) + p(st = 4|IT ), in the last panel.

Just before the crash of 1929 the model identifies a bull correction state. The transition

from a bull to bear market occurs as a move from a bull market state to a bull correction state

and then into the bear regime. For the week ending October 16 1929, there was a return of

-3.348 and the market transitioned from the bull correction state into the bear market state

with p(st = 1|IT ) = 0.63. This is further reinforced so that the next 5 weeks have essentially

probability 1 for state 1.
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As this figure shows, the remainder of this subperiod is decisively a bear market, but

displays considerable heterogeneity in that there are several short-lived bear rallies. The high

levels of realized volatility coincide with the high volatility in the bear market states. Periods

of somewhat lower volatility are associated with the bear rally states. A strong bear rally

begins in late November 1933 and lasts until August 25, 1937, at which time there is a move

back into the bear market state. Realized volatility increases with this move into state 1.

For the 1985-1990 subperiod, prior to the 1987 crash there is a dramatic run-up in stock

prices with generally low volatility, as illustrated in the top panel of Figure 3. It is interesting

to note that the model shows a great deal of uncertainty about the state of the market well

before the crash. In the first week of October, just before the crash, the most likely state is

the bull correction with p(st = 3|IT ) = 0.37. The bear state which starts the following week

lasts for about 5 weeks after which a strong bear rally quickly emerges as of the week ending

November 18, 1987. It is the bear rally state that exits into a bull market during the week of

August 17, 1988. Prices resume their strong increase until they plateau with a bull correction

beginning the week of October 4, 1989.

Finally, we use our model to investigate recent market activity in Figure 4. The bull

market state turned into a bull correction in mid-July 2007, which persisted until an abrupt

move into the bear market state in early September 2008. This transition was accompanied

by a dramatic increase in realized volatility. According to our model, the bear market became

a bear market rally in the third week of March 2009 where it stayed until mid-November

2009 when it moved into the bull market state. As noted earlier, the positive trend in returns

during a bear market rally do not get interpreted as a bull market until the market volatility

declines to levels more typical of bull markets. See the web appendix for the 1980-85 period.

There are several important points revealed by this discussion. First, bear (bull) markets

are persistent but are made of many regular transitions between states 1 and 2 (3 and 4).

Second, in each of the examples the move between regimes occurs through either the bear

rally or the bull correction state. In other words, these additional dynamics are critical to

fully capturing turning points in stock market cycles. This is also borne out by our model

estimates. The most likely route for a bear market to go to a bull market is through the

bear rally state. Given that a bull market has just started, the probability is 0.9342 that the

previous state was a bear rally (i.e. p(st = 2|st+1 = 4, st = 1 or 2) ∝ p24π2

π1+π2
) and only 0.0658

that it was a bear state . Similarly, given that a bear market has just started, the probability

is 0.8663 that the previous state was a bull correction, and only 0.1337 that it was a bull state.

The following subperiod descriptions provide examples of this richer specification of turning

points plus frequent reversals within a regime.
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4.4 Density Forecasts

The different phases of the market according to the MS-4 model should have important im-

plications for the forecast density of returns. In this section we discuss two illustrations.

An industry standard measure of potential portfolio loss is the Value-at-Risk (VaR) which

measures the tail area of the return distribution. VaR(α),t is defined as the 100α percent

quantile of the portfolio value or return distribution given information at time t − 1. We

compute VaR(α),t from the predictive density of the MS-4 model as p(rt < VaR(α),t|It−1) = α.

Given a correctly specified model, the probability of a return of VaR(α),t or less is α.

To compute the Value-at-Risk from the MS-4 model we do the following. First, N draws

from the predictive density are taken as follows: draw θθθ and st−1 from the Gibbs sampler, a

future state s̃t is simulated based on P and r̃t|s̃t ∼ N(µs̃t , σ
2
s̃t). The details are discussed in

Section 3.3. From the resulting draws, the r̃t with rank [Nα] is an estimate of VaR(α),t.

The first panel of Figure 5 displays the conditional VaR from January 3, 2007 to January

20, 2010 predicted by the MS-4 model, as well as that implied by the normal benchmark for

α = 0.05. At each point the model is estimated based on information up to t− 1. Similarly,

the benchmark, N(0, σ2), sets σ2 to the sample variance using It−1.

The normal benchmark overestimates the VaR for the early part of this subsample but

starts to understate it at times, beginning in mid-2007, and then severely under estimates in

the last few months of 2008. The MS-4 model provides a very different VaR(.05),t over time

because it takes into account the predicted regime, as indicated by the middle and bottom

panels of Figure 5 which show forecasts of the states and regimes respectively. Note that the

potential losses, shown in the top panel, increase considerably in September and October 2008

as the model identifies a move from a bull to a bear market.

The density for cumulative returns over long horizons will be sensitive to the different

states in the MS-4 model and if they are empirically important should result in better density

forecasts. To investigate this we compute the predictive likelihood according to Section 3.3 for

a range of investment horizons for the time period 1913/11/12 – 2010/01/20. Along with our

MS-4 model, several other specifications are included in Table 8. We can compare the models

based on their relative log-probabilities for long horizon returns just as we would normally

compare models using the log-Bayes factor in Section 3.2.

The GARCH(1,1) model provides the most accurate density forecasts for 1-month-ahead

returns while our MS-4 model dominates for all other horizons. For example, the difference

in the log-predictive likelihoods for our MS-4 specification versus GARCH(1,1) is very large

at 3-months (60), 6-months (117) and 12-months (210). Our MS-4 parameterization also

dominates the unrestricted 4-state model at all horizons beyond 1-month. These long-horizon

density forecasts provide very strong support for the 4 phases of the stock market that our

MS-4 model captures. In summary, our model accurately identifies the phases of bull and

bear markets which lead to competitive long horizon out-of-sample density forecasts.
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This out-of-sample application also gives us an opportunity to assess in real time when

our model identified a move into the bear regime. We now consider the identification process

that would have been historically available to investors using the model forecasts. This will

differ from the previous results as we are using a smaller sample and updating estimates as

new data arrives.

The second and third panel of Figure 5 report the predictive mean of the states and regimes.

Prior to 2008, forecasts of the bull states occur the most, including some short episodes of

bull corrections. In the first week of October 2008, the probability of a bull regime drops

from 0.85 to essentially zero and remains there for some time. In other words, the model in

real time detects a turning point in the first week of October 2008 from the bull to the bear

regime. The first half of the bear regime that follows is characterized by the bear state while

the second half is largely classified as a bear rally.

Toward the end of our sample there is a move from the bear market rally state to a bull

market. In real time, in early December 2009 the model forecasts a move from the bear rally

to the bull market state. For the week ending December 9, we have p(st = 1|It−1) = 0.02,

p(st = 2|It−1) = 0.17, p(st = 3|It−1) = 0.14 and p(st = 4|It−1) = 0.67. The evidence for a bull

market regime gradually strengthens; the last observation in our sample, January 20, 2010,

has probabilities 0.01, 0.11, 0.07 and 0.81 for states 1,2,3 and 4, with the bull market state

being the most likely.

5 Conclusion

This paper proposes a new 4-state Markov-switching model to identify the components of

bull and bear market regimes in weekly stock market data. Bull correction and bull states

govern the bull regime; bear rally and bear states govern the bear regime. Our probability

model fully describes the return distribution while treating bull and bear regimes and their

component states as unobservable.

A bear rally is allowed to move back to the bear state or to exit the bear regime by moving

to a bull state. Likewise, a bull correction can move back to the bull state or exit the bull

regime by transitioning to a bear state. This implies that regimes can feature several episodes

of their component states. For example, a bull regime can be characterized by a combination

of bull states and bull corrections. Similarly, a bear regime can consist of several episodes

of the bear state and the bear rally state. Because the realization of states in a regime will

differ over time, bull and bear regimes can be heterogeneous over time. This richer structure,

including both intra-regime and inter-regime dynamics, results in a richer characterization of

market cycles.

Probability statements on regimes and future returns are available. Our model strongly

dominates other alternatives. Model comparisons show that the 4-state specification of bull

and bear markets is strongly favored over several alternatives including a two-state model, an
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unrestricted 4-state model, as well as various alternative specifications for variance dynamics.

For example, relative to a two-state model, there is less erratic switching so that market

regimes are more persistent.

We find that bull corrections and bear rallies are empirically important for out-of-sample

forecasts of turning points and VaR predictions. Our model provides superior density forecasts

of long-horizon returns.
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Table 1: Weekly Return Statistics (1885-2010)a

N Mean standard deviation Skewness Kurtosis J-Bb

6498 0.085 2.40 -0.49 11.2 18475.5∗

a Continuously compounded returns
b Jarque-Bera normality test: p-value = 0.00000

Table 2: MS-2-State Model Estimates

mean median std 0.95 DI

µ1 -0.46 -0.46 0.14 (-0.73, -0.20)
µ2 0.20 0.20 0.02 ( 0.16, 0.25)
σ1 4.42 4.42 0.13 ( 4.18, 4.69)
σ2 1.64 1.64 0.02 ( 1.59, 1.69)
p11 0.94 0.94 0.01 ( 0.92, 0.96)
p22 0.99 0.99 0.002 ( 0.98, 0.99)

This table reports the posterior mean,
median, standard deviation and 0.95
density intervals for model parameters.

Table 3: MS-4-State Model Estimates

mean median std 95% DI

µ1 -0.94 -0.92 0.27 (-1.50, -0.45)
µ2 0.23 0.23 0.10 ( 0.04, 0.43)
µ3 -0.13 0.12 0.08 (-0.31, -0.01)
µ4 0.30 0.29 0.04 (0.22, 0.38)
σ1 6.01 5.98 0.35 (5.41, 6.77)
σ2 2.63 2.61 0.18 (2.36, 3.08)
σ3 2.18 2.19 0.12 (1.94, 2.39)
σ4 1.30 1.30 0.04 (1.20, 1.37)
p11 0.921 0.923 0.020 (0.877, 0.955)
p12 0.076 0.074 0.020 (0.042, 0.120)
p14 0.003 0.001 0.004 (3e-6, 0.013)
p21 0.015 0.014 0.007 (0.005, 0.031)
p22 0.966 0.967 0.009 (0.945, 0.980)
p24 0.019 0.018 0.006 (0.009, 0.034)
p31 0.010 0.009 0.003 (0.004, 0.017)
p33 0.939 0.943 0.018 (0.899, 0.965)
p34 0.051 0.048 0.017 (0.027, 0.088)
p41 0.001 0.0003 0.0007 (6e-7, 0.002)
p43 0.039 0.037 0.012 (0.024, 0.067)
p44 0.960 0.963 0.012 (0.933, 0.976)

The posterior mean, median, standard
deviation and 0.95 density intervals for model
parameters.
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Table 4: Unconditional State Probabilities

mean 0.95 DI

π1 0.070 (0.035, 0.117)
π2 0.157 (0.073, 0.270)
π3 0.304 (0.216, 0.397)
π4 0.469 (0.346, 0.579)

The posterior mean and 0.95 density intervals
associated with the posterior distribution for π
from Equation (2.7).

Table 5: Posterior Regime Statistics for MS-2 and MS-4 Models

MS-2 MS-4

bear mean -0.46 -0.13
(-0.73, -0.20) (-0.367, -0.005)

bear duration 18.2 77.8
(13.2, 25.0) (44.4, 134.6)

bear standard deviation 4.42 4.04
(4.18, 4.69) (3.51, 4.73)

bear variance from Var(E[rt|st]|st = 1, 2) 0.00 0.31
(0.07, 0.68)

bear variance from E[Var(rt|st)|st = 1, 2] 19.6 16.1
(17.5, 22.0) (12.1, 22.0)

bear skewness 0 -0.42
(-0.68, -0.20)

bear kurtosus 3 5.12
(4.37, 5.93)

bull mean 0.20 0.13
(0.16, 0.25) (0.07, 0.18)

bull duration 82.6 256.0
(59.1, 115.9) (123.5, 509.6)

bull standard deviation 1.64 1.71
(1.59, 1.69) (1.59, 1.83)

bull variance from Var(E[rt|st]|st = 3, 4) 0.00 0.04
(0.02, 0.09)

bull variance from E[Var(rt|st)|st = 3, 4] 2.69 2.89
(2.54, 2.85) (2.47, 3.30)

bull skewness 0 0.04
(-0.11, 0.16)

bull kurtosus 3 3.77
(3.51, 4.03)

The posterior mean and 0.95 density interval for regime statistics.
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Table 6: Posterior State Statistics for the MS-4 Model

mean median std 95% DI

Bear mean -0.13 -0.11 0.10 (-0.367, -0.005)
Bear duration 77.8 74.0 23.1 (44.4, 134.6)

Bear cumulative return -9.94 -8.28 7.89 (-29.6, -0.41)
Bear std 4.04 4.01 0.31 (3.51, 4.73)
Bull mean 0.13 0.13 0.03 (0.07, 0.18)

Bull duration 256.0 235.6 100.9 (123.5, 509.6)
Bull cumulative return 33.0 30.0 14.9 (12.9, 70.3)

Bull std 1.71 1.71 0.06 (1.59, 1.83)
s=1: cumulative return -12.4 -11.8 4.49 (-23.0, -5.45)
s=2: cumulative return 7.10 6.97 3.10 (1.47, 13.8)
s=3: cumulative return -2.13 -2.07 1.09 (-4.46, -0.27)
s=4: cumulative return 7.88 7.75 1.67 (5.02, 11.6)

s=1: duration 13.5 13.0 3.63 (8.13, 22.2)
s=2: duration 31.2 30.1 8.39 (18.3, 51.0)
s=3: duration 17.9 17.4 4.80 (9.91, 28.8)
s=4: duration 27.2 26.9 6.75 (14.9, 41.4)

This table report posterior statistics for various population
moments.

Table 7: Log Marginal Likelihoods: Alternative Models

Model log f(Y | Model) log-Bayes Factora

Constant mean with constant variance -14924.1 1183.7
MS-2 -13903.3 162.9
MS-4 with restricted variances (σ2

0 = σ2
1 , and σ2

2 = σ2
3) -13849.9 109.5

MS-4, 4 state mean and decoupled 4 state variance -13754.4 14.0
GARCH(1,1) -13809.1 68.7
MS-4 with p24 = p31 = 0 -13766.9 26.5
MS-4 unrestricted -13747.2 6.8
MS-4 -13740.4
a log-Bayes Factor for MS-4 vs each model

Table 8: Long Horizon Return Density Forecasts

1 month 3 months 6 months 12 months
h=weeks 4 13 26 52

MS-4 -14428.8 -17610.5 -19535.0 -21652.7
MS-2 -14575.7 -17796.9 -19725.7 -22454.5

GARCH(1,1) -14341.6 -17670.6 -19652.2 -21862.7
MS-4, 4 state mean and decoupled 4 state variance -14408.7 -17626.4 -19582.6 -21827.5

MS-4 with p24 = p31 = 0 -14457.1 -17624.2 -19569.6 -21608.7
MS-4 unrestricted -14421.5 -17625.1 -19561.0 -21720.7

This table reports the log-predictive density of h-period returns:
∑T2

t=T1
log(p (rt,h|It,Model)) where

rt,h =
∑h

i=1 rt+i. Out-of-sample data: 1913/11/12 – 2010/01/20. This gives 4997 (1 month), 4988 (3 months), 4975
(6 months) and 4949 (12 months) observations respectively.
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Figure 1: LT algorithm, MS-4 and MS-2
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Web Appendix to

Components of bull and bear markets:

bull corrections and bear rallies

John M. Maheu∗ Thomas H. McCurdy† Yong Song‡

1 Bull and Bear Dating Algorithms

Ex post sorting methods for classification of stock returns into bull and bear phases are called

dating algorithms. Such algorithms attempt to use a sequence of rules to isolate patterns in

the data. A popular algorithm is that used by Bry and Boschan (1971) to identify turning

points of business cycles. Pagan and Sossounov (2003) adapted this algorithm to study the

characteristics of bull/bear regimes in monthly stock prices. First a criterion for identifying

potential peaks and troughs is applied; then censoring rules are used to impose minimum

duration constraints on both phases and complete cycles. Finally, an exception to the rule for

the minimum length of a phase is allowed to accommodate ’sharp movements’ in stock prices.

There are alternative dating algorithms or filters for identifying turning points. For ex-

ample, the Lunde and Timmermann (2004) (LT) algorithm identifies bull and bear markets

using a cumulative return threshold of 20% to locate peaks and troughs moving forward.

They define a binary market indicator variable It which takes the value 1 if the stock market

is identified by their algorithm to be in a bull state at time t and 0 if it is in a bear state.

The classification of our data into bull and bear regimes using these two filters is found

in Figure 1. The shaded portions under the cumulative return denote bull markets while the

white portions of the figure are the bear markets. The exact dates for the bull and bear

regimes can be found in Table 1. There are several features to note. First, the sorting of the

data is broadly similar but with important differences. For example, during the 1930s the BB

approach finds many more switches between market phases than does the LT algorithm. More

recently, both identify 1987-12 as a trough but the subsequent bull phase ends in 1990-06 for

LT but 2000-03 for BB. The average bear duration is similar (66 weeks) while the average bull

∗Department of Economics, University of Toronto and RCEA, jmaheu@chass.utoronto.ca
†Rotman School of Management, University of Toronto & CIRANO, tmccurdy@rotman.utoronto.ca
‡CenSoC, University of Technology, Sydney, ysong1@gmail.com
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duration is quite different, 117.0 weeks (BB) versus 166.7 (LT). In other words, the different

parameters and assumptions in the filtering methods can result in a different classification of

market phases.

Although the ex post dating algorithms can filter the data to locate different regimes, they

cannot be used for forecasting or inference. In addition, since the sorting rule focuses on the

first moment, it does not characterize the full distribution of returns. The latter is required

if we wish to derive features of the regimes that are useful for measuring and forecasting

risk. Also, as noted above, ex post dating algorithms sort returns into a particular regime

with probability zero or one. However, the data provides more information allowing one to

estimate probabilities associated with particular states.

Nevertheless, the dating algorithms are still very useful. For example, we use the LT

algorithm to sort data simulated from our candidate parametric models in order to determine

whether the latter can match commonly perceived features of bull and bear markets.

The Pagan and Sossounov (2003) adaptation of the Bry-Boschan (BB) algorithm can be

summarized as follows:

1. Identify the peaks and troughs by using a window of 8 months.

2. Enforce alternation of phases by deleting the lower of adjacent peaks and the higher of

adjacent troughs.

3. Eliminate phases less than 4 months unless changes exceed 20%.

4. Eliminate cycles less than 16 months.

Window width and phase duration constraints will depend on the particular series and will

obviously be different for smoothed business cycle data than for stock prices. Pagan and

Sossounov (2003) provide a detailed discussion of their choices for these constraints.

The Lunde and Timmermann (2004) dating algorithm defines a binary market indicator

variable It which takes the value 1 if the stock market is in a bull state at time t and 0 if

it is in a bear state. The stock price at the end of period t is labelled Pt. Our application

of their dating algorithm can be summarized as: use a 6-month window to locate the initial

local maximum or minimum.

Suppose we have a local maximum at time t0, in which case we set Pmax
t0

= Pt0 .

1. Define stopping-time variables associated with a bull market as

τmax(P
max
t0

, t0 | It0 = 1) = inf{t0 + τ : Pt0+τ ≥ Pmax
t0

}

τmin(P
max
t0

, t0 | It0 = 1) = inf{t0 + τ : Pt0+τ ≤ 0.8Pmax
t0

}

2. One of the following happens:
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• If τmax < τmin, bull market continues, update the new peak value Pmax
t0+τmax

= Pt0+τmax

and set It0+1 = · · · It0+τmax = 1. Update t0 = t0 + τmax still as local maximum and

continue with step 1 above.

• If τmax > τmin, we find a trough at time t0 + τmin and we have been in a bear

market from t0 + 1 to t0 + τmin. Set It0+1 = · · · = It0+τmin
= 0. Record the value

Pmin
t0+τmin

= Pt0+τmin
and update t0 = t0+ τmin as local minimum. Go to step 3 below

since t0 is a local minimum now.

When t0 is a local minimum:

3 Bear market stopping times are

τmin(P
min
t0

, t0 | It0 = 0) = inf{t0 + τ : Pt0+τ ≤ Pmin
t0

}

τmax(P
min
t0

, t0 | It0 = 0) = inf{t0 + τ : Pt0+τ ≥ 1.2Pmin
t0

}

4 One of the following happens:

• If τmin < τmax, bear market continues, update the new trough value, Pmin
t0+τmin

=

Pt0+τmin
and set It0+1 = · · · = It0+τmin

= 0. Update t0 = t0 + τmin and continue with

step 3.

• If τmin > τmax we find a peak at time t0+τmax and we have been in a bull market from

t0+1 to t0+τmax. Set It0+1 = · · · = It0+τmin
= 1.Record the value Pmax

t0+τmax
= Pt0+τmax

and update t0 = t0 + τmax as a local maximum. Go to 1 above since t0 is a local

maximum now.

This process is repeated until the last data point. All periods with It = 1 are in bull regime

and It = 0 are in bear regime.

2 Results

Figure 2 displays the density of each of the 4 states of the MS-4. The differences in the

illustrated densities are in accord with the parameter estimates. Differences in the spreads of

the densities are most apparent but the locations are also different. There is no suggestion

from these plots that states 1 and 2 are the same or that states 3 and 4 are the same, as a

two-state Markov-switching model would assume.

Integrating state 1 and 2 gives the bear regime and doing the same for states 3 and 4

produces the bull regime. These densities are shown in Figure 3. The bear regime has a

mean slightly below 0 but with a much larger variance than the bull regime. The implied
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unconditional density of returns is a mixture of these two regimes and displayed in the middle

of the figure.

The Markov-switching models specify a latent variable that directs low frequency trends

in the data. As such, the regime characteristics from the population model are not directly

comparable to the dating algorithms of Section 1. Instead, we consider the dating algorithm

as a lens to view both the S&P500 data and data simulated from our preferred MS-4 model.

Using parameter draws from the Gibbs sampler, we simulate return data from the model and

then apply the LT dating algorithm to those simulated returns. This is done many times and

the average and 0.70 density intervals of these statistics are reported in Table 2 along with the

statistics from the S&P500 data. Although our model provides a richer 4 state description of

bull and bear markets it does account for all of the data statistics derived from the LT dating

algorithm.

2.1 Identification of Historical Turning Points in the Market

2.1.1 1980-1985

In Figure 4, the market displays several moves between the bull market state and the bull

correction state before a short-term move into a bear market in August of 1982. Once again

the transition from a bull to bear market is through a bull correction state. However, the bear

market that emerges has state 1 that lasts only about 4 weeks. This is followed by a bear

rally that results in increased prices accompanied with substantial volatility. The bear rally

turns into a bull market in late April of 1983, thereafter are periods of the bull market state

and bull corrections.
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Table 1: BB and LT Dating Algorithm Turning Points

Troughs Peaks Troughs Peaks

BBa LTb BB LT BB LT BB LT

1985-02 1940-06 1940-11

1885-04 1942-05 1942-05 1943-07

1886-12 1943-12 1946-05 1946-05

1888-06 1890-06 1890-06 1948-02 1948-02 1948-06

1890-12 1890-12 1892-03 1892-03 1949-06 1952-12

1893-08 1893-08 1895-09 1895-09 1953-09 1956-07 1956-07

1896-08 1896-08 1897-09 1957-12 1957-12 1959-07

1898-03 1899-04 1960-10 1961-12

1900-07 1902-09 1902-09 1962-07 1962-07 1966-02 1966-02

1903-10 1903-10 1906-01 1966-10 1966-10 1968-12 1968-12

1906-10 1970-06 1970-06 1971-04

1907-11 1907-11 1909-08 1909-08 1971-12 1973-01 1973-01

1910-08 1912-10 1974-10 1974-10 1976-09

1914-12 1914-12 1916-11 1916-11 1978-03 1978-09

1917-12 1917-12 1919-07 1919-07 1980-04 1980-11 1980-11

1921-06 1921-06 1929-09 1929-09 1982-08 1982-08 1983-06

1929-11 1930-04 1984-08 1987-08 1987-08

1932-06 1932-06 1932-09 1987-12 1987-12 1990-06

1933-03 1933-07 1933-07 1990-10 2000-03 2000-03

1933-10 1934-02 2002-10 2002-10 2007-10 2007-10

1935-03 1935-03 1937-03 1937-03 2009-03 2009-03 2010-01 2010-01

1938-04 1938-04 1938-11

1939-04 1939-10 1939-10

a BB: Bry and Boschan algorithm using Pagan and Sossounov parameters
b LT: Lunde and Timmermann algorithm
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Table 2: Dating-algorithm filtering of data
and simulated data

S&P MS-4

Avg. number of bears 29 31.7

(22, 42)a

Avg. bear duration 63.1 55.9

(40.5, 74.7)

Avg. bear amplitudeb -45.0 -43.4

(-52.7, -35.8)

Avg. bear return -0.71 -0.80

(-1.08, -0.57)

Avg. bear std 3.16 3.15

(2.60, 3.73)

Avg. number of bulls 28 31.4

(22, 42)

Avg. bull duration 166.7 158.5

(103.0, 235.3)

Avg. bull amplitude 66.4 60.2

(46.3, 80.0)

Avg. bull return 0.40 0.39

(0.31, 0.48)

Avg. bull std 2.53 2.42

(1.97, 2.91)

a 70% density interval
b Aggregate return over one regime
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Figure 1: LT and BB dating algorithms
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Figure 4: MS-4, 1980-1985
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