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 Existing methods of partitioning the market index into bull and bear regimes do not identify market
 corrections or bear market rallies. In contrast, our probabilistic model of the return distribution allows for

 rich and heterogeneous intraregime dynamics. We focus on the characteristics and dynamics of bear market

 rallies and bull market corrections, including, for example, the probability of transition from a bear market

 rally into a bull market versus back to the primary bear state. A Bayesian estimation approach accounts for

 parameter and regime uncertainty and provides probability statements regarding future regimes and returns.

 We show how to compute the predictive density of long-horizon returns and discuss the improvements our

 model provides over benchmarks. This article has online supplementary materials.

 KEY WORDS: Long-horizon returns; Markov switching; Predictive density.

 1. INTRODUCTION

 There is a widespread belief among investors, policy makers,
 and academics that low-frequency trends do exist in the stock
 market. Traditionally these positive and negative low-frequency
 trends have been labeled as bull and bear markets, respectively.
 We propose a model that provides answers to typical questions
 such as "Are we in a bull market or a bear market rally?" or
 "Will this bull market correction become a bear market?" We

 propose a latent four-state Markov-switching (MS-4) model for
 weekly stock returns. Our focus is on modeling the component
 states of bull and bear market regimes to identify and forecast
 bull, bull correction, bear, and bear rally states.

 Traditional methods of identifying bull and bear markets are
 based on an ex post assessment of the peaks and troughs of the
 price index. Formal dating algorithms based on a set of rules for
 classification are found, for example, in Gonzalez et al. (2005),
 Lunde and Timmermann (2004), and Pagan and Sossounov
 (2003). Some of this work is related to the dating methods
 used to identify turning points in the business cycle Bry and
 Boschan (1971). A drawback is that a turning point can only
 be identified several observations after it occurs. Ex post dating
 methods cannot be used for statistical inference on returns or

 for investment decisions that require more information from
 the return distribution, such as changing risk assessments. For
 adequate risk management and investment decisions, we need a
 probability model for returns and one for which the distribution
 of returns changes over time.

 Stock markets are perceived to have a cyclical pattern that can

 be captured with regime-switching models. For example, Hamil
 ton and Lin (1996) related business cycles and stock market
 regimes, and Chauvet and Potter (2000) and Maheu and Mc
 Curdy (2000a) used a duration-dependent MS parameterization

 to analyze properties of bull and bear market regimes extracted
 from aggregate stock market returns. Lunde and Timmermann
 (2004) studied duration dependence after sorting stock returns
 into either a bull or bear market by using their dating algorithm.

 Ntantamis (2009) explored potential explanatory variables for
 stock market regimes' duration. Applications that explore the
 implications of nonlinearities due to regimes switches for asset
 allocation and/or predictability of returns include Turner, Startz,
 and Nelson (1989); van Norden and Schaller (1997); Maheu and
 McCurdy (2000b); Perez-Quiros and Timmermann (2001); Ang
 and Bekaert (2002); and Guidolin and Timmermann (2007).

 In a related literature that investigated cyclical patterns in a
 broader class of assets, Guidolin and Timmermann (2005) used
 a three-state regime-switching model to identify bull and bear
 markets in monthly U.K. stock and bond returns and to ana
 lyze implications for predictability and optimal asset allocation.
 Guidolin and Timmermann (2006) added an additional state to
 model the nonlinear joint dynamics of monthly returns asso
 ciated with small- and large-cap stocks and long-term bonds.
 Kim, Nelson, and Startz (1998) found that three states in the
 variance of monthly stock returns provides a good fit.

 Higher data frequencies tend to obscure any structure in the
 conditional mean in favor of the conditional variance dynamics.
 Our objective is to use higher-frequency weekly data and to
 provide a real-time approach to identifying phases of the market
 that relate to investors' perceptions of primary and secondary
 trends in aggregate stock returns. Existing approaches do not
 explicitly model bull market corrections and bear market rallies.
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 The bear and bear rally states govern the bear regime; the
 bull correction and bull states govern the bull regime. Therefore
 each regime consists of two primitive states. The model can
 accommodate short-term reversals (secondary trends) within
 each regime of the market. For example, in the bull regime,
 it is possible to have a series of persistent negative returns
 (a bull correction), despite the fact that the expected long
 run return (primary trend) is positive in that regime. Anal
 ogously, bear markets often exhibit persistent rallies that are
 subsequently reversed as investors take the opportunity to sell
 with the result that the average return in that regime is still
 negative.

 It is important to note that our additional states allow for both
 intraregime and interregime transitions. A bear rally is allowed
 to move back to the bear state or to exit the bear regime by
 moving to a bull state. Likewise, a bull correction can move
 back to the bull state or exit the bull regime by transitioning to a

 bear state. A bull regime can be characterized by a combination
 of bull states and bull corrections. Similarly, a bear regime can
 consist of several episodes of the bear state and the bear rally
 state, exactly as many investors feel we observe in the data.
 Because the realization of states in a regime will differ over time,

 bull and bear regimes can be heterogeneous over time. These
 important intraregime and interregime dynamics are absent in
 the existing literature.

 Our Bayesian estimation approach accounts for parameter
 and regime uncertainty and provides probability statements re
 garding future regimes and returns. An important contribution
 of this article is to show how to compute the predictive density
 for cumulative returns over long horizons. Model comparison
 based on the density of long-horizon returns is very informative
 in differentiating models and shows the importance of a richer
 specification of bull and bear phases.

 Applied to 125 years of data, our model provides superior
 identification of trends in stock prices. One important differ
 ence with our specification is that the richer dynamics in each
 regime, facilitated by our four-state model, allow us to extract
 bull and bear markets in higher-frequency data. A two-state
 Markov-switching (MS-2) model applied to higher-frequency
 data results in too many switches between the high- and low
 return states. It is incapable of extracting the low-frequency
 trends in the market. In high-frequency data, it is important
 to allow for short-term reversals in the regime of the market.
 Relative to a two-state model, we find that market regimes are
 more persistent and there is less erratic switching. According
 to Bayes factors, our four-state model of bull and bear markets
 is strongly favored over alternatives, including an unrestricted
 four-state model.

 Bull regimes have an average duration of just less than 5 years,
 while the duration of a bull correction is 4 months on average
 and a bear rally is just over half a year. The cumulative return
 mean of the bull market state is 7.88% but bull corrections offset

 this by 2.13% on average. Average cumulative return in the
 bear market state is — 12.4% but bear market rallies counteract

 that steep decline by yielding a cumulative return of 7.1% on
 average. Note that these states are combined into bull and bear
 market regimes in heterogeneous patterns over time yielding
 an average cumulative return in the bull market regime of 33%
 (average duration of 5 years), while that for the bear market

 Journal of Business & Economic Statistics, July 2012

 regime is about —10% (average duration of 1.5 years). Although
 the average cumulative return in the bear rally state is not much
 less than in the bull market state, the latter state's standard

 deviation is 50% less. This result highlights the importance of
 also considering assessments of volatility associated with the
 alternative states, for example, when identifying bear market
 rallies versus bull markets.

 The model identifies in real time a transition from a bull mar

 ket correction to a bear market in early October 2008. The bear
 rally and bull correction states are critical to modeling turning
 points between regimes; our results show that most transitions
 between bull and bear regimes occur through these states. This
 is consistent with investors' perceptions. Further, we find asym
 metries in intraregime dynamics, for example, a bull market
 correction returns to the bull market state more often than a

 bear market rally reverts to the bear state. These are important
 features that the existing literature on bull and bear markets
 ignores.

 In contrast to many MS applications that estimate a model
 and then label states, ex post, as bull and bear markets, we start
 with a model that imposes prior restrictions corresponding to
 practitioner descriptions of the phases of the market, including
 bull corrections and bear rallies. The article then shows that the

 states of the market that are identified are realistic and useful, not

 only from the perspective of describing market dynamics, but
 also for forecasting long-horizon return densities. Bear rallies
 and bull corrections have important implications for cumulative
 returns. Compared with alternatives, including an unrestricted
 four-state model, our four-state model provides superior density
 forecasts for long-horizon returns. We also show the importance
 of the model in a Value-at-Risk (VaR) application.

 The next section describes the data and models. The latter

 summarizes the benchmark two-state model and develops our
 proposed four-state specification. Estimation and model com
 parison are discussed in Section 3. Section 4 presents results
 including parameter estimates, probabilistic identification of the
 market states and regimes including real-time bear market fore
 casts, VaR forecasts, and out-of-sample long-horizon density
 forecasts. Section 5 concludes. The online appendix collects
 additional results.

 2. DATA AND MODELS

 We begin with 125 years of daily capital gain returns on a
 broad market equity index. Our source for the period 1926-2008
 inclusive is the value-weighted return excluding dividends asso
 ciated with the CRSP (Center for Research in Security Prices)
 S&P500 (Standard & Poor 500) index. The 1885:02-1925 daily
 capital gain returns are courtesy of Bill Schwert (see Schwert
 1990). For 2009-2010, we use the daily rates of change of the
 S&P 500 index level (SPX) obtained from Reuters.

 Returns are converted to daily continuously compounded
 returns from which we construct weekly continuously com
 pounded returns by summing daily returns from Wednes
 day close to Wednesday close of the following week. If a
 Wednesday is missing, we use Tuesday close. If the Tues
 day is also missing, we use Thursday. Weekly realized vari
 ance (RV) is computed as the sum of daily (intraweek) squared
 returns.
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 Maheu, McCurdy, and Song: Bull Corrections and Bear Rallies

 Table 1. Weekly return statistics (1885—2010)a

 N  Mean

 Standard

 deviation  Skewness  Kurtosis  J-Bb

 6498  0.085  2.40  -0.49  11.2  18475.5*

 "Continuously compounded returns.
 bJarque-Bera normality test: *p-value = 0.00000.

 Weekly returns are scaled by 100 so they are percentage re
 turns. Unless otherwise indicated, henceforth returns refer to

 weekly continuously compounded returns expressed as a per
 centage. We have 6498 weekly observations covering the period
 February 25, 1885, to January 20, 2010. Summary statistics are
 shown in Table 1.

 We now briefly review a benchmark two-state model, our
 proposed four-state model, and some alternative specifications
 of the latter used to evaluate robustness of our best model.

 2.1 Two-State Markov-Switching Model

 The concept of bull and bear markets suggests cycles or trends
 that get reversed. Since those regimes are not observable, as
 discussed in Section 1, two-state latent-variable MS models
 have been applied to stock market data. A two-state first-order
 Markov model can be written as

 where i = 1,2 and j = 1,2. We impose fi\ < 0 and /H2 > 0 so
 that s, — 1 is the bear market and s, = 2 is the bull market.

 Modeling of the latent regimes, regime probabilities, and state
 transition probabilities allows explicit model estimation and in
 ference. In addition, in contrast to dating algorithms or filters,
 forecasts are possible. Investors can base their investment deci
 sions on the posterior states or the whole forecast density.

 2.2 MS-4 to Allow Bull Corrections and Bear Rallies

 Consider the following general A'-state first-order MS model
 for returns:

 where i = 1,..., K and j = 1,..., K. We explore a four-state
 model, K = 4, to focus on modeling potential phases of the
 aggregate stock market. Without any additional restrictions, we
 cannot identify the model and relate it to market phases. There
 fore, we consider the following restrictions. First, the states
 s, = 1, 2 are assumed to govern the bear market; we label these
 two states as the bear regime. The states s, = 3, 4 are assumed
 to govern the bull market; these two states are labeled the bull
 regime. Each regime has two states that allows for positive and
 negative periods of price growth within each regime. In partic
 ular, we impose

 r,\s, ~ N((u,Sl,crl),

 Pij = P(s, = j\s,-\ = i),

 (2.1)

 (2.2)

 r,\s, ~

 Pij = P(s, = j\s,-1 = /),

 (2.3)

 (2.4)

 Bear regime
 fxi <0 (bear market state),
 /i2 >0 (bear market rally),

 393

 ^ „ • f P-3 <0 (bull market correction), ..
 Bull regime { _ . . . . (2.5)

 [ fi4 >0 (bull market state).

 This structure can capture short-term reversals in market
 trends. Each state can have a different variance and can ac

 commodate autoregressive heteroscedasticity in returns. In ad
 dition, conditional heteroscedasticity within each regime can be
 captured.

 Consistent with the two states in each regime, the full transi
 tion matrix is

 ( p 11  P\2  0  Ph\

 P21  P22  0  P24

 P3\  0  P33  P34

 \P4l  0  PA3  P44j

 This structure allows for several important features that are ex
 cluded in the MS models in the literature that have fewer states.

 First, a bear regime can feature several episodes of the bear state
 and bear rally state, exactly as many investors feel we observe
 in the data. Similarly, the bull regime can be characterized by
 a combination of bull states and bull corrections. Because the

 realization of states in a regime will differ over time, both bull
 and bear regimes can be heterogeneous over time. For instance,
 based on returns, a bear regime lasting five periods made of the
 states

 st = 1, sr+l = 1 > S/+2 = 1 , -Sr+3 = 2,

 ■?r+4 = 2, Sf+5 = 2, 5,4-6 = 4

 will look very different from

 $t = 1, Sr+l = 1, sr+2 — 1, $r+3 — 2,

 ■Sj+4 = 1, •S'i+S = 11 st+6 = 4.

 A second important contribution is that a bear rally is allowed
 to move either into the bull state or back to the bear state;

 analogously, a bull correction can move to a bear state or back to
 the bull state. We restrict the movement of a bull (bear) regime
 to a bear rally (bull correction) state for identification. These
 important interregime and intraregime dynamics are absent in
 the existing literature and, as we show, are supported by the
 data.

 The unconditional probabilities associated with P can be
 solved (Hamilton 1994)

 7t = (A'Ar'A'e, (2.7)

 where A' = [P' — I, i] and e' = [0, 0, 0, 0, 1] and i =
 [1,1,1,1]'.

 Using the matrix of unconditional state probabilities given by
 (2.7), we impose the following conditions on long-run returns
 in the bear and bull regimes, respectively,

 7T\ 712 „
 E[rt |bear regime, st = 1,2] = /zi H //2 < 0,

 7t\ + 7T2 711 + 712

 (2.8)
 7T3 7T4

 £[r,|bull regime, st = 3, 4] = /Z3 H /Z4 > 0.
 7T2 + 714 7ti + 7T4

 (2.9)

 We do not impose any constraint on the variances.
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 Equations (2.5) and (2.6), along with Equations (2.8) and
 (2.9), serve to identify bull and bear regimes in the MS-4 model.
 The bull (bear) regime has a long-run positive (negative) return.
 Each market regime can display short-term reversals that differ
 from their long-run mean. For example, a bear regime can dis
 play a bear market rally (temporary period of positive returns),
 even though its long-run return is negative, and similarly for the
 bull market.

 2.3 Other Models for Robustness Checks

 Besides the two-state and four-state model, we consider sev

 eral other specifications and provide model comparisons among
 them. The dependencies in the variance of returns are the most
 dominant feature of the data. This structure may adversely dom

 inate dynamics of the conditional mean. The following specifi
 cations are included to investigate this issue.

 (1) Restricted four-state model. This is identical to the four-state

 model in Section 2.2 except that inside a regime the return

 innovations are homoscedastic, that is, of = a\ and of —
 . In this case, the variance within each regime is restricted

 to be constant, although the overall variance of returns can
 change over time due to switches between regimes.

 (2) MS with decoupled conditional mean and variance. In this
 model, the mean and variance dynamics are decoupled and
 directed by independent latent Markov chains. This is a
 robustness check to determine to what extent the variance

 dynamics might be driving the regime transitions. This spec
 ification has the following structure:

 r, |s, ,wt ~ N (ns,, alt), (2.10)
 Pij = P(st = j\s,-\ = i), = (2.11)

 qij = p(w, = j\w,-i - i), i, j = (2.12)

 We focus on the case K = 4 and L = 4, again to allow us
 to capture at least four phases of cycles for aggregate stock
 returns. The conditional means have the same restriction

 imposed as the MS-4; to identify the conditional variances,
 o\ > <72 > <73 > <*4 is imposed.

 (3) A generalized autoregressive conditional heteroscedasticity
 (GARCH) (1,1) model

 r,|/,_, ~W(/i,ff,2), (2.13)
 of = co + a(rr_i - /x)2 + (2.14)

 where /,_i = {n, ..., r,_ j}. This model captures volatility
 dynamics but does not model changes in the conditional
 mean.

 (4) MS-4 with P24 = pi\ =0 that restricts the moves between
 bull and bear regime to be from state 1 to 4 and state 4 to 1.

 (5) An unrestricted four-state model labeled as MS-4 unre
 stricted. In this case, all 16 elements of P are estimated

 and no restrictions are put on the state or regime means. To
 identify the model, cri > o"2 > cr3 > <r4 is imposed.

 Journal of Business & Economic Statistics, July 2012

 3. ESTIMATION AND MODEL COMPARISON

 3.1 Estimation

 In this section, we discuss Bayesian estimation for the most
 general model introduced in Section 2.2 assuming there are
 K states, k — 1, ..., K. The other models are estimated in a
 similar way with minor modifications.

 There are three groups of parameters M = {/x i, ... , /i k } ,

 £ = {af,..., aj,}, and the elements of the transition matrix P.
 Let 0 = {M, E, P} and given data IT = [ri, ... , rT), we aug
 ment the parameter space to include the states S = {si, ..., sj}
 so that we sample from the full posterior p(Q, SI/7). As
 suming conditionally conjugate priors /i, ~ N(mi, «?), <r(~2 ~
 G(Vj/2, Wi/2), and each row of P following a Dirichlet distri
 bution, allows for a Gibbs sampling approach following Chib
 (1996). Gibbs sampling iterates on sampling from the following
 conditional densities given startup parameter values: S|M, E, P;
 MIX, P, S; X|M, P, S, and P|M, Z,S.

 Sequentially sampling from each of these conditional den
 sities results in one iteration of the Gibbs sampler. Dropping
 an initial set of draws to remove any dependence from startup

 values, the remaining draws M1", E' ,), P(,,}'^=l are col
 lected to estimate features of the posterior density. Simulation
 consistent estimates can be obtained as sample averages of the
 draws. For example, the posterior mean of the state dependent

 mean is estimated as ^ for k = 1, ..., K and are
 simulation-consistent estimates of E[p.k\h}

 The first sampling step of S|M, E, P involves a joint draw
 of all the states. Chib (1996) showed that this can be done by
 a so-called forward and backward smoother. The second and

 third sampling steps are straightforward and use results from
 the linear regression model. Given the conjugate Dirichlet prior
 on each row of P, the final step is to sample P|M, T, S from the
 Dirichlet distribution Geweke (2005).

 An important byproduct of Gibbs sampling is an estimate
 of the smoothed state probabilities p(st\Ir), which can be esti

 mated as p(s, = i\IT) = ^ J2j=i ls,=i(S0)) for i = 1 K.
 At each step, if a parameter draw violates any of the

 prior restrictions 1 in (2.5), (2.6), (2.8), and (2.9), then it
 is discarded. For the four-state model, we set the inde

 pendent priors as ~ N(—0J, 1), 112 ~ N{0.2, 1), /x3 ~
 W(—0.2, 1), fi4 ~ N(0.3, 1), or2 ~ G(0.5, 0.05), ( = 1,2,
 3,4, [p\\, Pn, P\A ~Dir(8, 1.5,0.5), {p2\, P22, P24) ~
 Dir(1.5, 8, 0.5), {/?3i, p33, p34} ~ Dir(0.5, 8, 1.5), [p*\, P43,
 Paa] ~ Dir(0.5, 1.5, 8). These priors are informative but cover
 a wide range of empirically relevant parameter values.

 3.2 Model Comparison

 If the marginal likelihood can be computed for a model, it is
 possible to compare models based on Bayes factors. Nonnested
 models can be compared as well as specifications with a differ
 ent number of states. Note that the Bayes factor compares the
 out-of-sample prediction record of models and penalizes over
 parameterized models that do not deliver improved predictions.
 This is referred to as an Ockham's razor effect. See Kass and

 Raftery (1995) for a discussion on the benefits of Bayes factors.
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 For the general MS model with K states, the marginal likelihood
 for model Mi is defined as

 p(r\Mi) = J p(r\Mi,Q)p(Q\Mi)dQ, (3.1)
 which integrates out parameter uncertainty; p(Q \Mi) is the prior
 and

 T

 p(r\Mi,d) = Ylf(r,\It-uQ) (3.2)
 r=l

 is the likelihood which has 5 integrated out according to

 K

 f(r,\It^,d) = ]P/(r,|/,-i, 0, s, = k)p(s, = £|0, /,-i)
 k=I

 (3.3)

 The term p(s, = k\Q. /,_]) is available from the Hamilton filter.
 Due to the prior restrictions, we use Chib and Jeliazkov (2001)
 to compute the marginal likelihood. For details on this, see this
 article and Chib (1995).

 A log-Bayes factor between model M,- and Mj is defined as

 log(BFij) = log(/?(r|.M,)) - log(p(r|.M,)). (3.4)

 Kass and Raftery (1995) suggested interpreting the evidence
 for Mi versus Mj as not worth more than a bare mention for
 0 < log (BFij) < 1, positive for 1 < log(BF,7) < 3, strong for
 3 < log (BFij) < 5, and very strong for log (BFij) > 5.

 3.3 Predictive Density

 An important feature of our probabilistic approach is that a
 predictive density of future returns can be computed by inte
 grating out all uncertainty regarding states and parameters. We
 first discuss the predictive density of the one-period-ahead re
 turn. Then we show how to compute the predictive density of
 multiperiod returns (cumulative log-returns). Model compari
 son based on the density of multiperiod returns is a new result
 and, as we show, very informative in differentiating models.

 The predictive density for future returns based on current
 information at time t is computed as

 P(r,+\\I,) = J f(rt+]\It, Q)p(Q\It)dQ, (3.5)
 which involved integrating out both state and parameter uncer
 tainty using the posterior distribution p(Q\I,). From the Gibbs

 sampling draws {S(y), M(y), £(y), P0)}^=1 based on data /,, we
 approximate the predictive density as

 . N K

 p(r,+i\I,) = — ^^/(r,+,|0(,),sI+l = k)
 1 = 1 k— 1

 x p(s,+i = k\s^l\ 0<o), (3.6)
 where f(r,+\ |0('\ s, — k) follows N(p,^\a^')) and p(s,+i =
 k\s','\ 0(,)) is the transition probability.

 The probability of a future state s/+i can also be easily es
 timated by simulating from the distribution p(st+] 0(,))
 a state for each state and parameter draw s,(0, 0O>. The
 proportion of draws for which s,+i = k is an estimate of
 P(st+] = k\I,).

 395

 The predictive density can also be computed for cumulative
 returns over long horizons. Define the ^-period return as r,j, =

 £;=1 r'+i ■ Then the predictive density for the multiperiod return
 is

 p(n,h\it)  /
 h-1

 f[f(rt+J\e,st+j)

 $t+h

 0)
 j=2

 p(sl+i\Ii, Q)p(9\I,)

 x dQds,+\ ... dst+hdft+\ • • • d^t+h—i •  (3.7)

 This integrates out all parameter uncertainty and future state
 uncertainty as well as all possible sample paths of returns
 [r,+1,..., r,+/,_,} such that rt h = r>+>- The predictive
 density can be approximated as

 P(r,,h\l,)=  n,h
 /=i

 h-1

 -E
 7 = 1

 .(<)
 t+j

 Given
 .0)

 0  (0 -CO

 l/u (I) l/l-l
 from

 s(0 st+h

 the posterior, we simulate out
 and s]l_l_h from the MS-4 and evaluate the sum

 above at the data Similar calculations are used for the other

 models we compare with.
 Evaluating the predictive density at the data r,j, gives the

 predictive likelihood. Models can be compared on their out-of
 sample performance for observations z\ to t2, < t2 based on
 the cumulative log predictive likelihood,

 ^log(/?(r,,/,!/,)).  (3.8)
 t-r i

 To compute this, the model must be reestimated at each point in
 the out-of-sample period. As with the marginal likelihood, better
 models will have a larger cumulative log predictive likelihood
 value. A model with a larger value is better able to account for
 the data.

 4. RESULTS

 4.1 Parameter Estimates and Implied Distributions

 Model estimates for the MS-2 model are given in Table 2.
 State 1 has a negative conditional mean along with a high con
 ditional variance, whereas state 2 displays a high conditional
 mean with a low conditional variance. Both regimes are very
 persistent. These results are consistent with the sorting of bull
 and bear regimes in Maheu and McCurdy (2000a) and Guidolin
 and Timmermann (2005).

 Estimates for our proposed four-state model (MS-4) are given
 in Table 3. All parameters are precisely estimated indicating that

 the data are quite informative. Recall that states s, = 1, 2 capture
 the bear regime, while states s, =3,4 capture the bull regime.
 Each regime contains a state with a positive and a negative
 conditional mean. We label states 1 and 2 as the bear and bear
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 Table 2. MS-2 model estimates

 Standard

 Mean Median deviation  0.95 DI

 Mi  -0.46  -0.46  0.14  (-0.73, -0.20)
 M2  0.20  0.20  0.02  (0.16, 0.25)
 o\  4.42  4.42  0.13  (4.18, 4.69)
 &2  1.64  1.64  0.02  ( 1.59, 1.69)
 Pu  0.94  0.94  0.01  (0.92, 0.96)
 P22  0.99  0.99  0.002  ( 0.98, 0.99)

 NOTE: This table reports the posterior mean, median, standard deviation, and 0.95 density
 intervals (DI) for model parameters.

 rally states, respectively; states 3 and 4 are the bull correction
 and bull states, respectively.

 Consistent with the MS-2 model, volatility is highest in the
 bear regime. In particular, the highest volatility occurs in the bear

 regime in state 1. This state also delivers the lowest average re
 turn. The highest average return and lowest volatility is in state 4,
 which is part of the bull regime. The bear rally state (s, — 2) de
 livers a conditional mean of 0.23 and conditional standard devia

 tion of 2.63. However, this mean is lower and the volatility higher

 than the bull positive growth state (s, = 4). Analogously, the bull
 correction state (s, = 3) has a larger conditional mean (—0.13 >
 —0.94) and smaller volatility (2.18 < 6.01) than the bear
 state 1.

 State 4 provides the most favorable risk-return trade-off fol
 lowed by states 2, 3, and 1. Note that the bull state 4 delivers
 a larger expected return with a standard deviation that is 50%
 smaller than the bear rally (state 2). Even though the bear rally
 delivers a positive expected return, that return is much more
 variable than in the bull state.

 Table 3. MS-4 model estimates

 Mean  Median

 Standard

 deviation  95% DI

 Mi  -0.94  -0.92  0.27  (-1.50, -0.45)
 P 2  0.23  0.23  0.10  (0.04, 0.43)
 ^3  -0.13  0.12  0.08  (-0.31, -0.01)
 M4  0.30  0.29  0.04  (0.22, 0.38)
 o\  6.01  5.98  0.35  (5.41,6.77)
 a2  2.63  2.61  0.18  (2.36, 3.08)
 °3  2.18  2.19  0.12  (1.94, 2.39)
 <t4  1.30  1.30  0.04  (1.20, 1.37)
 P11  0.921  0.923  0.020  (0.877, 0.955)
 P12  0.076  0.074  0.020  (0.042, 0.120)
 Pl4  0.003  0.001  0.004  (3e-6, 0.013)
 P21  0.015  0.014  0.007  (0.005, 0.031)
 P22  0.966  0.967  0.009  (0.945, 0.980)
 P24  0.019  0.018  0.006  (0.009, 0.034)
 P3\  0.010  0.009  0.003  (0.004, 0.017)
 P33  0.939  0.943  0.018  (0.899, 0.965)
 P34  0.051  0.048  0.017  (0.027, 0.088)
 P41  0.001  0.0003  0.0007  (6e-7, 0.002)
 Pn  0.039  0.037  0.012  (0.024, 0.067)
 P44  0.960  0.963  0.012  (0.933, 0.976)

 NOTE: This table reports the posterior mean, median, standard deviation, and 0.95 density
 intervals (DI) for model parameters.
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 Table 4. Unconditional state probabilities

 Mean  0.95 DI

 7i\ 0.070 (0.035,0.117)
 7t2 0.157 (0.073,0.270)
 n3 0.304 (0.216,0.397)
 7r4 0.469 (0.346,0.579)

 NOTE: This table reports the posterior mean and 0.95 density intervals (DI) associated with
 the posterior distribution for n from Equation (2.7).

 All states display high persistence (pa is high for all i). How
 ever, the transition probabilities display some asymmetries. For
 example, the probability of a bear rally moving back to the bear
 state 1 (P21 = 0.015) is a little lower than changing regime to
 a bull market (P24 = 0.019). On the other hand, the probability
 of a bull correction returning to a bull market (— 0.051)
 is considerably higher than changing regime to the bear state
 (/AM = 0.010).
 What do the dynamics of the MS-4 model imply for in

 vestors? First, the probability of a positive return in any state
 is high with P(r, > 0|sr) = 0.44, 0.53, 0.48, and 0.59, respec
 tively, for states s, = 1, 2, 3, 4. Second, investing in any state
 eventually results in future returns being positive. For instance,
 the H = argmin{£(r/+//|j',) > 0} is 37 (s, = 1), 1 (s, = 2), 15
 (,s, = 3), and 1 (s, = 4). Therefore, investors concerned with
 long investment horizons or obtaining a high probability of a
 positive return may find investing in states 1 and 3 desirable.
 Table 4 reports the unconditional probabilities for the states.

 On average the market spends 0.157 of time in a bear rally
 while 0.304 in a bull correction. The most time is spent in the
 bull growth state 4. The unconditional probability of the bull
 regime is 0.773.
 A comparison of the regime statistics implied by the parame

 ter estimates for the MS-2 and MS-4 models is given in Table 5.
 The expected duration of regimes is much longer in the four
 state model. That is, by allowing heterogeneity within a regime
 in our four-state model, we switch between bull and bear mar

 kets less frequently. For instance, in a MS-2 parameterization,
 the bull market has a duration of only 82.6 weeks, about 18
 months, while the richer MS-4 model has a bull duration of just
 less than 5 years. As we will see in the following, there is much
 more switching between regimes in the MS-2 model.
 In the two-state model, the expected return and variance are

 fixed within a regime. For the bear regime in the MS-2 model,
 the expected variance is £[var(r,|s, = 1)] = 19.6. In contrast,
 the average variance for each regime in the four-state model can
 be attributed to changes in the conditional mean as well as to
 the average conditional variance of the return innovations. For
 instance, the average variance of returns in the bear regime can
 be decomposed as v&r(r,\s, = 1,2) — var(£[r, |5,11s, = 1,2) +
 £[var(r,|s,)|.s, = 1,2] = 0.31 + 16.1, with a similar result for
 the bull regime. For the bull and bear phase, the mean dynamics
 account for a small share, 2% of the total variance.

 The MS-2 model assumes normality in both market regimes,
 while the MS-4 shows that the data are at odds with this assump
 tion. Skewness is present in bear markets, while excess kurtosis
 is found in both bull and bear regimes. Overall the bear market
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 Table 5. Posterior regime statistics for MS-2 and MS-4 models

 MS-2  MS-4

 Bear mean  -0.46  -0.13

 (-0.73, -0.20)  (-0.367, -0.005)
 Bear duration  18.2  77.8

 (13.2, 25.0)  (44.4, 134.6)
 Bear standard deviation  4.42  4.04

 (4.18, 4.69)  (3.51,4.73)
 Bear variance from  0.00  0.31

 var(£[r,|i',]|s, = 1,2)  (0.07, 0.68)
 Bear variance from  19.6  16.1

 £[var(r,|s,)|j, = 1,2]  (17.5, 22.0)  (12.1,22.0)
 Bear skewness  0  -0.42

 (-0.68, -0.20)
 Bear kurtosis  3  5.12

 (4.37, 5.93)

 Bull mean  0.20  0.13

 (0.16, 0.25)  (0.07, 0.18)
 Bull duration  82.6  256.0

 (59.1, 115.9)  (123.5, 509.6)
 Bull standard deviation  1.64  1.71

 (1.59, 1.69)  (1.59, 1.83)
 Bull variance from  0.00  0.04

 var(E[r,|j,]|s, = 3,4)  (0.02, 0.09)
 Bull variance from  2.69  2.89

 £[var(r,|j,)|i, = 3, 4]  (2.54, 2.85)  (2.47, 3.30)
 Bull skewness  0  0.04

 (-0.11,0.16)
 Bull kurtosis  3  3.77

 (3.51,4.03)

 NOTE: This table reports the posterior mean and 0.95 density interval for regime statistics.

 deviates more from a normal distribution; it has thicker tails and

 captures more extreme events.
 Table 6 summarizes features of the MS-4 parameterization

 for both the regimes and their component states derived from
 the posterior parameter estimates. The bear regime duration is

 397

 77.8 weeks, much shorter than the bull regime duration of 256.0
 weeks. The average cumulative return in the bear (bull) regime is
 —9.94 (33.0). The volatility in the bear market is more than twice
 that in the bull market. The third panel provides a breakdown
 of cumulative return means in each of the component states of
 the market regimes. The bear rally yields a cumulative return
 of 7.10 on average that partially offsets the average decline of
 — 12.4 in state 1. On the other hand, the bull correction has a

 cumulative return mean of —2.13 that diminishes the average
 cumulative return of 7.88 in state 4. Note that these states are

 combined into bull and bear market regimes in heterogeneous
 patterns over time yielding the statistics for regimes summarized
 in the first two panels of Table 6.

 Although the stock market spends most of the time in the
 bull regime (states 3 and 4), in terms of individual states, it is
 state 2 that has the longest duration but this state is visited less
 often so its unconditional probability is low relative to the others
 (jt2 = 0.157 from Table 4).

 4.2 Model Comparisons

 We conduct formal model comparisons based on the marginal
 likelihoods reported in Table 7. The constant mean and variance
 model performs the worst (has the lowest marginal likelihood).
 The next model is the MS-2 followed by the restricted MS-4,
 ctj2 = ct22, a\ = ct42 (model 1 in Section 2.3). Next is the de
 coupled model with four states in the conditional mean and an
 independent four states in the conditional variance (model 2 in
 Section 2.3). Following this is a GARCH(1,1) model (model 3
 in Section 2.3) and the MS-4 with — pn =0 (model 4 in
 Section 2.3). Following this is an unrestricted four-state model
 labeled as MS-4 unrestricted (model 5 in Section 2.3). The last
 specification is our preferred MS-4 model and the final column
 of the table presents log-Bayes factor for this model against the
 alternatives.

 The log-Bayes factor between the MS-2 and the MS-4 in the
 conditional mean restricted to have only a two-state conditional

 Table 6. Posterior state statistics for the MS-4 model

 Mean  Median  Standard deviation  95% DI

 Bear mean  -0.13  -0.11  0.10  (-0.367, -0.005)
 Bear duration  77.8  74.0  23.1  (44.4, 134.6)
 Bear cumulative return  -9.94  -8.28  7.89  (-29.6, -0.41)
 Bear standard deviation  4.04  4.01  0.31  (3.51,4.73)

 Bull mean  0.13  0.13  0.03  (0.07, 0.18)
 Bull duration  256.0  235.6  100.9  (123.5,509.6)
 Bull cumulative return  33.0  30.0  14.9  (12.9, 70.3)
 Bull standard deviation  1.71  1.71  0.06  (1.59, 1.83)

 5 — 1: cumulative return  -12.4  -11.8  4.49  (-23.0, -5.45)
 5 = 2: cumulative return  7.10  6.97  3.10  (1.47, 13.8)
 5 = 3: cumulative return  -2.13  -2.07  1.09  (-4.46, -0.27)
 5 = 4: cumulative return  7.88  7.75  1.67  (5.02, 11.6)

 5 = 1: duration  13.5  13.0  3.63  (8.13, 22.2)
 5 = 2: duration  31.2  30.1  8.39  (18.3,51.0)
 5 = 3: duration  17.9  17.4  4.80  (9.91,28.8)
 5 = 4: duration  27.2  26.9  6.75  (14.9,41.4)

 NOTE: This table reports posterior statistics for various population moments.
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 Table 7. Log marginal likelihoods: alternative models

 Model  log f(Y | Model)  log-Bayes factor"

 Constant mean with constant variance  -14924.1  1183.7

 MS-2  -13903.3  162.9

 MS-4 with restricted variances (<r02 = cr,2, and = of)  -13849.9  109.5

 MS-4, 4-state mean and decoupled 4-state variance  -13754.4  14.0

 GARCH(U)  -13809.1  68.7

 MS-4 with /?24 = ps\ — 0  -13766.9  26.5

 MS-4 unrestricted  -13747.2  6.8

 MS-4  -13740.4

 alog-Bayes factor for MS-4 versus each model.

 variance is large at 53.4 = —13849.9 — (—13903.3). This im
 proved fit comes when additional conditional mean dynamics
 (going from states 2 to 4) are added to the basic MS-2 model.
 The best model is the MS-4 model. The log-Bayes factor in
 support of the four-state versus the two-state model is 162.9 =
 — 13740.4 — (—13903.3). The zero restrictions in the transition
 matrix (2.6) are also strongly supported by the data. For instance,
 the log-Bayes factor is 6.8 = —13740.4 — (—13747.2) in sup
 port of our MS-4 model compared with an unrestricted four-state
 model. The evidence is also against additional restrictions on P

 such as piA = P3\ =0 relative to our MS-4 parameterization
 with P matrix (2.6). The data favor the more flexible transitions
 of our MS-4 between bull and bear regimes.

 Our preferred four-state model also dominates the more flex
 ible model with four states for conditional mean and four in

 dependent states for the conditional variance (decoupled four
 state model). Similarly our MS-4 model improves upon the
 GARCH(U) model.

 Overall, there is very strong evidence that the four-state spec
 ification of Section 2.2 provides the best fit to weekly returns.

 —I 1 1 1 1 1 1 1—

 188502 190212 192102 193811 195609 197406 199204 201001

 Figure 1. LT algorithm, MS-4, and MS-2. The online version of this figure is in color.
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 Figure 2. MS-4, 1927-1939. The online version of this figure is in color.

 The comparisons also show that this improved fit comes from
 improved fit to both the conditional mean and variance. Not
 only does our MS-4 model provide a better economic character
 ization of differences in stock market cycles but also the model
 statistically dominates other alternatives.
 In the online appendix, the Lunde and Timmermann (2004)

 (LT) dating algorithm is used as a lens to view both the S&P
 500 data and data simulated from our preferred MS-4 model.
 Although our model provides a richer four-state description of
 bull and bear markets, it does account for all of the data statistics

 associated with a simpler two-state view of the market using the
 LT dating algorithm.

 4.3 Identification of Historical Turning Points in
 the Market

 The dating of the market regimes using the LT dating algo
 rithm are found in the top panel of Figure 1. Below this panel
 is the smoothed probability of a bull market, p(s, — 31IT) +
 p(s, = 4| It) for the MS-4 model. The final plot in Figure 1 is
 the smoothed probability of a bull market, p(s, = 2\It) from
 the two-state model. The four-state model produces less erratic
 shifts between market regimes, closely matches the trends in
 prices, and generally corresponds to the dating algorithm. The

 two-state model is less able to extract the low-frequency trends
 in the market. In high frequency data, it is important to allow
 intraregime dynamics, such as short-term reversals.

 Note that the success of our model should not be based on

 how well it matches the results from dating algorithms. Rather
 this comparison is done to show that the latent-state MS models
 can identify bull and bear markets with similar features to those
 identified by conventional dating algorithms. Beyond that, the
 MS models presented in this article provide a superior approach
 to modeling stock market trends as they deliver a full speci
 fication of the distribution of returns along with latent market
 dynamics. Such an approach permits out-of-sample forecasting,
 which we turn to in Section 4.4.

 Illustrating the 1927-1939 subperiod, Figure 2 displays the
 log-price and the realized volatility (square root of RV) in the
 top panel, the smoothed states of the MS-4 model in the sec
 ond panel, and the posterior probability of the bull market,
 p(s, = 3\It) + p(s, = 4\It), in the last panel.

 Just before the crash of 1929, the model identifies a bull
 correction state. The transition from a bull to bear market occurs

 as a move from a bull market state to a bull correction state and

 then into the bear regime. For the week ending October 16,
 1929, there was a return of —3.348 and the market transitioned
 from the bull correction state into the bear market state with
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 Figure 3. MS-4, 1985-1990. The online version of this figure is in color.

 p(st = 11Ij) = 0.63. This is further reinforced so that the next
 5 weeks have essentially probability 1 for state 1.
 As this figure shows, the remainder of this subperiod is deci

 sively a bear market, but displays considerable heterogeneity in
 that there are several short-lived bear rallies. The high levels of
 realized volatility coincide with the high volatility in the bear
 market states. Periods of somewhat lower volatility are asso
 ciated with the bear rally states. A strong bear rally begins in
 late November 1933 and lasts until August 25, 1937, at which
 time there is a move back into the bear market state. Realized

 volatility increases with this move into state 1.
 For the 1985-1990 subperiod, prior to the 1987 crash, there is

 a dramatic run-up in stock prices with generally low volatility,
 as illustrated in the top panel of Figure 3. It is interesting to
 note that the model shows a great deal of uncertainty about the
 state of the market well before the crash. In the first week of

 October, just before the crash, the most likely state is the bull
 correction with p(st = 31 Ij) = 0.37. The bear state that starts
 the following week lasts for about 5 weeks after which a strong
 bear rally quickly emerges as of the week ending November
 18, 1987. It is the bear rally state that exits into a bull market
 during the week of August 17, 1988. Prices resume their strong
 increase until they plateau with a bull correction beginning the
 week of October 4, 1989.

 Finally, we use our model to investigate recent market activity
 in Figure 4. The bull market state turned into a bull correction
 in mid-July 2007, which persisted until an abrupt move into
 the bear market state in early September 2008. This transition
 was accompanied by a dramatic increase in realized volatility.
 According to our model, the bear market became a bear market
 rally in the third week of March 2009 where it stayed until mid
 November 2009 when it moved into the bull market state. As

 noted earlier, the positive trend in returns during a bear market
 rally does not get interpreted as a bull market until the market
 volatility declines to levels more typical of bull markets. See the
 online appendix for the 1980-1985 period.

 There are several important points revealed by this discussion.
 First, bear (bull) markets are persistent but are made of many
 regular transitions between states 1 and 2 (3 and 4). Second, in
 each of the examples, the move between regimes occurs through
 either the bear rally or the bull correction state. In other words,
 these additional dynamics are critical to fully capturing turning
 points in stock market cycles. This is also borne out by our model
 estimates. The most likely route for a bear market to go to a bull
 market is through the bear rally state. Given that a bull market has

 just started, the probability is 0.9342 that the previous state was
 a bear rally (i.e., p(s, = 2|sr+i = 4, s, = 1 or 2) oc ) and
 only 0.0658 that it was a bear state . Similarly, given that a bear
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 Figure 4. MS-4, 2006-2010. The online version of this figure is in color.

 market has just started, the probability is 0.8663 that the previous
 state was a bull correction, and only 0.1337 that it was a bull
 state. The following subperiod descriptions provide examples of
 this richer specification of turning points plus frequent reversals
 within a regime.

 4.4 Density Forecasts

 The different phases of the market according to the MS
 4 model should have important implications for the forecast
 density of returns. In this section, we discuss two illustrations.

 An industry standard measure of potential portfolio loss is
 the VaR that measures the tail area of the return distribution.

 VaR(a) , is defined as the 100a percent quantile of the portfolio
 value or return distribution given information at time t — 1. We

 compute VaR(„),r from the predictive density of the MS-4 model
 as p(r, < VaR(0)f/|/,_i) = a. Given a correctly specified model,
 the probability of a return of VaR(a),r or less is a.

 To compute the VaR from the MS-4 model, we do the fol
 lowing. First, N draws from the predictive density are taken as
 follows: draw 0 and s;_i from the Gibbs sampler, a future state

 s, is simulated based on P and r, |s, ~ N(/is,, er|). The details

 are discussed in Section 3.3. From the resulting draws, the r,
 with rank [Na] is an estimate of VaR(a),f.

 The first panel of Figure 5 displays the conditional VaR from
 January 3, 2007, to January 20, 2010, predicted by the MS-4
 model, as well as that implied by the normal benchmark for a =
 0.05. At each point, the model is estimated based on information
 up to t — 1. Similarly, the benchmark, N(0, a2), sets a2 to the
 sample variance using /,_ i.

 The normal benchmark overestimates the VaR for the early
 part of this subsample but starts to understate it at times, be
 ginning in mid-2007, and then severely under estimates in the
 last few months of 2008. The MS-4 model provides a very
 different VaR(o.o5),r over time because it takes into account
 the predicted regime, as indicated by the middle and bottom
 panels of Figure 5, which show forecasts of the states and
 regimes, respectively. Note that the potential losses, shown
 in the top panel, increase considerably in September and
 October 2008 as the model identifies a move from a bull to

 a bear market.

 The density for cumulative returns over long horizons will be
 sensitive to the different states in the MS-4 model and if they are

 empirically important should result in better density forecasts.
 To investigate this, we compute the predictive likelihood

This content downloaded from 
�������������142.1.13.162 on Wed, 20 Jul 2022 14:46:30 UTC�������������� 

All use subject to https://about.jstor.org/terms



 402 Journal of Business & Economic Statistics, July 2012

 MS—4
 Normal

 s=1
 s=2

 8=3

 s=4

 lAd

 1 1

 200706 200711

 Figure 5. Value-at-risk from MS-4 and benchmark normal distribution. The online version of this figure is in color.

 according to Section 3.3 for a range of investment horizons
 for the time period November 12, 1913, to January 20, 2010.
 Along with our MS-4 model, several other specifications are
 included in Table 8. We can compare the models based on their
 relative log-probabilities for long-horizon returns just as we
 would normally compare models using the log-Bayes factor in
 Section 3.2.

 The GARCH(1,1) model provides the most accurate density
 forecasts for 1-month-ahead returns, while our MS-4 model

 dominates for all other horizons. For example, the difference in
 the log-predictive likelihoods for our MS-4 specification versus
 GARCH( 1,1) is very large at 3 months (60), 6 months (117), and
 12 months (210). Our MS-4 parameterization also dominates the

 unrestricted four-state model at all horizons beyond 1 month.
 These long-horizon density forecasts provide very strong sup
 port for the four phases of the stock market that our MS-4 model

 captures. In summary, our model accurately identifies the phases
 of bull and bear markets that lead to competitive long-horizon
 out-of-sample density forecasts.

 This out-of-sample application also gives us an opportunity
 to assess in real time when our model identified a move into

 the bear regime. We now consider the identification process that
 would have been historically available to investors using the
 model forecasts. This will differ from the previous results as we
 are using a smaller sample and updating estimates as new data
 arrives.

 Table 8. Long-horizon return density forecasts

 1 month  3 months  6 months  12 months

 h = weeks  4  13  26  52

 MS-4  -14428.8  -17610.5  -19535.0  -21652.7

 MS-2  -14575.7  -17796.9  -19725.7  -22454.5

 GARCH(1,1)  -14341.6  -17670.6  -19652.2  -21862.7

 MS-4, 4-state mean and decoupled 4-state variance -14408.7  -17626.4  -19582.6  -21827.5

 MS-4 with p24 = P31 = 0  -14457.1  -17624.2  -19569.6  -21608.7

 MS-4 unrestricted  -14421.5  -17625.1  -19561.0  -21720.7

 NOTE: This table reports the log-predictive density of /j-period returns: Y^=tx » Model) where r,^ = X^?=i rt+i• Out-of-sample data: November 12, 1913, to January 20,
 2010. This gives 4997 (1 month), 4988 (3 months), 4975 (6 months), and 4949 (12 months) observations. Bolded numbers indicate the largest column entries.
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 The second and third panel of Figure 5 report the predictive
 mean of the states and regimes, respectively. Prior to 2008,
 forecasts of the bull states occur the most, including some short
 episodes of bull corrections. In the first week of October 2008,
 the probability of a bull regime drops from 0.85 to essentially
 zero and remains there for some time. In other words, the model

 in real time detects a turning point in the first week of October
 2008 from the bull to the bear regime. The first half of the bear
 regime that follows is characterized by the bear state, while the
 second half is largely classified as a bear rally.

 Toward the end of our sample, there is a move from the
 bear market rally state to a bull market. In real time, in early
 December 2009, the model forecasts a move from the bear
 rally to the bull market state. For the week ending December 9,
 we have p(s, = 11/,_i) = 0.02, p(s, = 2|/,_i) = 0.17, p(s, —
 31/,_i) = 0.14, and p(s, = 4|/,_i) = 0.67. The evidence for a
 bull market regime gradually strengthens; the last observation
 in our sample, January 20, 2010, has probabilities 0.01, 0.11,
 0.07, and 0.81 for states 1, 2, 3, and 4, respectively, with the
 bull market state being the most likely.

 5. CONCLUSION

 This article proposes a new MS-4 model to identify the com
 ponents of bull and bear market regimes in weekly stock market
 data. Bull correction and bull states govern the bull regime; bear
 rally and bear states govern the bear regime. Our probability
 model fully describes the return distribution while treating bull
 and bear regimes and their component states as unobservable.

 A bear rally is allowed to move back to the bear state or to
 exit the bear regime by moving to a bull state. Likewise, a bull
 correction can move back to the bull state or exit the bull regime

 by transitioning to a bear state. This implies that regimes can
 feature several episodes of their component states. For example,
 a bull regime can be characterized by a combination of bull
 states and bull corrections. Similarly, a bear regime can consist
 of several episodes of the bear state and the bear rally state.
 Because the realization of states in a regime will differ over
 time, bull and bear regimes can be heterogeneous over time.
 This richer structure, including both intraregime and interregime
 dynamics, results in a richer characterization of market cycles.

 Probability statements on regimes and future returns are avail
 able. Our model strongly dominates other alternatives. Model
 comparisons show that the four-state specification of bull and
 bear markets is strongly favored over several alternatives includ
 ing a two-state model and an unrestricted four-state model, as
 well as various alternative specifications for variance dynamics.
 For example, relative to a two-state model, there is less erratic
 switching so that market regimes are more persistent.

 We find that bull corrections and bear rallies are empirically
 important for out-of-sample forecasts of turning points and VaR
 predictions. Our model provides superior density forecasts of
 long-horizon returns.

 ACKNOWLEDGMENTS

 The authors are grateful for comments from the editor, as
 sociate editor, and two anonymous referees, Christos Ntanta
 mis, Richard Paap, Hao Zhou, and participants at the Bayesian

 403

 Econometrics in Macroeconomics and Finance conference at

 Erasmus University, the Bayesian Econometrics workshop at
 Rimini Centre for Economic Analysis (RCEA), the Canadian
 Econometrics Study Group, the Third Risk Management Con
 ference, Mont Tremblant, and seminar participants from the
 University of Colorado, Brock University, and McMaster Uni
 versity. We thank the Social Sciences and Humanities Research
 Council of Canada for financial support.

 [Received March 2010. Revised February 2012.]

 REFERENCES

 Ang, A., and Bekaert, G. (2002), "International Asset Allocation With Regime
 Shifts," Review of Financial Studies, 15, 1137-1187. [391]

 Bry, G., and Boschan, C. (1971), Cyclical Analysis of Time Series: Selected
 Procedures and Computer Programs, New York: NBER. [391]

 Chauvet, M„ and Potter, S. (2000), "Coincident and Leading Indicators of the
 Stock Market," Journal of Empirical Finance, 7, 87-111. [391 ]

 Chib, S. (1995), "Marginal Likelihood From the Gibbs Output," Journal of the
 American Statistical Association, 90 (432), 1313-1321. [395]

 (1996), "Calculating Posterior Distributions and Modal Estimates in
 Markov Mixture Models," Journal of Econometrics, 75, 79-97. [394]

 Chib, S., and Jeliazkov, I. (2001), "Marginal Likelihood From the Metropolis
 Hastings Output," Journal of the American Statistical Association, 96 (453),
 270-281. [395]

 Geweke, J. (2005), Contemporary Bayesian Econometrics and Statistics,
 Hoboken, NJ: Wiley. [394]

 Gonzalez, L., Powell, J. G., Shi, J., and Wilson, A. (2005), "Two Centuries
 of Bull and Bear Market Cycles," International Review of Economics and
 Finance, 14,469^486. [391]

 Guidolin, M., and Timmermann, A. (2005), "Economic Implications of Bull
 and Bear Regimes in UK Stock and Bond Returns," The Economic Journal,
 115, 111-143. [391,395]

 (2006), "An Econometric Model of Nonlinear Dynamics in the Joint
 Distribution of Stock and Bond Returns," Journal of Applied Econometrics,
 21 (1), 1-22. [391]

 -—-—- (2007), "Asset Allocation Under Multivariate Regime Switch
 ing," Journal of Economic Dynamics and Control, 31 (11), 3503
 3504. [391]

 Hamilton, J. D. (1994), Time Series Analysis, Princeton, NJ: Princeton Univer
 sity Press. [393]

 Hamilton, J. D., and Lin, G. (1996), "Stock Market Volatility and the Business
 Cycle," Journal of Applied Econometrics, 11, 573-593. [391]

 Kass, R. E., and Raftery, A. E. (1995), "Bayes Factors," Journal of the American
 Statistical Association, 90 (420), 773-795. [394,395]

 Kim, C. J., Nelson, C. R., and Startz, R. (1998), "Testing for Mean Reversion in
 Heteroskedastic Data Based on Gibbs-Sampling-Augmented Randomiza
 tion," Journal of Empirical Finance, 5 (2), 131-154. [391]

 Lunde, A., and Timmermann, A. G. (2004), "Duration Dependence in Stock
 Prices: An Analysis of Bull and Bear Markets," Journal of Business &
 Economic Statistics, 22 (3), 253-273. [391,399]

 Maheu, J. M., and McCurdy, T. H. (2000a), "Identifying Bull and Bear Markets
 in Stock Returns," Journal of Business & Economic Statistics, 18(1), 100
 112. [391,395]

 (2000b), "Volatility Dynamics Under Duration-Dependent Mixing,"
 Journal of Empirical Finance, 7 (3^4), 345-372. [391]

 Ntantamis, C. (2009), A Duration Hidden Markov Modelfor the Identification of
 Regimes in Stock Market Returns, CREATES Researach Papere, University
 of Aarhus. Available at SSRN: http://ssrn.com/abstract=1343726. [391]

 Pagan, A. R., and Sossounov, K. A. (2003), "A Simple Framework for Analysing
 Bull and Bear Markets," Journal of Applied Econometrics, 18 (1), 23
 46. [391]

 Perez-Quiros, G., and Timmermann, A. (2001), "Business Cycle Asym
 metries in Stock Returns: Evidence From Higher Order Moments
 and Conditional Densities," Journal of Econometrics, 103 (1-2), 259
 306. [391]

 Schwert, G. W. (1990), "Indexes of U.S. Stock Prices From 1802 to 1987,"
 Journal of Business, 63 (3), 399^126. [392]

 Turner, C., Startz, R., and Nelson, C. (1989), "A Markov Model of Heteroskedas
 ticity, Risk, and Learning in the Stock Market," Journal of Financial Eco
 nomics, 25, 3-22. [391]

 van Norden, S., and Schaller, H. (1997), "Regime Switching in Stock Market
 Returns," Applied Financial Economics, 7, 177-191. [391]

This content downloaded from 
�������������142.1.13.162 on Wed, 20 Jul 2022 14:46:30 UTC�������������� 

All use subject to https://about.jstor.org/terms


	Contents
	p. 391
	p. 392
	p. 393
	p. 394
	p. 395
	p. 396
	p. 397
	p. 398
	p. 399
	p. 400
	p. 401
	p. 402
	p. 403

	Issue Table of Contents
	Journal of Business &Economic Statistics, Vol. 30, No. 3 (July 2012) pp. 337-480
	Front Matter
	Semiparametric Estimation of Additive Quantile Regression Models by Two-Fold Penalty [pp. 337-350]
	Why Frequency Matters for Unit Root Testing in Financial Time Series [pp. 351-357]
	Time Varying Dimension Models [pp. 358-367]
	Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling [pp. 368-380]
	Tests of Short Memory With Thick-Tailed Errors [pp. 381-390]
	Components of Bull and Bear Markets: Bull Corrections and Bear Rallies [pp. 391-403]
	The Trace Restriction: An Alternative Identification Strategy for the Bayesian Multinomial Probit Model [pp. 404-410]
	Modeling Employment Dynamics With State Dependence and Unobserved Heterogeneity [pp. 411-431]
	Out-of-Sample Forecast Tests Robust to the Choice of Window Size [pp. 432-453]
	Correcting Estimation Bias in Dynamic Term Structure Models [pp. 454-467]
	þÿ�þ�ÿ���J���o���b��� ���D���u���r���a���t���i���o���n���s��� ���W���i���t���h��� ���W���o���r���k���e���r���-��� ���a���n���d��� ���F���i���r���m���-���S���p���e���c���i���f���i���c��� ���E���f���f���e���c���t���s���:��� ���M���C���M���C��� ���E���s���t���i���m���a���t���i���o���n��� ���W���i���t���h��� ���L���o���n���g���i���t���u���d���i���n���a���l��� ���E���m���p���l���o���y���e���r�������E���m���p���l���o���y���e���e��� ���D���a���t���a��� ���[���p���p���.��� ���4���6���8���-���4���8���0���]
	Back Matter



