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Abstract
We propose a new discrete-time model of returns in which jumps capture per-
sistence in the conditional variance and higher-order moments. Jump arrival
is governed by a heterogeneous Poisson process. The intensity is directed by
a latent stochastic autoregressive process, while the jump-size distribution al-
lows for conditional heteroskedasticity. Model evaluation focuses on the dy-
namics of the conditional distribution of returns using density and variance
forecasts. Predictive likelihoods provide a period-by-period comparison of the
performance of our heterogeneous jump model relative to conventional SV and
GARCH models. Furthermore, in contrast to previous studies on the importance
of jumps, we utilize realized volatility to assess out-of-sample variance fore-
casts.

Keywords: Jump clustering, jump dynamics, MCMC, predictive likelihood, re-
alized volatility, Bayesian model averaging

JEL classifications: C22,C11, Gl

1. Introduction

Measuring and forecasting the distribution of returns is important for many
problems in finance. Pricing of financial securities, risk management decisions,
and portfolio allocations all depend on the distributional features of returns.
The most predictable component of the conditional distribution is the struc-
ture in the variance. As aresult, a vast literature has sprung from the ARCH
model of Engle (1982) and the stochastic volatility (SV) approach of Taylor
(1986).

Current research has documented the importance of jump dynamics in combi-
nation with autoregressive volatility for modeling returns. Examples of this work
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include Andersen et al. (2002), Bates (2000), Chernov et al. (2003), Chib et al.
(2002), Eraker et al. (2003), Jorion (1988), and Maheu and McCurdy (2004),
among others. Jumps provide a useful addition to SV models by explaining oc-
casional, large abrupt moves in financial markets, but they are generally not used
to capture volatility clustering. As a result, jumps account for neglected struc-
ture, usually tail dynamics, that autoregressive SV cannot capture. Additional
SV factors is another possible solution. For example, Chernov et al. (2003) find
that a multifactor loglinear SV specification is equivalent to an affine class of
SV with jumps for equity data.

All financial data are measured in discrete time which suggests that jumps
provide a natural framework to model price moves. Nevertheless, surprisingly
few applications exclude an autoregressive SV component in order to focus on
the potential performance of the jump specification to capture return dynam-
ics. Recent research, including Das (2002), Lin et al. (1999), Johannes et al.
(1999), and Oomen (2006), suggests that jumps alone could provide a good
specification for financial returns. As in Maheu and McCurdy (2004), those ap-
plications all feature some form of dependence in the arrival rate of jumps. For
example, Johannes et al. (1999) allow jump arrival to depend on past jumps
and the apsolute value of returns. Indeed, the success of a Jump model will
depend on whether the specification can explain dynamics of the conditional
distribution, in particular, volatility clustering. However, the performance of
existing models in this regard is unclear. For example, can models with only
jump dynamics produce good volatility forecasts? Are they competitive with
standard volatility models? The purpose of this chapter is to investigate these
questions.

This chapter proposes a new discrete-time model of returns in which jumps
capture persistence in the conditional variance as well as time-variation in
higher-order moments. The jump intensity is directed by a latent stochastic au-
toregressive process. Therefore, jump arrivals can cluster. We also allow the
jump-size distribution to be conditionally heteroskedastic. Larger jumps occur
during volatile periods and smaller ones during quiet periods. In contrast to
GARCH and SV models, our heterogeneous Jump model allows periods of ho-
moskedasticity and periods of heteroskedasticity.

We estimate the model using Markov chain Monte Carlo (MCMC) meth-
ods, and follow Johannes et al. (1999) in treating unobserved state variables
such as jump times and jump sizes as parameters. Our MCMC estimation ap-
proach generates estimates of these quantities which incorporate parameter un-
certainty,

Model evaluation focuses on the dynamics of the conditional distribution of
returns. Using Bayesian simulation methods, we estimate predictive likelihoods
for models as suggested by Geweke (1994). This is the relevant measure of out-
of-sample predictive content of a model (Geweke and Whiteman, 2006). This
allows for period-by-period comparisons of the Jump model with the benchmark
SV model and is particularly useful in identifying influential observations. From
these calculations, we are able to report the cumulative model probability as
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a function of time, which provides insight into the performance of each model
through time.

In addition to conditional density evaluation, we compare forecasts of volatil-
ity associated with each model, as well as the combined model average forecast.
Andersen and Bollerslev (1998) and Andersen et al. (2001) show that the sum-
of-squared intraday returns is an efficient and consistent estimate of ex post daily
volatility. As in Andersen et al. (2001) and Maheu and McCurdy (2002), we
compute this realized volatility estimate based on 5-minute bilateral exchange
rate data from the Yen—US Dollar (JPY-USD) foreign exchange market. The
out-of-sample forecasts of volatility from our alternative models are assessed
using these realized volatility measures.

Our empirical results show that the process governing jump arrival is highly
persistent. The conditional jump probability (intensity) varies widely over time,
taking on values of less than 0.05 to values in excess of 0.90. This implies that
Jjumps will tend to cluster which can also be seen from the estimated jump times.
The jump-size variance is a positive function of the market’s volatility as mea-
sured by last period’s absolute value of daily returns. Therefore realized jumps -
will tend to be larger in a volatile market.

Based on the predictive Bayes factor, our jump specification is favored over
both SV and GARCH alternatives. Although the evidence in favor of the Jump
model varies considerably over the sample, it gradually strengthens from the
perspective of the cumulative model probability. However, the SV model is
competitive. Therefore, when we proceed to evaluating out-of-sample variance
forecasts relative to realized volatility, we also include a model average variance
forecast.

The main difference in the variance forecasts from the alternative models
is that during low volatility periods the Jump model produces a constant vari-
ance forecast due to a low probability of jumps. On the other hand, the SV and
GARCH model forecasts tend to be too volatile during these calm periods. In
other words, periods of low volatility may be better represented by the constant
variance generated by the Jump model. Another important feature of our model
is that we can immediately move from high volatility to low volatility levels
avoiding the slow decay built into SV and GARCH models. In summary, our
proposed heterogeneous Jump model can account for volatility persistence and
is very competitive with existing models of volatility.

The chapter is organized as follows. The next section presents a hetero-
geneous Jump model for foreign exchange returns, while Section 3 briefly
discusses benchmark SV and GARCH specifications used for comparison pur-
poses. Section 4 considers Bayesian estimation of the Jump model. Estimation
of the predictive likelihood for model comparison is reviewed in Section 5, while
model forecasts are explained in Section 6. Data sources are found in Section 7,
results in Section 8, and conclusions in Section 9. Appendix A contains detailed
calculations for the estimation algorithms.
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2. Basic jump model

We begin with a brief review of the Press (1967) Jump model. Consider the
following jump diffusion:

d;gt)) — adt + o dW () + exp(§) dq(1), @.1)

where P(t) is the security price, d W () is a standard Wiener process increment,
exp(£) is the percent change in the share price from a jump, and dq (¢) is a Pois-
son counter (dg(¢) = 1 for a jump and otherwise 0) with intensity parameter A.
From the solution to this differential equation the daily return evolves according
to

-{Q)
rn=pdt+0z + Z &k, 2.2)
k:q([—l)

where r; = log(P(t)/P(t — 1)), and yp = o — 02/2. Although this model can
produce constant conditional and unconditional skewness and kurtosis, it can-
not capture volatility clustering. There is a large literature which augments this
basic-model with dynamics for o2. The purpose of this chapter is to investi-
gate additional dynamics in the jump intensity and the jump-size distribution.
Equation (2.2) motivates our starting point for exploring the importance of jump
dynamics, which we describe next.

2.1. Heterogeneous jump parameterization

This subsection proposes a new discrete-time model which can capture the au-
toregressive pattern in the conditional variance of returns by allowing jumps
to arrive according to a heterogeneous Poisson process. Our parameterization
includes a latent autoregressive structure for the jump intensity, as well as a
conditionally heteroskedastic variance for the jump-size distribution. The mean
of the jump-size distribution can be significantly different from zero, allowing
the specification to capture a skewed distribution of returns.
The parameterization of the heterogeneous Jump model is as follows:

rn=p+oz+J& 7z~ N@OID, 2.3)

&~ N(ug,of,),  Je{0,1}, (2.4)

P(Jy=lw)=2x and P(J; =0lw)=1—A, (2.5)

= _M’ (26)
1 4+ exp(wy)

wr =Y+ V1w +u, u~NQO D, Inl <1, (2.7

of =10+ mX.1, (2.8)
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where r; denotes daily returns; r = 1, ..., T; u is the mean of the returns con-
ditional on no jump; and & is the jump size which follows a conditional normal
distribution.

Jy is an indicator that identifies when jumps occur. In particular, the set {V.J; |
J; = 1] denotes jump times. A; is the time-varying jump intensity or arrival
process which is directed by the latent autoregressive process w;. In this chapter,
we allow for one jump per period, that is, J; = 0, 1. The logistic function ensures
that w; is mapped into a (0, 1) interval for A;. Conditional on wy, the probability
of a jump follows a Bernoulli distribution. This specification could be extended
to allow for more than one jump per period by using an ordered probit model for
P (J;|7,). Besides capturing occasional large moves in returns, this specification
can account for volatility clustering through persistence in w, and dependence in
higher-order moments of the distribution. This model is a time-varying mixture
of normals and therefore possess time-variation in all higher-order moments.
One interpretation of w; is that it represents unobserved news flows into the
market that cause trading activity.

The variance of the jump-size distribution, crg_ 1+ 1s allowed to be a function of
weakly exogenous regressors X;—_;. In this chapter, we consider X;.| = re—il.
This specification permits the jump-size variance to be sensitive to recent market
volatility levels. For example, if 7, > 0, jumps will tend to be larger (smaller)
in volatile (quiet) markets. A

Imposing the restrictions A, = X, V¢, and 5; = 0 obtains a simple pure
Jump model with an iid arrival of jumps and a homogeneous jump-size distribu-
tion (Press, 1967). Although not considered in this chapter, it is straightforward
to allow additional dynamics such as a different jump-size distribution or time
dependence in pg, the mean of the jump-size distribution. In addition, other
possibilities could be explored for X,_ such as the range.

3. Benchmark specifications
3.1. SV model

Our application is to foreign exchange rates, for which asymmetries and leverage
effects are generally absent. Therefore, we consider a standard log-linear sto-
chastic volatility (SV) model as a benchmark for comparison purposes. A large
literature discusses estimation methods for this model; see, for example, Melino
and Turnbull (1990), Danielsson and Richard (1993), Gourieroux et al. (1993),
Jacquier et al. (1994), Andersen and Sorensen (1996), Gallant ef al. (1997), Kim
et al. (1998), Alizadeh et al. (2002), and Jacquier et al. (2004). Surveys of the
SV literature include Taylor (1994), Ghysels et al. (1996), and Shephard (1996).
The discrete-time SV model is parameterized as

re=pu+explh;/2)z;, 7z ~ N, 1), 3.1
hf = po + ,Olhr~1 + oy, v ™ N(Os 1) (32)
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Given h,, the conditional variance of returns is exp(#,). Conditionally, the model
produces fat tails. Our estimation approach imposes stationarity by rejecting any
MCMC draws that violate |p;] < 1.

Compared to GARCH models, estimation is more difficult due to the latent
volatility which must be integrated out of the likelihood. Bayesian methods rely
on Markov chain Monte Carlo (MCMC) sampling to estimate SV models. The
properties of the estimator compare fayorably with other approaches (Jacquier
etal., 1994). It is straightforward to obtain smoothed estimates of volatility from
MCMC output. In addition, these estimates of volatility take parameter uncer-
tainty into account.

3.2. GARCH model

The second benchmark specification that we include is a standard GARCH(I, 1)
model:

rn=p+é, & =0z, z~NOI1, (3.3)
o2 =k +ae | +Bol . (3.4)

We restrict the mode] to be covariance stationary by restricting @ + 8 < 1 in
estimation.

4. Posterior inference

Johannes and Polson (2006) provide an excellent overview of Bayesian methods
for financial models including a simple Jump model. Eraker et al. (2003) and
Johannes et al. (1999) discuss a data augmentation approach to deal with jump
times and jump sizes.

From a Bayesian perspective, inference regarding parameters takes place
through the posterior which incorporates both the prior and likelihood func-
tion. Let the history of data be denoted as &; = {ry, ..., r,}. In the case of our
heterogeneous Jump model, we augment the parameters 6 = {u, o2, He, n, v}
where n = {no, m} and y = {y0, 11}, with the unobserved state vectors v =

{w1. ..., o7}, jump times J = {J, ..., Jr}, and jump sizes & = {&, ..., &7}
and treat these as parameters. For the Jump model, Bayes rule gives us:

P, w,J, §|Pr) x p(rlf, w, J, E)p(w, J, §10) p(6) 4.1
where r = {ry,...,rr}; p(rlf, w, J, ) is the joint density of returns condi-

tional on the state variables w, J, and &; p(w, J, £]6) is the density of the state
variables; and p(@) is the prior. By treating jump times and jump sizes as pa-
rameters to sample we avoid the difficulty of integrating them out, but more
importantly we can compute smoothed estimates of them from the posterior
sample. In practice, analytical results are not available and we use MCMC meth-
ods to draw samples from the posterior. Surveys of MCMC methods include
Geweke (1997), Robert and Casella (1999), and Chib (2001).
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MCMC theory allows valid draws from the posterior to be obtained by
sampling from a series of conditional distributions. It is often much easier to
work with the conditional distributions. In the limit, draws converge to sam-
ples from the posterior. A simulation-consistent estimate of any function of
the parameter vector can be constructed from sample averages. For instance,
if we have {u@}N  draws of y from the posterior, and assuming the integral
of g(u) with respect to the marginal posterior exists, we can estimate E[g(u)]
as % Z,N=1 g(u(i)). For example, to compute E(u), set g(i) = w; to compute
E(1?) and the variance, set g(u) = u?, etc. See Tierney (1994) for technical
details. Further assumptions on the integrability of g(u)? permit consistent es-
timation of the asymptotic standard error of the estimate, based on conventional
time series methods. :

In the following we denote the vector 8 excluding the kth element ; as 6_g,,
the subvector {wy, ..., ®;} as w( ) and o excluding w( 7y as w_( ). Sampling
is based on Gibbs and Metropolis-Hasting (MH) routines. Draws from the pos-
terior ¥ = {6, w, J, £} are obtained by cycling over the following steps:

Sample pulb_,, w, J, &, r;

Sample 62|6_,2, w, J, £, 7;

Sample pg 16—y, @, J, £, 1;

. Sample n|0_,, w, J, &, r;

. Sample blocks wg, 10, w_¢,¢), J, &, r,t =1,...,T;
. Sample y|6_,, w, J, £, r;

. Sample £16, w, J, r;

. Sample J|8, w, &, r;

. Goto 1.

N~

A pass through 1-8 provides a draw from the posterior. We repeat this several
thousand times and collect these draws after an initial burn-in period. Note that
the parameters 7, y, J, &, and o are sampled as blocks which may contribute to
better mixing of the MCMC output. Detailed steps of the algorithm are collected
in Appendix A.

5. Model comparison

The key ingredient in Bayesian model comparison is the marginal likelihood,
which can be used to form Bayes factors or model probabilities. However, a
drawback of any statistical approach that summarizes a model’s performance
with a single number is understanding why and when a model performs well or
poorly. Geweke (1994) suggests the use of a predictive likelihood decomposi-
tion of the marginal likelihood. Estimating the predictive likelihood allows us to
compare models on an observation by observation basis. This may be useful in
identifying influential observations or periods that make a large contribution to
predictive Bayes factors. Applications of this idea include Gordon (1997) and
Min and Zellner (1993).
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Consider a model with parameter vector ®. The predictive density for obser-
vation y, 4+ based on the information set @ is

pO1lPr) = f p(yr+11P:, @)p(B|P;)dO, 6.1

where p(®|®,) is the posterior and p(y:+1|®;, @) is the conditional distrib-
ution. When it is clear, we suppress conditioning on a model for notational
convenience. Evaluating (5.1) at the realized y,y; gives the predictive likeli-
hood,

Pr1 = pOrs1]Pr) = / p(Gr+119:, O)p(O|P) dO, (52

which can be estimated from MCMC output. Models that have a larger predic-
tive likelihood are preferred to ones with a smaller value, as they are more likely
to have generated the data.

Geweke (1994) shows that the predictive likelihood for observations
Fus - -+, Yus 4 < v, can be decomposed as

PGar e FolBuct) =/p(iu,...,yu|¢u~1,@)p(@lcpu_l)d@

v
=15 (53)
=u
Therefore we can compute the predictive likelihood for y,, ..., y, observation
by observation. If u = 1 and v = T, then (5.3) provides a full decomposition of
the marginal likelihood. In practice we will use a training sample that we con-
dition on for all models. This initial sample of observations 1,2,...,u — 1,
combined with the likelihood and prior, forms a new prior, p(®@{®,_;), on
which all calculations are based. If u is large then p(@|®,_;) will be dominated
by the likelihood function, and the original prior p(®) will have a minimal con-
tribution to model comparison exercises. Note that conditional on this training
sample, the log predictive Bayes factor in favor of model j versus k for the data
Vus--er Py 1S
v s
logBj i = Z log Iz—’}(, (5.4)
i=u !
where the predictive likelihood is now indexed by model j and model k.
Model probabilities associated with the predictive likelihood are calculated
as

P(Miliu, cees j;v‘ (pu—l)
_ p(j’u:--wj’u‘Mi’ ¢u—l)p(Mi|¢u—l)
St PGius - Fol M, Py) p(M|Pui)

where there are K models and M, denotes model k. In all calculations equal
prior model probabilities are used. At the end of the training sample we start

i=1,...,K, (55
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with an equal prior on the models: p(M;|®,—1) = P(M;), with P(SV) =
P(GARCH) = P(Jump) = 1/3. Models with a high predictive likelihood will
be assigned a high model probability. Calculating (5.5) for each v = u + 1,
..., T provides a cumulative assessment of the evidence for model i as more
observations are used. The model probabilities are used to calculate the model
average in the out-of-sample period. For example, the Bayesian model average

of g(yy+1) using (5.5) is

E[g()’v+1)|yu, coes Yus ¢ll-—1]

K
=Y E[gGut D5 - For Pumts Me]p(MilFus -, Fo, Put). (5.6)
k=1 .

In addition to the predictive likelihood which focuses on the whole density,
we also compare models by one-step ahead out-of-sample variance forecasts.
The predictive variance from (5.1) is computed by simulation methods and
detailed below. The Bayesian model average for the predictive variance can
be computed using (5.6) as in E[yfﬂlfb.,] - E[yv+1|¢>,,]2, We report mean
squared error (MSE), mean absolute error (MAE), and Mincer and Zarnowitz
(1969) forecast regressions for each model’s predictive variance against realized
volatility. Realized volatility serves as our target ex post volatility measure and
is discussed below.

5.1. Calculations

5.1.1. Jump model

The predictive likelihood can be estimated from the MCMC output. For the
Jump model, with y;+| = r;41, and ® = (8, w), the predictive likelihood is

Brat = / P(rr4116, wr, B)p(©, wr|,) d6 do, 5.7)

=/p(rt+1{6,wz+1,®r)p(w:+1|wr,0)

X p(6, @ |P;) dO dw, dawy ) (5.8)
11 -
~ 5 g L P66l o, ), 59
i=1 " j=1
where i denotes the ith draw from the posterior p(6, w|®;), i = 1,..., N,

J indexes simulated values of w, 1, and

p(ris1169, 07, 0, ;)

ey
; . H . 2 .

=2 @ (rrain? + ug), o 4630 ) (5.10)

+ (1= 2o (rpin®, o??), (5.11)
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)
A0, = SR (5.12)
t+1 ) .
I+ exp(w,_H)
oD = 9P + 7P £ ep1, @1~ NO, D). (5.13)

dlxlp, o 2) denotes the normal density function evaluated at x w1th mean y and
variance o 2. The following steps summarize the estimation of p;*

1. Set model parameters to the ith draw from the posterior {6, w¥}.

2. Generate j = 1,..., R, values of wg_)l according to (5.13) and calculate the

average of p(ri+1 |6(’) wfi)l, w,('), @,) for these values. Save the result.

3. Ifi < Nthenseti =i+ 1andgotol.
4. Calculate the average of the N values obtained in step 2.

Standard errors for this estimate can be calculated as usual from the MCMC
output. Note that the measure of accuracy should account for the fact that the
posterior draws are from a Markov chain and display dependence. Following
Geweke (1992), we calculate the long-run variance of the terms in 2 using the
Newey—West variance-covariance estimator. The square-root of this divided by
the sample size is the numerical standard error. The delta method is used (o
convert this to a standard error for log(p;+1). From this a numerical standard
error can be derived for the log of (5.3) assuming all estimates are independent.

5.1.2. SV model

Similar calculations are used for the SV model:

Dr+1 =/p(r,+1|0,h,,@,)p(@,h,l(D,)dBdh, (5.14)

=/p(rz+119,hr+1,<Dr)P(hx+1lhz,9)
x p(0 h,|¢,)d9dh, dhy s (5.15)

—Z Z (re1109, 82 0P, @), (5.16)

i=1

@) 2(1)}

where 6 = (), p p] To summarize,

1. Set model parameters to the ith draw from the posterior {§(), h?)}, given &;.

2. Generate j = 1, ..., R, values of hf’:l according to
h2 = o8 + oD + oPviy, v ~ N, D, (5.17)
and calculate the average of p(r,+119’ hff‘_)l, (') o) = ¢>(r,+1]u(’)

exp(h(’ )] )) for these values. Save the result.
3. Ifi < Nthenseti =i+ landgotol.
4. Calculate the average of the N values obtained in step 2.
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5.1.3. GARCH model

Unlike the other models, the GARCH specification does not have latent vari-
ables, which simplifies calculation of the predictive likelihood. If 8 = {u, «,
o, B}, then

Py = f p(ri116, ®:)p(618:) do (5.18)
1 & .
~ 5 2 (e l6?, @), (5.19)
i=l

where 6% is a draw from the posterior p(8|®;) and p(ri1169), @) =
G (resl u, o, (')) Note that the full series of conditional variances must be
computed starting at t = 1 to obtain Ur2 fl) = k@ 4 a®e? + D62 with

& =r —pu.

6. Volatility forecasts

Consider a generic model with parameter vector @. Moments of y,1; (assuming
they exist), based on time ¢ information, can be calculated from the predictive
density as

E[yts+1|¢r]=/ yrs+1P()’r+1|¢‘r)d)’r+l 6.1)
=/ y,‘;l/p(yx+ll¢t,@)p(@lrbr)d@dym (62)
=[E[yf+1|q5,, O)p®19)dO, s=1,2,..., (6.3)

which can be approximated from the MCMC output. Note that the posterior
p(@|®,) was used in the last section for calculating the predictive likelihood.
Therefore, very little additional computation is needed to obtain out- of—sample
forecasts. Conditional variance forecasts are E [y, 1 @] — Elyr+1 1P, 12

6.1. Calculations

6.1.1. Jump model

E[r! 1@:,0, w |p@, w|®;)d6 do, 6.4)

E[rfl @] =

\

E[ri1@,67, 0], s=1,2, (6.5)

1:1
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where {8, "} is the ith draw from the posterior distribution, p(8, w|®;). For
the variance we require the first two moments:

E[rnl®,, 6, 0] = n® + n E[J11109, 0], 6.6)

E[r?y1190, 69, 0]
=pu D 40O 4 (u? + 0V E[ 1141169, 0] 6.7)
+2u 0P E[ 111169, 0], (6.8)

These moments are substituted into (6.5) for each draw of {§@®, a),(i)}. Since
Ar+1 depends on w;4; wWe approximate each conditional expectation of J,4 as

R )
. : 1 exp(w,’})
E[Ji41169, 0f ]~ 2 37—, 6.9)
=1 1+ exp(e,y))
where w,(i)l is generated from

o =yv@ +yP0” + €41, @ ~NOD, j=1,...,R.  (6.10)

6.1.2. SV model

For the SV model, we have

E[r}, 1] =fE[rf+]|¢,,G,h,]p(O,h,ltD,)d@dh, (6.11)
1 & N
~ = D E[r 190,69, ), s=1,2. (6.12)
i=1
The conditional moments are
E[rin|®,, 09, 8] = n®, (6.13)
E[r2 19,69, 0P = D2 +exp(og + o\ h{ + 02 /2). (6.14)

6.1.3. GARCH model

The results for the SV model can be used for the GARCH model, except we
replace the conditional moments with

E[rt—flld)rve(i)] =/1'(i)» (6.15)
E[r12+1|¢1’ O(i)] = #(m + ffffl)- (6.16)
7. Data

Five-minute intraday FX quote data (bid and ask) were obtained from Olsen and
Associates for every day from 1986/12/16-2002/12/31 for the Japanese Yen—
US Dollar (JPY-USD) exchange rate. With a few exceptions, the construction
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of daily returns and realized volatility closely follow Andersen et al. (2001) and
Maheu and McCurdy (2002).

Currencies trade 24 hours a day, 7 days a week. The raw data included a num-
ber of missing observations. Missing quotes on the 5-minute grid where linearly
interpolated by Olsen and Associates from the nearest available quote. We use
the midpoint of the bid and ask quote, giving us 1.8 million 5-minute price ob-
servations. A day was defined as beginning at 00:05 GMT and ending 24:00
GMT. Continuously compounded 5-minute returns (in percent, that is, scaled by
100) were constructed from the price data. Following Andersen et al. (2001), all
weekends (Saturday and Sunday) were removed as well as the following slow
trading days: December 24-26, 31 and January 1, 2. In addition, the moving
holidays (Good Friday, Easter Monday, Memorial Day, July Fourth, Labor Day,
Thanksgiving and the day after), as well as any days in which more than half
(144) of the day’s quotes were missing, were removed. The remaining 5-minute
returns data were linearly filtered by an MA(g) to remove high-frequency auto-
correlation which may be due to the discrete nature of bid/ask quotes and market
microstructure effects. We set ¢ = 4 based on the sample autocorrelations of the
5-minute returns. :

From these filtered data, daily realized volatilities were constructed as

288
R =302 a
j=1

where r; ; is the jth 5-minute return in day 7. Daily returns were constructed as
the sum of the intraday 5-minute returns, that is, r; = Z?g g

In a series of papers, Andersen, Bollerslev, Diebold and co-authors and
Barndorff-Nielson and Shephard, among others, have documented various fea-
tures of realized volatility and derived its asymptotic properties as the sampling
frequency of prices increases over a fixed-time interval. Reviews of this large
literature include Andersen et al. (2005) and Barndorff-Nielsen ez al. (2004).
For our purpose, we note that RV, serves as a natural ex post estimate of volatil-
ity and provides a superior measure to rank the forecasts of competing models.
Therefore, we treat RV; as the ideal target for conditional variance forecasts
from our alternative models.

Table 1 reports our summary statistics for daily returns and realized volatility.

8. Results

Our daily data for JPY-USD covers 1986/12/16 to 2002/12/31 (4001 observa-
tions). Table 2 contains full-sample model estimates. For each model a total of
90 000 MCMC iterations were performed. The first 10 000 draws were discarded
to minimize the influence of starting values. Thus, N = 80000 samples from
the posterior distribution are used to calculate posterior moments.

Figure 1 shows various features of the Jump model, while Figures 2 and 3
display characteristics of the out-of-sample performance for the SV and jump
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Table 1. Summary statistics, JPY-USD

Statistic r RV,
Mean —4.566e—6 0.5992
Variance 0.6352 0.6264
Skewness —0.3504 21.6655
Kurtosis 8.0587 854.2149
Minimum —6.9768 0.0290
Maximum 5.9780 34.3872
Obs 4001 4001

Note: r; is percent log differences of daily spot exchange rates and RV, is
realized volatility for the period 1986/12/16-2002/12/31.

specifications, for the JPY-USD data. Out-of-sample calculations condition on
a training sample of the first 3000 observations. These observations provide ac-
curate parameter estimates for all models and minimize parameter uncertainty.
Therefore, predictive likelihood estimates and model forecasts, appearing in Ta-
bles 3 and 4, are based on the remaining 1001 observations. Predictive likelihood
estimates are illustrated in Figure 2.

Table 2 contains estimates of the standard SV and GARCH models, as well as
our heterogeneous jump specification. We report various features of the posterior
distribution. Estimates of the SV specification in Table 2 show latent volatility
to be persistent. All of the parameters are accurately estimated. The SV model
implies an unconditional variance of 0.617 which is close to the value in Ta-
ble 1. Similarly, @ + B in the GARCH model is about 0.96, and the implied
unconditional variance 1s 0.723.

Based on the posterior mean, the unconditional expectation for the autore-
gressive latent variable, w;, driving jump arrival is —2.62. This implies that
jumps are infrequent on average. For instance, the empirical average of A; is
0.07. This is consistent with previous studies which combine SV with simple
jumps. However, in our case, this jump probability shows clear time dependen-
cies. From the model estimates, it is seen that the process governing jump arrival
is very persistent. A 95% density interval for y; is (0.937,0.971).

The posterior mean of 7| is 0.4532 which indicates that lagged absolute re-
turns are important in affecting the jump-size variance. Notice that the jump-size
variance is 3—4 times larger than the normal innovation variance o 2.

Features of the Jump model are displayed in Figure 1. Panel (a) shows returns,
panel (b) plots the inferred jump probability A,, panel (c) illustrates the jump size
and panel (d) displays estimated jump times over the full sample. Clearly, this
model identifies large moves in returns as jumps. Panels (¢) and (d) suggest that
some jumps are isolated events while others cluster and lead to more jumps and
higher volatility. This is an important feature of the model.

Predictive likelihood estimates appear in Table 3. The estimates were ob-
tained by re-estimating the posterior for each observation from 3001 on. For
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Table 2. Model estimates
A. SV model
ry = pu+explhy [z, 7z ~ N, 1)
hy = po + prhi—1 + oy, v ~ NG, 1), |p1| <1

Mean St. dev. Median 95% density interval
7 0.0165 0.0105 0.0165 (—0.0008, 0.0337)
£0 —0.0568 0.0125 -0.0559 (—0.0786, —0.0379)
01 0.9234 0.0148 0.9244 (0.8974, 0.9460)
ol 0.0763 0.0160 0.0749 (0.0524, 0.1043)

v

B. GARCH model
n=ute, =0z, zu~N@O1D
6,2 =K+ ae,z_lﬁarz_] '

Mean St. dev. Median 95% density interval
" 0.0083 0.0123 0.0083 (—0.0140, 0.0338)
K 0.0305 0.0064 0.0302 (0.0184, 0.0431)
o 0.1031 0.0143 0.1022 (0.0784, 0.1342)
B 0.8547 0.0198 0.8555 (0.8144, 0.8919)

C. Jump model

rr=pu+ozy+Jdk, 2 ~N@O1D

&~ Nug.of). Jrelo)

P =) =A and P(J; =0lw)=1-X
_explwr)

T 1+ expler)

wr =Y+ V1o +ur, o~ N1, Iyl <1
of, =no+mX.-1

t

Mean St. dev. Median 95% density interval
7 0.0307 0.0125 0.0307 (0.0103, 0.0513)
o2 0.3226 0.0159 0.3223 (0.2968, 0.3491)
M —0.1272 0.0510 —0.1269 (—0.2115, —0.0440)
no 0.9089 0.1238 0.8961 (0.7273, 1.1276)
m 0.4532 0.1153 0.4443 (0.2793, 0.6599)
Yo —0.1169 0.0305 —0.1158 (—0.1688, —0.0686)
Y1 0.9554 0.0103 0.9562 (0.9372,0.9709)

Notes: The data are percent log differences of daily spot exchange rates for the JPY-USD from
1986/12/16-2002/12/31. Tables for the alternative models report posterior mean, standard deviation,
median and 95% probability density interval for each parameter estimate.

each run, we collected N = 20000 (after discarding the first 10 000) sam-
ples from the posterior simulator and set R = 100. Kass and Raftery (1995)
recommend considering twice the logarithm of the Bayes factor for model com-
parison, as it has the same scaling as the likelihood ratio statistic. They suggest
the following interpretation of 2log BF: 0 to 2 not worth more than a bare
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Fig. 1. Jump model.

mention, 2 to 6 positive, 6 to 10 strong, and greater than 10 as very strong.
Based on this, the evidence in favor of the Jump model is positive. For example,
2logBF = 2(—1103.760 + 1105.4758) = 3.431 in favor of the Jump model
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Fig. 2. Returns, predictive likelihoods, and cumulative model probabilities.

versus the SV model. On the other hand, the GARCH model is dominated by
the other specifications. Model probabilities based on the predictive likelihood
estimates are calculated as in (5.5). The final cumulative model probability in
favor of the jump specification is 0.85 while it is 0.15 for the SV model.
Differences in the log predictive likelihood in favor of the Jump model com-
pared to the SV model are found in panel (b) of Figure 2. A positive (negative)
value occurs when an observation is more likely under the Jump (SV) model.
There are several influential observations favoring the Jump model that appear
to be high volatility episodes. These influential observations show up as spikes in
panel (b). The cumulative probability for the Jump model is plotted in panel (c)
of Figure 2. It is interesting to note that there are several upward trending peri-
ods in panel (c¢) which are not from tail occurrences in returns, for instance from
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Fig. 3. Volatility and model forecasts.

the middle of 2000 to 2001. The SV model appears to perform best at the start
of the sample, 1999-2000.

Although Bayes factors are an assessment of all distributional features, it
is interesting to also evaluate volatility forecasts. Out-of-sample forecasts for
all models and the model average are assessed using realized volatility. Ta-
ble 3 contains Mincer and Zarnowitz (1969) forecast regressions of realized
volatility regressed on a model’s conditional variance forecast. We report regres-
sion RZ, mean squared error (MSE) and mean absolute error (MAE). Although
the GARCH model does poorly in accounting for the predictive density of re-
turns, it performs very well in one-period-ahead forecasts of realized volatility.
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Table 3. Log predictive likelihoods

Model JPY-USD

GARCH —1117.6374
(0.0565)

Y% —1105.4758
(0.2153)

Jump —1103.7603
(0.3982)

Notes: This table reports estimates of log predictive likelihoods for observa-
tions 3001-4001. Numerical standard errors appear in parentheses.

Table 4. Out-of-sample forecast performance for RV

a b R? MSE MAE

GARCH —0.0244 0.9413 0.2471 0.1619 0.2443
(0.0337) 0.0520

sV 0.0024 0.8899 0.2345 0.1657 0.2505
(0.0334) (0.0509)

Jump 0.0477 0.7829 0.2509 0.1694 0.2582
(0.0298) (0.0428)

Model average 0.0141 0.8587 0.2467 0.1649 0.2511
(0.0318) (0.0475)

Notes: This table reports Mincer and Zarnowitz (1969) forecast regressions of

RV, = a + bVar,_(r) + error;,

where Var,_1(r;) is a model forecast of the one-period-ahead conditional variance based on time
t —1 information and RV, is realized volatility for day . Standard errors appear in parentheses. R%is
the coefficient of determination. MSE and MAE are the mean squared error and mean absolute error,
respectively, for (RV; — Var,_ (r7)). The number of out-of-sample forecasts is 1001.

The Jump model has the largest R? although the differences in the models is
small.

Panel (a) of Figure 3 displays realized volatility for the out-of-sample period.
Panel (b) plots the model forecasts for SV and the Jump model. Notice that
the model forecasts are much less variable than realized volatility. During high
volatility periods both models produce similar forecasts, but during low periods
the Jump model’s variance is lower. During these times the Jump variance is
essentially flat, a time-series pattern similar to that of realized volatility, while
the SV forecast appears to be trending upward. This is due to the fact that the
Jump model can have periods of homoskedasticity while the SV model always
has a time-varying variance.
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The differences in the volatility forecasts become clear when we compare
Figure 3(b) to Figure 2(c). Periods when the Jump model’s variance is low are
exactly when the probability for the Jump model is increasing (just before 2001
and around 2002). This suggests that state-dependent volatility clustering may
be important, that is, periods of normal homoskedasticity along with periods of
high volatility that clusters. The Jump model is able to capture these dynamics
relatively well.

Overall the Jump model is quite competitive with a simple parameterization
of SV and GARCH. Further, out-of-sample predictive likelihoods reveal periods
when the heteroskedastic jump structure appears to do a better job at capturing
the dynamics of realized volatility.

There are several potential extensions to our heterogeneous Jump model.
For example, we could consider a fat-tailed distribution for return innovations
and for jump-size innovations. We have allowed the conditional variance of the
jump-size distribution to be a function of the absolute value of lagged returns to
reflect recent volatility levels. Other conditioning variables that could be used
are the range statistic or realized volatility.

9. Conclusions

This chapter proposes a new discrete-time model of returns in which jumps cap-
ture persistence and time variation in the conditional variance and higher-order
moments of returns. Time-varying jump arrival is governed by a latent autore-
gressive process and the jump-size distribution is allowed to be conditionally
heteroskedastic with a non-zero mean.

We discuss a Bayesian approach to estimation and advocate the use of pre-
dictive likelihoods to compare alternative models. We also compare the out-of-
sample volatility forecasts against realized volatility. In particular, using JPY~
USD exchange rate returns, we compare forecasts from our heterogeneous Jump
model, a conventional stochastic volatility model, a GARCH model and the
model average.

Our results indicate that the heterogeneous Jump model effectively captures
volatility persistence through jump clustering. In addition, we find that the jump-
size variance is heteroskedastic and increasing in volatile markets. Overall, this
model is very competitive with the stochastic volatility specification. The state
dependence in jumps allows it to perform well in both quiet periods and in
volatile periods when tail realizations occur. We conclude that the modeling of
jump dynamics to describe market returns is a fruitful avenue for future research.
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Appendix A

Below we provide the details of the posterior simulator for the Heterogeneous
Jump specification and the SV model.

A.1 Jump model
For steps 1-3 and 6 we use standard conjugate results for the linear regression
model (see Koop, 2003).
1. ulb—y, w, J, &, r. I the prior is normal, p(u) ~ N(a, A~h,
plO_y, @, J, &, 1) x p(r|0, w, J, &) p() (A.1)
~N(m, v7Y), (A2)

where V=0"2T+ Aandm = V(2 ZLl(r, — & Jp) + Aa).
2. 0%|0_,2, w, J, &, r. With an inverse gamma prior, 02 ~ IG(v,2/2, 5,2/2),
we have

p(o*2]9_52, w,J, &, r)

o p(rlf, w, J.§)p(0?) (A3)
NIG(T+”02’ Zthl(rf_gf‘,f-l‘l’)z—’-s‘ﬂ), (A4)
2 2
3. uglbopg. @, J, &, r X p(ug) ~ N(b, B™)
P(uelf—p,, @, J, &, 1) x p§10) pug) (A5)
~N(m, v, (A.6)

where V = 02T + Bandm = V(0,2 3.7_ & + Bb).

4. ni6_,, o, J, &, r. We use independent inverse gamma priors for both para-
meters, p(no) ~ IG(vyy/2, sy, /2), p(n) ~ 1G(vy, /2, s5,/2). This ensures
that the jump-size variance is always positive. The target distribution is

pmO_y, @, J, &, r) o p(€10) p(no) p(n1)

T
o poyp(n) | [(no + m X, )™'?
t=1
1 (& — ) )
— e | A7
xexp( 2 (no +mXi-1) (A7)

which is a nonstandard distribution. We use a MH algorithm to sample
this parameter using a random walk proposal. The proposal distribution
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g(x|n'~1), is a fat-tailed mixture of normals where the covariance ma-
trix is calibrated so approximately 50% of candidate draws are accepted.
The mixture specification is the same as what is used in step 5 below. If
n' ~ q(x|n'~1) is a draw from the proposal distribution, it is accepted with
probability

oy, @, J, E,
rnin{ p('?_’l @ J.6,r) ,1} (A.8)
P 0y, 0, J, &, 1)

i—-1

and otherwise ' = 7

5. w8, w0y, J,E,r,t <t,t=1,...,T. The conditional posterior is

plwe, )8, o—¢.0), J)
& p(Ju,p)lou, ) pwi,oylo—¢ 0y, 8) (A9)

T
o p@csilor, 0) [ T p(tlwn) plrlar—1,6), (A.10)
1=

which is a nonstandard distribution. To improve the mixing properties of the
MCMC output we adapted the blocking procedure that Fleming and Kirby
(2003) use for SV models. Specifically, we approximate the first-difference
of w; as a constant over the interval (z, ), and sample a block using an in-
dependent Metropolis routine. If w, is strongly autocorrelated this provides
a good proposal density. The proposal distribution is a fat-tailed multivariate
mixture of normals, !

N(m,V) with probability p,

) ~ Al
qxlo—n) {N(m,lOV) with probability 1 — p, A0

where p = 0.9. The mean vector and variance—covariance matrix are

I
m; = w—1 + F(wt—l +twety), [=1,...,k, (A.12)
v Gm— -k ...k A13
= min m)— ——— = = A .
Im 1 k-l'-l s K, m s ( )

where k = t—r+1 is the block length and is chosen randomly from a Poisson
dlstnbutron with parameter 15.V~'hasa very convenient tridiagonal form in
WhIChV_ —ZandV_ -1,1<i <k, j=i—1,i+1, and otherwise 0.

A new draw w(, - from q(x]w( @ T)) is accepted with probability

(A.14)

i1 @)
min P(U-’(, r)le D1y J)/l](w(,,r) lwk(, r)) 0 }
)’

-1 i1 (=1, (i-1)
p(w(, ) 10, @1y J)/Q(w(,‘r) |w_(, )

and otherwise w((;)r) = a)g T;)

! In practice, a fat-tailed proposal was found to be important when comparing the accuracy of the
block version with a single move sampler.
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6. 16—y, w, J, &, r. The conjugate prior for y is a bivariate normal p(y) ~

N(m, V) which results in a conditional distribution that is also normal. We
reject any draw which does not satisfy |y;| < 1.

7. €16, w, J, r. The jump size can be sampled in a block by using the conditional
independence of each &. The conditional distribution of &, is

P&, @, J,r) o p(rel8, wp, Jr, &) p(E16) ~ N(c,C1), (A.15)
where C = o~ 2.1,+U§ andc = C~ Yo~ 2)(r, — u)+o ,/.L;)

8. JI0, w, &, r. J; is a Bernoulli random variable with parameter A;. To find the
probability of J; = 0, 1 note that

p(J; =016, w,§,7) x P(rtlg, Jt, 6 ) p(Jr = Olw)

x exp(—0.50"2(r, - ;/,)2)(1 - )
p(Jy =118, w,§,r) o p(rl0, J1, &) p(Jy = o)

X eXP(_0-50_2(71 il 2 gr)z))m

which allows calculation of the normalizing constant and hence a draw of J;.
9. Goto 1.

The priors used for this model are independent u ~ N(0, 1000}, pug ~
N, 100), 62 ~ I1G(3,0.02), no ~ IG.5,1), g1 ~ IG@2.5,1), yo ~
N(0,100) and y; ~ N(0, 100)|,,|<1. The priors selected for this model are
for the most part non-informative. Note that «y is restricted to be stationary. The
priors on ng and 7 reflect a reasonable range for the conditional variance of the

jump-size distribution. For example, the probability that these parameters lie in
the interval (0.1, 2) is approximately 0.96.

A.2 SV model

For the SV model we obtain draws from the full posterior iterating on the fol-
lowing steps:
Sample u ~ p(uleo, o1, 07,7, b)
Sample po., p1 ~ p(po, pilis, ol,r h)
Sample a2 ~ p(ali, po, p1. 1. )
Samplehr'Vp(h s, i, po, prool,r), i =1,...,T.
The priors are independent u ~ N (0, 100), oo ~ N(0, 100), p; ~ N (0, 100) x
lip <1 and o2 ~ 1G(5/2,0.1/2).
1. ulpo, p1, oy, r, h. Note that since h is known the above model can be re-
written as

rrexp(—h;/2) = pexp(—=h; /2) + v, t=1,...,T. (A.16)

This is a regression model y, = x,u + v;, where y, = r,exp(—/h,/2), x; =
exp(—h;/2) and the innovation term has variance 1. Hence we can apply
Gibbs sampling results for the linear regression model.
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2. po, P14, 0v, 1, h. The conjugate prior for py, o; is a bivariate normal which
results in a conditional distribution that is also normal. We reject any draw
which does not satisfy [p;]| < 1.

3. avzl W, Po. P1, T, h. The inverse Gamma prior results in an inverse Gamma
posterior.

4. hth—y, 1, po, P1, 03, r,t = 1,...,T. We use the single move sampler
of Kim et al. (1998) except that we use a MH step as opposed to ac-
cept/reject sampling. Here the proposal density is N (ji;, 02), with i, =

2
pet G exp(—p) = 1, = A ) s

Therefore sample &' ~ N (fi;, o), which has density g(-|h;_1, h141, @) and

accept this with probability

p(hth—1, hevr, ©)/q(h [hi=y, By, ) }
p(hihe—1, Arr, ©)/q(hlhi—1, hey, @)
and otherwise reject.

and 62 =

(A.17)

min{l,

A.3 GARCH model

If 6 denotes the GARCH model parameters then we use a multivariate ran-
dom walk proposal in a MH step. Specifically, a new proposal is obtained as
6" = 6 + V, where V is a fat-tailed mixture of two multivariate normal den-
sities. This proposal is accepted with probability min{1, p(6’|®7)/p(@|PT)};
otherwise the new value of the chain is set to the previous draw 8. The first time
the model is estimated we calibrate the covariance of V to be proportional to
the posterior covariance matrix using output from a single-move random walk.
Thereafter, we use the joint sampler with this covariance matrix. When a new ob-
servation becomes available, we use the previous posterior draws to calibrate the
covariance matrix in the next round of estimation. This approach provides very
efficient sampling and automatic updates to V. We collect 10000 draws for pos-
terior inference. The priors are u ~ N (0, 100), « ~ N (0, 100), « ~ N(0, 100),
B~N@©100),x >0, 20,8 >0anda+8 < 1.
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