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 News Arrival, Jump Dynamics, and Volatility
 Components for Individual Stock Returns

 JOHN M. MAHEU and THOMAS H. MCCURDY*

 ABSTRACT

 This paper models components of the return distribution, which are assumed to be
 directed by a latent news process. The conditional variance of returns is a combination
 ofjumps and smoothly changing components. A heterogeneous Poisson process with a
 time-varying conditional intensity parameter governs the likelihood of jumps. Unlike
 typical jump models with stochastic volatility, previous realizations of both jump and
 normal innovations can feed back asymmetrically into expected volatility. This model
 improves forecasts of volatility, particularly after large changes in stock returns. We
 provide empirical evidence of the impact and feedback effects of jump versus normal
 return innovations, leverage effects, and the time-series dynamics of jump clustering.

 THERE IS A WIDE-SPREAD PERCEPTION in the financial press that volatility of asset
 returns has been changing.

 The new economy is introducing more uncertainty. Indeed, it can be argued
 that volatility is being transferred from the economy at large into the
 financial markets, which bear the necessary adjustment shocks.1

 Given the impact of changes in volatility dynamics on many important finan-
 cial and economic decisions (such as portfolio rebalancing, derivative pricing,
 risk measurement, and risk management), it is important to assess the empiri-
 cal validity of this perception and to investigate the sources and characteristics
 of changing volatility dynamics.
 Volatility2 and risk can be linked to the quantity and quality of information

 pertaining to a stock's expected future earnings and cash flows. For example,

 *Maheu is from the Department of Economics, University of Toronto, and McCurdy is from the
 Joseph L. Rotman School of Management, University of Toronto, and is an Associated Fellow of
 CIRANO. We are grateful to the editor (Rick Green) and an anonymous referee for very helpful
 comments. We also thank Toby Daglish, J.C. Duan, Robert Elliot, Adlai Fisher, and Nour Meddahi,
 as well as participants at the Modeling, Estimating and Forecasting Volatility Conference (Uni-
 versity of Montreal), the Financial Mathematics Seminar (Fields Institute), the North American
 Summer Meeting of the Econometric Society (Los Angeles), the Northern Finance Association 2002
 Meetings, the Canadian Econometrics Study Group, the Waterloo Financial Econometrics Confer-
 ence, and workshops at Queen's University and the University of Toronto. We also thank the Social
 Sciences and Humanities Research Council of Canada for financial support. Any errors are our
 own.

 1 "Coping with the market's mood swings," Financial Times, London, September 27, 2000.
 2 In this paper we use the term volatility to refer generically to information on the second moment

 of returns.
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 756 The Journal of Finance

 information that results in a resolution of uncertainty about a firm's future
 prospects can result in a large revision in current prices. According to this
 view, the most important process affecting price movements is the news arrival
 process. In Ross (1989) and Andersen (1996), the volatility of stock price changes
 is directly related to the rate of flow of information to the market.
 For individual securities, news about anticipated cash flows and the appro-

 priate discount rate are particularly relevant. A noteworthy contribution in
 this vein is a recent study by Campbell et al. (2001) who report that firm-level
 variance has more than doubled between 1962 and 1997, whereas market and
 industry variances have remained fairly stable over that period.3 They analyze
 the dynamics of idiosyncratic, industry, and market components of the volatility
 of individual stock returns. We study the distributional components, in partic-
 ular, large versus small changes of stock returns, and how these components
 contribute to the dynamics of volatility and higher-order moments of returns.
 In this paper we do not model the latent news process directly, but rather

 propose a model of the conditional variance of returns implied by the impact of
 different types of news. We interpret the innovation to returns, which is directly
 measurable from price data, as the news impact from latent news innovations.
 The latent news process is postulated to have two separate components, normal
 news and unusual news events, which have different impacts on returns and ex-
 pected volatility for individual stocks.4 Normal news innovations are assumed
 to cause smoothly evolving changes in the conditional variance of returns. The
 second component of the latent news process causes infrequent large moves in
 returns. The impacts of these unusual news events are labeled jumps. There-
 fore, the news process induces two components in returns, which are identified
 by their volatility dynamics and higher-order moments. We model these com-
 ponents as normal innovations, and abnormal or jump innovations.
 A potential source of jump innovations to returns can be important news

 events, such as earnings surprises. For example, in January 2000, Intel Cor-
 poration announced earnings that were 8.83 percent higher than the mean In-
 stitutional Brokers' Estimate System (IBES) forecast. This earnings surprise
 resulted in a 12.4 percent increase in price on January 14, 2000. In October
 2000, IBM's negative earnings surprise of -0.18 percent led to a price change
 of -16.9 percent on October 18, 2000. On November 13, 2000, an earnings
 surprise of -19.76 percent for Hewlett-Packard resulted in a price change of
 -13.67 percent. These news surprises concerning expected future cash flows
 resulted in price changes well above normal and might be better captured by
 jumps rather than Brownian motion or normal innovations. On the other hand,
 less extreme movements in price (modeled as normal innovations) can be due

 3 Although systematic market risk is an important part of many financial decisions, Campbell
 et al. (2001) emphasize that the total volatility of a firm's return is also relevant (for arbitrageurs,
 for derivative pricing, for hedge funds, etc.).

 4 Clark (1973) and Tauchen and Pitts (1983) use information flows to motivate price movements
 and trading activity. Andersen (1996) concludes that "it is natural to hypothesize that there are
 two or more types of information arrival processes that have different implications for volume and
 return volatility persistence."
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 Individual Stock Returns 757

 to typical news events, as well as liquidity trading and strategic trading as
 information disseminates.5

 To augment Brownian motion in an attempt to better capture the empirical
 distribution of returns, Press (1967) introduced a jump-diffusion model that
 assumes information arrivals are independently and identically distributed as
 a Poisson process. Over an interval (t - 1, t), a random number of news events
 arrive. In this compound events model, the Poisson distribution directs the
 number of jump events occurring in the fixed interval. The expected number
 of events per interval is defined as the intensity (jump frequency) of the Pois-
 son process. Associated with each of these news events is a jump size that is
 assumed to be stochastic. This basic jump-diffusion model and its many exten-
 sions can be applied to the effect of news flows on price changes. Of particu-
 lar relevance to our application are those that also incorporate autoregressive
 stochastic volatility (SV).

 Traditional SV-jump-diffusion specifications assume a temporally indepen-
 dent arrival rate of jump events. There is evidence that, like the information
 process itself, jumps tend to be clustered together. Not only do we observe sus-
 tained episodes of extreme volatility (for example, the SE Asian currency crisis),
 but even market crashes can be realized in a series of jumps over a short period
 of time. Allowing for time variation and clustering in the process governing
 jumps may be important. For example, Bates (1991) finds systematic behavior
 in the expected number of jumps around the 1987 crash using options data.
 Recent examples of SV-jump-diffusion specifications with time-varying jump
 intensities include Andersen, Benzoni, and Lund (2002), Bates (2000), Chernov
 et al. (2003), and Pan (2002).6 Eraker, Johannes, and Polson (2003) allow for
 jumps in both returns and volatility.

 We explore dependence in the arrival process governing jump events in a
 discrete-time setting and extend the work of Jorion (1988) and Vlaar and Palm
 (1993), among others.' Bates and Craine (1999) allow a volatility factor to drive
 the intensity. Bekaert and Gray (1998), Das (2002), and Neely (1999) allow fi-
 nancial and macroeconomic variables to affect the jump intensity. Johannes,
 Kumar, and Polson (1999) consider a state dependent jump model that al-
 lows past jumps and observables to affect the jump probability. We develop a
 mixed GARCH-jump model incorporating the autoregressive conditional jump
 intensity parameterization proposed by Chan and Maheu (2002). Maintaining
 distributional assumptions at the relevant discrete-time frequency allows us
 to use maximum likelihood estimation and the associated filter to infer the

 5 Glosten and Milgrom (1985) and Andersen (1996) develop a market microstructure model in
 which asymmetric information and liquidity requirements induce trades in response to information
 arrivals. They outline how a news event that causes a large price change can be associated with
 quite different volatility effects than one with less information content. Bates (2001) provides a
 theoretical model in which investor heterogeneity affects the impact of news events on asset prices.

 6 Yu (2003) has proposed a pure jump diffusion with a time-varying intensity.
 7For example, Baillie and Han (2001), Pan (1997), Nieuwland, Vershchoor, and Wolff (1994),

 Feinstone (1987), and Ball and Torous (1983). Oomen (2002) discusses various extensions including
 a multiple component compound Poisson model for high and low frequency jumps.
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 758 The Journal of Finance

 distribution of the unobservable jumps. The conditional intensity process al-
 lows the expected arrival rate of jumps to vary over time and allows jumps to
 cluster. The time variation in the conditional intensity implies all high-order
 conditional moments of returns are time varying. Similar to a Peso problem,
 jumps need not occur to have important effects on the conditional higher-order
 moments.

 Linked to a particular jump event is the news impact that the jump has on
 price changes. Depending on the type and the importance of the information
 revealed by the news, the stochastic jump size may be negative, positive, big, or
 small. For example, jumps can reflect good or bad news events and affect the
 conditional and unconditional skewness of the return distribution through the
 magnitude and the sign of the mean of the jump size distribution.

 Therefore, the dynamics of volatility are affected by a time-varying rate of
 jump arrival, stochastic jump size, and volatility clustering. The conditional
 variance in our model is a combination of a smoothly evolving continuous-state
 GARCH component and a discrete jump component. In addition, unlike conven-
 tional parameterizations of SV-jump-diffusions, previous realizations of both
 normal and jump innovations affect expected volatility through the GARCH
 component of the conditional variance.8 This feedback can be important because
 once return innovations are realized, there may be strategic trading related to
 the propagation of the news, liquidity trading, etc. These activities are further
 sources of volatility clustering-in addition to clustering of jump arrivals.

 We allow for several asymmetric responses to past return innovations. Firstly,
 the news impact resulting in jump innovations can have a different feedback
 on expected volatility than the news impact associated with normal innova-
 tions. For instance, important news innovations that result in a jump may
 be quickly incorporated into current prices and have a smaller effect on ex-
 pected volatility; or the reverse, news that results in jumps may cause fu-
 ture volatility. Secondly, we allow for asymmetric responses to good versus
 bad news in the GARCH component of volatility.9 A further flexibility is that
 the asymmetric effect of good versus bad news can be different for jump ver-
 sus normal innovations. These novel features allow a richer characterization

 of volatility dynamics, particularly with respect to events in the tail of the
 distribution.

 We initially apply our model to equity returns from 11 U.S. stocks. To show
 that jumps may be associated with significant news innovations, we have com-
 puted the probability of jumps (inferred from our model) around days that

 8 GARCH specifications allow past (squared) return innovations to feedback into expected volatil-
 ity. Engle and Ng (1993) interpret the return innovation as the impact of news events. Their news
 impact curve summarizes the possibly asymmetric impact of good and bad news on the conditional
 variance of next period's return.

 9 Asymmetric GARCH models include Engle and Ng (1993), Glosten, Jagannathan, and Runkle
 (1993), and the Nelson (1991) EGARCH specification. The empirical stylized fact that negative
 return (bad news) innovations are associated with increases in volatility has become known as the
 leverage effect. Cho and Engle (1999) and Campbell and Hentschel (1992) provide an economic
 interpretation of news effects through asymmetric volatility and its effect on the required rate of
 return from stocks.
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 Individual Stock Returns 759

 earnings surprises were announced. We find empirical support for our con-
 jecture that large innovations to returns are associated with significant news
 events. For the examples discussed above, the ex post probability of a jump for
 Intel is 0.94 (January 14, 2000), IBM 0.99 (October 18, 2000), and Hewlett-
 Packard 0.74 (November 13, 2000).
 Consistent with previous studies, we find that the unconditional jump in-

 tensity is low. However, since the conditional jump intensity is autoregressive,
 jumps are likely to cluster. Therefore, IBM may have three jumps within a week
 but no jumps for the next three months. On average, jumps account for about
 25 percent of daily volatility. Yet, when jumps occur, their proportion of the
 conditional variance can shoot up to 90 percent.
 Statistical tests strongly reject a constant intensity version of the model in

 favor of autocorrelation in the jump intensity. This time variation is very im-
 portant in capturing return dynamics. For example, by correctly predicting the
 jumps following the 1987 crash, the model's predictions of IBM daily volatility
 closely match the quick return of realized volatility to normal levels. In contrast,
 we show that a benchmark asymmetric GARCH model, with t-distributed in-
 novations but no jumps, takes a significant period of time to return to normal
 levels of volatility.
 Jumps affect forecasts of future volatility directly through the time-varying

 Poisson arrival process. In addition, the effect of jumps on the conditional vari-
 ance through GARCH feedback effects is also statistically significant. However,
 jump innovations tend to have a smaller feedback coefficient than normal inno-
 vations. This evidence is consistent with the stylized fact10 that the persistence
 effect on expected volatility from large shocks to returns is often smaller than
 normal innovations. Although we find the traditional good and bad news asym-
 metry associated with the GARCH volatility component, this appears to operate
 mostly when no jumps occur. In contrast, in the presence of jumps, the news
 impact curve displays less asymmetry.
 It is interesting to note that the effects of jumps appear to be different for

 new versus traditional economy stocks. To investigate further, we apply our
 model to three indices of different types of firms: the DJIA, the Nasdaq 100,
 and the CBOE Technology index (TXX). The more volatile indices have more
 frequent jumps, and these jumps have a larger impact on the return distribu-
 tion. All indices display significant jump clustering. This result is consistent
 with evidence reported in Johannes et al. (1999).
 The jump size mean is significantly negative for all three indices. This im-

 plies a negative conditional correlation between jump innovations and squared
 return innovations. In other words, large negative return realizations are asso-
 ciated with an immediate increase in the variance. We call this a contempora-
 neous leverage effect. Note that this leverage effect is time varying due to the
 time-varying correlation. This result of a significant contemporaneous asym-
 metry is associated with a somewhat weaker asymmetry between the sign of
 lagged innovations and the GARCH variance component. For our samples of

 10 For example, Schwert (1990) and Engle and Mustafa (1992).
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 indices, a contemporaneous leverage effect, which is captured directly by jumps
 is more important than the lagged leverage effect, which is captured by the
 GARCH feedback structure. These results extend the evidence obtained from
 traditional GARCH models.

 The structure of our model is such that the mixture of components can adapt
 flexibly to capture different features of the conditional distribution of returns.
 However, introducing more parameters involves the danger of over fitting in
 sample. Therefore, it is important to determine whether or not the improved
 in-sample fit is useful for forecasting out of sample. Using a range-based mea-
 sure for ex post or realized volatility, we demonstrate that for 10 of 11 firms
 our model has superior out-of-sample forecasts relative to a benchmark asym-
 metric GARCH model with fat-tailed innovations. In addition, we provide ev-
 idence of superior out-of-sample forecasts for high volatility periods and for
 conditional forecasts following large negative moves in the market. The lat-
 ter two tests are designed to evaluate the dynamics in the tails of the return
 distribution.

 In summary, our paper provides evidence of time dependence in jump inten-
 sities for both individual stocks and indices using an autoregressive conditional
 jump intensity parameterization; allows both normal and jump innovations to
 feed back into expected volatility; and provides new results on asymmetric ef-
 fects of return innovations on volatility. Conditional skewness and kurtosis are
 functions of both volatility components. The conditional skewness result can be
 interpreted as a time-varying contemporaneous leverage effect. This is modeled
 jointly with the possibility of lagged leverage effects through the GARCH feed-
 back structure. These novel features allow the model to perform better around
 crash periods and other events in the tail of the distribution. With regard to
 the indices studied in this paper, we document several differences between
 volatility components associated with "old" versus "new economy" stocks. Fi-
 nally, our model provides superior out-of-sample conditional variance forecasts
 relative to a popular benchmark model, even when the latter is allowed to have
 fat-tailed innovations. These superior out-of-sample forecasts should result in
 improvements in financial management.

 This paper is organized as follows. Section I gives a detailed account of the
 two stochastic components affecting returns, construction of the likelihood, and
 conditional moments. The data used in this study is presented in Section II. A
 discussion of the empirical results is presented in Section III, out-of-sample
 forecasts are evaluated in Section IV, while Section V summarizes the results.
 An Appendix contains some theoretical calculations for the model.

 I. A GARCH-Jump Model for Returns

 In this section, we present a mixed GARCH-jump model for individual se-
 curity returns. In our model of return volatility, we maintain an unobserved
 news process that directs movements in prices. News events, together with in-
 vestors' expectations of these events, may result in price changes. In this paper,
 we do not model the latent news process directly but rather propose a model
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 Individual Stock Returns 761

 of the conditional variance of returns implied by the impact of different types
 of news. We label the innovation to returns, which is directly measurable from
 price data, as the news impact from latent news innovations.
 The latent news process is postulated to have two separate components, nor-

 mal and unusual news events. These news innovations are identified through
 their impact on return volatility. In particular, the impact of unobservable nor-
 mal news innovations is assumed to be captured by the return innovation
 component, El,t. This component of the news process causes smoothly evolving
 changes in the conditional variance of returns. The second component of the
 latent news process causes infrequent large moves in returns, E2,t. The impacts
 of these unusual news events are labeled jumps.
 We begin by specifying the components of returns. Given an information set

 at time t - 1, which consists of the history of returns (Pt-1 = {rt-l, ... ,rl, the
 two stochastic innovations, E1,t and e2,t, drive returns,

 rt = iL + El,t + E2,t. (1)

 In particular, El,t is a mean-zero innovation (E[el,t I Lt-1] = 0) with a Normal
 stochastic forcing process,

 El,t = UatZt, Zt - NID(0, 1), (2)

 e2,t is a jump innovation specified so that it is also conditionally mean zero
 (E[E2,t I (t-1] = 0), and E1,t is contemporaneously independent of E2,t.
 The subsections that follow describe our parameterization of these two

 stochastic components of returns. In particular, we begin by specifying the pro-
 cess governing jumps and the distribution of jump sizes. Then we describe in
 some detail the components of time-varying volatility. These parametric as-
 sumptions allow us to optimally infer when jumps arrive through the use of
 Bayes rule. The next subsections summarize the conditional moments of re-
 turns and the construction of the log likelihood and the filter. Henceforth, we
 refer to the mixed GARCH-jump model with autoregressive jump intensity as
 GARJI.

 A. Autoregressive Conditional Jump Intensity (ARJI)

 Unlike the previously cited GARCH-jump mixture models, we explicitly in-
 corporate an autoregressive conditional intensity that governs the likelihood of
 jumps occurring between time t - 1 and t. The distribution of jumps is assumed
 to be Poisson with a time-varying conditional intensity parameter. In partic-

 ular, a Poisson distribution with parameter Xt conditional on <t-1 is assumed
 to describe the arrival of a discrete-valued number of jumps, nt E {0, 1, 2,...},
 over the interval (t - 1, t). The conditional density of nt is

 exp(-Xt)Aj P(nt = j I t-1) , j = 0, 1, 2, .... (3) j!
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 762 The Journal of Finance

 The conditional jump intensity, Xt _ E[nt I t-11, is the expected number of
 jumps conditional on the information set It_1 . The dynamics governing Xt
 are parameterized as

 -t = Xo + PXt-1 + Yt-1, (4)
 defined as an autoregressive conditional jump intensity (ARJI) model in Chan
 and Maheu (2002). In this model, the conditional jump intensity Xt is assumed to
 be autoregressive and related to last period's conditional intensity as well as to
 an intensity residual t_-1. It seems likely that the probability ofjumps will vary
 over time, and may be sensitive to economic conditions, such as the business
 cycle, bull and bear markets, and monetary policy. The specification in equa-
 tion (4) is a time-series approach to studying the arrival process of jumps.11
 A natural measure of the persistence of this process is p. The restrictions
 p = y = 0 yield a constant jump intensity as in Jorion (1988).
 The jump intensity residual is defined as

 ?t-1 E[nt- 1 I t-1] - Xt-1

 = jP(nt-1 = j I t-1)- Xt-1. (5)
 j=o

 P(nt-i =j I I(t-1) is called the filter and is the ex post inference on nt-1 given time
 t - 1 information. More details on the filter and construction of the log likelihood

 are detailed in a subsection below. E[nt-1 I (t-i] is our ex post assessment of the
 expected number ofjumps that occurred from t - 2 to t - 1, while Xt-1 is by defi-
 nition the conditional expectation of nt-1 given the information set Ot-2. There-

 fore, ?t-1 represents the change in the econometrician's conditional forecast
 of nt-1 as the information set is updated (Qt-1 = E[nt-1 I )t-_] - E[nt-1 I (t-2]).
 Note from this definition that ?t is a martingale difference sequence with respect
 to (It-l,

 E[t I Dt-i_] = 0 (6)

 and therefore E[%t] = 0 and Cov(%t, at-i) = 0, i > 0. Hence, the intensity residu-
 als in a well specified model should display no autocorrelation.
 There are several important features of this conditional intensity model.

 First, if the ARJI specification is stationary, (Ipl < 1), then the unconditional
 jump intensity is equal to

 X0 E[xt] = (7)
 i-p

 Second, forecasts of ht+i, and therefore the conditional variance of E2,t+i, are
 straightforward to calculate. For example, multiperiod forecasts of the expected
 number of future jumps are

 1 An alternative model of the conditional intensity would be a structural model in which eco-
 nomic variables affect the jump likelihood.
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 E[It+i I t-1= ( i (8) ho(1 + p + -+ pi-1)+pilt i >

 Notice that the ARJI model can be re-expressed as

 .t = =0 + (P - y),t-1 + yE[nt-1 IPt-1]. (9)

 A sufficient condition for tt > 0, for all t > 1, is 0o > 0, p > y, and y > 0.12 To estimate the ARJI model, startup values of kt, $t, t = 1 must be set. We set
 startup values of the jump intensity to the unconditional value in equation (7),
 and ,1 = 0.

 B. The Jump Innovation and Jump-Size Distribution

 The jump size Yt,k is assumed to be independently drawn from a Normal
 distribution. The jump-size distribution is

 Yt,k - NID(O, 82), (10)

 and the jump component affecting returns from t - 1 to t (period t) is

 nt

 gt= Yt,k. (11) k=1

 Therefore, the jump innovation associated with period t is expressed as

 nt

 E2,t = t - E[Jt I =t-1] L Yt,k - o0t, (12) k=1

 which is the sum of the stochastic nt jumps, which arrived over the time interval
 (t - 1, t) adjusted by E[Jt I I)t-1 = Ot , so that E2,t is conditionally mean zero.

 C. Time-Varying Volatility Components

 The conditional variance of returns is decomposed into two separate com-
 ponents: a smoothly evolving conditional variance component related to the
 diffusion of past news impacts and the conditional variance component associ-
 ated with the heterogeneous information arrival process that generates jumps.
 The conditional variance of returns is

 Var(rt I t-l) = Var(El,t I t-1) + Var(62,t I t-1). (13)

 12 Note that if p < y, additional restrictions on the model may be available to ensure ;t > 0 for
 all t.
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 The first component of the conditional variance, a,2 = Var(E1,t I ot-1), is param-
 eterized as a GARCH function of past return innovations,

 a2 = W + dg(A, (t-l)E+_ - i-t21, (14)
 where g(-) is a function of the parameter vector A, and the information set, and

 Et-1 = E1,t-1 + E2,t-1, (15)

 is the total return innovation observable at time t - 1. We label g(-) the feedback
 coefficient from past return innovations. The GARCH volatility component al-
 lows past shocks affecting returns to affect expected volatility, and captures the
 smooth autoregressive changes in the conditional variance that are predictable
 based on past news impacts.
 Following Engle and Ng (1993), we associate good news with a positive im-

 pact on returns, (Et-1 > 0), and bad news with a negative impact on returns,
 (Et-1 < 0). The g(-) function detailed below allows for asymmetric effects with
 respect to the impact of past good and bad news and also with respect to feed-
 back effects from past jump versus normal innovations.
 Ideally, we want each component of Et-1 to affect future expected volatility

 differently.13 However, we cannot perfectly separate these two stochastic com-
 ponents based on observed returns.14 Instead, our GARCH specification allows
 the feedback from Et-1 to flexibly respond to the composition of Et-1 through the
 parameter function g(A, (t-1). Volatility may be sensitive to good news versus
 bad news effects or whether a jump occurred last period. For instance, impor-
 tant news events that result in a jump may be quickly incorporated into current
 prices and have a smaller effect on future volatility; or the reverse, news that
 causes jumps may cause future volatility.15 To investigate this hypothesis, we
 estimate the number of jumps that occurred during period t - 1 and allow it to
 directly affect the feedback that Et-1 has on the GARCH variance process. We
 allow for all of these responses using the following parameterization:16

 g(A, Dt-1) = exp(a + aj E[nt-_ I t-11 + I(Et-1)(a + oa,jE[nt-11i t-i])), (16)

 where the model parameters are collected in the vector A = {a, aj, aa, Oa,j},
 I(Et-1) is an indicator function that takes the value 1 when Et-1 < 0, and 0

 13 Note that measurable shocks to the conditional intensity do propagate and affect future jump
 probability (and therefore expected volatility) separately from the GARCH specification.

 14 We can calculate E[e2,t_1 I t-11], but this is likely to seriously understate the variability from
 the realized E2,t-1.

 15 Important news events may cause future volatility as investors absorb the importance of the
 news and its effect on future cash flows and the profitability of the firm. Often important news
 events stay in the headlines for several days forcing investors to re-evaluate their expectations.

 16 Along with non-negative constraints on w and f, the exponential function ensures that the
 conditional variance is positive.
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 otherwise, and E[nt_l I Pt-_] is an ex post assessment of the expected number
 of jumps that occurred between t - 2 and t - 1, using t - 1 information.

 Firstly, this parameterization of at2 allows asymmetric responses to bad ver-
 sus good news. In particular, observed negative innovations to returns (bad
 news) are allowed to have a different feedback on a2 through the extra contri-
 bution of the parameters aa and aa,j.
 Recall that the GARCH parameterization includes the effects of both past

 normal innovations and past jump innovations to returns, as indicated by
 eduation (15). Our parameterization allows for a difference in the propagation of
 previous news effects that result in jumps (E2,t-1) versus news events that cause
 normal innovations (Ei,t-1). Therefore, the parameter aj, scaled by the most re-
 cently inferred number of jumps, allows the feedback on a2 from news events
 causing jumps to be different than the feedback associated with normal news
 events. In addition, we allow the news feedback on a2 from the inferred number
 of jumps to be different when the past news was good or bad. To illustrate: if last
 period's news was good and no jumps occurred, the feedback coefficient to o,2 is
 g(A, )t-1) = exp(a), while if news was good and one jump occurred, the coeffi-
 cient is g(.) = exp(a + aj); if last periods news was bad and no jump occurred,
 the feedback coefficient to a2 is g(.) = exp(a + aa); and finally, if the news was
 bad and was associated with one jump it is g(.) = exp(a + a + l j + Oa,j).
 Given our development of the conditional jump intensity and the jump-size

 distribution, the conditional variance component associated with the jump
 innovation is

 Var(E2,t I (t-1) = (02 + 82)Xt. (17)

 This contribution to the conditional variance from jumps will vary over time as
 the conditional intensity Xt varies. In other words, this component can range
 from being small to large as the expected number of jumps changes through
 time.

 One interpretation of the decomposition of the conditional variance into the
 two components is that the GARCH component a2 captures the normal time-
 variation of volatility associated with the predictable decay of the impact, on
 expected volatility, from past news innovations to returns. We interpret this
 time-series effect to be related to the dissemination and diffusion of informa-

 tion, liquidity trading, etc. In contrast to the GARCH specification of volatility,
 jumps occur when a significant news event arrives that causes an unusual
 abrupt change in returns. For instance, a jump is likely to have occurred when
 an extreme tail realization occurs in the returns process. Statistically, jumps are
 identified by observations that are inconsistent with the first stochastic compo-
 nent of returns, El,t. In this case, the GARCH volatility component is unable to
 accommodate the abrupt change in volatility and such observations are identi-
 fled as a jump. Modeling jumps and their arrival process may be a particularly
 important feature for capturing events that lead to episodes of high volatility
 as well as for incorporating higher-order conditional moment dynamics such as
 time-varying skewness, and kurtosis of stock returns.
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 766 The Journal of Finance

 D. Moments of Returns

 The first four conditional moments of returns for our model are

 E[rtI Pt-l] = A (18)

 Var(rt I t-_) = at2 + (02 + S2)(t (19)
 ht(03 + 3082) Sk(rt I t-1+) = (20)

 (?2 + 32 + Xt2)3/2

 Xt(04 + 68232 + 384) Ku(rt tl-) = 3+ 2(21)
 (Ut2+ , a+2 t 2)

 in which Sk(rt I 4t-1) is the conditional skewness of returns, and Ku(rt I Pt-1) is
 the conditional kurtosis. The derivation of these moments can be found in Das

 and Sundaram (1997). The sign of conditional skewness depends on the sign
 of the jump size mean, 0. With jumps in the model, all high-order conditional
 moments are effected by the conditional jump intensity Xt and cr2.17

 In general, the g(.) function in the GARCH specification does not permit a
 closed form solution for the unconditional variance. However, the unconditional

 variance of returns can be calculated for the special case of aj = ca, = Ola,j = 0,18

 Var(rt) = U+02+32) X( + (02 +2) X0 (22)
 (1 -C a - P) (1 - a - p)(1 - p) (1 - p)

 The first term in (22) is the usual unconditional variance from a GARCH(1,1)
 model, the last term is the unconditional variance from the jump innovation
 E2,t, and the middle term is the result of the interaction of the total news impact

 Et-1 = El,t-1 + E2,t-1 entering in the GARCH function. Details on this calculation
 can be found in the Appendix.

 E. Likelihood Function

 Construction of the likelihood function follows. Conditional onj jumps occur-
 ring the conditional density of returns is Normal,

 1 exp( (rt - - + 0Xt - 0j)2 f (rt I nt = j, (t-1)= -2(2 exp _- ? c)1,2 , ;A2

 17 Alternative parametric approaches to modeling time-varying higher-order conditional mo-
 ments include Hansen (1994), Premaratne and Bera (2001), Perez, Quiros, and Timmermann
 (2001), and Harvey and Siddique (1999).

 is Here the GARCH is parameterized as ot2 = w + at2_1 + foat2_1
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 Individual Stock Returns 767

 Integrating out the number of jumps gives the conditional density in terms of
 observables,

 f(rt I =(t-1) = f(rt Int = j, 0t-1)P(nt = j I t-1). (23)
 j=O

 The filter is then constructed as

 P(nt j I t) - f(rt I nt = j, ct-1)P(nt = J I t-1) P(ntf=rtt)=j = 0, 1, 2, ..., (24)
 and provides an ex post distribution for the number of jumps, nt. The filter is
 also applicable and useful in studying jump dynamics in simpler jump specifi-
 cations such as Jorion (1988). One method to assess if a jump occurred would
 be to use the filter to find the probability that at least one jump occurred.
 This is, P(nt > 1 I 1Pt) = 1 - P(nt = 0 I 1It), which is directly available from model
 estimation.

 Finally, it should be noted that these terms in the likelihood and filter involve
 an infinite summation. To make estimation feasible, we truncated this summa-
 tion at 25. In practice, for our model estimates, we found that the conditional
 Poisson distribution had zero probability in the tail for values of nt > 10.

 II. Data

 Due to the infrequent nature of jumps and our desire to obtain accurate
 estimates of the jump dynamics, we focused on firms with medium to long
 spans of available data. Daily price data for the randomly chosen firms that
 fit this criteria were obtained from the Center for Research in Security Prices
 (CRSP) database with samples ending on December 29, 2000. These firms (start
 dates) are: Amgen (June 2, 1983); Apple (December 15, 1980); Coca Cola or
 KO (July 3, 1962); General Motors or GM (July 3, 1962); Home Depot or HD
 (January 3, 1983); Hewlett-Packard or HWP (July 3, 1962); Intel (January 4,
 1982); Johnson & Johnson or J&J (July 3, 1962); Motorola or MOT (July 3, 1962);
 and Texaco (July 3, 1962). In order to evaluate out-of-sample forecasts, a range-
 based estimate of realized or ex post volatility was constructed from intraday
 high and low price data obtained from Commodity Systems, Incorporated. Since
 this range-based measure was also used to evaluate IBM forecasts around the
 1987 crash, we obtained the IBM data from the same source for the period
 July 3, 1962 to March 1, 2001. Finally, three indices were studied with samples
 to the end of 2001. These indices (start dates) are the Dow Jones Industrial
 Average or DJIA (January 4, 1960); Nasdaq 100 (February 1, 1985); and the
 CBOE Technology Index or TXX (May 16, 1995).

 Table I provides summary statistics for daily continuously compounded re-
 turns for these firms. Percent returns were computed based on daily clos-
 ing prices, which have been adjusted for all applicable splits and dividend
 distributions.
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 Table I

 Summary Statistics for Daily Returns

 Amgen Apple KO GM HD HWP IBM Intel J&J MOT Texaco

 Obs 4432 5067 9694 9693 4549 9694 9858 4612 9694 9694 9693

 Mean 0.118 0.014 0.052 0.010 0.113 0.057 0.027 0.116 0.058 0.045 0.044

 (0.045) (0.048) (0.016) (0.016) (0.037) (0.022) (0.016) (0.046) (0.016) (0.023) (0.018)
 Std. Dev. 2.976 3.395 1.570 1.609 2.469 2.213 1.623 2.825 1.574 2.304 1.616

 (0.058) (0.169) (0.034) (0.025) (0.085) (0.030) (0.033) (0.067) (0.023) (0.034) (0.025)
 Skewness -0.144 -2.109 -0.438 -0.147 -1.287 -0.199 -0.383 -0.510 -0.062 -0.303 -0.022

 (0.184) (1.690) (0.614) (0.332) (0.687) (0.163) (0.478) (0.282) (0.244) (0.188) (0.173)
 Kurtosis 7.755 51.156 19.397 10.533 22.462 8.050 17.232 9.281 9.027 9.279 8.646

 (0.850) (33.230) (9.834) (4.350) (7.858) (1.214) (6.737) (1.785) (2.653) (1.313) (0.988)
 Kurtosist 7.421 51.625 8.937 6.006 20.904 7.053 10.196 8.659 6.372 8.870 8.416

 (0.818) (34.178) (1.708) (0.582) (8.336) (0.767) (1.454) (1.779) (0.770) (1.286) (0.984)
 Min -22.314 -73.125 -28.358 -23.601 -33.877 -22.681 -26.812 -24.888 -20.278 -20.935 -14.132
 Max 18.658 28.689 17.959 13.652 20.399 18.990 12.364 23.413 14.752 22.674 11.914

 Standard errors robust to heteroskedasticity are in parentheses.
 tCalculates kurtosis with the 1987 stock market crash (October 19, 1987) removed.

 00

 (t

 Z4

 C)
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 Individual Stock Returns 769

 III. Results for the GARJI Model

 A. Individual Firms

 This subsection discusses estimation results for our GARCH-jump model
 with autoregressive jump intensity (GARJI) applied to individual firms. Table II
 reports some empirical evidence supporting the conjecture that important news
 events, such as earnings surprises, can be a source ofjumps. Choosing Intel and
 IBM as examples, and using the last six quarters of our sample, Table II reports
 earnings surprises,19 daily price changes, and the probability that at least one
 jump occurred. For example, the large price drop for IBM on October 18, 2000
 was associated with a 0.99 probability of at least one jump and a negative earn-
 ings surprise reported the night before. Another interesting example was April
 2000 for Intel. Our model inferred that a jump occurred on April 17. The 10.72
 percent return that day may have been in anticipation of the positive earnings
 surprise reported the next day after the market closed. However, following the
 earnings announcement, there was another jump associated with a return of
 -8.02. One possible interpretation was that the positive earnings surprise was
 not as large as the market had anticipated. This example illustrates how jumps
 can be clustered around significant news events. Of course earnings surprises
 are only one source of news innovations that are associated with jumps. As dis-
 cussed further below, another source, which often results in a cluster of jumps
 is a market crash such as October 1987.

 Table III reports parameter estimates for our GARJI model applied to in-
 dividual firms. The residual-based diagnostic test results reported in Table IV
 indicate that there is no remaining serial correlation in either the squared stan-
 dardized residuals or the jump intensity residuals. It is useful to note that the
 latter test indicated misspecification for the case of a constant intensity param-
 eter (Xt = k). Also, a likelihood ratio (LR) test for the ARJI versus a constant
 jump intensity model strongly favors the ARJI dynamics for all models. The LR
 tests are discussed in more detail in the next section.

 There are several common features for all companies evident in the Table III
 results. First, there is very significant evidence of time-variation in the arrival
 of jump events (p and y are both significantly different from zero) for all firms.
 Note that the persistence parameter p for the arrival ofjump events (jump clus-
 tering) is quite high, although it is considerably lower for J&J, HD, and KO than
 for all of the other firms. Secondly, the parameter y, which measures the effect
 of the most recent intensity residual (the change in the conditional forecast of
 nt-1 due to last day's information innovation) ranges from 0.185 to 0.892. This
 statistical significance of both the lagged intensity residual and jump clustering
 suggests that the arrival process can systematically deviate from its uncondi-
 tional mean. Panels A to E in Figure 1 display several features of the model
 for IBM over the recent period 1998 to 2001. For example, pertaining to jump

 19 Earnings surprises were obtained from Bloomberg; they are based on the average of analysts'
 forecasts reported by IBES.
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 770 The Journal of Finance

 Table II

 Earnings Surprises and Jumps
 P(nt > 1 I tt) is the ex post probability of at least one jump. Earnings surprises are recorded here
 in bold on the first day the market is open following an earnings announcement.

 Company Date Price Change (%) P(nt > 1 t) Earnings Surprise (%)

 Intel 11 Oct 99 1.07 0.01
 12 Oct 99 0.24 0.01
 13 Oct 99 -6.13 0.23 -3.67
 14 Oct 99 1.68 0.04

 12 Jan 00 1.73 0.03
 13 Jan 00 -0.21 0.02
 14 Jan 00 12.38 0.94 8.83
 15 Jan 00 -0.91 0.16

 17 Apr 00 10.72 0.85
 18 Apr 00 4.76 0.28
 19 Apr 00 -8.02 0.65 2.89
 20 Apr 00 -3.15 0.25

 IBM 18 Jul 00 -2.10 0.02
 19 Jul 00 5.17 0.07
 20 Jul 00 7.53 0.35 5.78
 21 Jul 00 -2.16 0.11

 16 Oct 00 1.87 0.22
 17 Oct 00 1.68 0.14
 18 Oct 00 -16.89 0.99 -0.18
 19 Oct 00 1.04 0.36

 16 Jan 01 -1.14 0.02

 17 Jan 01 4.16 0.04
 18 Jan 01 11.35 0.65 1.78
 19 Jan 01 2.68 0.20

 arrival, Panels B and C display the time-series of the conditional jump intensity
 and the ex post probability of a jump.
 On the other hand, there are some differences in the jump dynamics across
 firms reported in Table III. For example, the unconditional jump intensity,
 computed as in equation (7), is 0.046 for Intel and IBM, 0.167 for GM and
 0.172 for KO. This implies that for Intel (and IBM) jumps to returns arrive on
 average less frequently than once per month, but as often as once every six
 business days for GM. However, the average time between jumps is misleading
 since the ARJI specification shows that jumps are likely to cluster. Therefore,
 IBM may have three jumps within a week but no jumps for the next three
 months. Note that the jump intensity is only one aspect of the jump dynamics.
 A better summary measure of the effect of jumps on returns is the average
 variance due to jumps, which is 2.96, 4.09, and 1.62 for Amgen, Apple, and
 Intel, respectively.20 On the other hand, it is 0.65 for both GM and KO.

 20 The calculations in the Appendix show that the unconditional variance of jump innovations

 is Ee2,t (02 + 2)X0/(1 - p). 2,t
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 Table III

 GARJI Model Estimates
 nt

 rt = A + 61,t + E2,t, El,t = UtZt,zt Zt NID(O, 1), E2,t = Yt,k - Ot, Yt,k N(O, )2), ,t = '0 + Pt-1 "+ -Yt-1 k=1

 a2 = + g(A, 2t 2)E2 2 t= w- + g(A, Dt-1)t2- +ft2-i, Et-1 = El,t-1 ? E2,t-1

 g(A, 4t-1) = exp(a + ajE[nt_- I t-Dl] + I(Et-1)(aa + a,,jE[nt- I Dt-11])), (ctl-) = 1 if t-1 < 0, otherwise 0.

 Amgen Apple KO GM HD HWP IBM Intel J&J MOT Texaco

 A 0.087 0.010 0.052 0.002 0.088 0.040 0.017 0.096 0.047 0.052 0.022
 (0.039) (0.042) (0.013) (0.014) (0.032) (0.020) (0.014) (0.038) (0.014) (0.021) (0.013)

 w 0.029 0.008 0.004 -0.0003 0.056 -0.004 0.009 0.090 0.002 0.021 0.001

 (0.018) (0.009) (0.002) (0.001) (0.019) (0.004) (0.003) (0.028) (0.005) (0.006) (0.002)
 a -3.958 -3.824 -4.251 -4.664 -3.933 -3.903 -3.823 -4.638 -3.711 -3.551 -3.449

 (0.391) (0.273) (0.254) (0.394) (0.454) (0.423) (0.223) (0.478) (0.328) (0.194) (0.216)

 aN -0.113 -1.098 -0.023 -0.148 -0.230 0.325 -0.453 0.765 0.067 -1.592 -0.430 (0.244) (0.326) (0.128) (0.244) (0.707) (0.325) (0.307) (0.490) (0.139) (0.577) (0.148)
 aa 1.196 -0.173 1.453 1.371 1.659 1.268 1.055 1.869 1.535 0.439 0.464

 (0.353) (0.468) (0.298) (0.368) (0.455) (0.396) (0.223) (0.518) (0.336) (0.225) (0.226)

 aa,j -1.730 -0.173 -0.750 -1.100 -1.183 -0.818 -0.890 -2.304 -0.645 0.608 -1.411
 (0.560) (0.643) (0.284) (0.454) (0.882) (0.422) (0.425) (0.610) (0.238) (0.644) (0.447)

 / 0.957 0.979 0.957 0.979 0.929 0.959 0.953 0.949 0.920 0.959 0.961
 (0.011) (0.006) (0.005) (0.004) (0.013) (0.008) (0.006) (0.009) (0.011) (0.005) (0.006)

 Xo 0.050 0.023 0.073 0.022 0.038 0.057 0.014 0.012 0.260 0.013 0.013
 (0.017) (0.007) (0.019) (0.007) (0.017) (0.019) (0.004) (0.005) (0.074) (0.006) (0.004)

 p 0.639 0.830 0.576 0.868 0.391 0.785 0.694 0.737 0.403 0.719 0.924
 (0.089) (0.049) (0.082) (0.043) (0.155) (0.058) (0.085) (0.105) (0.140) (0.122) (0.019)

 y 0.892 0.417 0.556 0.468 0.478 0.423 0.374 0.298 0.608 0.185 0.419
 (0.193) (0.087) (0.097) (0.010) (0.152) (0.080) (0.092) (0.151) (0.116) (0.075) (0.072)

 0 -0.005 -0.550 0.137 0.107 -0.841 0.086 -0.015 -1.047 0.078 -0.381 0.249
 (0.285) (0.322) (0.079) (0.103) (0.589) (0.094) (0.235) (0.601) (0.047) (0.346) (0.091)

 8 4.621 5.473 1.943 1.977 4.801 2.485 3.595 5.867 1.413 4.630 2.083
 (0.450) (0.498) (0.139) (0.178) (0.758) (0.188) (0.311) (0.812) (0.098) (0.510) (0.172)

 Igl -10629.6 -12652.5 -16853.4 -17368.5 -9977.9 -20575.3 -17327.8 -10925.8 -17276.4 -20916.2 -16636.9

 Notes: Standard errors are in parentheses. igl is the loglikelihood.

 h(

 F1,
 C2
 Cr.

 FL
 F=l

 hr

 t/l)

 O
 O

 CP
 PY~

 F=
 Y
 c3Y
 Cn

 4;1
 ii

This content downloaded from 
��������������142.1.8.200 on Thu, 30 Sep 2021 17:03:18 UTC�������������� 

All use subject to https://about.jstor.org/terms



 Table IV

 Residual-Based Diagnostics for the GARJI Model

 Amgen Apple KO GM HD HWP IBM Intel J&J MOT Texaco

 Q2(5) 1.825 1.392 5.065 3.729 2.467 1.801 4.942 5.237 3.828 2.198 9.223
 [0.873] [0.925] [0.408] [0.589] [0.781] [0.876] [0.423] [0.388] [0.5741 [0.8211 [0.100]

 Q2(20) 14.437 25.862 33.447 12.789 10.395 20.817 17.341 17.585 24.637 10.286 26.575
 [0.808] [0.170] [0.030] [0.886] [0.960] [0.408] [0.631] [0.615] [0.216] [0.963] [0.148]

 Q t (5) 5.506 3.276 3.991 2.016 4.923 2.939 5.175 4.662 3.752 2.079 5.214
 [0.357] [0.658] [0.551] [0.847] [0.425] [0.709] [0.395] [0.458] [0.586] [0.838] [0.390]

 Q&t (20) 32.625 19.535 18.603 7.717 15.040 18.846 24.917 14.053 27.764 22.971 16.487
 [0.037] [0.487] [0.548] [0.9941 [0.774] [0.532] [0.205] [0.828] [0.115] [0.290] [0.686]

 Q2(5) and Q2(20) are modified Ljung-Box portmanteau test, robust to heteroskedasticity, for serial correlation in the squared standardized residuals
 with five and 20 lags for the respective models. Q (5), and Q ,(20) are the same test for serial correlation in the jump intensity residuals. p-values
 are in square brackets.

 C`1

 0P
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 A, Daily Returns, IBM
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 Figure 1. Time-series of IBM.

 In addition, the jump-size mean 0 is positive for KO, GM, HWP, J&J, and
 Texaco, but negative for the remaining firms. The fact that the impact of jumps
 on the conditional mean of returns tends to be centered around zero on average
 (the mean of 0 is only significantly different from zero for Texaco) does not imply
 that jumps do not affect the distribution of returns. As is clear from Section
 I.D, even with 0 = 0 jump dynamics affect the conditional variance, as well as
 the conditional kurtosis and hence tail realizations. The jump-size standard
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 D, Conditional Variance, IBM
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 Figure 1.-Continued

 deviation 8 is larger for Intel, Apple, and Amgen. Results in Section III.B will
 investigate whether there is a general difference between new economy and
 traditional economy stocks with respect to size and average jump direction
 (sign of the jump-size mean).

 Table V reports some descriptive statistics for the jump components. The sam-
 ple averages of At for the firms are almost identical to the implied unconditional
 number of jumps (equation (7)) discussed above. The average realized number
 of jumps per period (mean of E[nt I t]) is very close to the average expected
 number of jumps (mean of At) for each firm indicating that the )t are unbiased
 forecasts for E[nt I Pt]. As expected, the ex post measure of the number ofjumps
 E[nt I Dt], has a higher standard deviation than its ex ante component, At.

 The total conditional variance given in equation (19), which is a combination
 of the GARCH and jump variance components, is shown in panel D in Figure 1
 for IBM, while panel E from this figure displays the individual volatility com-
 ponents. Clearly, the GARCH variance factor provides the main description of
 the smooth changes in daily volatility while jumps capture unusual episodes of
 volatility. This observation is born out in the descriptive statistics in Table V.
 Of particular interest is the average proportion of the conditional variance ex-
 plained by the jumps, which is about 20 percent for both IBM and Intel, but
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 Table V

 Summary Statistics for the Conditional Jump Intensity and Conditional Moments of Returns
 Reported statistics are sample averages (standard deviations in parentheses). At = E[nt I Pt-1] is the ex ante expected number of jumps; E[nt I Ft] is
 the ex post average number of jumps; Var(E2,t I t- 1)/Var(rt I Ot-1) is the proportion of the conditional variance explained by the jump component on
 average; and Var(rt I Ot-1), Sk(rt I Ot-1), and Ku(rt I 4t-1) are the sample average conditional variance, conditional skewness, and conditional kurtosis
 of returns, respectively.

 Amgen Apple KO GM HD HWP IBM Intel J&J MOT Texaco

 At 0.140 0.134 0.172 0.164 0.061 0.265 0.044 0.046 0.437 0.046 0.173
 (0.206) (0.151) (0.132) (0.159) (0.063) (0.144) (0.057) (0.047) (0.168) (0.027) (0.222)

 E[nt I It] 0.141 0.135 0.173 0.163 0.060 0.265 0.044 0.046 0.438 0.046 0.173
 (0.273) (0.249) (0.234) (0.229) (0.137) (0.255) (0.122) (0.116) (0.304) (0.106) (0.293)

 Var(E2,t I (t-1) 0.296 0.347 0.310 0.253 0.258 0.362 0.229 0.201 0.410 0.206 0.293
 (0.141) (0.138) (0.121) (0.119) (0.100) (0.115) (0.110) (0.084) (0.128) (0.079) (0.138)

 Var(rt I t_-1) 8.726 10.502 2.308 2.496 5.796 4.730 2.553 7.748 2.384 5.184 2.281
 (5.620) (5.538) (1.558) (1.310) (3.204) (2.313) (1.698) (3.944) (1.300) (2.668) (1.486)

 Sk(rt I t-1) -0.002 -0.182 0.095 0.060 -0.291 0.047 -0.026 -0.232 0.070 -0.114 0.155
 (0.001) (0.058) (0.045) (0.030) (0.125) (0.019) (0.014) (0.085) (0.031) (0.052) (0.066)

 Ku(rt I t-1) 5.603 6.370 5.066 4.526 7.001 4.768 7.827 6.122 4.351 6.245 5.154
 (1.283) (1.403) (1.322) (1.002) (2.264) (1.034) (3.323) (1.357) (0.844) (1.928) (1.289)
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 30 percent for Texaco and 40 percent for J&J. However, at times as much as
 90 percent of the conditional variance for Amgen is due to the jump component.
 As previously noted, jumps will contribute to conditional skewness and kur-

 tosis. Table V reports the average conditional skewness and kurtosis implied
 by the model. Even in the case of companies that have a relatively low number
 of jumps, the effects on higher conditional moments can be substantial. For
 instance, over the period 1990 to 1992 there is considerable variation in condi-
 tional kurtosis for Intel, reaching as high as 13 and spending most of the time in
 the range of five to nine. Equation (21) indicates that when .t > 0, the GARCH
 variance component will have an effect on conditional kurtosis, in contrast to a
 model without jumps, which has a constant conditional kurtosis.

 A.1. The Effect of Jumps on Expected Volatility

 Traditional jump diffusion models assume the process governing jump ar-
 rivals is independently and identically distributed and do not allow jumps to
 affect the dynamics of diffusion volatility. In our case, jumps can affect expected
 volatility through two channels. Firstly, jumps affect the conditional variance
 directly through the time-varying Poisson arrival process and contribute to time
 variation in the second- and higher-order moments. Secondly, the GARCH com-
 ponent of the conditional variance includes the propagation effects of previously
 realized jumps.
 Table VI summarizes statistical tests of whether or not jumps affect volatility

 dynamics. The first column of Table VI reports LR test statistics associated
 with the hypothesis that p = y = 0. This test is designed to detect whether
 or not time-variation in the jump intensity contributes to expected volatility.
 As expected from the t-statistics associated with these parameter estimates in
 Table III, these LR test results strongly reject p = y = 0 so that jump clustering
 affects the conditional variance through this channel.

 The results in the second column of Table VI refer to a LR test for the effect

 of jumps on conditional variance through GARCH feedback effects, that is, the
 propagation of previously realized jump innovations to expected volatility. If
 the parameters aj = a,,j = 0, then past jump innovations have the same effect
 on expected volatility as normal innovations. For all firms, we reject this null
 hypothesis and conclude that jumps affect expected volatility differently than
 normal innovations. Therefore, jumps do affect the conditional variance through
 this channel, and as shown in columns 2 and 4 of Table VII, tend to have a
 smaller positive feedback coefficient than do normal innovations.

 Recall that Et-1 contains both normal and jump innovations that feed back
 into the GARCH component of volatility. The feedback coefficientg(-), associated
 with E2_1 in the GARCH function, includes the extra term aj when good news
 and at least one jump occurs, and the extra terms aj + -a,j when a jump and
 bad news occurs. As reported in Table III, in nine out of the 11 firms, aj < 0
 reducing g(.) when a jump and good news occurs. Furthermore, when the news
 was bad and a jump occured, all firms experience a reduction in g(.) since
 aj + aa,j < O. The implications for the size of g(.), which depends on the sign of
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 Table VI

 Likelihood Ratio Tests of Jump Effects on Expected Volatility
 p = y = 0 is a test of constant jump intensity and therefore no effect of time-varying jump intensity

 on conditional variance of returns. aj = Ua,j = 0 is a test of no additional feedback to conditional
 variance of returns from jump innovations as compared to normal innovations. p-values are re-
 ported in square brackets.

 p= = Olj a,j =--
 Firms

 Amgen 52.282 22.328
 [0.443 x 10-11] [0.142 x 10-4]

 Apple 42.370 29.306
 [0.630 x 10-9] [0.433 x 10-6]

 KO 78.020 25.780

 [0.114 x 10-16] [0.252 x 10-5]
 GM 87.698 28.086

 [0.905 x 10-19] [0.796 x 10-6]
 HD 21.374 13.846

 [0.228 x 10-4] [0.985 x 10-3]
 HWP 56.624 19.970

 [0.506 x 10-12] [0.461 x 10-4]
 IBM 45.038 60.176

 [0.166 x 10-9] [0.857 x 10-13]
 Intel 7.678 11.938

 [0.215 x 10-1] [0.256 x 10-2]
 J&J 22.236 18.496

 [0.148 x 10-4] [0.963 x 10-4]
 MOT 13.806 42.068

 [0.100 x 10-2] [0.733 x 10-9]
 Texaco 71.578 55.010

 [0.286 x 10-15] [0.113 x 10-11]
 Indices

 DJIA 50.624 63.698

 [0.102 x 10-10] [0.147 x 10-13]
 Nasdaq 47.266 21.046

 [0.545 x 10-10] [0.269 x 10-4]
 TXX 56.136 6.280

 [0.646 x 10-12] [0.043]

 the return innovation and also whether a jump was identified, are summarized

 in Table VII. Although Et2_1 is typically large after a jump, jumps result in a
 smaller g(.) than do normal innovations. This implies that news associated
 with jump innovations is incorporated more quickly into current prices.

 A.2. Asymmetries in the Conditional Variance

 Table VIII evaluates the importance of asymmetric feedback from jump in-
 novations in the presence of positive and negative return innovations. Except
 for Intel and Texaco, there is very little evidence (aa,j = 0) to suggest that the
 feedback from jump innovations to expected volatility is different in response to
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 Table VII

 GARCH Feedback from Past Return Innovations

 This table compares the feedback coefficient, g(A, 4t-1), when good and bad news occur with 0 or
 1 jump being inferred last period.

 Good News Bad News

 no jump 1 jump no jump 1 jump

 Firms

 Amgen 0.019 0.017 0.063 0.010
 Apple 0.022 0.007 0.018 0.005
 KO 0.014 0.014 0.061 0.028
 GM 0.009 0.008 0.037 0.011
 HD 0.020 0.016 0.103 0.025
 HWP 0.020 0.015 0.072 0.023
 IBM 0.022 0.014 0.063 0.016
 Intel 0.010 0.021 0.063 0.013
 J&J 0.024 0.026 0.113 0.064
 MOT 0.029 0.006 0.045 0.017
 Texaco 0.032 0.021 0.051 0.008

 Indices

 DJIA 0.014 0.007 0.048 0.025

 Nasdaq 100 0.030 0.028 0.071 0.040
 TXX 0.021 0.022 0.077 0.004

 negative as opposed to positive return innovations (bad versus good news). This
 does not mean that jumps have no impact on expected volatility, but instead
 tend to have a symmetric effect with respect to the type of news. The second set
 of test results in this table evaluate the hypothesis of no good versus bad news
 asymmetries when both jump and normal innovations are considered, that is,

 aa = -a,.j = 0. Except for Amgen and Apple (p-values of 0.0289 and 0.624, re- spectively), we find asymmetry with respect to good and bad news measured
 by the total return innovation. These tests indicate that the traditional good
 versus bad news asymmetry is present when no jumps occur.
 Consider the IBM results as an example. The news impact curve for IBM
 is displayed in Figure 2. When no jumps occur, there is a clear asymmetry

 between good (t-1 > 0) and bad (Et-1 < 0) news. However, when a jump occurs
 the news impact curve tends to flatten and become more symmetric. In terms
 of the parameter estimates in Table III, in the absence of a jump the coefficient
 associated with feedback from good news to a2 is exp(a) = 0.022, while the
 coefficient for bad news is greater, exp(a + Oa) = 0.063. When one jump occurred
 last period,21 the coefficient associated with good news is exp(a + a0j) = 0.014;

 while it is exp(a + j + Oa + Oa,j) = 0.016 for bad news. Table VII reports the
 size of g(.) associated with these four cases for all firms.
 In summary, we find the traditional good and bad news asymmetry, but this
 appears to operate mostly when no jumps occur. In contrast, when jumps occur
 the usual good versus bad news effect diminishes in favor of a more symmetric

 21 As inferred from the time t - 1 filter, E[nt-_ 1 Dt-11.
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 Table VIII

 Likelihood Ratio Tests of Asymmetric GARCH Feedback Effects
 Ua,j = 0 tests for asymmetric feedback from jumps innovations associated with bad versus good
 news. Ota = a,j = 0 tests asymmetry with respect to good and bad news for normal and jump
 innovations, p-values are reported in square brackets.

 Firms alaj = 0 Ua = aa,j = 0

 Amgen 5.260 7.162
 [0.022] [0.0278]

 Apple 0.080 0.942
 [0.777] [0.624]

 KO 2.552 25.428

 [0.110] [0.301 x 10-5]
 GM 2.886 9.378

 [0.089] [0.920 x 10-2]
 HD 2.206 10.020

 [0.137] [0.667 x 10-2]
 HWP 3.208 15.266

 [0.073] [0.484 x 10-3]
 IBM 4.118 30.788

 [0.042] [0.206 x 10-6]
 Intel 9.622 12.244

 [0.192 x 10-2] [0.219 x 10-2]
 J&J 5.282 30.494

 [0.022] [0.239 x 10-6]
 MOT 1.080 12.670

 [0.298] [0.177 x 10-2]
 Texaco 10.680 10.698

 [0.108 x 10-2] [0.475 x 10-2]
 Indices

 DJIA 0.018 30.062

 0.893 [0.297 x 10-6]
 NASDAQ 0.748 6.260

 [0.387] [0.044]
 TXX 4.882 6.800

 [0.027] [0.033]

 effect on expected volatility. In addition, past jumps affect the conditional vari-
 ance, but they tend to have a smaller positive feedback coefficient than normal
 innovations. This evidence is consistent with the stylized fact that the persis-
 tence effect on expected volatility from large shocks to returns is often smaller
 than from normal innovations.

 A.3. Jump Clustering around the 1987 Crash

 Figure 3 focuses on the model for IBM around the 1987 crash. Panel B displays
 the conditional variance components of the model and indicates that it is the
 jump variance component that accounts for the effects on conditional variance
 after the crash. Notice that the smooth GARCH component of volatility shows
 very little increase after the crash. This is an important feature ofjumps, which
 is discussed in more detail below. Comparing panels C and D shows how poorly
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 Figure 2. News impact curve for IBM.

 a constant jump intensity (Xt = =) version of the model does in capturing the
 jump dynamics for this period.

 Further evidence of the ability of the ARJI model to correctly identify and
 forecast jumps is seen in Table IX. This table compares the returns before and
 after the 1987 crash with the ex ante forecast of a jump from both the ARJI
 specification and the constant jump intensity version. The last column of this
 table reports the ex post probability of a jump.22 Using a criterion that a jump
 occurred if P(nt > 1 I 1t) > 0.5, we see that the ARJI specification provides a
 vast improvement over the constant jump intensity model in predicting jumps
 for this period. For example, the ARJI model identifies (ex post) the crash on
 October 19 as a jump and forecasts (ex ante) the jumps that occur in the three
 days immediately following the crash, while the constant intensity probability
 of a jump is constant at 0.03 over the entire sample.

 To further investigate the ability of the GARJI specification to capture the
 volatility structure for IBM around the 1987 crash, Figure 4 presents a compar-
 ison of two conditional standard deviation forecasts (produced by alternative
 models) with a range-based measure of ex post volatility. Following Parkinson
 (1980),23 our estimate of the ex post daily standard deviation is

 ranget = /-Klog(Pt,h/Pt,l) (25)

 22 P(nt > 1 1 t) = 1 - P(nt = 0 1 Ot).
 23 The estimator in Parkinson (1980) provides an efficient unbiased estimate of the volatility

 parameter from a geometric Brownian motion, but may be biased for other stochastic processes.
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 A, IBM Daily Returns
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 Figure 3. IBM and the 1987 crash.
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 Table IX

 Jump Predictions for IBM around the 1987 Crash
 ARJI is the ex ante jump probability from the jump specification discussed in Section II.1 while the
 constant intensity version imposes Xt = ) for all t.

 Ex Ante Jump Probability Ex Post
 Date Return Constant Intensity ARJI Jump Probability

 Oct 14 -2.38 0.029 0.032 0.032
 Oct 15 -3.59 0.029 0.035 0.090
 Oct 16 -3.72 0.029 0.057 0.120
 Oct 19 -26.81 0.029 0.076 1.000
 Oct 20 10.78 0.029 0.630 0.999
 Oct 21 6.52 0.029 0.669 0.923
 Oct 22 -2.26 0.029 0.618 0.532
 Oct 23 0.62 0.029 0.457 0.313
 Oct 26 -7.52 0.029 0.301 0.881
 Oct 27 5.22 0.029 0.420 0.624

 where Pt,h and Pt,t are the intraday high and intraday low prices respectively,
 and K is a parameter that was calibrated to the data to make the range esti-
 mate of the unconditional variance equal to the unconditional variance of daily
 returns.24 Figure 4 shows the standard deviation forecasts from our GARJI
 model, as well as those produced by a fat-tailed asymmetric GARCH model
 with no jumps. For the latter we use a GJR-GARCH model with t-distributed
 innovations (GJR-GARCH-t). After the crash, the GJR-GARCH-t forecast com-
 pletely overshoots realized volatility and persists at high levels for some time.25
 In contrast, the GARJI reverts back to the lower actual levels of volatility much
 more quickly, and provides a superior forecast of daily volatility after the 1987
 crash.

 A.4. Prescheduled Earnings Announcements

 Andersen and Bollerslev (1998b) showed that macroeconomic announce-
 ments that occur on predetermined dates are associated with a volatility com-
 ponent for exchange rates that can have large but generally short-lived effects.
 In our context, although earnings surprises are only one source of jumps, it
 might be important to differentiate between jumps on prescheduled earnings
 announcement days versus jumps on days when there was unscheduled news.

 For our historical samples for IBM and Intel, approximately 16 percent and
 23 percent ofjumps were associated with prescheduled earnings announcement
 days. That is, using our model's filter and the criterion that at least one jump

 24 Parkinson (1980) set f/ = 0.6 while we estimate it to be 0.74 for our sample.
 25 The problem with the basic GJR-GARCH-t model is even clearer from panel B of Figure 3,

 which shows the volatility components from the GARJI model. The GARCH variance component
 increases very little after the crash while most of the volatility dynamics are accounted for by the
 jump dynamics.
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 Figure 4. Alternative estimates of the conditional standard deviation of IBM returns
 around the 1987 stock market crash.

 occurred on day t if P(nt > 1 1 ,Dt) > 0.5, for Intel we identify jumps on 62 days,
 of which 14 coincide with days when there was an earnings announcement (or
 the day after if the announcement was after the market closed). For IBM, jumps
 occurred on 145 days, 24 of which were earnings announcement days.26 On the
 other hand, only 20 percent of scheduled earnings announcements result in
 jumps.

 To investigate whether or not prescheduled earnings announcements have
 different effects than other sources of jumps, we explored a parameterization
 that allows an earnings announcement day dummy variable to affect the jump
 intensity as well as the GARCH conditional variance. We tried several specifica-
 tions, including allowing the effect of the dummy to propagate versus allowing
 for a one-time only effect on the conditional intensity and GARCH variance. We
 found that the one-time effect provided the best log likelihood value. Note that
 the earnings announcement dummy variable was turned on for both the day of
 the announcement and the day after due to the fact that many announcements
 occur after the market closes.

 26 We have IBES data on earnings announcement days starting in the third quarter of 1971 that
 covers three quarters of our total sample for IBM.
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 The results for this richer model are very comparable to our main results
 that were discussed above and reported in Table III. In particular, all of our
 conclusions, such as jump clustering and volatility asymmetries, are robust to
 the addition of prescheduled announcement dummies. The effect of announce-
 ment dummies was imprecisely estimated for our data. As noted above, the
 relatively infrequent occurrence of announcements that result in jumps mean
 that long samples are needed to accurately identify different types of jump
 dynamics.

 B. Indices

 During discussion of the results for individual firms, it appeared as if there
 might be differences between traditional firms and new economy firms. Given
 that available time-series are too short for many Internet stocks, and also that
 it is difficult to classify some firms as traditional versus high-tech, this section
 reports results for our GARJI model applied to three different indices that cover
 different types of firms. Table X reports parameter estimates for the GARJI
 model for the DJIA, Nasdaq 100, and the CBOE Technology Index (TXX). The
 specification of the GARJI model in this table includes an AR(1) term to account
 for the autocorrelation found in the conditional mean of returns for the indices.27

 The three indices cover the spectrum of volatility levels from low to high,
 ordered as DJIA, Nasdaq 100, and TXX. Unconditional standard deviations are
 0.948, 1.815, and 2.429 for the DJIA, Nasdaq, and TXX, respectively. Consistent
 with this ordering is an increased likelihood of jumps for the more volatile
 indices. For instance, the implied unconditional jump intensities are 0.135,
 0.136, and 1.429 for the DJIA, Nasdaq 100, and TXX, respectively. The average
 variance due to jumps is 0.224 (DJIA), 0.443 (Nasdaq 100), and 5.073 (TXX). The
 more volatile the index the larger the jump variance, although the proportion
 of the conditional variance explained by jumps is still quite low overall, 0.166
 for the DJIA, 0.144 for the Nasdaq 100, and 0.228 for the TXX index. These
 results suggest that jumps in the DJIA are less frequent and have a smaller
 effect on returns than the other indices. Conversely, returns from the volatile
 TXX index display frequent large jumps.

 There are several features that are common for individual firm and index

 dynamics. For both, the addition of the ARJI jump dynamics provides a strong
 statistical improvement over a constant jump intensity specification (see esti-
 mates for p and y in Table X and column 1 of Table VI). The process governing
 the arrival ofjumps is serially correlated, which implies jump clustering for the
 indices as well. One difference between the individual firm results and those for

 the two most volatile indices is that revisions to the conditional jump intensity,

 t-1, are more important for the latter. For example, y is 0.936 and 0.974 for the Nasdaq 100 and TXX, respectively, which is larger than the value for the
 DJIA and all the individual firms.

 27 Market microstructure effects such as stale prices can cause low-order autocorrelation in index
 returns.
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 Table X

 GARJI Model Estimates for the Indices

 rt = IL + krt-l + El,t + 62,t, El,t = atZt, Zt - NID(O, 1),
 nt

 E2,t = LYt,k - 60t, Yt,k N(,20, 2), t = X0 + PXt-1 + t-1 k=1

 2 = 0 + g(A, Itl)E -1+ 1, t-1 = El,t-1 + E2,t-1
 g(A, -ti) = exp(a + oj E[nt-11 I ot-1] + I(Et-1)(OUa + aa,j E[nt_1i Itl-)),

 I(Et-1) = 1 if t-1 < 0, otherwise 0.

 Parameter DJIA Nasdaq 100 TXX

 0.019 0.047 0.058

 (0.007) (0.019) (0.048)
 0.109 0.098 0.044

 (0.010) (0.016) (0.025)
 0.001 (0.006) 0.010
 (0.001) (0.003) (0.016)

 a -4.262 -3.511 -3.855

 (0.293) (0.193) (0.425)

 aj -0.708 -0.063 0.050
 (0.322) (0.229) (0.145)

 Ca 1.225 0.864 1.297
 (0.260) (0.313) (0.691)

 Ota,j 0.061 -0.505 -3.032
 (0.416) (0.427) (1.764)
 0.968 0.946 0.968

 (0.006) (0.009) (0.012)

 )o 0.007 0.023 0.030
 (0.002) (0.011) (0.012)

 p 0.948 0.831 0.979
 (0.013) (0.029) (0.008)

 y 0.652 0.936 0.974
 (0.170) (0.333) (0.289)

 0 -0.459 -1.460 -1.822

 (0.097) (0.595) (0.451)
 8 1.205 1.061 0.481

 (0.196) (0.216) (1.221)

 Igl -12601.6 -7468.0 -3687.7

 Notes: Standard errors are in parentheses. Igl is the log likelihood.

 The final three rows in Table VI and Table VIII report the LR test results
 for the effect of jumps on expected volatility for the indices. In each case, jump
 effects on conditional variance are important. The first column of Table VI
 shows that the time-varying jump intensity will affect expected volatility for
 all indices. The second column shows that jump innovations have a different
 feedback on expected volatility than do normal innovations (this differential is
 weakest for the TXX that is the smallest data set and may not contain sufficient
 information to identify this aspect of the model). Like the individual firm re-
 sults, the feedback coefficient, g(.), tends to be smaller when a jump innovation
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 is part of the return innovation. For instance, for the DJIA, the feedback co-
 efficient associated with good news and no jumps is g(-) = exp(a) = 0.014, but
 exp(a + aj) = 0.007, when one jump occurred. Also, in common with the re-
 sults for individual firms, the last three rows of the first column of Table VIII
 show that there is no evidence of asymmetric jump feedback (i.e., aa,j = 0) with
 respect to good or bad news. However, at least for the DJIA index, the final
 column of Table VIII indicates that bad news asymmetries are still important
 for normal innovations in the absence of a jump.
 A direct result of jumps is that they can cause significant conditional and

 unconditional skewness (see equation (20)). Conditional skewness is affected
 by the magnitude and sign of 0. The jump size mean, 0, is significantly neg-
 ative for all three indices while it is centered around zero for most firms (the
 exception is Texaco). This indicates that a negative time-varying conditional
 correlation between jump innovations (consequently return innovations) and
 squared return innovations is an important feature of the indices.28 These re-
 sults are consistent with a time-varying leverage effect in which large negative
 return realizations, in this case due to jumps, are associated with an immediate
 increase in the variance. This is because, when jumps are realized they tend to
 have a negative effect on returns. This result of a significant contemporaneous
 asymmetry is associated with a weaker asymmetry between the sign of lagged
 innovations and the GARCH variance component for the indices as compared
 to the individual firms.29 This is consistent with Duffee (1995) who reports a
 significant negative contemporaneous correlation between aggregate stock re-
 turns and volatility but a weaker contemporaneous correlation for individual
 stock returns and volatility. Duffee speculates that there is a negatively skewed
 market factor and an idiosyncratic firm factor, which is positively skewed. We
 conclude that for the indices a time-varying contemporaneous leverage effect
 that is captured by jumps is more important than the lagged leverage effect
 that is identified in the GARCH structure.

 IV. Evaluation of Variance Forecasts

 This section summarizes results from our evaluation of the out-of-sample
 forecasts from our GARJI model as compared to a benchmark GJR-GARCH-
 t model. In all cases, we re-estimated the models reserving 1,500 observa-
 tions for the out-of-sample analyses. Conditional variance forecasts were based
 on these estimates and the parameters were updated (re-estimated) every
 50 observations.

 One frequently used method to evaluate forecasts is to run a linear regression
 of the realized variable on its forecast. Then the coefficient of determination,
 R2, provides a measure of the value of the forecasts. In the case of volatility, this

 28 Covtl(Et, E2) = Etl13 < 0 if 9 < 0.
 29 Applying the benchmark GJR-GARCH-t model to the indices revealed significant asymmetries

 but in the GARJI model these feedback asymmetries are diminished. Results are available on
 request.
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 is complicated by the fact that the target is unobservable. Traditional proxies
 for ex post volatility, such as squared daily returns, are noisy and relatively in-
 effective for discriminating among forecasting models. Andersen and Bollerslev
 (1998a) show that the use of intraday prices can provide improved ex post esti-
 mates of latent volatility. One such estimator is the range, equation (25), which
 was used in the previous section to compare volatility forecasts for IBM around
 the 1987 crash.

 Therefore, we evaluate our out-of-sample volatility forecasts using the R2
 from the following regression,

 ranget = a + bVartl(rt)1/2 + errort, (26)

 where ranget is the estimate of the ex post standard deviation on day t, and
 Vartl(rt)1/2 is the square root of the out-of-sample conditional variance fore-
 cast for day t from a particular model.30 A higher R2 implies a better forecast-
 ing model in the sense that a larger percentage of the variability of realized
 volatility is explained by that model's forecasts.

 The first row of results in Table XI reports the R2 from the forecast evalu-
 ation regression (26) for the GJR-GARCH-t and the GARJI models applied to
 all firms.31 With the exception of Texaco, the GARJI produces a higher out-of-
 sample R2 for all firms, although the models are about equal for Amgen. In
 some cases, the improvement in the R2 from the GARJI model is substantial
 (Apple, HD, HWP, IBM, and MOT). The Texaco exception is interesting since
 we found that case to be different from other firms in several respects, no-
 tably a higher average intensity of jumps and a significantly positive jump-size
 mean. Although the GARJI model appears to add little to volatility forecasts
 for Texaco, the strong rejection of a constant intensity specification reported
 in Table VI suggests the GARJI dynamics may improve other features of the
 return distribution, such as density forecasts.

 The second panel of results conditions on the observations of higher than
 normal volatility, that is, including observations in (26) only when the ranget is
 greater than its mean plus one standard deviation. The ranking of the models
 is consistent with the results reported in the first panel, which used all of the
 out-of-sample data.

 The GJR-GARCH-t benchmark model can capture volatility clustering and
 fat-tails. However, since that model is from the location-scale family of distri-
 butions, the shape of the tails of the return distribution remain constant over
 time.32 On the other hand, the GARJI model is an example of a time-varying

 30 We also evaluate conditional variance forecasts using the square of the range as our target
 value. The ranking of the models is identical to the results based on equation (26).

 31 As noted in Section III.A.3, the unadjusted range statistic is a biased measure of the ex post
 standard deviation and also, due to Jensen's inequality, the square root of the variance forecast will
 be a biased measure of the conditional standard deviation forecast. Our focus is not on potential
 bias of the model forecasts, but on their ability to explain changes in the volatility as measured by
 the R2 from regression (26).

 32 For example, the conditional skewness and kurtosis are constant over time for the GJR-
 GARCH-t model.
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 Table XI

 Out-of-Sample Statistical Evaluation of Variance Forecasts
 This table reports the R2 from a linear regression of the range-based measure of ex post volatility on a one-period ahead, out-of-sample conditional
 standard deviation forecast from the respective model:

 ranget = a + bVartl(rt)1/2 + errort.

 Three sets of results using this regression are reported: using all out-of-sample data, high-volatility forecasts where ranget is greater than its mean
 plus one standard deviation, and out-of-sample forecasts for 10 days following a large negative return (rt < -2.0).

 Amgen Apple KO GM HD HWP IBM Intel J&J MOT Texaco

 All data

 GARJI 0.263 0.204 0.242 0.151 0.225 0.189 0.081 0.243 0.142 0.256 0.102
 GJR-GARCH-t 0.264 0.130 0.227 0.147 0.151 0.144 0.053 0.225 0.122 0.212 0.108

 High volatility periods
 GARJI 0.060 0.015 0.034 0.015 0.049 0.026 0.004 0.066 0.020 0.009 0.035
 GJR-GARCH-t 0.069 0.013 0.017 0.008 0.020 0.025 0.001 0.061 0.010 0.008 0.047

 Periods following large negative returns
 GARJI 0.243 0.220 0.159 0.116 0.162 0.157 0.072 0.214 0.100 0.239 0.046
 GJR-GARCH-t 0.234 0.138 0.135 0.109 0.102 0.116 0.050 0.210 0.079 0.207 0.049

 -1

 00
 OD
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 Individual Stock Returns 789

 mixture of distributions, which allows the shape of the tails of the return distri-
 bution to change over time. Therefore, the more flexible GARJI model should
 be able to capture dynamics in the tails of the return distribution, particularly
 after a large price move. In Section III.A.3, we illustrated the improved fore-
 casts of the GARJI model after the 1987 crash for IBM. This suggested that the
 addition of jump dynamics plays an important role in improving forecasts after
 a large negative move in the market. Again, the important question is whether
 our richer specification also performs better for out-of-sample forecasts. To in-
 vestigate this for all firms, we consider another conditional regression eval-
 uating out-of-sample forecasts using data around large negative returns. In
 particular, we condition on the daily return being less than negative two per-
 cent and include the 10 days immediately following this downward move in
 the market. The R2s from the regression (26) associated with the out-of-sample
 forecasts for these episodes in our sample are reported in the bottom panel of
 Table XI. As expected, the predictive ability of both models declines compared
 to the top row which includes all of the data, but the GARJI specification con-
 tinues to provide superior forecasts compared to the GJR-GARCH-t alternative
 for 10 out of 11 firms.

 In summary, the results in the three panels of Table XI show that the GARJI
 model produces superior forecasts relative to a benchmark GJR-GARCH-t
 model. These results include out-of-sample forecasts for average volatility,
 above average volatility, and the volatility just after large negative moves in
 the stock price. These substantial improvements in the out-of-sample forecasts,
 relative to a popular benchmark model, should facilitate improved financial
 management decisions.

 V. Summary

 In this paper we have developed a model of the components of the return
 distribution implied by the impact of different types of news. We interpret the
 innovation to returns, which is directly measurable from price data, as the
 news impact from latent news innovations. The latent news process is pos-
 tulated to have two separate components, normal and unusual news events,
 which have different impacts on returns, expected volatility, and higher-order
 moments of the return distribution. Normal news innovations are assumed to

 cause smoothly evolving changes. The second component of the latent news
 process causes infrequent large moves in returns which we label jumps. There-
 fore, the latent news process induces two separate components governing the
 distribution of returns.

 The volatility process is affected by both components driving returns. The con-
 ditional variance of the normal innovation captures the smooth autoregressive
 component in volatility; whereas the conditional variance of the jump inno-
 vation captures unusual and often extreme price movements from significant
 information events. The intensity of the jump process is explicitly modeled
 as a serially correlated conditional Poisson process. This time-varying inten-
 sity affects volatility dynamics directly. In addition, previous jump innovations
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 feed back into expected volatility through the GARCH component of condi-
 tional variance. Furthermore, normal and jump innovations have potentially
 asymmetric effects on volatility dynamics. This rich specification allows for con-
 ditional contemporaneous leverage effects and lagged leverage effects. These
 features extend traditional models that combine GARCH and SV with jumps.
 In summary, we find evidence of time dependence in jump intensities for

 both individual stocks and indices using an autoregressive conditional jump
 intensity parameterization; allow jump innovations to feed back to expected
 volatility; provide new results on asymmetric effects of return innovations on
 volatility; and find evidence of a time-varying contemporaneous leverage ef-
 fect. These novel features allow jumps to have different impacts, feed backs,
 and decay rates as compared to normal innovations allowing the model to per-
 form better around crash periods and other events in the tail of the distribu-
 tion. The structure of our model is such that the mixture of components can
 adapt flexibly to capture different features of the conditional distribution of
 returns. Importantly, our GARCH-jump mixture model also provides superior
 out-of-sample conditional variance forecasts relative to a benchmark asymmet-
 ric GARCH model with fat-tailed innovations. These superior out-of-sample
 forecasts should result in improvements in financial management.
 Finally, the process governing the arrival of jumps may be heterogeneous

 with respect to the type of news. For example, some macro and firm-specific an-
 nouncement dates are known ex ante and may result in deterministic volatility
 that is identified as a jump. In other words, jump dynamics may differ across
 different types of news events. However, the infrequent occurrence of jumps
 makes this identification of different jump dynamics a challenging area for
 future study.

 Appendix

 For notational convenience let E[- I (t_-] = Et-1. The conditional intensity
 can be rewritten as

 00 00

 Xt = Xo :p i + YEpi%- + lim ptk(Al)
 i=O i=1

 Now for Ipl < 1 and, limk,-opkEtk = 0,

 EX o = (A2)
 1-p

 The further restrictions of p > y > 0, and X0 > 0 ensures that Xt > 0 for all t.
 For the GARCH-jump model with the following restrictions, aj - aa = La,j = 0,
 and with the GARCH function parameterized as

 0t2 = -- 1 E +2_ f at2_1, (A3)
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 the unconditional variance is composed of the two components,

 E(rt - )2 = E(Et + 2,t2,t + E2 ,t) (A4)
 = E2 + E ,t. (A5)

 To solve for E2,t, first note that Vart-1(E2,t) = Et-1E2 = (02 + S2)Xt , since by
 construction Et-1E2,t = 0. Therefore,

 EE22,t = EEt-_E,t2 = (02 s2)E(Xt) (A6)

 = (02 + 32) (A7)

 To find Eat2 we have

 Et-22 = w + (a + /)o2 1 aEt-2E,tl, (A8)
 or in general,

 Et-kct2 = w(1 + (a + ?) + + (a + +)k-2)+ (a + )k-l2k+1 (A9)

 +a(Et-kE ,t-1 + (a + P)Et-kE~,t-2 +

 + (a + p)k-2EtkE2tk+l). (A10)

 Under the above conditions that ensure EXt exists and a + P < 1,

 lim Et-k t 0) ?2 2 0 (All)
 k- oo (1-a-fl) (1--- f) 1 - p

 and therefore,

 Var(r0) = +) a(02+2) X + (0+2 2) . (A12) (1 - a - P) (1 - a - P) (1 - p) (1 - p)
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