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Abstract

This paper proposes a discrete-state stochastic volatility model with duration-dependent
mixing. The latter is directed by a high-order Markov chain with a sparse transition matrix.

Ž .As in the standard first-order Markov switching MS model, this structure can capture
turning points and shifts in volatility, due for example, to policy changes or news events.

Ž .However, the duration-dependent Markov switching model DDMS can also exploit the
persistence associated with volatility clustering. To evaluate the contribution of duration

Ž .dependence, we compare with a benchmark Markov switching-ARCH MS-ARCH model.
The empirical distribution generated by our proposed structure is assessed using interval
forecasts and density forecasts. Implications for areas of the distribution relevant to risk
management are also assessed. q 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

To manage risk associated with uncertain outcomes, one relies on forecasts of
Ž .the distribution of k-period-ahead returns. The popular value-at-risk VaR calcu-

lation of the loss that could occur with a specified confidence level over a given
holding period focuses on a single quantile of that forecasted distribution. There
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are several potential questions that would interest risk managers. Firstly, are the
VaR numbers correct on average, or more generally, is the maintained uncondi-
tional distribution adequate? Secondly, given available information, does one
obtain accurate VaR numbers at each point of time? In other words, is the
maintained conditional distribution adequate? Finally, if the answer to either of
these questions is no, how might the risk manager’s model be improved? Implicit
in these questions are difficult issues related to evaluation of the adequacy of
alternative models, and the correct specification of the conditional and uncondi-
tional distribution of returns.

Ž .A first step to forecasting the distribution or some region thereof of future
returns, is to investigate stylized facts concerning the statistical properties of
returns for the asset or portfolio in question. Short-run price dynamics in financial
markets generally exhibit heteroskedasticity and leptokurtosis. For the case of log
price changes in foreign exchange markets, which is the application in this paper,
there is also some evidence of convergence to a Gaussian distribution under time
aggregation.1

The next step might be to postulate a probability model which can replicate
such stylized facts. Since short-run returns are not IID, attention to the conditional
density is warranted. One needs to postulate and estimate a probability model for
the law of motion of returns over time. For currencies at weekly frequencies,
strong volatility dependence combined with largely serially uncorrelated returns
suggests that, for modeling purposes, the main focus should be on the conditional
volatility dynamics. Volatility clustering implies predictability in the conditional
variances and covariances. This empirical fact should contribute to risk manage-
ment strategies.

In this paper, we concentrate on the choice of conditional volatility dynamics
and ask what features a particular specification can deliver in terms of the
conditional and unconditional distributions. We propose a model that emphasizes
discrete changes in the level of volatility and introduces duration dependence to
accommodate volatility clustering. The features of this model are compared with
two benchmark models that do not include the duration structure. Of interest is
whether a particular specification can simultaneously capture important properties
in the conditional and the unconditional distributions.

Alternative models have been proposed to capture and forecast time-varying
Ž .volatility for financial returns. For example, the generalized ARCH GARCH

Ž .class Engle, 1982; Bollerslev, 1986 is based on an ARMA function of past
innovations. These models have become the workhorse for parameterizing in-

1 There are many papers which report stylized facts for exchange rates, including Boothe and
Ž . Ž . Ž . Ž .Glassman 1987 , Diebold 1988 , Engle and Hamilton 1990 , Hsieh 1989 , Kaehler and Marnet

Ž . Ž . Ž .1993 , Vlaar and Palm 1993 , and Nieuwland et al. 1994 .
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tertemporal dependence in the conditional variance of speculative returns.2 Markov
Ž .switching MS models for mixture distributions in which draws for component

Ž .distributions follow a first-order Markov chain Lindgren, 1978; Hamilton, 1988
have also been applied to volatility dynamics.3 Although such discrete-mixtures

Žmodels can generate most of the stylized facts of daily returns series Ryden et al.,´
. Ž1998 , there is some evidence for example, Hamilton, 1988; Pagan and Schwert,
.1990 that the first-order Markov model with constant transition probabilities is

inadequate with respect to capturing all of the volatility dependence.
This paper provides an alternative to the switching ARCH model introduced by
Ž . Ž .Cai 1994 and Hamilton and Susmel 1994 . Our alternative approach is a

discrete-state stochastic volatility model which incorporates a parsimonious high-
order Markov chain to allow for duration dependence. As in the standard
first-order MS model, this structure is useful for capturing shifts and turning points
in volatility that are difficult to accommodate with the ARMA structure implicit in
GARCH. However, unlike the standard model, a duration-dependent Markov

Ž . Žswitching DDMS model Durland and McCurdy, 1994; Maheu and McCurdy,
.2000; Lam, 1997 is particularly suited to exploiting the persistence associated

with volatility clustering. This is achieved by several important features of our
specification. Firstly, the duration variable provides a parsimonious parameteriza-
tion of potential high-order dependence. Secondly, unlike the GARCH case,
persistence is permitted to be time-varying by allowing the duration of a state to
affect the transition probabilities. Thirdly, including duration as a conditioning
variable in the conditional variance specification allows the model to capture a
broad range of volatility levels.

MS models generate mixtures of distributions. These models can be motivated
from information flows into the market. The application in this paper is to
log-differences in foreign exchange rates. Exchange rates are good candidates for
mixture models because an exchange rate is a relative price, which will be
influenced by policy changes and news arrivals. News theories of price changes
attribute an important role to the current innovation. In this case, a stochastic

Ž .volatility SV component may be an important addition to time-varying but
deterministic representations of volatility as in GARCH. The DDMS model is a
discrete-time, discrete-state, SV model. Therefore, our approach provides a
straightforward method of obtaining maximum likelihood estimates for SV with
the added features discussed above.

Like standard first-order MS models, and other time-dependent discrete-mixture
models, we model the stochastic process governing a switch from one volatility

2 Ž .See, for example, a recent survey by Palm 1996 and references therein.
3 Ž . Ž . Ž .For example, see Pagan and Schwert 1990 , Kaehler and Marnet 1993 , Klaassen 1998 , Kim et
Ž . Ž . Ž .al. 1998 , Taylor 1999 , and Timmermann 2000 .
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state to another. Incorporating the possibility of a discrete change in the level of
volatility can have a substantial effect on the implied conditional and uncondi-
tional distributions. This may contribute to an improved fit, particularly with
respect to the tails of the distribution. Further, unlike standard MS models,
allowing the transition probabilities to be duration-dependent may improve the
model’s ability to capture intertemporal dependence. In addition, our approach
models the evolution of volatility within each state. The DDMS model considered
in this study is only a two-state model, however, it acts like a large N state model
in that it can capture a broad range of volatility levels through conditioning on
duration in the conditional variance.

In Section 2, we discuss the data and associated descriptive statistics. Section 3
summarizes the candidate models for volatility dynamics compared in this paper.
Particular emphasis is applied to comparing the stochastic properties inherent in
the forecasts implied by each. This is followed by model estimates in Section 4.
Adequacy of the conditional distributions implied by those estimates is reported in

ŽSection 5. For these assessments, we apply both interval forecasts Christoffersen,
. Ž .1998 and density forecasts Diebold et al., 1998; Berkowitz, 1999 . In Section 6,

we use simulation methods to investigate the properties of the unconditional
distributions implied by the estimates of the alternative volatility models. Finally,
Section 7 provides a brief summary of the features of the data that are matched by
our alternative parameterizations.

2. Data and descriptive statistics

Let e denote the spot price in units of foreign currency for US$1. In this paper,t
Ž . Žwe report results for the Deutsche mark DEM-USD , and British pound GBP-

.USD . Define y as the scaled log-difference of e , or the continuously com-t t

pounded percentage return from holding a US$1-equivalent of foreign currency for
a week,

et
y s100log . 2.1Ž .t ety1

� 4Information available to the econometrician at time t is V s y , y , . . . .t t ty1

Sample size is Ts1304, covering the time period from 1974r01r02 to
1998r12r23.

Table 1 reports descriptive statistics for y associated with each of thet

currencies. Unconditional mean returns are insignificantly different from zero,
there is no significant skewness, and excess kurtosis is significant for both
currencies but larger for the GBP-USD case. Using a modified Ljung-Box
portmanteau statistic, there is no significant serial correlation in returns but very
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Table 1
Summary statistics for weekly exchange rates

Germany UK

Ž . Ž .Mean y0.036 0.040 0.024 0.039
Ž . Ž .Stdev 1.462 0.040 1.423 0.046
Ž . Ž .Skewness y0.104 0.179 0.267 0.245
Ž . Ž .Excess kurtosis 1.822 0.639 3.579 0.843

Ž . w x w xModified Q 1 1.157 0.282 1.472 0.225
Ž . w x w xModified Q 2 4.378 0.112 1.476 0.478
Ž . w x w xModified Q 10 11.320 0.333 11.565 0.315

2Ž . w x w xQ 10 83.349 0.000 156.416 0.000

The data are percentage returns from weekly exchange rates with the US dollar from 1974r01r02 to
1998r12r23. Standard errors robust to heteroskedasticity are in parenthesis, p-values in square

Ž . 2Ž .brackets. Q j is the Ljung-Box statistic for serial correlation in the demeaned series, and Q j is the
Ž .same in the squared series with j lags. The modified Q j allows for conditional heteroskedasticity

Ž .and follows West and Cho 1995 .

significant serial dependence associated with squared returns. Fig. 1 plots the
levels e and log price changes y for the two currencies.t t

3. Alternative parameterizations of volatility

In this section, alternative parameterizations of conditional volatility are dis-
cussed. As a reference point, we begin by briefly summarizing the popular ARCH

Ž .and a Markov switching-ARCH model MS-ARCH . Then duration dependence is
Ž .introduced in a discrete-state parameterization of volatility the DDMS model by

allowing the conditional transition probabilities, as well as the state-specific levels
of volatility, to be functions of duration. The final subsection discusses some
salient differences between the alternative parameterizations. In particular, we
emphasize the potential impact of the duration-dependent components on volatility
dynamics and forecasts.

3.1. GARCH

To introduce our discussion of alternative parameterizations of volatility,
Ž . 4consider the popular GARCH 1,1 , which is defined as

s 2 sv qae 2 qbs 2 3.1Ž .t t ty1 ty1

e ss z , z ;N 0,1 3.2Ž . Ž .t t t t

4 Asymmetries and seasonal effects are not expected to be important components of foreign
exchange returns at weekly frequencies.
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Fig. 1. Time series of exchange rates.

where e is the innovation to the process y parameterized as,t t

y smqf y qe . 3.3Ž .t ty1 t
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For the purpose of residual-based diagnostic tests, the standardized residuals are
formed using estimates of e rs .t t

Note that, except for the non-negativity constraint on s 2, volatility is at

continuous variable. Also, in this formulation, conditional volatility s 2 is time-t

varying but deterministic, given the information set V . As the acronym ARCHty1

implies, this model parameterizes volatility as autoregressive conditional het-
eroskedasticity. In other words, it allows volatility clustering.

Ž .A re-arrangement of Eq. 3.1 implies squared innovations follow an ARMA
model, as in,

1yaLybL e 2 svq 1ybL e 2 ys 2 ,Ž . Ž . Ž .t t t

where L is the lag operator. Therefore, many of the properties of the stationary
ARMA model, such as exponential decay rates, are imposed by this GARCH
model on the squared innovations for returns. Furthermore, ARMA models are not

Ž .well-suited to capturing discrete jumps up or down in volatility. This potential
Ž .shortcoming of the plain vanilla GARCH parameterization in Eq. 3.1 is one of

the motivations for exploring alternative models that can capture discrete regime
changes in volatility.

3.2. MS-ARCH

One possibility is to combine an ARCH specification with a discrete-state MS
model in which the directing process is a first-order Markov chain. Such models

Ž . Ž . 5were introduced by Cai 1994 and Hamilton and Susmel 1994 . Volatility in an
MS model is assumed to be stochastic and driven by an unobserved or hidden
variable. Unlike the conventional SV model, the assumption that the unobserved
state variable is governed by a finite-state Markov chain makes estimation
straightforward using maximum likelihood methods.6

Ž .As in Hamilton 1988 , MS models assume the existence of an unobserved
discrete-valued variable S that determines the dynamics of y . Usually, S ist t t

directed by a first-order Markov chain. Formally, assume the existence of a
discrete-valued variable S that indexes the unobserved states. Our parameteriza-t

5 Estimation of a switching GARCH model is intractable since the entire history of state variables
Ž .enters the likelihood. Gray 1996 proposes a feasible switching GARCH model that avoids this

problem. Due to the complexity of our extensions discussed below, we use an MS-ARCH structure in
this paper.

6 In general, the stochastic volatility model requires simulation methods to evaluate the likelihood. A
Ž .recent survey is Ghysels et al. 1996 .
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Ž . Ž .tion of an AR 1 , MS-ARCH p model follows. In this case, log-differences of
exchange rates are assumed to follow

y smqf y qe 3.4Ž .t ty1 t

e ss S z , z ;N 0,1 , S s1,2 3.5Ž . Ž . Ž .t t t t t

p
2 2s S sv S q a e 3.6Ž . Ž . Ž .Ýt t t i tyi

is1

exp g 1Ž .Ž .1
P S s1NS s1 s , 3.7Ž . Ž .t ty1 1qexp g 1Ž .Ž .1

exp g 2Ž .Ž .1
P S s2NS s2 s . 3.8Ž . Ž .t ty1 1qexp g 2Ž .Ž .1

Note that regime switches are assumed to affect the intercept of the conditional
variance, that we have postulated two alternative states for the regime-switching
component of volatility, and that the transition probabilities are parameterized
using the logistic function. This hybrid of an ARCH and an MS component is
intended to capture volatility clustering as well as occasional discrete shifts in
volatility. The addition of an ARCH structure in this model presents no significant
changes to the basic MS model, and therefore, construction of the likelihood and

Ž .filter follow the usual methods as detailed in Hamilton 1994 . In this application,
the unconditional probabilities were used to startup the filter.

3.3. Regime switching with duration dependence

A first-order Markov chain combined with an ARCH structure should be
adequate to capture volatility clustering.7 However, there may be benefits to

Žexploring high-order Markov chains. In the DDMS model Durland and McCurdy,
.1994; Maheu and McCurdy, 2000; Lam, 1997 the probability of a regime change

is a function of the previous state, S , as well as the duration of the previousty1

state, S .8ty1

Besides, the discrete-valued variable S , define duration as a discrete-valuedt

variable D , which measures the length of a run of realizations of a particulart

7 Ž . Ž . Ž . Ž .Hamilton 1988 , Pagan and Schwert 1990 , and Timmermann 2000 , footnote 11 , suggest that
a first-order MS model without the ARCH structure may not be adequate to capture serial dependence
in the conditional variance.

8 Ž . Ž .Kim and Nelson 1998 allow for duration dependence in a state space model. Filardo 1994 and
Ž .Perez-Quiros and Timmermann 1999 allow transition probabilities to be a function of exogenous

processes.
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state. To make estimations tractable, we set the memory of duration to t .9 This
implies that the duration of S ist

D smin D I S ,S q1,t 3.9Ž . Ž .Ž .t ty1 t ty1

Ž .where the indicator function I S ,S is one for S sS , and zero otherwise.t ty1 t ty1

That is, D is unobserved but is determined from the history of S . Therefore, botht t

will be inferred by the filter which is summarized below. Realizations of the
random variables S and D are referred to as s and d , respectively.t t t t

This model allows both state variables, S and D , to affect the transitiont t

probabilities between volatility states. The probabilities are,

P D 'P S s1NS s1, D sdŽ . Ž .11 ty1 t ty1 ty1 ty1

exp g 1 qg 1 dŽ . Ž .Ž .1 2 ty1
s 3.10Ž .

1qexp g 1 qg 1 dŽ . Ž .Ž .1 2 ty1

as the conditional probability of staying in state 1, given that we have been in state
1 for d periods; andty1

P D 'P S s2NS s2, D sdŽ . Ž .22 ty1 t ty1 ty1 ty1

exp g 2 qg 2 dŽ . Ž .Ž .1 2 ty1
s 3.11Ž .

1qexp g 2 qg 2 dŽ . Ž .Ž .1 2 ty1

as the conditional probability of staying in state 2, given that we have been in state
Ž Ž . Ž .. Ž Ž . Ž ..2 for d periods. Note that g 1 ,g 1 and g 2 ,g 2 are parametersty1 1 2 1 2

associated with states 1 and 2, respectively.
The conditional probability of a state change, given that the state has achieved a

duration d, is the hazard function. Since there are two states in this application,
this conditional probability of switching from state i to state j, given that we have
been in state i for d periods, can be writtenty1

P D 'P S s jNS si , D sd s1yP DŽ . Ž .Ž .i j ty1 t ty1 ty1 ty1 i i ty1

1
s , i , js1,2,i/ j. 3.12Ž .

1qexp g i qg i dŽ . Ž .Ž .1 2 ty1

A decreasing hazard function is referred to as negative duration dependence
while an increasing hazard function is positive duration dependence. The effect of

Ž .duration on the hazard function is uniquely summarized by the parameters g i2
Ž .is1,2. In particular, for state i, g i -0 implies positive duration dependence,2

9 While it is possible to estimate t , for example, using a grid search, in this paper, we set t s25, a
number large enough to ensure that all the duration effects on transition probabilities have been
captured.
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Ž . Ž .g i s0 implies no duration effect and g i )0 implies negative duration2 2

dependence. For example, if state 2 displays negative duration dependence and the
market persists in state 2, then the probability of staying in state 2 increases over
time.

Ž . Ž .Given the state dynamics in Eqs. 3.9 – 3.12 , for this discrete-state parameteri-
zation of volatility, log-differences of exchange rates are assumed to follow

y smqf y qe , 3.13Ž .t ty1 t

e ss S , D z , z ;N 0,1 , S s1,2, 3.14Ž . Ž . Ž .t t t t t t t

2
s S , D s v S qz S D . 3.15Ž . Ž . Ž . Ž .Ž .t t t t t t

With this parameterization, the latent state affects the level of volatility directly, as
Ž .indicated by v S , while the duration of the state is also allowed to affect thet

Ž .dynamics of volatility within each state through the function z S D . Fort t
Ž .example, if z 1 is positive and we persist in state 1, then conditional volatility is

Ž .increasing since D is increasing. Squaring the term in brackets in Eq. 3.15t

serves two purposes: first, the standard deviation is restricted to be non-negative,
and second, it allows duration to have a nonlinear affect in the second moment.

3.4. The filter

Volatility in this model is unobservable with respect to the information set. As
Ž .shown in Hamilton 1994 , inference regarding the latent variable S can bet

constructed recursively. In a similar fashion, inference regarding both S and Dt t
Ž .can be computed. Define, f PNP as the conditional density of the normal

distribution. The filter provides optimal inference for the unobserved variables
given time t information. For S s1,2 and 1FD Ft we havet t

P S ss , D sd NVŽ .t t t t t

f y NS ss , D sd ,V P S ss , D sd NVŽ . Ž .t t t t t ty1 t t t t ty1
s

P y NVŽ .t ty1

where

P S ss , D sd NVŽ .t t t t ty1

s P S ss , D sd NS ss , D sdŽ .Ý t t t t ty1 ty1 ty1 ty1
s ,dty1 ty1

=P S ss , D sd NVŽ .ty1 ty1 ty1 ty1 ty1

and,

P y NV s f y NS ss , D sd ,VŽ . Ž .Ýt ty1 t t t t t ty1
s , s ,dt ty1 ty1

=P S ss , D sd NS ss , D sdŽ .t t t t ty1 ty1 ty1 ty1

=P S ss , D sd NV . 3.16Ž . Ž .ty1 ty1 ty1 ty1 ty1
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In constructing the likelihood function, the unconditional probabilities associated
with Ss1,2, 1FDFt were used to startup the filter. For more details, see the

Ž .appendix in Maheu and McCurdy 2000 .
The filter plays an important role in forecasts of current, as well as future levels

of volatility. The significance of the filter and a comparison to alternative models
is presented in the next section.

3.5. Features of the DDMS

Many popular volatility parameterizations, such as GARCH or SV, are continu-
ous-state models. The DDMS has discrete-states. However, conditioning on
duration D in the conditional variance of the DDMS parameterization permits at

smoother change between volatility levels than that allowed for in a simple
two-state MS model.

In contrast to standard GARCH, SV or MS models, persistence in volatility
levels is time-varying in the DDMS model.10 For a simple MS model, the latent
state, and therefore, the volatility level, follows a linear autoregressive process
with an innovation that is heteroskedastic.11

To illustrate the nonlinear autoregressive process for the DDMS model, first
note that knowledge of the state S , and its duration D , implies knowledge of thet t

volatility level, and therefore, it is sufficient to consider the AR process governing
S . That is,t

S s3y2 P D yP DŽ . Ž .t 11 ty1 22 ty1

q P D qP D y1 S qh 3.17Ž . Ž . Ž .Ž .11 ty1 22 ty1 ty1 t

D smin D I S ,S q1,t 3.18Ž . Ž .Ž .t ty1 t ty1

S s1,2 1FD Ft . 3.19Ž .t t

Both the level and the persistence of volatility are time-varying, unlike the
Ž .standard MS model. Eq. 3.17 also shows that the DDMS structure is a discrete-

time, discrete-state SV model.
To complete the description of the dynamics of conditional volatility, consider

Ž .the properties of the innovations associated with Eq. 3.17 . Since the state

10 Ž . 2 Ž . 2Note that the GARCH volatility function Eq. 3.1 can be re-arranged as s s v q a q b st ty1
Ž 2 2 .q a e ys so that a measures the extent to which the period ty1 shock affects period tty1 ty1

volatility while a q b measures the rate at which this effect dies out over time.
11 Ž . Ž .See Hamilton 1989 and Pagan 1996 .
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variables are discrete, so are the innovations h which are a martingale differencet

sequence. That is, conditional on S s1,ty1

P D y1 with probability P DŽ . Ž .11 ty1 11 ty1
h s 3.20Ž .t ½P D with probability 1yP DŽ . Ž .11 ty1 11 ty1

and conditional on S s2,ty1

yP D with probability 1yP DŽ . Ž .22 ty1 22 ty1
h s . 3.21Ž .t ½1yP D with probability P DŽ . Ž .22 ty1 22 ty1

As in the standard MS model, these innovations are heteroskedastic.
Forecasts of future volatility make use of the filter and the time-varying

transition probabilities. For example,

Var e s s 2 S ss , D sdŽ . Ž .Ýt tqi tqi tqi tqi tqi tqi
s ,dtq i tq i

=P S ss , D sd NV 3.22Ž . Ž .tq i tqi tqi tqi t

Ž . Ž . Ž .where s S , D is from Eq. 3.15 and P S , D NV is the filter basedtq i tqi tqi tqi t
Ž .on time t information. If volatility is high low today, the forecast of future

Ž .volatility will decrease increase towards the unconditional volatility level. How-
ever, the dynamics of the forecast will depend critically on the filter. To see this,
note that,

P S s s , D sd NVŽ .tq i tqi tqi tqi t

s P S ss , D sd NSŽÝ tq i tqi tqi tqi tqiy1
s , . . . , s ,dt tq iy1 t

s s , D sd .tq iy1 tqiy1 tqiy1

= . . . =P S ss , D sd NS ss ,Ž tq1 tq1 tq1 tq1 t t

D sd P S ss , D sd NV .. Ž .t t t t t t t

Since t is finite and therefore, the Markov chain is ergodic, the product term on
the right hand side of this equation, except for the filter, will converge to the
unconditional probability of S and D , as i™`.tq i tqi

Similarly, the conditional future volatility of y istq i
i

iyk 2Var y s f E s S , D . 3.23Ž . Ž . Ž .Ýt tqi t tqk tqk tqk
ks1

In contrast to the standard GARCH and SV models, a unit change in z 2 has ant
Ž Ž ..effect on volatility forecasts Eq. 3.22 which is a highly nonlinear function

involving the filter and the conditional density assumption. The effect is,

s 2 S ss , D sdŽ .Ý tq i tqi tqi tqi tqi
s , . . . , s ,dt tq i t

EP S ss , D sd NVŽ .t t t t t
=P S ss , D sd NS ss , D sd .Ž .tq i tqi tqi tqi t t t t 2Ezt
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Finally, it is useful to note that the uncertainty inherent in e in our regime-t
Ž .switching model comes from two sources, z and s S , D . As a result, thet t t

DDMS decomposes uncertainty in volatility into an unpredictable component z ,t
Ž .and a predictable, albeit stochastic, component s S , D . The latter permitst t

within-regime dynamics and will cause regime uncertainty since the state is
unobserved.

Regime uncertainty means investors’ future forecasts of volatility can display
the peso problem effect. For example, forward-looking investors who believe that
the market is in the low volatility state today will nevertheless, attach a positive
probability to the possibility of the higher volatility state occurring in the future. If
a high volatility regime is not realized within the time-frame of the forecast,
ex-post this forward-looking behavior can mean agents’ forecasts will appear to
systematically underrover estimate the true volatility.12 Nevertheless, MS econo-
metric models allow for the extraction of the true regime-dependent volatility
levels implied in agents’ forecasts.

4. Model estimates

Full-sample estimates for our three parameterizations of volatility and each
exchange rate are reported in Table 2. Standard error estimates are in parenthesis.

Overall, these results imply that duration-dependent mixing adds significantly
to the in-sample fit of the volatility functions for both currencies. Although the
ARCH switching model and the DDMS are not nested, the difference in the
log-likelihood values suggests that the DDMS model dominates the first-order
MS-ARCH model.13 This inference is also supported by parameter estimates
Ž Ž . .g i , is1,2 , associated with duration dependence of the transition probabili-2

ties, which are statistically different from zero in both states for the GBP case, and
in one state for the DEM case. Furthermore, duration effects in the state-specific

Žconditional variances are highly significant for both currencies see estimates of
Ž . .parameters z i , is1,2 .

The motivation for the duration-dependent specification was to investigate
whether or not a discrete-state parameterization of volatility with duration as a
conditioning variable in the conditional variance function could capture volatility
clustering without resorting to a time-series ARCH structure to account for
remaining conditional heteroskedasticity. Consider the parameter estimates for

12 This type of expectation mechanism is well-known to play an important role in explaining asset
Ž .pricing dynamics. See Evans 1996 for a recent review.

13 We also estimated a MS-ARCH model with duration-dependent transition probabilities which nests
the first-order MS-ARCH model reported in Table 2. LR tests strongly reject the first-order MS-ARCH
structure; p-values are 0.984=10y4 and 0.463=10y7 for the DEM and GBP cases, respectively.
Results are available from the authors on request.



( )J.M. Maheu, T.H. McCurdyrJournal of Empirical Finance 7 2000 345–372358

Table 2
Model estimates

Parameter Germany UK

MS-ARCH DDMS MS-ARCH DDMS

Ž . Ž . Ž . Ž .m y0.058 0.036 y0.054 0.037 y0.004 0.012 y0.004 0.011
Ž . Ž . Ž . Ž .f 0.055 0.028 0.061 0.029 0.066 0.029 0.033 0.028

Ž . Ž . Ž . Ž . Ž .v 1 1.705 0.156 1.133 0.116 1.642 0.155 1.573 0.043
Ž . Ž . Ž .z 1 y0.012 0.004 y0.023 0.002
Ž . Ž . Ž . Ž . Ž .v 2 0.367 0.069 1.088 0.106 0.002 0.001 1.114 0.067
Ž . Ž . Ž .z 2 0.020 0.004 y0.036 0.003

Ž . Ž .a 0.039 0.030 0.112 0.0321
Ž . Ž .a 0.096 0.038 0.101 0.0382
Ž . Ž .a 0.152 0.041 0.206 0.0413

Ž . Ž . Ž . Ž . Ž .g 1 5.662 0.867 0.728 0.626 1.598 0.609 0.958 0.4701
Ž . Ž . Ž .g 1 0.118 0.047 0.135 0.0312
Ž . Ž . Ž . Ž . Ž .g 2 3.819 0.726 2.181 0.945 0.036 0.319 0.430 0.3951
Ž . Ž . Ž .g 2 y0.004 0.046 0.107 0.0462

lgl y2267.598 y2262.845 y2191.407 y2148.736
2Ž . w x w x w x w xQ 10 3.292 0.973 16.363 0.090 1.806 0.997 0.016 0.999
2Ž . w x w x w x w xQ 20 21.209 0.385 27.886 0.112 2.177 0.999 0.033 0.999

2Ž . 2Ž .Q 10 and Q 20 are Ljung-Box statistics on the squared standardized residuals.

DEM-USD. They imply that when the market is in state 1, this state becomes
Ž Ž . .more persistent over time i.e. g 1 )0 and the conditional volatility decreases2
Ž Ž . .as we persist in this state z 1 -0 . On the other hand, in state 2, conditional

Ž Ž . .volatility increases with duration in that state z 2 )0 . Figs. 2 and 3 plot the
hazard function and the state-specific volatility levels for the DEM-USD. Similar
duration effects are revealed for the GBP-USD case, except that conditional

Fig. 2. Hazard function, DDMS, DEM-USD.
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Fig. 3. Variance function, DDMS, DEM-USD.

volatility decreases with duration in both states. However, the initial volatility
level is higher for state 1 and the persistence associated with that state is stronger.

Fig. 4. Estimated volatility from the DDMS model.
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Unconditional probabilities for S from the DDMS model can be computed ast
Ž . Ž . Ž .P S sÝ P S, Dsd , where P S, D , Ss1,2, 1FDFt are the joint uncondi-d

Ž .tional probabilities associated with S and D . P S for the DEM-USD are 0.39t t
Ž . Ž . Ž .S s1 and 0.61 S s2 , and those for the GBP-USD are 0.80 S s1 and 0.20t t t
Ž .S s2 .t

Ž .Ljung-Box test statistics for autocorrelation 10 and 20 lags in the squared
standardized residuals appear at the bottom of the table. According to this
diagnostic, all of the models appear to capture serial correlation in the squared
standardized residuals. This suggests that using duration as an instrument in the
conditional variance and transition matrix is a substitute for ARCH.

Fig. 4 plots the estimates of volatility for the DDMS specification. To calculate
the conditional standard deviations implied by the DDMS model, we use Eq.
Ž .3.22 along with the parameter estimates reported in Table 2. Note that the
DDMS model is able to capture abrupt discrete changes in volatility.

5. Adequacy of the conditional distributions

To properly manage short-term risk, the conditional distribution of returns must
be correctly specified. The maintained statistical model will influence a risk
assessment, such as VaR, primarily through the time-varying dynamics of condi-
tional volatility.14 As discussed in Section 1, a risk manager will not only be
concerned with whether or not VaR assessments are correct on average, but also
with the adequacy of such predictions at each point in time.

This section evaluates the models’ conditional distributions. We begin by
assessing out-of-sample interval forecasts associated with a particular coverage
level. We then use a density forecast test which has more statistical power for tail
areas of the distribution since the test exploits the level of the realization as well as
the indicator of whether or not it falls in the desired interval. This increased
statistical power is particularly useful for relatively short data samples for which
realizations in the tail may be few in number. Finally, we report results for the

Ž .density test DT using the entire distribution and the full sample of available data.

5.1. InterÕal forecasts

Traditionally, the most common approach to assessing a time-series volatility
model has been to compare the out-of-sample forecast to some proxy of latent
volatility. Volatility is sometimes measured by squared forecast errors or squared
returns. For a correctly specified model, this measure of volatility is consistent but
noisy. The result is that conventional tests have low power to reject constant

14 Other conditional moments such as skewness and kurtosis may also be important for measuring
risk.
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volatility models in favour of time-varying ones. As Andersen and Bollerslev
Ž .1998 show, the noise associated with using squared returns to measure latent
volatility can be substantial.

An alternative approach is to consider out-of-sample interval forecasts. This is
attractive because no latent measure of volatility is needed. In addition, interval
forecasts depend not only on the volatility dynamics but also on the conditional
mean specification and the conditional density. Thus, analysis of a models’
interval forecasts provide information about the suitability of the maintained
conditional distribution of returns.

Ž .We follow the testing methodology of Christoffersen 1998 and test for correct
conditional coverage associated with out-of-sample interval forecasts. Tests associ-
ated with conditional coverage involve a joint test of coverage plus independence.
That is, correct unconditional coverage only assesses the total number of realiza-
tions in the desired interval. It does not preclude the possibility of temporal
dependence in the realization of hits in or out of the desired interval. Clustering of
a particular realization would indicate neglected dependence in the conditional
volatility model, or more generally, in the maintained conditional distribution. The
joint test is derived in a maximum likelihood framework using the appropriate

Ž .likelihood ratio LR as a test statistic.
First, define

L p ,U p 5.1Ž . Ž . Ž .Ž .t N ty1 t N ty1

as the one-step-ahead interval with desired coverage probability p. This one-step-
ahead interval forecast, for a particular model and information set V , isty1

computed as

1yp
y1L p sE y yF Var y 5.2(Ž . Ž . Ž .t N ty1 ty1 t ty1 tž /2

1yp
y1U p sE y qF Var y 5.3(Ž . Ž . Ž .t N ty1 ty1 t ty1 tž /2

y1ŽŽ . .where F 1yp r2 is the inverse cumulative distribution function of the
Ž .normal distribution evaluated at 1yp r2. That is, we focus on symmetric

interval forecasts.15

A model with correct coverage, given information at ty1, has the property
that the realized y falls in the desired interval with probability p. That is,t

P L p -y -U p NV sp. 5.4Ž . Ž . Ž .Ž .t N ty1 t t N ty1 ty1

15 Using the normal distribution for critical values would be consistent with the modeling assumption
for a GARCH model but should be considered an approximation for the forecasted density associated
with an MS model. More computationally oriented interval forecast methods, including the bootstrap,

Ž .are detailed in Chatfield 1993 .
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The parameters of the models discussed in Section 3 are estimated with the
information set V , Ny1-T , and thereafter assumed fixed, while the dataNy1

from N to T is used to evaluate the out-of-sample forecasts. We set Ny1s1000,
leaving 304 observations for out-of-sample interval tests.16

� 4TGiven a sample path y of the time series of returns y , and a correspond-t tsN t
Ž Ž . Ž ..T

Xing sequence of one-step ahead interval forecasts, L p ,U p ,t N ty1 t N t Ny1 tsN

compute the binary indicator variable,

1 if y g L p ,U pŽ . Ž .Ž .t t N ty1 t N ty1I s 5.5Ž .t ½0 otherwise

for tsN, . . . ,T. This indicator variable records, for each t, whether or not the
Ž .forecast interval Eq. 5.1 contained the realized value y .t

Now, consider a test for correct conditional coverage, which is defined as,

w xE I N I , I , . . . sp 5.6Ž .t ty1 ty2

Ž .for all t. Christoffersen 1998 shows that correct conditional coverage implies
� 4 Ž .that I ; IID Bernoulli p under the null hypothesis. This test can be decom-t

posed into two individual tests. The first is a test for correct unconditional
w x w xcoverage E I sp, vs. the alternative E I /p, while the second test is fort t

� 4independence of the binary sequence I , . . . , I .N T

The likelihood under the null hypothesis of correct conditional coverage is
n0 n1L p ; I , . . . , I s 1yp p 5.7Ž . Ž . Ž .N T

in which n and n are the number of zeroes and ones, respectively, from the data0 1
� 4 Ž .I , . . . , I . Following Christoffersen 1998 , we consider a first-order MarkovN T

chain alternative for which the likelihood is
n n01 10n n00 11L P ; I , . . . , I sp 1yp p 1yp , 5.8Ž . Ž . Ž . Ž .N T 00 00 11 11

where n denotes the number of observations where the value i is followed by ji j
� 4from the data I , . . . , I , and the p are the Markov transition probabilitiesN T i j

associated with the transition matrix P.
Ž .The joint test coverage and independence can be assessed using the LR

statistic,

ˆLR sy2log L p ; I , . . . , I rL P ; I , . . . , I 5.9Ž . Ž .Ž .cc N T N T

2Ž .which will be distributed x 2 under the null hypothesis. Note that the restric-
tions implied by that null hypothesis of correct conditional coverage are p sp11

Ž .and p s 1yp .00

16 The out-of-sample tests reported in this section were computed prior to the full-sample estimation
results in Table 2.
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Table 3 reports, for each model and currency, p-values associated with the joint
Ž .test for correct conditional coverage labeled IF for a desired symmetric coverage

level of 0.8. That is, we are evaluating an interval forecast, which covers the
middle 80% of the distribution. Recall that this test associated with conditional
coverage is a joint test of correct unconditional coverage and independence.

Ž . ŽAlthough this test rejects a linear AR 1 model with constant variance p-values
.are 0.02 and 0.00 for the DEM-USD and GBP-USD, respectively , it is unable to

reject either of the time-varying volatility parameterizations for the DEM case. On
the other hand, all models are rejected for the GBP-USD application. Our results
indicate that the rejection of correct conditional coverage for this currency is due

Ž .to failure to capture average unconditional coverage rather than due to violation
of independence.

For a well-specified model, we would expect the interval-forecast tests to pass
for a wide range of desired coverage levels. In other words, we want forecasts of
the model to be accurate for different regions of the distribution. Although
conceptually, we could compute the p-values associated with a wide range of
desired coverage levels, statistical power will depend on how many realizations
fall outside and inside the chosen interval. As the interval approaches the whole
distribution, the outside region will disappear so that the test cannot be imple-
mented. On the other hand, choosing a desired coverage corresponding to, for
example, the lower tail of the distribution, may result in a relatively small number
of realizations inside the interval. In either case, the test will lack statistical power
to discriminate between the null and the alternative and consequently between the
models. For these cases, an alternative strategy to evaluating the conditional
density is required.

Table 3
Distribution test results

Test Germany UK

MS-ARCH DDMS MS-ARCH DDMS

Out-of-Sample Forecasts
IF 0.209 0.137 0.0005 0.0011
DT-full 0.012 0.030 0.1e-5 0.0065

In-Sample Forecasts
DT-tail 0.075 0.348 0.011 0.029

Ž .The interval forecast IF test is a joint LR test for correct coverage and independence based on
Ž . Ž .Christoffersen 1998 with a desired coverage level of 0.8. The density tests DT are LR tests

Ž .Berkowitz, 1999 for the adequacy of the maintained models distribution — DT-full for the entire
density and DT-tail for the lower 5% tail of the distribution. p-Values are reported for the null
hypotheses: for IF that the time-series of interval forecasts for the middle 80% of the distribution have
correct conditional coverage, and for DT that the maintained forecast density is the true density.
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5.2. Density forecasts

A closely related family of tests on a models distributional assumptions is
Ž . Ž .detailed in Diebold et al. 1998 and Berkowitz 1999 . The tests are based on the

Ž . Ž .integral transformation of Rosenblatt 1952 . Suppose that f y NV is thet ty1

conditional distribution of y based on the information set V . Then Rosenblattt ty1
Ž .1952 shows that

yt

u s f ÕNV dÕ , tsN , . . . ,T , 5.10Ž . Ž .Ht ty1
y`

Ž .is IID and uniformly distributed on 0,1 . Therefore, a researcher can construct
T ˜� 4 Ž .u based on a candidate model f P , and perform tests to see whether or not˜ t tsN

Ž .u ;UID 0,1 .˜ t
˜Ž . Ž .Diebold et al. 1998 suggest graphical methods in order to assess how f P

Ž .fails in approximating the true unknown density, while Berkowitz 1999 suggests
� 4Tapplying the inverse normal transformation to u in order to test whether or˜ t tsN

� 4Tnot the transformed series z is independent standard normal. An attractivet tsN

feature of the latter approach is that we can use any of the exact tests based on
17 Ž .normality. In particular, following Berkowitz 1999 , we consider LR tests for

several applications. By construction, these tests involve a continuous variable and
Ž .not a discrete indicator variable as in the interval forecast tests Section 5.1 . For

this reason, and also due to the use of LR statistics, we expect these tests to have
good power properties in finite samples.18

y1Ž . y1Ž .First, define z sF u , where F P is the inverse of the standard normal˜t t

distribution function. Then, under the null hypothesis of the correct density,
Ž .z ;NID 0,1 . The first LR test is based on the following regression,t

z smqr z ym qw . 5.11Ž . Ž .t ty1 t

Ž .The null hypothesis is msrs0,Var w s1 whereas, the alternative ist
Ž . 19m/0, r/0, Var w /1. This test may identify problems in the unconditionalt

distribution and also time dependences not captured by the conditional dynamics.
Ž .The first panel of Table 3 reports p-values for this LR test labeled DT-full

associated with density forecasts using the same out-of-sample period tsN, . . . ,T
used for the interval forecasts reported in Section 5.1. The relevant integrals were
computed numerically, utilizing quadrature. Broadly speaking, this test produces

17 The LR test is exact only in the case of hypothesis tests in which z follows a normal distributiont

under both the null and alternative.
18 � 4TTraditional tests on u for IID behaviour generally will not have good power. However,˜ t tsN

Ž .Berkowitz 1999 shows that applying the inverse normal transformation to u , and using classical˜ t

tests, results in good power properties in finite samples.
19 It should be noted that these tests do not take into account sampling variability in estimating the

Ž̃ .parameters of f P .
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conclusions similar to the interval-forecast tests with respect to the alternative
currencies. However, the p-values are lower, so that there are marginal rejections
for the DEM-USD as well. The DDMS model is not as strongly rejected as the
MS-ARCH, however, both models appear to be missing important features in the
data. Note however, that we did not update parameter estimates after each one-step
ahead forecast. Doing so might result in a more favourable result for the postulated
distributions.

ŽFinally, we also compute a LR test that focuses on lower-tail behaviour as in
.VaR which can be constructed based on a truncated normal distribution. The

loglikelihood for the truncated normal z -a ist

2
z ymyr z ymŽ .Ž .t ty12ls y.5 log 2ps y .5Ž .Ý 2sz -at

aymyr z ymŽ .ty1
yF .ž /s

Ž .Again the null hypothesis is msrs0,Var w s1 and the alternative is m/0,t
Ž .r/0, Var w /1.t

Since the number of realizations in the tail will be small, we computed this DT
Ž . 20using the entire sample ts1, . . . ,T . The in-sample results for the lower tail

Ž .asy1.645 are reported in Table 3, in row DT-tail. Again, these results favour
Ž . Ž .the DDMS parameterization. As a further comparison the AR 1 -GARCH 1,1

Ž . Ž .model had a p-value of 0.006 DEM-USD and 0.004 GBP-USD for the DT-tail
test. These results for the left tail of the distribution concord well with our
measures of the unconditional distribution discussed in the next section which
show that the duration-dependent parameterization captures excess kurtosis more
adequately.

Our results suggest that volatility is forecastable at a weekly frequency and that
a constant volatility model for exchange rates can be a poor choice. Moreover,

Ž .unlike the tests conducted by West and Cho 1995 , these interval and density
forecast tests show the value of richer models in tracking conditional volatility.
We have found that the DDMS parameterization outperforms the GARCH and
MS-ARCH model, but is still strongly rejected by the UK weekly data.

6. Features of the unconditional distributions

Earlier sections showed that the addition of high-order dependence through
duration dependence in the DDMS model allows for rich conditional density

20 Although these distribution tests were motivated as out-of-sample tests, there is no reason they
cannot be used as an in-sample diagnostic test.
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Table 4
Selected statistics for models and data, Germany

Ž .Statistic Data MS-ARCH DDMS GARCH 1,1

Ž .Stdev y 1.462 0.040 1.465 1.469 1.619t
Ž .Skewness y y0.104 0.179 0.002 0.002 0.010t
Ž .Kurtosis y 4.822 0.639 3.546 4.340 6.091t

Ž < < < <. Ž .Corr y , y 0.107 0.027 0.108 0.140 0.223t ty1
Ž < < < <. Ž .Corr y , y 0.132 0.036 0.142 0.129 0.222t ty2
Ž < < < <. Ž .Corr y , y 0.168 0.030 0.182 0.121 0.221t ty3

< < Ž .Mean y 1.103 0.027 1.139 1.116 1.220t
< < Ž .Stdev y 0.961 0.036 0.924 0.958 1.065t

< < Ž .Skewness y 1.722 0.233 1.249 1.584 2.106t
< < Ž .Kurtosis y 8.401 1.756 4.904 6.715 13.297t
< < Ž .Mean log y y0.379 0.033 y0.314 y0.353 y0.256t
< < Ž .Stdev log y 1.174 0.031 1.144 1.157 1.147t

< < Ž .Skewness log y y1.157 0.089 y1.414 y1.346 y1.363t
< < Ž .Kurtosis log y 4.738 0.382 6.510 6.308 6.369t

Data is 100 times the log first-difference in the exchange rate. For each model, one draw of sample size
1 000000 was used to calculate the sample statistic. Standard errors robust to heteroskedasticity appear
in parenthesis. The parameter values in Table 2 are assumed to be the true model parameters.

dynamics for foreign currency rates. This section shows that the DDMS parameter-
ization also provides a more flexible structure when matching unconditional
moments.

Monte Carlo methods are used to compute some summary measures of the
unconditional distributions implied by the alternative volatility parameterizations.
To estimate the simulated moments, we draw a sample of size 1 000 000 from the
conditional distribution implied by the maintained model, and calculate a battery
of summary statistics.21 These simulated moments can then be compared to the

Ž .corresponding moments and standard errors estimated from the actual data.
Tables 4 and 5 report these numbers for the DEM-USD and GBP-USD cases,
respectively.

The simulated statistics for the MS models match those observed in the data
more closely than those from the plain vanilla GARCH model, and in some cases,
those for the DDMS model match better than the MS-ARCH model. Consider, for
example, the results for the DEM-USD case. The standard deviation from the
DDMS and MS-ARCH models is much closer to that found in the data than is the
GARCH estimate. In addition, the GARCH model produces too much kurtosis,22

the MS-ARCH produces too little kurtosis, while the estimate for the DDMS

21 The first 20 000 draws were dropped to eliminate dependence on startup conditions.
22 Note that for this case, the GARCH parameter estimates are close to the boundary for the existence

of the fourth moment. Further simulations show that, in this case, there is an upward bias on the
kurtosis estimate even for large sample sizes.
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Table 5
Selected statistics for models and data, UK

Ž .Statistic Data MS-ARCH DDMS GARCH 1,1

Ž .Stdev y 1.423 0.046 1.458 1.432 1.411t
Ž .Skewness y 0.267 0.245 0.006 0.012 0.011t
Ž .Kurtosis y 6.579 0.843 4.244 5.163 3.691t

Ž < < < <. Ž .Corr y , y 0.156 0.045 0.188 0.159 0.131t ty1
Ž < < < <. Ž .Corr y , y 0.117 0.037 0.165 0.132 0.127t ty2
Ž < < < <. Ž .Corr y , y 0.168 0.036 0.225 0.121 0.124t ty3

< < Ž .Mean y 1.024 0.027 1.094 1.049 1.102t
< < Ž .Stdev y 0.989 0.044 0.964 0.975 0.882t

< < Ž .Skewness y 2.258 0.234 1.463 1.844 1.339t
< < Ž .Kurtosis y 11.376 1.940 6.189 7.815 5.736t
< < Ž .Mean log y y0.500 0.034 y0.427 y0.476 y0.330t
< < Ž .Stdev log y 1.216 0.034 1.241 1.245 1.124t

< < Ž .Skewness log y y1.131 0.103 y1.294 y1.347 y1.453t
< < Ž .Kurtosis log y 5.009 0.454 5.749 6.158 6.709t

See notes in Table 4.

parameterization is within one standard error of that for the data. For the
GBP-USD case, the standard deviation of y is matched by all models, but in thist

case, both the GARCH and MS-ARCH models produce too little kurtosis while
the DDMS parameterization is within two standard errors of the kurtosis estimate
for the data.

The DDMS model also fits better than a simple first-order MS model. For
example, the unconditional standard deviation and kurtosis measures associated
with a first-order MS model are 1.46 and 3.54 for the DEM-USD.23 As shown in

Ž .Table 4, the kurtosis associated with the data is 4.822 standard error, 0.639 and
that implied by the DDMS model is 4.340. In the GBP-USD case, the first-order
MS model yields an unconditional kurtosis measure of 4.43 while the data has

Ž .6.579 standard error, 0.843 and DDMS has 5.163. These results, as well as other
simulation results for the simpler MS models, point to the duration dependence
structure in the DDMS model providing a closer fit to the unconditional distribu-
tion of the weekly changes in foreign exchange rates.

< < < <Many of the summary measures for y and log y , which we can interpret ast t

alternative proxies for volatility, are also captured better by the DDMS parameteri-
zation. For example, for the DDMS parameterization applied to the DEM-USD, all

< <of the first four moments of volatility as measured by y are within one standardt

error of the data estimate, whereas none of them are for either the MS-ARCH or
Ž < <.GARCH models. For volatility clustering measured by the autocorrelation in y ,t

23 Ž .These were computed using parameter estimates available on request for a first-order MS model
Ž .and formula in Timmermann 2000 .
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Fig. 5. y Models vs. data, Germany.t

there is not much to choose from between the alternative parameterizations.
However, the MS-ARCH model does slightly better for the DEM-USD case
whereas DDMS and GARCH are marginally better for the GBP-USD currency.

To complement the results reported in Tables 4 and 5, Figs. 5 and 6 present
kernel density plots of the data and of the simulated unconditional distributions for

< <y and log y implied by the DDMS and GARCH models. 1 000 000 draws weret t

taken from the respective models. These data were used to estimate the density,
assuming a Gaussian kernel and a constant bandwidth that is optimal for the
normal distribution with the variance calculated from the data. The plots were
robust to a wide range of bandwidth parameters.

<Fig. 6. log y N, Models vs. data, UK.t
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The figures support the conclusion that the DDMS parameterization provides a
good description of the unconditional distributions. For instance, Fig. 5 shows that
DDMS captures the density of y for the DEM-USD quite well around the origin,
while GARCH does not. This is consistent with the GARCH model putting too

Ž .much mass in the tail and resulting in a higher kurtosis than in the data Table 4 .
Ž . < <Similarly, for the GBP-USD Fig. 6 , the distribution of log y is closer to thet

data for the DDMS parameterization, although neither model captures this log
absolute value transformation very well. This evidence is consistent with that
presented in earlier sections of the paper, that is, although the DDMS model is
preferred, none of the parameterizations fully capture the structure in the GBP-USD
case.

7. Concluding comments

The last section showed that the DDMS could account for many of the
properties of the unconditional distribution of y and functions of y usuallyt t

associated with measures of volatility. Unlike GARCH parameterizations, the
DDMS structure allows time-varying persistence, includes a stochastic component
for volatility, and incorporates anticipated discrete changes in the level of volatil-
ity. The DDMS model is an example of a mixture of distributions model. As
reviewed in Section 1, MS models are well-known to have the ability to produce
various shaped distributions including skewness and leptokurtosis. Our plots of
unconditional distributions for DDMS confirm those results.

According to our results, including the out-of-sample interval and density
forecast tests reported in Section 5, the DDMS parameterization is also a good
statistical characterization of the conditional distribution of foreign exchange

Žreturns. This is in contrast to earlier studies for example, Pagan and Schwert,
.1990 which have shown that simpler MS models cannot capture all of the

volatility dependence.
There are several important differences between the DDMS and those simpler

first-order MS models of heteroskedasticity. Firstly, incorporating the discrete-val-
ued random variable summarizing state-dependent duration allows a parsimonious
parameterization of potential high-order dependence. We have shown that the
DDMS is better suited to capturing volatility dependence as compared to the
MS-ARCH model, which appends an ARCH structure to a first-order MS model.
This is evident from our in-sample and out-of-sample analysis. Also, DDMS may
be able to capture long memory. Secondly, although the DDMS is only a two-state
model, it can capture a broad range of volatility levels through conditioning on
duration in the conditional variance. Finally, by including duration in the transition
matrix, persistence in a volatility state is permitted to be time-varying. These
features render the DDMS parameterization particularly suitable for capturing SV
dependence.
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The empirical distribution generated by our proposed structure is a superior
match for the samples of data used in this paper. These enhancements may be
particularly relevant for forecasts necessary for risk management. However, it is
still difficult to fully capture the distributions of log-differences of the GBP-USD

Ž .exchange rate see Gallant et al., 1991 . More work remains to be done.

8. Model summary

Ž .GARCH 1,1

y smqf y qe , s 2 svqae 2 qbs 2 ,t ty1 t t ty1 ty1

e ss z , z ;N 0,1 .Ž .t t t t

Ž .MS-ARCH p

y smqf y qet ty1 t

e ss S z , z ;N 0,1 , S s1,2.Ž . Ž .t t t t t

p
2 2s S sv S q a eŽ . Ž . Ýt t t i ty1

is1

exp g 1Ž .Ž .1
P S s1NS s1 s ,Ž .t ty1 1qexp g 1Ž .Ž .1

exp g 2Ž .Ž .1
P S s2NS s2 s .Ž .t ty1 1qexp g 2Ž .Ž .1

DDMS

y smqf y qe ,t ty1 t

e ss S z , z ;N 0,1 , S s1,2.Ž . Ž .t t t t t

2
s S , D s v S qz S DŽ . Ž . Ž .Ž .t t t t t t

exp g 1 qg 1 dŽ . Ž .Ž .1 2 ty1
P S s1NS s1, D sd s ,Ž .t ty1 ty1 ty1 1qexp g 1 qg 1 dŽ . Ž .Ž .1 2 ty1

exp g 2 qg 2 dŽ . Ž .Ž .1 2 ty1
P S s2NS s2, D sd s .Ž .t ty1 ty1 ty1 1qexp g 2 qg 2 dŽ . Ž .Ž .1 2 ty1
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