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a b s t r a c t

Many finance questions require the predictive distribution of returns. We propose a bivariate model of
returns and realized volatility (RV), and explore which features of that time-series model contribute to
superior density forecasts over horizons of 1 to 60 days out of sample. This term structure of density
forecasts is used to investigate the importance of: the intraday information embodied in the daily RV
estimates; the functional form for log(RV ) dynamics; the timing of information availability; and the
assumed distributions of both return and log(RV ) innovations. We find that a joint model of returns and
volatility that features two components for log(RV ) provides a good fit to S&P 500 and IBM data, and is a
significant improvement over an EGARCH model estimated from daily returns.
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1. Introduction

Many finance questions require a full characterization of the
distribution of returns. Examples include option pricingwhich uses
the forecast density of the underlying spot asset, or Value-at-Risk
which focuses on a quantile of the forecasted distribution. Once
we move away from the simplifying assumptions of Normally-
distributed returns or quadratic utility, portfolio choice also
requires a full specification of the return distribution.

The purpose of this paper is to study the accuracy of forecasts
of return densities produced by alternative models. Specifically,
we focus on the value that high frequency measures of volatility
provide in characterizing the forecast density of returns. We
propose newbivariatemodels of returns and realized volatility and
explore which features of those time-series models contribute to
superior density forecasts overmultiperiod horizons out of sample.

Andersen and Bollerslev (1998), Andersen et al. (2001b),
Andersen et al. (2001a), Barndorff-Nielsen and Shephard (2002)
andMeddahi (2002), among others,1 have established the theoret-
ical and empirical properties of the estimation of quadratic varia-
tion for a broad class of stochastic processes in finance. Although
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Canada. Tel.: +1 416 978 3425; fax: +1 416 971 3048.

E-mail addresses: jmaheu@chass.utoronto.ca (J.M. Maheu),
tmccurdy@rotman.utoronto.ca (T.H. McCurdy).
1 Recent reviews include Andersen et al. (2009) and Barndorff-Nielsen and

Shephard (2007).

theoretical advances continue to be important, part of the research
in this new field has focused on the time-series properties and
forecast improvements that realized volatility provides. Examples
include Andersen et al. (2003), Andersen et al. (2007), Andersen
et al. (2004), Ghysels and Sinko (2006), Ghysels et al. (2006), Koop-
man et al. (2005), Maheu andMcCurdy (2002, 2007), Martens et al.
(2003) and Taylor and Xu (1997).

Few papers have studied the benefits of incorporating RV into
the return distribution. Andersen et al. (2003) andGiot and Laurent
(2004) consider the value of RV for forecasting and for Value-at-
Risk. These approaches decouple the return and volatility dynam-
ics and assume that RV is a sufficient statistic for the conditional
variance of returns. Ghysels et al. (2005) find that high frequency
measures of volatility identify a risk-return tradeoff at lower fre-
quencies. Their filtering approach to volatility measurement does
not provide a law ofmotion for volatility and thereforemultiperiod
forecasts cannot be computed in that setting.

RV is an ex post measure of volatility and in general may not be
equivalent to the conditional variance of returns. We propose bi-
variatemodels based on two alternativeways inwhich RV is linked
to the conditional variance of returns. Since our system provides a
law of motion for both return and RV at the daily frequency, mul-
tiperiod forecasts of returns and RV or the density of returns are
available. The dynamics of the conditional distribution of RV will
have a critical impact on the quality of the return density forecasts.

Our benchmark model is an EGARCH model of returns. This
model is univariate in the sense that it is driven by one stochastic
process which directs the innovations to daily returns. It does not
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allow higher-order moments of returns to be directed by a second
stochastic process. Nor does it utilize any intraday information.

Two types of functional forms for the bivariate models of
returns and RV are proposed. The first model uses a heterogeneous
autoregressive (HAR) specification (Corsi, 2009; Andersen et al.,
2007) of log(RV). A second model allows different components of
log(RV) to have different decay rates (Maheu and McCurdy, 2007).

We also consider twoways to link RV to the variance of returns.
First, we impose the cross-equation restriction that the conditional
variance of daily returns is equal to the conditional expectation of
daily RV. Second, motivated by Bollerslev et al. (2009) who model
returns, bipower variation and realized jumps in a multivariate
setting,2 we also investigate a specification of our bivariate com-
ponent model for which the variance of returns is assumed to be
synonymous with RV. We label this case ‘observable stochas-
tic volatility’ and explore whether this assumption improves the
term structure of density forecasts.We also compare specifications
with non-Normal versus Normal innovations for both returns and
log(RV).

As in our benchmark EGARCHmodel, all of our bivariatemodels
allow for so-called leverage or asymmetric effects of past negative
versus positive return innovations. Our bivariate models allow for
mean reversion in RV. This allows us to evaluate variance targeting
for these specifications.

Our main method of model comparison uses the predictive
likelihood of returns. This is the forecast density of a model
evaluated at the realized return; it provides a measure of the
likelihood of the data being consistent with the model. Intuitively,
better forecasting models will have higher predictive likelihood
values. Therefore our focus is on the relative accuracy of themodels
in forecasting the return density out of sample. The forecast density
of the models is not available in closed form; however, we discuss
accurate simulation methods that can be used to evaluate the
forecast density and the predictive likelihood.

An important feature of our approach is that we can directly
compare traditional volatility specifications, such as EGARCH, with
our bivariate models of return and RV since we focus on a common
criteria—forecast densities of returns. We generate a predictive
likelihood for each out-of-sample data point and for each forecast
horizon. For each forecast horizon, we can compute the average
predictive likelihoodwhere the average is computed over the fixed
number of out-of-sample data points. A term structure of these
average predictive likelihoods allows us to investigate the relative
contributions of RV over short to long forecast horizons.

Our empirical applications to S&P 500 (Spyder) and IBM returns
reveal the importance of intraday return information, the timing
of information availability, and non-Normal innovations to both
returns and log(RV). The main features of our results are as
follows. Bivariate models that use high frequency intraday data
provide a significant improvement in density forecasts relative
to an EGARCH model estimated from daily data. Two-component
specifications for log(RV) provide similar or better performance
than HAR alternatives; both dominate the less flexible single-
component version. A bivariate model of returns with Normal
innovations and observable stochastic volatility directed by a 2-
component, exponentially decaying function of log(RV) provides
good density forecasts over a range of out-of-sample horizons
for both data series. We find that adding a mixture of Normals
or GARCH effects to the innovations of the log(RV) part of this
specification is not statistically important for our sample of S&P
500 returns, while the addition of themixture of Normals provides
a significant improvement for IBM.

2 For definition and development of bipower variation and realized jumps see,
for example, Barndorff-Nielsen and Shephard (2004).

This paper is organized as follows. The next section introduces
the data used to construct daily returns and daily RV. It also dis-
cusses the measurement of volatility, the adjustments to realized
volatility to remove the effects of market microstructure, and a
benchmark model which is based on daily return data. Our bivari-
ate models of returns and RV, based on high-frequency intraday
data, are introduced in Section 3. The calculation of density fore-
casts and the predictive likelihood are discussed in Section 4; re-
sults are presented in Section 5. Section 6 concludes.

2. Data and realized volatility estimation

We investigate a broadly diversified equity index (the S&P 500)
and an individual stock (IBM). For the former we use the Standard
& Poor’s Depository Receipt (Spyder) which is a tradable security
that represents ownership in the S&P 500 Index. Since this asset
is actively traded, it avoids the stale price effect associated with
using the S&P 500 index at high frequencies. Transaction price data
associated with both the Spyder and IBM are obtained from the
New York Stock Exchange’s Trade and Quotes (TAQ) database.

Our data samples cover the period January 2, 1996 to August
29, 2007 for the Spyder and January 4, 1993 to August 29, 2007 for
IBM. The shorter sample for the Spyder data was chosen based on
volume of trading, for example there were many 5-minute periods
with no transactions during the first years after the Spyder started
trading in 1993, and a structural break in the Spyder log(RV) data
in the mid 1990s (Liu and Maheu, 2008). The average number of
transactions per day for the 1996–2007 sample of Spyder data was
32,971 but the volume of trades has increased substantially over
the sample—especially from 2005 forward. In contrast, the average
number of transactions per day for IBM shares has been more
stable over our 1993–2007 sample, averaging 6011 transactions
per day with a substantial increase from late 2006.

After removing errors from the transaction data,3 a 5-minute
grid4 from9:30 to 16:00 ESTwas constructed by finding the closest
transaction price before or equal to each grid-point time. From
this grid, 5-minute continuously compounded (log) returns were
constructed. These returns were scaled by 100 and denoted as
rt,i, i = 1, . . . , I , where I is the number of intraday returns in day t .
For our 5-minute grid, normally I = 78 although themarket closed
early on a few days. This procedure generated 228,394 5-minute
returns corresponding to 2936 trading days for the S&P 500; and
286,988 5-minute returns corresponding to 3693 trading days for
IBM.

The increment of quadratic variation is a natural measure of ex
post variance over a time interval. A popular estimator is realized
variance or realized volatility (RV) computed as the sumof squared
returns over this time interval. The asymptotic distribution of RV
has been studied by Barndorff-Nielsen and Shephard (2002) who
provide conditions under which RV is an unbiased estimate.

Given the intraday returns, rt,i, i = 1, . . . , I , an unadjusted
daily RV estimator is

RVt,u =

I−
i=1

r2t,i. (2.1)

However, in the presence of market-microstructure dynamics, RV

3 Data were collected with a TAQ correction indicator of 0 (regular trade) and
when possible a 1 (trade later corrected), we also excluded any transaction with a
sale condition of Z , which is a transaction reported on the tape out of time sequence,
and with intervening trades between the trade time and the reported time on
the tape. We also checked any price change that was larger than 3% and removed
obvious errors.
4 Volatility signature plots using grids ranging from 1 min to 195 min are

available on request.
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Table 1
Summary statistics: daily returns and realized volatility.

Mean Variance Skewness Kurtosis Min Max

SPY
rt −0.018 0.967 0.080 6.180 −7.504 8.236
RVu 1.210 2.640 6.932 84.936 0.055 33.217
RVAC1 1.079 2.373 7.670 96.439 0.047 30.789
RVAC2 1.013 2.115 7.530 88.588 0.043 25.227
RVAC3 0.978 2.054 8.071 102.635 0.036 26.329
IBM
rt −0.037 2.602 0.074 3.898 −11.699 11.310
RVu 2.825 9.161 5.145 54.879 0.150 58.270
RVAC1 2.623 9.433 6.051 75.409 0.132 65.069
RVAC2 2.558 9.875 6.377 82.091 0.114 66.594
RVAC3 2.531 10.095 6.362 81.024 0.010 65.235

rt are daily returns, RVu are constructed from raw 5-minute returns with no adjustment, and RVACq, q = 1, 2, 3, are constructed as in Eq. (2.2).

can be a biased and inconsistent estimator for quadratic variation
(Bandi and Russell, 2008; Zhang et al., 2005). Therefore, we
consider several adjustments to our estimates and gauge their
statistical performance in our model comparisons.5

Hansen and Lunde (2006) suggest the use of Bartlett weights
to rule out negative values for RV. Following this approach, a
corrected RV estimator is

RVt,ACq = ω0γ̂0 + 2
q−

j=1

ωjγ̂j, γ̂j =

I−j−
i=1

rt,irt,i+j, (2.2)

in which the weights follow a Bartlett scheme ωj = 1 −
j

q+1 ,
j = 0, 1, . . . , q. We consider q = 1, 2, 3. Barndorff-Nielsen et al.
(2008) discuss the asymptotic properties of statistics of this type.

In order to match the volatility measures, daily returns, rt , are
computed as the logarithmic difference of the closing price and the
opening price. These returns are scaled by 100. Table 1 displays
summary statistics for daily returns and daily RV estimates
computed from the 5-minute grid. If we take the sample variance
of daily returns as a benchmark estimate of volatility in which
no market microstructure effects are present, and compare this
to the sample mean of RV, we see a clear bias for unadjusted RV.
With respect to removing bias, it appears that a Bartlett adjustment
with q = 3 is necessary for the S&P 500 (Spyder) data, whereas
an adjustment with q = 1 is adequate for the IBM data. This
conclusion is supported by autocorrelation analyses of the 5-
minute returns data, as revealed by the autocorrelation functions
with associated confidence bounds in Fig. 1 for the S&P 500 and
IBM respectively. For the remainder of our paper, unless otherwise
stated, we use RVt ≡ RVt,ACq, with q = 3 for the S&P 500 and q = 1
for the IBM data.

One way to ascertain whether or not high-frequency (intrape-
riod) information contributes to improved forecasts of return
distributions, is to compare density forecasts from our bivariate
specifications of returns and log(RV)with those from a benchmark
EGARCH specification:

rt = µ + ϵt , ϵt = σtut ut ∼ NID(0, 1), (2.3)

log(σ 2
t ) = ω + β log(σ 2

t−1) + γ ut−1 + α|ut−1|. (2.4)

3. Joint return-RV models

As discussed in the Introduction, an integrated model of
returns and realized volatility is needed to deal with common
questions in finance which require a forecast density of returns

5 For alternative approaches to dealingwithmarketmicrostructure dynamics see
Aït-Sahalia et al. (2005), Bandi and Russell (2006), Barndorff-Nielsen et al. (2008),
Oomen (2005), Zhang (2006) and Zhou (1996).

Fig. 1. ACF of 5-minute return data.

for multiple horizons. In this section, we introduce two alternative
joint specifications of daily returns and realized volatility. These
bivariate models are distinguished by alternative assumptions
about RV dynamics. We also consider versions of these bivariate
models with non-Normal return and log(RV) innovations, as well
as a version with an alternative assumption concerning available
information about RV. In each case, cross-equation restrictions link
the variance of returns and our realized volatility specification.

Corollary 1 of Andersen et al. (2003) shows that, under empir-
ically realistic conditions, the conditional expectation of quadratic
variation (QVt ) is equal to the conditional variance of returns, that
is, Et−1(QVt) = Vart−1(rt) ≡ σ 2

t . If RV is an unbiased estimator of
quadratic variation,6 it follows that the conditional variance of re-
turns can be linked to RV as σ 2

t = Et−1(RVt)where the information
set is defined as Φt−1 ≡ {rt−1, RVt−1, rt−2, RVt−2, . . . , r1, RV1}.
Assuming that RV has a log-Normal distribution, that restriction
takes the form

σ 2
t = Et−1(RVt) = exp


Et−1 log(RVt) +

1
2
Vart−1(log(RVt))


.

(3.1)

3.1. HAR-RV specifications

We begin with a bivariate specification for daily returns and
RV in which conditional returns are driven by Normal innovations

6 We assume that any stochastic component in the intraperiod conditional mean
is negligible compared to the total conditional variance. It is also straightforward to
estimate a bias term.
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and the dynamics of log(RVt) are captured by Heterogeneous
AutoRegressive (HAR) functions of lagged log(RVt). Corsi (2009)
and Andersen et al. (2007) use HAR functions in order to parsi-
moniously capture long-memory dependence. Motivated by that
work, we define

log(RVt−h,h) ≡
1
h

h−1−
i=0

log(RVt−h+i),

log(RVt−1,1) ≡ log(RVt−1).

(3.2)

For example, log(RVt−22,22) averages log(RV) over the most recent
22 days, that is, from t − 22 to t − 1, log(RVt−5,5) over the most
recent 5 days, etc.

This leads to our bivariate specification for daily returns and
RV with the dynamics of log(RVt) modeled as an asymmetric HAR
function of past log(RV). This bivariate system is summarized as
follows:

rt = µ + ϵt , ϵt = σtut , ut ∼ NID(0, 1) (3.3)

log(RVt) = ω + φ1 log(RVt−1) + φ2 log(RVt−5,5)
+ φ3 log(RVt−22,22) + γ ut−1
+ ηvt , vt ∼ NID(0, 1). (3.4)

This bivariate specification of daily returns and RV imposes the
cross-equation restriction that relates the conditional variance of
daily returns to the conditional expectation of daily RV, as in
Eq. (3.1). Joint estimation of the bivariate system in Eqs. (3.3), (3.4)
and (3.1) is by maximum likelihood.

Since our applications are to equity returns, it is important to
allow for asymmetric effects in volatility. To facilitate comparisons
with the benchmark EGARCH model, our parameterization in
Eq. (3.4) includes an asymmetry term, γ ut−1 associated with the
standardized return innovation, ut−1. The impact coefficient for a
negative innovation to returns will be −γ , whereas the impact of
a positive innovation will be γ . Typically, γ̂ < 0, which means
that a negative innovation to returns implies a higher conditional
variance for next period. Unlike EGARCH, our parameterization
does not propagate the asymmetry further into future volatility.

In-sample fit of GARCH models have generally favored return
innovations with tails that are fatter than those implied by a
Normal distribution. Therefore, we evaluate whether or not that
result obtains for our bivariate models of returns and RV. That is,
we also try replacing Eq. (3.3) with

rt = µ + ϵt , ϵt = σtut , ut ∼ tν(0, 1), (3.5)

in which tν denotes a t-distribution with mean 0, variance 1, and
ν degrees of freedom. The remainder of the bivariate dynamic
system for this case is the same as above. We compare this
bivariate systemwith t-distributed return innovations to that with
Normally-distributed innovations, not only for in-sample fit, but
also for the term structure of out-of-sample density forecasts.

3.2. Component-RV specifications

This bivariate specification for daily returns and RV has condi-
tional returns driven by Normal innovations but now the dynamics
of log(RVt) are captured by two components (2Comp) with differ-
ent decay rates, as inMaheu andMcCurdy (2007). In particular, this
bivariate system can be summarized as follows:

rt = µ + ϵt , ϵt = σtut , ut ∼ NID(0, 1) (3.6)

log(RVt) = ω +

2−
i=1

φisi,t + γ ut−1 + ηvt , vt ∼ NID(0, 1) (3.7)

si,t = (1 − αi) log(RVt−1) + αisi,t−1, 0 < αi < 1, i = 1, 2 (3.8)

Again, we impose the cross-equation restriction that relates the
conditional variance of daily returns to the conditional expectation

of daily RV as in Eq. (3.1). For this specification of our bivariate
model, the dynamics of daily log(RV) are parameterized as the
component model specified in Eqs. (3.7) and (3.8) which replace
the HAR function in Eq. (3.4).

Although infinite exponential smoothing provides parsimo-
nious estimates, it possesses several drawbacks. For instance, it
does not allow for mean reversion in volatility; and, as Nelson
(1990) has shown in the case of squared returns or squared inno-
vations to returns, the model is degenerate in its asymptotic limit.
To circumvent these problems, but still retain parsimony, our dy-
namic model for log(RVt), given by Eq. (3.7), weights each compo-
nent i by the parameter 0 < φi < 1 and adds an intercept, ω.
Note that when the model is stationary, variance forecasts will
mean revert to ω/(1 − φ1 − φ2). This result can be used to do
variance targeting and eliminate the parameterω from themodel.7
This model implies an infinite expansion in log(RVt−j) with coeffi-
cients of φ1(1 − α1)α

j−1
1 + φ2(1 − α2)α

j−1
2 , j = 1, 2, . . . .8

In order to evaluate the potential importance of t-distributed
return innovations for this bivariate specification, we replace
Eq. (3.6) with Eq. (3.5), and jointly estimate with Eqs. (3.7), (3.8)
and (3.1).

Motivated by Bollerslev et al. (2009), we also present results for
an alternative assumption about available information inwhichwe
replace Eq. (3.1) with σ 2

t ≡ RVt . Then

rt = µ + ϵt , ϵt =


RVtut , ut ∼ NID(0, 1) (3.9)

log(RVt) = ω +

2−
i=1

φisi,t + γ ut−1 + ηvt , vt ∼ NID(0, 1) (3.10)

si,t = (1 − αi) log(RVt−1) + αisi,t−1, 0 < αi < 1, i = 1, 2
(3.11)

which we label 2Comp-OSV.

3.3. Extensions

Weconsider twoextensions to thepreviousmodel. The first sets
η = 1, and replaces the innovation vt in (3.10) with a mixture of
two Normals. It has density

vt ∼


N(0, σ 2

v,1) with probability π

N(0, σ 2
v,2) with probability 1 − π

(3.12)

and allows log(RVt) to have a fat-tailed distribution.
The second extension is to include GARCH dynamics for the

conditional variance of log(RV). In this case, η in (3.10) has a time
subscript and follows the GARCH(1, 1) model

η2
t = κ0 + κ1[log(RVt−1) − Et−2 log(RVt−1)]

2
+ κ2η

2
t−1 (3.13)

where log(RVt−1) − Et−2 log(RVt−1) denotes the innovation to
log(RV) at time (t − 1).

4. Density forecasts

Our focus is on the return distribution. A popular approach
to assess the accuracy of a model’s density forecasts is the
predictive likelihood (Amisano and Giacomini, 2007; Bao et al.,
2007;Weigend and Shi, 2000). This approach evaluates themodel’s
density forecast at the realized return. This is generally done for a
one-step-ahead forecast density as multiperiod density forecasts
are often not available in closed form. In this paper we advocate
multiperiod forecasts since they provide more information to

7 That is, set ω = mean(log(RV))(1 − φ1 − φ2).
8 Expanding (3.8) gives si,t = (1 − αi)

∑
∞

n=0 αn
i log(RVt−1−n).
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discern among models. The details of the multiperiod predictive
likelihood and how to calculate it are described below.

The average predictive likelihood over the out-of-sample obser-
vations t = τ + kmax, . . . , T − k, is

DM,k =
1

T − τ − kmax + 1

T−k−
t=τ+kmax−k

log fM,k(rt+k|Φt , θ),

k ≥ 1, (4.1)
where fM,k(x|Φt , θ) is the k-period ahead predictive density for
model M , given Φt and parameter θ , evaluated at the realized re-
turn x = rt+k. Intuitively, models that better account for the data
produce a larger DM,k.

As we will see below for our application to S&P 500, T =

2936, τ = 1200, kmax = 60 so that τ + kmax − 1 = 1259.
DM,k is computed for each k using the out-of-sample returns
r1260, . . . , r2936. That is, if k = 1, DM,1 is computed using out-of-
sample returns r1260, . . . , r2936. For k = 2, DM,2 is computed using
the same out-of-sample returns, etc. This gives us a term structure
of average predictive likelihoods, DM,1, . . . ,DM,60, to compare the
performance of alternative models, M , over an identical set of out-
of-sample data points.

To assess the statistical differences in DM,k for two models we
present Diebold and Mariano (1995) test statistics based on the
work of Amisano and Giacomini (2007). Under the null hypothesis
of equal performance based on predictive likelihoods of horizon k
formodelsA and B, tkA,B = (DA,k−DB,k)/(σ̂AB,k/

√
T − τ − kmax + 1)

is asymptotically standard Normal. σ̂AB,k is the Newey–West long-
run sample variance (HAC) estimate for dt = log fA,k(rt+k|Φt , θ̂ ) −

log fB,k(rt+k|Φt , θ̂ ). θ̂ denotes themaximum likelihood estimate for
the respective model. Due to the overlapping nature of the density
forecasts for k > 1 we set the lag-length in the Newey–West
variance estimate to the integer part of [k × 0.15].9 A large
positive (negative) test statistic is a rejection of equal forecast
performance and provides evidence in favor of model A(B). As
with the predictive likelihoods, a term structure of associated test
statistics tkA,B, k = 1, . . . , kmax are presented in the results section.

4.1. Computations

For all k > 1 the term fM,k(rt+k|Φt , θ) will be unknown for the
models we consider. However, given that we have fully specified
the law of motion for daily returns and RV, we can accurately
estimate this quantity by standard Monte Carlo methods. A
conventional approach to estimate the forecast densitywould be to
simulate themodel out k periods a large number of times and apply
a kernel density estimator to these realizations. However, using the
kernel density estimator to estimate the forecast density ignores
the fact that, in our applications, conditional on the variance
we know the distribution. The use of conditional analytic results
has been referred to as Rao–Blackwellization and is a standard
approach to reduce the variance of a Monte Carlo estimate (Robert
and Casella, 1999). This is particularly useful in density estimation
which is our context.

To illustrate consider our basic benchmark EGARCH model in
(2.3). Note that in this univariate case the information set, Φt , just
includes past returns. Our estimate is

fM,k(rt+k|Φt , θ) =

∫
f (rt+k|µ, σ 2

t+k)p(σ
2
t+k|Φt)dσ 2

t+k (4.2)

≈
1
N

N−
i=1

f (rt+k|µ, σ
2(i)
t+k), σ

2(i)
t+k ∼ p(σ 2

t+k|Φt) (4.3)

9 Our results are generally stronger (stronger rejections of the null hypothesis)
for smaller lag-lengths.

where f (rt+k|µ, σ
2(i)
t+k) is a Normal density with mean µ and

variance σ 2
t+k, evaluated at return rt+k; and σ

2(i)
t+k is simulated out

N times according to the EGARCH specification, p(σ 2
t+k|Φt), which

is conditional on time t quantities σ 2
t , ut , and θ̂ , the maximum

likelihood estimate of the parameter vector based on Φt .
For the joint models of returns and RV, we do a similar

exercise to compute the predictive likelihood for returns. In this
case, we simulate out both the return and RV dynamics, which
implicitly integrates out the unknown σ 2

t+k. For each simulation
of RV(i)

t+1, . . . , RV
(i)
t+k−1, i = 1, . . . ,N , we can compute σ

2(i)
t+k =

Et+k−1RV
(i)
t+k using (4.1).10 A numerical standard error can be

used to access the accuracy of f̂M,k(rt+k|Φt , θ) and D̂M,k.11 In our
application we found N = 10,000 to provide sufficient accuracy.
For example, the numerical standard error is typically well below
1% of D̂M,k. Note that for all of our bivariate models the dynamics
of the conditional distribution of RV will have a critical impact on
the quality of the return density forecasts.

5. Results

Our first results are out-of-sample density forecasts evaluated
using predictive likelihoods. The S&P 500 sample starts at
1996/01/02, the first out-of-sample density forecast begins at
2000/12/26 (t = 1260) and ends at 2007/8/29 (t = 2936), for a
total of 1677 density forecasts for each k. We summarize these out-
of-sample forecasts by averaging the associated 1677 predictive
likelihoods for each k and then plotting their term structure for the
forecast horizons k = 1, . . . , 60, that is, from 1 to 60 days out of
sample. Note that the IBM sample starts at 1993/01/04, the first
density forecast begins at 1997/12/24 (t = 1260), and ends at
2007/8/29 (t = 3693), for a total of 2434 density forecasts for
each k. Full sample parameter estimates for the best models are
discussed at the end of the section. Model estimation conditions
on the first 24 observations.

Our empirical work considered many different models, includ-
ing different innovation distributions for returns, the value of vari-
ance targeting for log(RV), different functional forms for log(RV),
and a variety of GARCH specifications estimated using daily re-
turns for which EGARCH was the best specification. We note the
following general results: models with variance targeting were
dominated by the unrestricted version of themodel; HAR and com-
ponent models that link the conditional variance of returns to RVt
by (3.1) always performed better with t-innovations to returns12;
2-component models were always better than single-component
versions. In the following summary of results, we focus on the top
models in different categories.

Our empirical applications to S&P 500 and IBM returns reveal
the importance of intraday information, the timing of information
availability, and non-Normal innovations to both returns and
log(RV). Figs. 2 and 3 compare the term structures of density
forecasts for the best models of each type for the S&P 500 and IBM
respectively; Fig. 4 evaluates the robustness of those results to a
further generalization. The second plot in each figure displays a
corresponding termstructure ofDiebold–Mariano test statistics for
equal forecast performance for selected models.

10 Recall that the observable SV specification sets σ
2(i)
t+k = RV(i)

t+k .
11 To calculate a numerical standard error for D̂M,k: let v2 denote the
sample variance of the draws of f (rt+k|µ, σ

2(i)
t+k ), then the numerical stan-

dard error for f̂M,k(rt+k|Φt , θ) is ν/
√
N . Using the delta rule to calcu-

late ˆVar(log f̂M,k(rt+k|Φt , θ)); the numerical standard error of D̂M,k is∑T−k
t=τ+kmax−k

ˆVar(log f̂M,k(rt+k|Φt , θ))/(T − τ − kmax + 1).
12 We did consider t-innovations for returns in the observable SV models, but
estimation supported a Normal distribution since the degree of freedom parameter
always moved to extremely large values.
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Fig. 2. S&P 500, joint models versus EGARCH.

Fig. 3. IBM, joint models versus EGARCH.

Note that all of the average predictive likelihood termstructures
display a negative slope. This is because the conditioning informa-
tion is most useful for a small k. As we forecast further and further
out of sample, the value of the current information diminishes. All
of our models are stationary so that multiperiod forecast densities
converge to the unconditional distribution. Using the same data
points to evaluate the predictive likelihood for a different k, we can
see how the accuracy of forecasts deteriorates for longer horizons.

Two main conclusions can be gleaned from Fig. 2. Firstly,
high-frequency intraday data provide a significant improvement
in density forecasts relative to an EGARCH model estimated
from daily data. The same conclusion about the value of high-
frequency data can be drawn from the IBM sample, as shown in
Fig. 3. Secondly, both the 2-component and the HAR specification
dominate a single-component version of Eqs. (3.7) and (3.8) for the
dynamics of log(RV). Note that the advantage of the more flexible

Fig. 4. IBM, robustness to non-normal innovations to log(RV).

functional forms (either 2-component or HAR) increase the further
out we forecast.

The three best bivariate specifications are the 2Comp-OSV,
2Comp and HAR. For the S&P 500, the latter two do equally well;
for IBM forecasts the 2Comp specifications are better than HAR.
The additional information assumed by the observable stochastic
volatility (OSV) assumption, although very important with respect
to in-sample fit as shown below, is only significant with respect to
density forecasts for long horizons (beyond 45 days) for the S&P
500. The OSV assumption does not improve density forecasts for
the IBM case, as shown by the Diebold–Mariano test statistics in
Fig. 3 for ‘2Comp-OSV vs 2Comp’.

Fig. 4 evaluates the robustness of the best bivariate specification
for IBM to a generalization of the distributional assumption for
log(RV). In particular, as discussed in Section 3.3, we generalize
Eq. (3.10) to allow either a mixture-of-Normals or a GARCH
parameterization of the conditional variance of log(RV). Although
neither of these generalizations significantly improve the out-of-
sample density forecasts for our S&P 500 sample, Fig. 4 suggests
that a mixture-of-Normals parameterization of the variance of
log(RV) improves density forecasts relative to the Normally-
distributed alternative for the IBM sample.

Table 2 provides full-sample model estimates for two of the
best bivariate specifications for S&P 500 data. Estimates for the
2Comp-OSV model are reported in column 2 of the table. This
specification imposes the restriction φ1 = φ2 which produced
the best forecasts. The 3rd column of the table reports estimates
for a model which replaces the OSV informational assumption
with the assumption used by Maheu and McCurdy (2007), that is,
relating the conditional variance of daily returns to the conditional
expectation of daily RV, as in Eq. (3.1). In this case, t-distributed
return innovations, as in Eq. (3.5), dominate Normal return
innovations.

Based on the in-sample loglikelihood, the 2Comp-OSV specifi-
cation dominates the 2Comp specification. However, as shown in
Fig. 2, there is not a large difference with respect to out-of-sample
density forecasts. This is also evident from comparing the parame-
ter estimates in Table 2. Except for the return intercept, and the fact
that the return innovations have fatter tails for the 2Comp model
than for the 2Comp-OSV version, the parameter estimates are
similar.
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Table 2
S&P 500 model estimates.

2Comp-OSV model

rt = µ + ϵt , ϵt =
√
RVtut , ut ∼ D(0, 1)

log(RVt ) = ω +
∑2

i=1 φisi,t + γ ut−1 + ηvt , vt ∼ NID(0, 1),
si,t = (1 − αi) log(RVt−1) + αisi,t−1, i = 1, 2.

2Comp model

rt = µ + ϵt , ϵt = σtut , ut ∼ tv(0, 1)
σ 2
t = exp


Et−1 log(RVt ) +

1
2Vart−1(log(RVt ))


log(RVt ) = ω +

∑2
i=1 φisi,t + γ ut−1 + ηvt , vt ∼ NID(0, 1),

si,t = (1 − αi) log(RVt−1) + αisi,t−1, i = 1, 2.

Parameter 2Comp-OSV: ut ∼ N(0, 1) 2Comp: ut ∼ tν(0, 1)

µ 0.038 (0.011) −0.018 (0.014)
ω −0.026 (0.012) −0.025 (0.013)
φ1 0.476 (0.007) 0.402 (0.147)
φ2 0.476 0.543 (0.154)
α1 0.888 (0.017) 0.911 (0.045)
α2 0.435 (0.037) 0.508 (0.105)
γ −0.129 (0.010) −0.141 (0.011)
η 0.531 (0.009) 0.528 (0.009)
1/ν 0.089 (0.016)

lgl −5646.725 −5916.342

The main features of our results are as follows. Bivariate
models that use high-frequency intraday data provide a significant
improvement in density forecasts relative to an EGARCH model
estimated from daily data. Two-component specifications for
the dynamics of log(RV) provide similar or better performance
than HAR alternatives; both dominate the less flexible single-
component version. A bivariate model of returns with Normal
innovations and observable stochastic volatility directed by a 2-
component, exponentially decaying function of log(RV) provides
good density forecasts over a range of out-of-sample horizons
for both data series. We find that adding a mixture of Normals
or GARCH effects to the innovations of the log(RV) part of this
specification is not statistically important for S&P 500, while
the addition of the mixture of Normals provides a significant
improvement for IBM.

6. Conclusion

This paper proposes alternative joint specifications of daily
returns and RVwhich link RV to the variance of returns and exploit
the benefits of using intraperiod information to obtain accurate
measures of volatility. Our focus is on out-of-sample forecasts of
the return distribution generated by our bivariatemodels of return
and RV. We explore which features of the time-series models
contribute to superior density forecasts over horizons of 1 to 60
days out of sample.

Our main method of model comparison uses the predictive
likelihood of returns, the forecast density evaluated at the realized
return,whichprovides ameasure of the likelihoodof the data being
consistent with the model. An identical set of return observations
is used to compute a term structure of test statistics over a range
of forecast horizons, so that the average predictive likelihoods are
not only comparable across models but also over different forecast
horizons for a particular model.

Two alternative joint specifications of daily returns and realized
volatility were investigated. These two bivariate models are
distinguished by alternative assumptions about RV dynamics. The
firstmodel uses a heterogenous autoregressive (HAR) specification
of log(RV). The second model allows components of log(RV) to
have different decay rates. Both of these bivariate models allow
for asymmetric effects of past negative versus positive return
innovations. Both models are stationary and consistent with mean
reversion in RV. We also investigate an observable SV assumption
(OSV) for the timing of information availability.

Using the predictive likelihood, we find that high-frequency
intraday data is important for density forecasts relative to using
daily data as in our benchmark EGARCH specification. Secondly,
a flexible function form (either two components or HAR) is very
important for the dynamics of log(RV). The OSV assumption
marginally improves density forecasts at long horizons for the S&P
500 but is essentially similar for the IBM data. A bivariate model
of returns with Normal innovations and observable stochastic
volatility directed by a 2-component, exponentially decaying
function of log(RV) provides good density forecasts over a range
of out-of-sample horizons for both data series.
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