|dentifying Bull and Bear Markets

in Stock Returns

John M. MAHEU

Department of Economics, University of Alberta, Edmonton, Alberta T6G 2H4, Canada

(john.maheu@ualberta.ca)

Thomas H. McCURDY

Rotman School of Management, University of Toronto, Toronto, Ontario M5S 3E6, Canada

(tmccurdy@mgmt.utoronto.ca)

This article uses a Markov-switching model that incorporates duration dependence to capture non-
linear structure in both the conditional mean and the conditional variance of stock returns. The
maodel sorts returns into a high-return stable state and a low-return volatile state. We label these
as bull and bear markets, respectively. The filter identifies all major stock-market downturns in
over 160 years of monthly data. Bull markets have a declining hazard functions although the best
market gains come at the start of a bull market. Volatility increases with duration in bear markets.
Allowing volatility to vary with duration captures volatility clustering.
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Characterizing the dynamics of stock returns has been
a particularly active area of research in the past decades.
Empirical finance has had considerable success in cap-
turing volatility dependence, while complicated dynamics
in the conditional return are often ignored or assumed
to be absent. Asset-pricing theory suggests, however, that
dependence in expected returns from a time-varying risk
premium, stochastic rational bubbles, fads, learning about
regimes, and irrational behavior by investors will show up
in a nonlinear fashion. Finding this structure in conditional
returns has been difticult. The purpose of this article is to
develop a framework to investigate nonlinear dependence
jointly in the conditional mean and conditional variance of
stock-market returns.

A flexible class of models for capturing general nonlinear
structure is a discrete mixture of distributions. A significant
characteristic of these models is that they aliow for a time-
varying conditional mean and variance, whereas the uncon-
ditional distribution can have skewness and fat tails. One
popular parameterization is the Markov-switching model
of Hamilton (1989). This approach sorts data endogenously
into regimes. Moreover, in such latent variable models
we need not assume that the econometrician’s informa-
tion set coincides with agents’ information. This is an at-
tractive aspect of the model and departs from the tradi-
tional approach that assumes that the information sets of the
econometrician and that of market participants are identi-
cal. The Markov-switching model was shown by Rydén,
Terasvirta, and Asbrink (1998) to be well suited to ex-
plaining the temporal and distributional properties of stock
returns.

The Markov-switching model has been used extensively
in modeling nonlinear structure in time series data. For ex-
ample, Turner, Startz, and Nelson (1989) used the model
to account for a time-varying risk premium in stock re-
turns, and Schaller and van Norden (1997) used the ap-
proach to distinguish between fads and bubbles in stock re-

turns. Hamilton and Lin (1996) used the model to capture
the nonlinear dynamics in the stock market and business
cycle. Gordon and St-Amour (1999) modeled risk aversion
as a two-state Markov process in their description of the
cyclical pattern of asset prices.

Hamilton’s (1989) first-order Markov model will not cap-
ture duration dependence in states. The latter could be par-
ticularly important in explaining volatility clustering, mean
reversion, and nonlinear cyclical features in returns. Ignor-
ing duration dependence could result in a failure to cap-
ture important properties of stock returns. Durland and Mc-
Curdy (1994) developed a parsimonious implementation of
a higher-order Markov chain that allowed state transition
probabilities to be duration dependent. In that model, du-
ration influenced the conditional mean through the hazard
functions. That is, duration determined the persistence of
the state-specific conditional mean by influencing when we
switch states.

In this article, to investigate potential nonlinear struc-
ture in stock-market cycles, we extend the Durland and
McCurdy (1994) model in several ways. In addition to
duration-dependent hazards, duration also enters directly
as a conditioning variable in both the mean and variance.
Now, given persistence in a particular state, the conditional
mean and variance can change with duration. This allows
us to investigate dynamic behavior for the mean and vari-
ance within each state. In addition to revealing some inter-
esting state-specific path dependence, this model also cap-
tures autoregressive conditional heteroscedasticity (ARCH)
effects. In other words, according to our specification tests,
conditional heteroscedasticity remaining in the Durland and
McCurdy (1994) parameterization is fully explained by the
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endogenous duration variable in the conditional variance
function.

Estimates of our two-state duration-dependent models
classify the states into bull and bear markets. The bull mar-
ket displays high returns coupled with low volatility, but
the bear market has a low return and high volatility. Our
empirical results find declining hazard functions (negative
duration dependence) in both the bull and bear market states
using monthly data from 1834-1995. This means the prob-
ability of switching out of the state declines with duration
in that state. Despite the declining hazards, the best market
gains come at the start of a bull market. That is, returns in
the bull-market state are a decreasing function of duration.
Volatility in the bear-market state, however, is an increasing
function of duration.

Although the primary objective of this article is to inves-
tigate duration dependence as a source of nonlinearity in
stock-market cycles, the structure of our econometric im-
plementation is amenable to testing for specific sources of
duration dependence by evaluating particular restrictions.
Preliminary results suggest that the source of duration de-
pendence in the transition matrix originates from both the
conditional mean and the conditional variance process. We
also discuss several possible explanations of the duration
dependence. For example, as the bull market persists, in-
vestors could become more optimistic about the future and
hence wish to invest more in the stock market. This positive
feedback means that the probability of switching out of the
bull market decreases with duration. This declining hazard
could perhaps be interpreted as a momentum effect.

Duration dependence has also been related to the stochas-
tic bubble explanation for nonlinear returns. For exam-
ple, McQueen and Thorley (1994) and Cochran and Defina
(1995) investigated duration dependence in stock-market
data by sorting the data into regimes, accounting for censor-
ing and estimating a parametric hazard function. McQueen
and Thorley (1994) showed that a testable implication of
stochastic rational bubbles is that high returns will exhibit
negative duration dependence (declining hazard). That is,
the probability of observing the end of a run of high re-
turns will decline with duration. Our duration-dependent
Markov-switching model is different from these approaches
in that it sorts returns probabilistically into the alternative
states. Although we also find a declining hazard associated
with the bull-market state, on balance our results do not
appear to fully support a bubble explanation for duration
dependence in our sample of monthly stock returns. For
example, we find a negative relationship between duration
and the conditional return in the bull market, which is the
opposite of what one would expect for a rational bubble.

This article is organized as follows: Section 1 outlines our
general framework for modeling duration dependence. Sec-
tion 2 describes the data, and Section 3 presents the model
estimates. The sensitivity of these results to the model and
various sample periods is considered in Section 4. Section
5 discusses the characteristics of bull and bear markets and
possible sources of duration dependence. Conclusions are
summarized in Section 6. Finally, the Appendix briefly out-
lines estimation of the models.
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1. MODEL DEVELOPMENT

The nonlinearities we wish to explore in this article in-
clude asymmetric cycles and time variation in the condi-
tional moments of stock returns. Much empirical work in
finance focuses on nonlinear structure in the variance. Rel-
atively little attention has been applied to nonlinear effects
in the conditional return. To explore both moments in a
nonlinear direction, a Markov-switching model is a natural
choice. A Markov-switching model can produce skewness
and excess kurtosis, as is often found in financial data. It
also provides inference concerning the probability of being
in a particular unobservable regime or state over time.

In the Markov-switching class of models the unobserved
state is governed by a state variable S; that takes on a finite
number of values. Our family of models has two states and
allows for a rich set of intrastate dynamics for the condi-
tional mean and variance. Alternatively, more states could
be used with simpler dynamics in each state. Our two-state
specification accords with a tradition of classifying stock
markets into two regimes labeled bull and bear markets.

We begin with a simple (autoregressive) AR(!) model al-
lowing two states for the conditional mean and variance.
That is,

[4
Re=p(St)+ > ¢(Rimi = p(Sei)) + (St (1)

i=1
and
vy ~ NID(0, 1), 2)

where R; is the total return, [ is the number of
lags, and u(S;) is the conditional mean. Conditional on
{8_1,8¢-2,...,51,80,...,5 r41}, where 7 is the memory
of duration dependence, S; is assumed to be independent of
{Ri_1,R¢—2,..., R1}. 1y is an independent standard normal
innovation and therefore independent of past R, and S,. In
the model labeled DDMS-2, both the conditional mean and
conditional variance are allowed to take on two values. A
simpler constant-variance model (DDMS-1), imposes the
restriction o(1) = ¢(2), in Equation (1).

Typically the evolution of S; is governed by a first-order
Markov chain. Putting duration dependence in the model
results in a higher-order Markov chain. A general model
would be intractable due to the loss of degrees of free-
dom needed to parameterize the transition matrix. Instead,
Durland and McCurdy introduced duration using a parsi-
monious parameterization that puts nonlinear restrictions
on a higher-order transition matrix. This model is particu-
larly suited to capturing nonlinear structure and asymme-
tries from cyclical behavior such as mean reversion.

Duration could be important in capturing volatility clus-
tering but also could have explanatory power for the
conditional return. The Durland and McCurdy duration-
dependent Markov-switching (DDMS) model allows dura-
tion to affect the transition probabilities. In this section we
will extend the model to allow for ARCH and to allow du-
ration to be a conditioning variable in the conditional mean
and variance.
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Define duration as

D(S;,) — { 1D(St7'l) +]

In words, duration is the length of a run of consecutive
states S;. Theoretically, D(S;) could grow very large. To
make estimation feasible, we keep track of duration up to
and including 7. As will be discussed further later, the pa-
rameter 7 was chosen to maximize the log-likelihood start-
ing from 7, =1+ 1.

The transition probabilities are parameterized using the
logistic function. This ensures that the probabilities are in
(0, 1). Using 7 and d to index realizations of states and
duration, the transitions probabilities are, for i = 1,2 and
parameters v, () and (i),

if S; =S,
otherwise.

(3)

[)(St == ‘/.,‘)Syiul = ’1.. D(Stfl) = d)

(7)(1)

HY

~exp(mt) +7
L+ exp(m (i) +

for d < 7, and

P(Se = ilS 1 = i.D(Sy1) = d)

~exp(y1(4) +72( )
= T et oann)

for d > 7. That is, duration is allowed to affect the transi-
tion probabilities up to 7 periods, after which the transition
probabilities are constant.

To discuss duration effects it is useful to define the hazard
tunction. The hazard function is the conditional probability
of a state change given that the state has achieved a dura-
tion d. In terms of the transition probabilities, the hazard
function is

1 - P(As'f = llb; -] = T'.‘D(S/_l) = (]) (6)

1
- P 9

I+ exp(v (i) + y2(i)d)’ i=1.2 )
A decreasing hazard function is referred to as negative dura-
tion dependence, and an increasing hazard function is pos-
itive duration dependence. The effect of duration on the
hazard function is uniquely summarized by the parameters
v2(i}.7 = 1,2. In particular, for state i,v2(7) < 0 implies
positive duration dependence, (i) = 0 implies no dura-
tion effect, and (i) > 0 implies negative duration depen-
dence. For example, if state 2 displays negative duration
dependence and the stock market persists in state 2, then

the probability of staying in state 2 increases.
Construction of the log-likelihood is briefly outlined in
the Appendix. Asymptotic theory for Markov-switching
models has only recently been developed. Leroux (1992)
has proved consistency for hidden Markov models and
Bickel, Ritov, and Rydén (1998) proved asymptotic nor-
mality. Krishnamurthy and Rydén (1998) extended the con-
sistency results to nonlinear autoregressive models with
Markov regime switching. A global maximum does not ex-
ist for Markov-switching models. For each model, 100 ran-
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dom starting values were used as startup values and the
maximum log-likelihood value was taken as the model es-
timate. In all cases, the model estimates were robust to
different starting values. Estimation was carried out using
the FORTRAN quasi-newton optimization routine EO4JBF,
from the Numerical Algorithms Group (NAG).

A defining feature of the Markov-switching model is the
filter. The filter results from constructing the log-likelihood
and provides inference about the unobservable state variable
S at time ¢. In a similar fashion, the filter is constructed
for the duration-dependent Markov-switching model. The
filter is now the joint probability of the state S;, however,
and the duration D(.S;) based on time ¢ information.

Due to the latent variable S, residuals are unobservable.
Using Equation (1), the standardized expected residuals can
be constructed using the filter as

Z By — E[Ri|st, - se-1.d, Yo ]
StreStogyd U(St,)
X P(St""‘r‘gt—lu(ﬂY]‘,f”’ (8)
where Y, = {R;—1,Ri_2,...,Ry}. In Equation (8) and

the following, for notational convenience s;,...,s;_,d de-
notes realizations of the state variables Sy,....Si—;. D(S;).
The standardized residuals can be used in residual-based di-
agnostic tests, such as the Ljung and Box (1978) (LB) test.
Because we do not know the asymptotic distribution of the
LB statistic using the standardized expected residuals, spec-
ification tests should be interpreted with caution.

Financial data frequently display ARCH effects. Because
a two-state Markov model of variance may not be adequate
to completely capture conditional heteroscedasticity, we ex-
tend the DDMS model to allow for ARCH.

Both Hamilton and Susmel (1994) and Cai (1994) ex-
tended the first-order Markov-switching model to include
ARCH. A generalized ARCH (GARCH) extension is more
difficult because the conditional variance depends on the
entire past history of S5;, making construction of the log-
likelihood a computational burden. Dueker (1997) proposed
an approximation to make GARCH feasible. Gray (1996),
however, defined a slightly different class of GARCH mod-
els that overcomes the path-dependence problem. This is the
approach followed in this article to implement ARCH. For
parsimony we allowed only the intercept in the conditional
variance to be state dependent.

Adding ARCH(K) gives the DDMS-ARCH mode],

l
R1~/£St +Z zRf I*N ))+€f (9)
i=1

K
hi(Se) = w(S)) + D anéi g, (10)

h=1

&y hr([)t) (ll)

and

v ~ NID(0, 1). (12)
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Figure 1. Returns.
where This model allows for dynamic behavior within each
. R E R (13) regime. For example, persistence in a state implies that
£ .= —_ . ¢ . . . . . . ~ .
stk t—k T St—k-1ft—k D(S;) is an increasing function, and duration effects in the
in which conditional mean and variance are measured by the coef-
ficients ¢(S;) and ((S;), respectively. This model is also
Erp1 Ry capable of capturing complicated correlations between the
Z E[Ri_s| Ry ] conditional mean and variance. For example, the correlation
= ek |St—ky ey St—foet Y L . .
) b=kFt=ks e e Skl Sy T2 k-1 between the conditional mean and variance may differ over
St kaeeeaStmfo 1,0

X P(s4_pyo ooy Sp—p—1.d|Yi1)

Note that &; will, in general, be different from ¢, because
the information set Y, does not imply complete knowledge
about ¢;. If S; were observable then £, could be constructed.

To construct the standardized residuals as in Equation
(8), simply replace o(S;) with \/h,(S;). The expected con-
ditional standard deviation from the DDMS-ARCH model
is the square root of

)3

S,.,.,..s'_/.d

where P(s;....,s,d|YT)
smoother.

Finally, our most general model (DDMS-DD) allows du-
ration to be a conditioning variable in the conditional mean
and the conditional variance. Independently, Lam (1997)
used a model that conditions on duration in the conditional
mean to explain gross national product growth. The DDMS-
DD model is

Rt = /L(Sf) -+ l/’(St)D(Sf)

hy = hi(s)P(se. ... si—,d|Yr).  (14)

indicates the full-sample

!
+ D bRy = p(Sei) = (Si-i)D(Se—i))

t=1

+ (0(S)) + C(S)D(S))2ve. v ~NID(0.1). (15)

states. These effects can be captured through the parameters
0 (Sy), and ¢(Sy ).

To construct the expected residuals for the DDMS-DD
model, replace o(S,) with (o(S;) + ¢(S;)D(S;))? in Equa-
tion (8). The expected conditional standard deviation for
DDMS-DD is the square root of

Z (o(8:) + C(8)d)* P(sy, ...

Storeen 810

s diYr). (16)

}'l.t =

2. DATA

The data were obtained from Schwert (1990). These
data are monthly returns including dividends and range
from 1802 to 1925. Data from 1926 to 1995:12 are
from the monthly Center for Research in Security Prices
(CRSP) value-weighted portfolio for the New York Stock

Table 1. Summary Statistics for Returns

Mean Standard deviation = Skewness  Excess Kurtosis
Rt .008 .049 .09g 6.747
(.004) (.003) (.631) (.139)
| R .036 .034 3.020 17.514
(.765€-3) (.003) (.103) (.309)
A2 .002 .007 11.482 182.19
(.139¢e-3) (.001) (.680) (4.400)

NOTE: Summary statistics for monthly nominal stock returns from 1834:2-1995:12. Standard
errors robust to heteroscedasticity appear in parentheses. The data are monthly nominal returns
from Schwert (1990) merged with the CRSP value-weighted portfotio for the NYSE.
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Table 2. OLS Estimates
A = .007 +.092R; _ 1 —.015R; _»
(.001) (.039) (.036)
AA053R173 +.011 Rr_4 +.054Rf_5
(.037) (.032) (.032)
& = .049, R? = .0147, Igl = 3105.12

NOTE: Standard errors robust to heteroscedasticity appear in parentheses. A 2 is the coefficient
of determination, and Igi is the log-likelihood.

Exchange/American Exchange. The choice of data reflects
our objective to capture as many stock-market phases as
possible to obtain precise estimates. We used data from
1834:2—-1995:12 due to the apparent structural break in the
variance of the series around 1834:1. Data from 1802 to
1833 displayed a substantially lower variance relative to
post 1833 data. See table 6 and figure 2 of Schwert (1990).
Using the full sample 1802-1995 did not change the results
but required a third state for 1802-1833. This added little
to the model so we used the sample 1834:2-1995:12.

Figure | plots the monthly returns for our sample. Sum-
mary statistics are reported in Table 1. Standard errors ro-
bust to heteroscedasticity (estimated by generalized method
of moments) are given in parentheses. Note that the re-
sults indicate that the monthly returns are not normally dis-
tributed.

3. ESTIMATION RESULTS

As a comparison for the nonlinear models developed and
estimated in this article, Table 2 presents results from a
linear AR(5) model estimated by ordinary least squares
(OLS). Standard errors robust to heteroscedasticity are re-
ported. The linear model gives imprecise estimates of the
AR terms; only the first coefficient is significant. Once the
nonlinear effects are accounted for in the conditional mean
and variance using the Markov-switching model, however,
persistence in the conditional mean was found up to five
lags. Therefore, for comparison purposes, five AR lags are
included in the OLS estimation and in all the nonlinear
models.

The BDS test of Brock, Dechert, and Sheinkman (1987)
has power against a variety of departures from iid distur-
bances, including heteroscedasticity and/or nonlinearities
in the conditional mean. Under the null hypothesis, the BDS
statistic is N(O, 1). Note that the BDS test can pick up de-
pendence in higher-order moments. To avoid this, Pagan
(1996) suggested the Tsay (1986) test for detecting nonlin-
ear structure in the conditional mean. Table 3 reports the
BDS test on returns for various embedding dimensions and
the Tsay test for various lags. The Tsay test is made robust
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to heteroscedasticity by use of the White (1980) covariance
estimator. The BDS and Tsay statistics suggest that a lin-
ear model may be inadequate in capturing the stochastic
properties of returns.

Maximum likelihood estimates for the models sum-
marized in Table 4 are presented in Table 5. DDMS-
I is a Markov-switching model with duration-dependent
transition probabilities, but only the conditional mean is
state dependent. DDMS-2 extends DDMS-1 by allowing
the variance to be state dependent. To capture remaining
conditional heteroscedasticity, DDMS-ARCH extends the
DDMS-2 model by including an ARCH specification of
the conditional variance. Finally, DDMS-DD extends the
DDMS-2 model by allowing duration to enter directly as a
conditioning variable in both the mean and variance. The
estimates for these four alternative models are presented in
the respective columns of Table 5.

Table 6 presents results from some residual-based diag-
nostic tests to evaluate the statistical adequacy of the models
reported in Table 5. In particular, we report the Ljung and
Box (1978) portmanteau test statistics (and asymptotic p
values) associated with the standardized expected residuals
and their squares.

Figure 1 plots the raw monthly returns over our sample.
Figures 2 and 3 plot the filtered probabilities associated with
the positive return state for two of the alternative model
specifications. Figures 4 and 5 plot the expected conditional
standard deviations implied by the DDMS-ARCH versus
the DDMS-DD specifications. Figures 6 and 7 plot the
duration-dependent transition probabilities for the DDMS-
ARCH and the DDMS-DD specifications, respectively. Fi-
nally, Figures 8 and 9 illustrate the duration dependence of
the state-specific conditional return and variance.

Columns 2 and 3 of Table 5 present the estimates for
our two simplest nonlinear specifications (DDMS-1 and
DDMS-2). In both models, p(1) < p(2). That is, the
states are sorted into low- and high-return states. When
the variance is also allowed to be state dependent (DDMS-
2), the low-return state is associated with high volatility
(71 = .102) and the high-return state has low volatility
(¢2 = .036). A convenient labeling for these two states
is bear versus bull markets. The bull-market label refers
to the high-return, low-volatility state, whereas the bear-
market label refers to the low-return, high-volatility state
of the stock market. This sorting is a robust feature of all
models. Although the capital asset-pricing model indicates
a positive relationship between volatility and return on the
market portfolio (Merton 1980) this need not be the case

Table 3. Tests for Nonlinearity in Returns

Embedding dimension Lags
Test 1 2 3 4 5 2 4 6 8 10
BDS(e) 6.504 8.123 9.737 11.021 12.166
[.000] [.000] [.000] [.000] [.000]
Tsay (1986) ' 3.017 7.135 66.170 119.847 246.54
[.381] [.713] [.000] [.000] [.000]

NOTE: £ is chosen to be the standard deviation of returns. The BDS statistic is distributed as N(0, 1) under the null of iid innovations. p values are in brackets. The Tsay test has an asymptotic
Xz(/(l+ 1)/2) distribution, where / is the number of lags. The test has been made robust to heteroscedasticity.
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Table 4. Duration-Dependent Markov-Switching Models
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Table 5. Duration-Dependent Markov Mode! Estimates

DDMS-1, single variance model
!
Ay = 1(Sh) + Z,ﬂ oi(Rr i — u(Sr—i)) +our
vy ~ NID(Q, 1), St = 1,2
DDMS-2, state-dependent variance mode!

A = p1(Sh) + Z:=1 i(Ri—j —
vy ~ NID(0, 1), §y = 1,2

1(St—)) +o(St)vt

DDMS-ARCH

A= (S + 3. OB = (S e, = V(SO

ht{S1) = w(S+ Zk 1f¥kCr o Bt = Rt — E-1 Ay
vy ~ NID(0, 1), S =
DDMS-DD
R = (S +v(S1)D(St) + E Gi(Re—i — (St i) —¥(St—)D(S;-1))

+ (0(S1) +{(SnD ( ))
vt ~ NID(O, 1), St =

NOTE: Transition probabilities for all models:

exp(yy (1) +72(i)d)
1rexp(y1(+y2()d)
P(St = ilS~ = I.D(St-1) = d) =

exp(v1 (1) + v2())7)
T+exp(y1 (D+y2(7)

for intertemporal asset-pricing models. In the following,
we discuss how our model allows the correlation between
the expected return and volatility to vary across and within
states.

Figure 2 displays the probability of state 2 (bull mar-
ket), the high-return state, using the full-sample smoother
of Kim (1994). Note that a low probability of being in state
2 implies that we are in state 1. Second, in both models
~2(2) > 0, which implies a declining hazard associated with
a bull market. In other words, the probability of exiting the
high-return state decreases with duration (negative duration
dependence).

Finally, the log-likelihood reported in Table 2 for the lin-
ear AR(5) model estimated by OLS was 3,105.12. This com-
pares with 3,185.26 for the simplest of the nonlinear spec-
ifications. Therefore, the likelihood ratio test statistic for
the DDMS-1 two-state model versus the linear single-state
model (I df) is 160.28. Unfortunately, standard asymptotic
theory is not applicable. There are two problems—an iden-
tification problem and zero scores under the null. Several
approaches are available to obtain a correct p value—the
bound of Davies (1987), the numerical method of Hansen
(1992, 1996) to put a bound on the p value, and the deriva-
tion by Garcia (1998) of the analytic asymptotic distribu-
tion under the null for specific models. Nevertheless, such
a large test statistic suggests that we can reject the single-
state model.

Column 2 of Table 6 suggests that there is remaining
persistence in both the standardized estimated residuals
and their squares for the most parsimonious specification
(DDMS-1). DDMS-2 allows both the mean and the variance
to be state dependent, which improves the specification, but
there is still some remaining persistence in the conditional
variance.

Parameter ~ DDMS-1  DDMS-2 ~ DDMS-ARCH  DDMS-DD
(1) -~ 145 — 003 —.004 014
(011) (.009) (.009) (.007)
o) .630e-3
(.001)
u(2) 011 .009 009 029
(.001) (.001) (.001) (.003)
W(2) —.001
(.260e-3)
b1 104 061 057 012
(.029) (.023) (.024) (.028)
bo 022 002 006 —.022
(.027) (.022) (.023) (.025)
b3 022 —.010 005 ~.002
(.027) (.023) (.025) (.025)
ba .050 012 016 021
(.025) (.023) (.023) (.025)
b5 072 065 057 .080
(.026) (.022) (.022) (.025)
a(1) 044 102 w(1): .008 175
(.744e-3) (.009) (.002) (011)
<M 014
(.002)
a(2) 036 w(2): .001 201
(.002) (921e-4) (.007)
(2) —.002
(.520e-3)
1{1) 634 -.765 —1.034 617
(1.270) (.494) (572) (.337)
v2{1) —1.024 341 342 .085
(.960) (.087) (.096) (.045)
1(2) 1.092 954 706 1.027
(.381) (.527) (.562) (.433)
~2(2) 219 248 242 122
(.032) (.071) (.062) (.040)
T 20 12 14 16
Igl 3185260  3320.325 3331.495 3357.416

NOTE: Standard errors are in parentheses. igl is the log-fikelihood value.

To account for residual conditional heteroscedasticity, we
implemented the DDMS-ARCH model. Column 4 of Table
5 presents these estimates with K = 3 in Equation (10).
Recall that for this model the intercept of the conditional
variance, w{5;), is state dependent, but the a;,7 = 1,2,3,
are constant across states. Although not reported in Table
5, each ;.1 = 1,2, 3, was highly significant (3~ a; = .196).
The estimated o2 reported in Table 2 was used as a startup
value for the ARCH process. Residual-based diagnostics,
reported in Table 6, are acceptable for this model.

The memory, 7, of the Markov chain for this model was
determined to be 14. That is, duration is significant in af-
fecting the transition probabilities for a little over a year.
Because 7 is a discrete-valued parameter, 7 was determined

Table 6. Misspecification Tests

Test DDMS-1 DDMS-2 DDMS-ARCH DDMS-DD

Q(6) 19.63 3.015 3.603 3.151
[.003] [.807] [.730] [.790]

Q?(6) 346.11 31.143 4.581 3.255
[.00D] [.2e-4] [.599] [.776]

NOTE: p values are in brackets. Q(6) is the Ljung and Box (1978) portmanteau test for auto-
correlation in the residuals with six lags and 02(6) is the same test on the squared residuais
for the respective models.
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Figure 2. DDMS-2, Probability of State 2.

using a grid search from [5, 24] with the log-likelihood
value as the criterion. Therefore, the standard errors in Ta-
ble 5 do not take parameter uncertainty associated with 7
into account. However, we always found a maximum, in the
interior of [3, 24].

As in the DDMS-2 case, which has a state-dependent
variance but no ARCH effects, the DDMS-ARCH model
has a high unconditional variance (.01008) associated with
the low-return state [¢(1) is insignificantly different from
0] and a low unconditional variance (.0013) associated with
the high-return state [the conditional mean return in state

2, n(2), is positive with a ¢ statistic of 8.45]. That
is, once again the sorting is such that the bull mar-
ket is a high-return, low-volatility state of the market,
whereas the bear market is a low-return, high-volatility
state.

Figure 3 shows the probability of a bull market from the
full-sample smoother. Most of the sample from 1834:2-
1995:12 is sorted into the bull-market state. The filter
clearly identifies the stock-market crashes of 1929 and 1987
and the market downturns of the 1930s. The filter also in-
dicates less notable stock-market downturns, such as 1855,

1 T

09 F

¥ 1

.

08 |-

06

0.5+

0.4

03 r

02

0.1

i | \ «’Wﬁ

1820 1840 1860 1880 1900

1920 1940 1960 1980

Time

Figure 3. DDMS-ARCH, Probability of State 2.
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Figure 4. DDMS-ARCH, Expected Conditional Standard Deviation.

1861, 1860, 1907, and 1974.

Markov-switching models allow us to identify turn-
ing points. Although we could discuss several periods,
we will focus on the crash of 1929. The filtered prob-
abilities, such as those given in Figure 2 and Figure 3,
give the probability of being in a particular state at a
particular point in time. Through the 1920s until April
1929, the probability is greater than .5 for the high-
return, low-volatility state. On the other hand, from May
1929 to May 1934 the filter gives a probability greater
than .5 to the low-return, high-volatility state. Thus the

0.16 T T T

DDMS-ARCH model identifies a turning point in the
stock market in May 1929—several months prior to the
crash. According to this model, that turning point involved
a switch from a high-return, low-volatility state to one
with a low average return and an eightfold increase in
volatility.

Figure 4 shows the expected conditional standard devi-
ation from the DDMS-ARCH model. The most apparent
feature is the high volatility associated with the great de-
pression. The volatility clustering around the 1860s corre-
sponds with the U.S. Civil War. Figure 5 shows the ex-

0.14

012

0.08

0.02

g Vo

1820 1840 1860 1880 1900

1920 1940 1960 1980 2000

Time

Figure 5. DDMS-DD, Expected Conditional Standard Deviation.
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pected conditional standard deviation from the DDMS-DD

model.

The coefficients that estimate the dependence of the tran-
sition probabilities on duration, ~,(1) and ~-(2), are both
significantly positive, which again implies a declining haz-
ard associated with both the bull and bear markets. The
implications for the length of a bull and bear market are
summarized in Figure 6. This shows how the probability

of staying in the state changes as duration increases. For

example, when the economy is in the bull market (state
2), the probability of staying in the bull market actually
increases with duration. That is, the bull market gains mo-
mentum. Although the probability of staying in the bear
market (state 1) also increases with duration, the probabil-
ity of staying in the state is less than .5 until after four
consecutive occurrences of state 1 occur. That is, the low-
return, high-volatility state (bear markets) are not persis-
tent until after we have stayed in them for several months.
On average, the stock market spends 90% of the time in
a bull market and only 10% in a bear market. These are
the unconditional probabilities for each state, P(S = i) =
SN P(S=i.D=d)i=1.2.

One possibility that the DDMS-ARCH specification ig-
nores is that duration has a direct effect on the conditional
mean and standard deviation. Qur previous models only al-
low duration to affect the persistence of a state. This moti-
vates our next model (DDMS-DD) that allows duration to
enter as a conditioning variable in the conditional mean and
variance.

Estimates of DDMS-DD from Equation (15) appear in
the last column of Table 5. For this parameterization, the
difference in returns across states is more pronounced. The
conditional return in state 1, ¢(1), is now significantly neg-
ative. The positive return after a switch into state 2 (bull
market) is roughly three times larger than in the previous
models and is still quite precisely estimated (¢ statistic is
almost 10).

Allowing intrastate dynamics in the DDMS-DD model
results in a sorting of returns into bull and bear markets that
is more comprehensive than that from the DDMS-ARCH
model. In particular, this structure captures many more mar-
ket downturns than the previous models. For example, the
correction in mid-1990 is clearly indicated. This filter pro-
vides more detail in other respects as well. For example,

Duration (months)

Figure 6. DDMS-ARCH: Transition Probabilities.
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Figure 7. DDMS-DD, Transition Probabilities.

although the previous filters identified the crash in 1987,
the DDMS-DD filter signals the crash several months prior
to the event.

Because we find a declining hazard associated with the
bull market (Figure 7), we still have a momentum effect in
the market—as was the case for the DDMS-ARCH model
(Fig. 6). Now both the bull and bear markets are persistent,
however, whereas the bear market in the DDMS-ARCH was
not persistent until after four consecutive months in the bear
market.

This model also allows the conditional mean within each
state to display dynamic behavior. For example, the param-
eter ¢»(2) estimates the dependence of the conditional mean
in state 2 on duration. Note that v (2) is significantly dif-
ferent from O with a ¢ statistic of —3.8. Consider how the
conditional return in the bull market changes over time.
During the first period in the high-return state, the condi-
tional return is .0278, but if state 2 persists for 16 peri-
ods, the conditional return drops to .0068. Thus, the bull
market delivers decreasing positive returns. The best mar-
ket gains come from the start of the bull market. Figure 8
plots the conditional return in state 2 against duration for
the DDMS-DD model compared with the earlier DDMS-
ARCH model for which duration only affects the timing of
switches between states.

In addition, the DDMS-DD model allows duration to be
a conditioning variable for the state-specific standard devi-
ations. The coefficients (1) and ((2) estimate this effect.
Note that both are significant but that they have opposite

0.015
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0.005
0 2 4 6 8 10 12 14 16 18 20

Duration (months)

Figure 8. Conditional Return in State 2.
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signs. Figure 9 displays the evolution of the conditional
standard deviation in each state as duration increases. Be-
cause Figure 9 suggests that the variance in state 2 is almost
homoscedastic, this means that sources of heteroscedastic-
ity are mainly from the low-return (bear-market) state and
from switches between the two states. Although ((2) is sig-
nificantly negative, it does not show up clearly in Figure 9
due to the scaling.

The conditional standard deviation for the DDMS-DD
model over time is shown in Figure 5. The standard devia-
tion is remarkably like that from the DDMS-ARCH model.
This is an interesting result, which indicates that, at least
for this model, duration explains residual heteroscedasticity
without resort to an ARCH specification.

Our DDMS-DD model allows the conditional mean and
volatility of returns to be correlated in a highly nonlinear
fashion. For example, persistence in state 2 will mean the
conditional return and standard deviation both decrease as
state 2 persists. This means that returns and volatility will
be positively correlated in a bull market. Because (1) is
insignificant, returns and volatility will be uncorrelated in
a bear market.

4. ADDITIONAL SPECIFICATION TESTS

To explore whether or not our results are sensitive to
the sample period, the DDMS-DD model was estimated
over subsamples 1834-1925, 1926-1995, and 1947-1995
for = = 16. Table 7 reports these subsample estimates.
Overall, the results are similar to the full-sample estimates.
The nonlinear structure in the conditional mean and vari-
ance in the full sample was also found in each of the sub-
samples considered. The only noticeable difference was a
weaker evidence for duration dependence in the transition
matrix. In some cases duration was significant at only the
10% or 5% level. For the 1947-1995 sample, we found no
evidence of duration dependence in the transition matrix.
We should be careful in interpreting duration dependence
in the transition probabilities in smaller samples; because
fewer bull and bear markets occur, identification of dura-
tion effects in the transition probabilities is difficult. Du-
ration dependence was still significant, however, in both
the conditional mean and the conditional variance. For ex-
ample, ¢»(2) is significantly negative in all samples. That is,

0.2 Y T T T T T T T T
0.15
0.1F
0.05 - State 1 —
State 2 -----
Ob 4 4y TS

0 2 4 6 8 10 12 14 16 18 20
Duration (months)

Figure 9. Conditional Standard Deviation From DDMS-DD Mode!.
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Table 7. DDMS-DD Estimates For Different Samples Periods, v = 16

Parameter 1834-1925 18261995 1947-1995
u{1) -.021 —.0186 -~.016
(.017) (.007) (011)
(1) .002 .25e-3 .001
{(.008) (.001) (.002)
w(2) .024 .038 .037
(.005) (.003) (.003)
W(2) —.001 —.002 —.002
(.39e-3) (.35e-3) (.32e-3)
1 044 —.098 —.136
(.035) (.047) (.054)
b2 -.026 —.048 —-.137
(.032) (.042) (.048)
b3 .014 —.026 —.041
(.033) (.037) (.046)
ba .018 .011 .023
(.033) (.037) (.043)
b5 .087 .091 .095
(.034) (.036) (.042)
a(1) 174 166 .160
(.021) (.012) (.016)
¢(1) .018 .015 .014
(.008) (.002) (.004)
a(2) 224 180 178
(.014) (.008) (.012)
¢(2) -.004 —.82e-3 —.90e-3
(.8808-3) (.001) (.001)
v1(1) 753 702 1.916
(.965) (.394) (1.096)
Yo(1) -.010 101 —.146
(.137) (.051) (.154)
¥1(2) 1.527 1.216 2.075
(.668) (.505) (.558)
v2(2) .097 .096 .030
(.053) (.051) (.050)
Igl 1947.740 1414.608 1102.618

NOTE: Standard errors are in parentheses. Igl is the log-likelihood value.

the finding that returns in the bull market are a declining
function of duration is a robust feature of all subsamples.
All the results pertaining to duration dependence in the
transition matrix were estimated using the logistic func-
tional form. This functional form may be too restrictive.
To consider the importance of the functional form on du-
ration dependence, several alternative functional forms to
that in (4) were investigated for the full sample and the
subsamples for the DDMS-DD model. The following al-
ternative parameterizations for the transition probabilities
P(S, =i|S;i-1 =1, D(S;-1) = d),i = 1,2, were studied:

1(3) + 72(i)d)? . ' _
1 %(:}2'(71)(;; +2§2)(1))d)21 sin(7y; (3) + y2(i)d)?,
exp(y1(8) + 12(1) log(d))

1+ exp(71 (i) + v2(7) log(d))

In most cases the logistic function in (4) gave the best log-
likelihood value. In the few cases in which it did not, the
alternative functional form only gave a very small improve-
ment in the log-likelihood. We found that all functional
forms suggest negative duration dependence in the transi-
tion matrix for the full sample.
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5. DISCUSSION

In this section, we discuss some possible sources of du-
ration dependence associated with the persistence and the
conditional moments of monthly stock returns. In particu-
lar, we discuss duration dependence in fundamentals, posi-
tive feedback or momentum effects in markets, and stochas-
tic rational bubbles. Furthermore, to evaluate whether or not
duration dependence associated with the transition proba-
bilities (the hazard function or persistence) might be com-
ing from one or the other of the conditional mean or vari-
ance, we report results from a decoupled model in which
transition probabilities associated with the conditional mean
are allowed to be independent from those associated with
the conditional variance. Finally, we briefly assess whether
our nonlinear model exhibits greater explanatory power for
monthly mean returns than a linear model.

For our most general models, we found declining haz-
ards for both the bull and bear markets. For example, in
the DDMS-DD model, v-(2) measures the duration effect
on the transition probabilities associated with a bull mar-
ket. That parameter is positive with a t statistic ot about
3. Therefore, a bull market not only tends to persist but
becomes more likely to persist as it continues.

One obvious candidate for duration dependence is the
fundamentals themselves. The quarterly frequency of divi-
dends makes testing this hypothesis problematic, however.
It is not clear what type of microstructure could impart
duration dependence in dividends—possibly corporate re-
luctance for change. If dividends are positively related to
the business cycle, they are likely to display positive du-
ration dependence—see Durland and McCurdy (1994) and
Diebold, Rudebusch, and Sichel (1993).

Another possible explanation for declining hazards could
be irrational investors, such as noise traders (Delong,
Shleifer, Summers, and Waldman 1990) or fads. Both mod-
els allow stock prices to deviate from fundamental prices.

The declining hazards found in all models could be inter-
preted as a momentum effect in the market. For example,
as a bull market persists, investors could become more op-
timistic about the future and hence wish to invest more in
the stock market. This results in a decreasing probability
of switching out of the bull market. Similarly, the length
of a bear market could be related to the amount of pes-
simism about future returns by investors. This would lead
to a substitution from equity into other expected high-return
instruments, such as treasury bills.

Does the empirical evidence presented in this article im-
ply that there are bubbles in the stock market? McQueen
and Thorley (1994) showed that a rational stochastic bubble
will display negative duration dependence. They sorted data
into two regimes and, using traditional duration-dependence
tests, found evidence of negative duration dependence in the
high-return state.

In contrast, our models endogenously sort states based on
maximum likelihood and also allow for dynamic behavior
for the conditional mean and variance in each state. Never-
theless, our estimates of hazard functions also decline with
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duration. Table 5 shows ~(2) to be significantly positive
in both the DDMS-ARCH and DDMS-DD models. This is
also clearly seen in the upward sloping transition probabili-
ties as duration increases in Figures 6 and 7. This evidence
would appear to be consistent with a rational stochastic bub-
ble. There are several reasons why this conclusion could be
premature, however.

First, the observational equivalence of a growing bubble
and any expected future change in fundamentals complicate
matters. For example, if investors know for certain there
will be a future change in tax policy at time ¢, then prior
to ¢ prices will display the same exponential growth as a
bubble would. To the econometrician who is unaware of the
expected regime change, it will appear that prices contain
a bubble.

Second, estimates of our DDMS-DD model indicate that
the conditional return in the bull market decreases with du-
ration [i.e., ¥(2) < 0]. This contrasts with intuition that the
conditional return associated with a bubble state will be a
positive function of duration. To see this, consider the well-
known bubble model of Blanchard and Watson (1982). In
this model both the bubble and fundamental components
on average must deliver the required return ». Conditional
on the bubble growing, the expected return of the bubble
component will be greater than r. That is, as the bubble
continues to grow it will become the dominant factor af-
fecting observed returns. Consequently, in the bubble state
(state 2) of the DDMS-DD, the conditional return should
be an increasing function of the duration of that state [i.e.,
W (2) > 0].

Finally, duration dependence associated with transition
probabilities (the hazard function) could originate from the
conditional mean or the conditional variance process, or
both. For example, two independent latent processes may
drive the conditional mean and variance, respectively. It
is possible that only the latent process for the conditional
variance has a duration-dependent hazard. Therefore, in our
two-state models it may be that the mean process is domi-
nated by the variance process.

To further explore this possibility, we estimated the
DDMS-DD model as given by Maheu (1998) in which the
latent process for the conditional mean is decoupled from
the latent process for the variance. Thus, we build a model
with two independent Markov chains, one for the condi-
tional mean and the other for the conditional variance. Both
Markov chains allow for duration dependence. In this fash-
ion we can test the origin of duration dependence associ-
ated with the hazard functions. This model i1s much more
complicated than those considered in this article, so our
results are only preliminary. We found a similar negative
duration-dependence structure in the conditional variance
and its associated transition matrix. Moreover, we found a
similar regime-switching structure in the conditional mean
with duration being significant, and we found evidence of
negative duration dependence in the transition matrix of the
conditional mean for the high-return state. Based on these
preliminary results, it is probable that the origin of dura-
tion dependence in the transition matrix of the two-state

Copyright © 2000. All rights reserved.
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DDMS-DD model comes from both the conditional mean
and the variance process.

How important is the nonlinear structure for explana-
tory power associated with mean stock returns? Unfortu-
nately, there are some complications in comparing explana-
tory power between linear and nonlinear models. We use
the method suggested by Haessel (1978), which is to use
the coefficient of determination {R?) from the regression,

(17)

where Rt is a forecast of I; from the model of interest.
Using the full-sample smoother to infer the state at time ¢,
the /22 from Equation (17) is .0216 for the DDMS-ARCH
model and 279 for the DDMS-DD model. Although this
measure is in-sample (uses the full sample for parameter
estimates) and conditions on contemporaneous information,
it shows that there are important nonlinear components in
returns. To compare the amount of in-sample explanatory
power the models have conditionally at time #—1 for returns
at time ¢, we can use the full-sample smoother to infer the
state at time t — 1 and use this with the transition matrix
to forecast Rt. Using this method results in an R? of .0093
for DDMS-ARCH and .0453 for DDMS-DD. According to
this measure, DDMS-DD explains more than three times
the variation in returns compared to the linear model. [The
R? from the benchmark linear AR(5) model is .0147.]
The R? from the DDMS-DD model and the significance
of »(2) are evidence that duration effects are important to
the conditional mean, not just the variance. This suggests
that optimal investment strategies will be linked to duration.
Future work will focus on predicting turning points in the
market and investigating profitable investment strategies.

R, = a + bR, + error,

6. CONCLUSION

In this article we have found evidence of nonlinear behav-
ior in monthly stock returns. We study a general mixtures-
of-distributions model that incorporates duration as given
by Durland and McCurdy (1994). We extend the model to
include ARCH effects and allow duration to be a condition-
ing variable.

Estimates of the empirical models clearly identify a high-
return and a low-return state. We interpret these as bull
and bear markets. Associated with the high-return state is a
low conditional variance but the low-return state exhibits a
higher conditional variance. These results are robust to sev-
eral model specifications. The DDMS-ARCH model sorts
all major stock-market downturns into the low-return state.
The filter also provides dating of turning points of historical
stock-market crashes such as 1929. The DDMS-DD model
shows an improvement in explaining in-sample returns over
the linear model.

According to the residual-based diagnostic tests, duration
as a conditioning variable is able to explain all residual het-
eroscedasticity. Plots of the conditional standard deviation
from the DDMS-ARCH and DDMS-DD model are remark-
ably similar.

Our models show negative duration dependence in the
transition probabilities in both the bull and bear market.

11

Preliminary results suggest that the source of duration de-
pendence in the transition matrix originates from both the
conditional mean and conditional variance processes. Fur-
thermore, duration is important as a conditioning variable
for both the conditional mean and variance. For example,
the best market gains come at the start of a bull mar-
ket, and volatility increases over the duration of a bear
market.
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APPENDIX: LIKELIHOOD AND FILTER
FOR THE DDMS MODEL

This appendix shows how the duration-dependent
Markov model can be collapsed into a first-order Markov
model. Estimation, and smoothing then follow with the
usual techniques. The notation follows closely Hamilton
(1994).

Consider a two-state [-lag model for R,. Define a new
latent variable S; as

S =1 if S =1

Sio1 = 2.....8_1=2.D(8) =1, (A.1)
S =2 if S =18_=1,

Syg = 2.....8_1=2D(8) =2, (A.2)
S =3 if S,=1.8_,=1,

Syp = 2,....5_,=1.D(S) =2, (A.3)
S =N if § =2

Spet = 2.....8_;=2.D(S)) =, (A.4)

where N = 2/*! 4+ 2(r — | — 1). Next define & as an N
vector that contains all zeros except for a 1 at the ith ele-
ment when §; = ¢, or

(A.5)

[ IR
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Now define the transition matrix for S; as

P11 P21 PN
P2 P22 PN2

P = (A.6)
PN P2N DPNN

where p;; = P(S: = j|Si~1 = i). Bach p,; is constructed
from the primary probabilities in Equations (4) and (5).
Let the parameters to be estimated be contained in the
vector Q and Yy = {Ri—1, Ri_o,..., R1}. Let the condi-
tional density of R; be denoted f(R,|S;,Y;—.82), and put
in the N row vector
FRS = 1.1, Q)
FORIS = 2.V, 1,9)
. (A.7)

7}f — :
F(R:|Se = N, Y11, )

Finally the filter and the likelihood can be easily built
using vector notation as

éi\f — 5"“"—'”’ (A.8)
(& j—1 O M)
1)t = Péup, (A.9)
and
FR|Yio1, Q) = ey & 1), (A.10)

where £,|, = E4&;, & 1s direct matrix product, and /. is a row
vector of ones of length N. Of course the log-likelihood is
then Z,’,l log f{R:|Y:-1,2). One startup method for éom is
to solve for the unconditional probabilities. See Hamilton
(1994) for other possibilities.

[Received February 1998. Revised May 1999.]
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