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Duration-Dependent Transitions in a Markov 
Model of U.S. GNP Growth 

J. Michael DURLAND 
Capital Markets, Bank of Nova Scotia, Toronto, Ontario, M5H 1H1, Canada 

Thomas H. McCURDY 
Department of Economics, Queen's University, Kingston, Ontario, K7L 3N6, Canada 

Hamilton's nonlinear Markovian filter is extended to allow state transitions to be duration depen- 
dent. Restrictions are imposed on the state transition matrix associated with a ir-order Markov 
system such that the corresponding first-order conditional transition probabilities are functions of 
both the inferred current state and also the number of periods the process has been in that state. 
High-order structure is parsimoniously summarized by the inferred duration variable. Applied to 
U.S. postwar real GNP growth rates, we obtain evidence in support of nonlinearity, asymmetry 
between recessions and expansions, and duration dependence for recessions but not for expan- 
sions. 

KEY WORDS: Nonlinear asymmetric cycles; Regime switches; Time-varying transition proba- 
bilities. 

1. INTRODUCTION 

In recent years there has been a growing interest in the 
econometric modeling of nonlinear temporal dependence in 
time series data. Indeed the possible nonlinearity and asym- 
metry of business cycles is an old topic in economics. For 
example, Terasvirta and Anderson (1991) referenced Keynes 
(1936), who argued that contractions are more violent but also 
more short-lived than expansions. The possibility of asym- 
metric nonlinear cyclical processes raises important issues 
for econometric estimation and testing. 

Cyclical processes such as gross national product (GNP) 
have traditionally been modeled as linear stationary pro- 
cesses. This approach includes autoregressive moving av- 
erage processes around a deterministic time trend (e.g., 
Campbell and Mankiw 1987; Nelson and Plosser 1982), 
linear unobserved-components models (e.g., Harvey 1985; 
Watson 1986), and cointegration specifications (e.g., King, 
Plosser, Stock, and Watson 1991). Obviously, linear models 
impose restrictions on the conditional densities of the variable 
in question. An interesting question is whether or not such 
restrictions are at odds with the data in particular applications. 

One approach to answering this question has been to test 
a linear process against a nonspecified nonlinear alternative. 
For example, the Brock, Dechert, and Scheinkman (1987) 
statistic (hereafter referred to as the BDS statistic) can be 
used to test the null hypothesis that a time series is iid against 
a variety of alternatives that exhibit nonrandom structure. 
Although such structure could be linear or nonlinear, the 
test does have power against nonlinear alternatives (Brock, 
Hsieh, and LeBaron 1991) in contrast to some traditional tests 
for persistence. 

Alternatively, many authors have proceeded in various 
directions from the null of linearity by characterizing par- 

ticular features of the potentially nonlinear dynamics. In 
the context of modeling business-cycle indicators, these ap- 
proaches to testing for and or modeling potential nonlinear- 
ities and asymmetries have included nonparametric tests for 
steepness of contractions versus expansions (Neftci 1984), 
nonparametric or seminonparametric approaches to evalu- 
ating asymmetry in the conditional distributions of GNP 
growth rates and employment (Brunner 1992; Hussey 1992), 
chaos models (Brock and Sayers 1988; Frank, Gencay, 
and Stengos 1988), threshold autoregressive models (Potter 
1991), smooth transition autoregressive models (Terasvirta 
and Anderson 1991), regime-switching models with constant 
transition probabilities (Hamilton 1989a,b; Hansen 1991a; 
Lam 1990), regime-switching models with time-varying tran- 
sition probabilities (Diebold, Lee, and Weinbach in press; 
Filardo 1992a,b; Ghysels 1992), duration models (Diebold 
and Rudebusch 1990; Diebold, Rudebusch, and Sichel 1993; 
Sichel 1991), and duration models with seasonal hazard rates 
(De Toldi, Gourieroux, and Monfort 1992). 

This article extends Hamilton's (1989) model to allow state 
transitions to be duration dependent. In particular, we impose 
restrictions on the state transition matrix associated with a 
r-order system such that the corresponding first-order condi- 
tional (time-varying) transition probabilities are functions of 
both the inferred current state and also the number of periods 
the process has been in that state. Because any effects of long 
lags of the Markov states are summarized by the inferred du- 
ration variable, this structure exploits information concerning 
state temporal dependence but is much more parsimonious 
than an unrestricted high-order Markov process. It may be 
useful to note that our model is a particular parameterization 
of a semi-Markov process. In the latter, one collapses the 
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higher-order structure into a conditional holding time distri- 
bution. 

Our nonlinear filter and smoother extends that of Hamilton 
to allow duration dependence. We are grateful to a referee 
for noting that this technical advance is related to that of Lam 
(1990), who generalized the Hamilton filter to allow for an 
autoregressive process without a unit root so that the Markov 
trend specification can be applied to GNP data in levels. In 
Lam's algorithm, dependence of GNP levels on all past lags of 
Markov states is captured by an additional Markovian state 
variable, which is the sum of past Markov states since the 
beginning of the sample. In our case, high-order dependence 
of states is summarized by the duration variable. In Lam's 
algorithm, however, the transition probabilities are constant, 
whereas ours are duration dependent. 

Quasi-maximum likelihood estimation (QMLE) allows in- 
ference concerning nonlinearity, asymmetry, and state de- 

pendence of parameters associated with the first two condi- 
tional moments for various business-cycle indicators. Ap- 
plied to duration dependence, our approach complements re- 
cent works that use a hazard-function approach. For example, 
Diebold and Rudebusch (1990) used nonparametric tests of 
the conformity of half-cycle and full-cycle lengths to the ex- 

ponential distribution that would be implied by a constant 
hazard or no duration dependence. Sichel (1991) employed 
a parametric hazard function that nests the constant hazard; 
Diebold et al. (1993) used an exponential-quadratic hazard 
that is proposed to balance parsimony and flexibility. 

Our extension of Hamilton's (1989) constant-transition- 

probability Markov-switching model to allow duration- 

dependent transition probabilities can also be compared (see 
Sec. 2) with the recent literature that extends the Hamil- 
ton model by allowing observable economic fundamentals 
(Diebold et al. in press; Filardo 1992a,b) or seasonal indi- 
cators (Ghysels 1992) to affect the state transition probabil- 
ities. 

Comparing these Markov-switching nonlinear models 
with a linear AR null involves some nonstandard conditions 
that affect the asymptotic distributions of typical tests. In 

particular, the transition probabilities are not identified under 
the null, and the scores associated with parameters of inter- 
est under the alternative may be identically 0 under the null. 
Model comparison under these nonstandard conditions has 
been analyzed by several recent works (e.g., Davies 1987; 
Garcia 1992a,b; Hansen 1991a,b). Using the critical values 
of Garcia (1992b), which are based on the distribution theory 
of Hansen (1991 b), our evidence suggests that, for this sam- 
ple, the linear specification of real GNP growth rates can be 
rejected in favor of our Markov-switching alternative, which 
has duration-dependent transition probabilities. 

Allowing regime switches between two states for the mean 
growth rate, as in the work of Hamilton (1989), our results 
provide evidence in support of asymmetry between contrac- 
tions and expansions. This is indicated by the difference 
in the transition probabilities associated with these states and 
strong evidence of duration dependence associated with post- 
war recessions but not for expansions. Therefore, we reject 
the first-order Markov specification with constant transition 

probabilities in favor of a Markov-switching specification 
with duration-dependent state transition probabilities. 

As discussed by Hamilton (1989), exploiting any nonlin- 
ear structure can be particularly important for optimal fore- 
casts. In the case of the nonlinear Markov filter, the estimated 
parameters can be used in conjunction with the observable 
series to infer the probability of being in a particular state 
at a specific time. As emphasized by Hamilton, this output 
(either smoothed or conditional on current information) can 
be used to indicate turning points in the cycle. As such, this 
model could contribute to the range of tools being used in 
the leading-indicators literature [see the collection of papers 
edited by Lahiri and Moore (1991) for examples of recent ad- 
vances in this area]. We compare our predictor of business- 
cycle turning points with the National Bureau of Economic 
Research (NBER) dating of U.S. business-cycle peaks and 
troughs. We also plot the expected half-cycle durations im- 

plied by our estimated model. 
In Section 2 we discuss our extensions to the Hamilton 

(1989) model. The Appendix provides technical details, in- 

cluding a description of the unconditional probabilities and 
the associated transition matrix, the filter we use to estimate 
the nonlinear model and to infer probabilities concerning the 
unobservable states, and initialization of the filter. In Section 
3 our model is applied to the real GNP series from Hamil- 
ton and our results are compared to those for his first-order 
model and to those for a linear AR model. These results in- 
clude parameter and robust-standard-error estimates, model- 

comparison test statistics, plots of duration dependence, and 
plots of inferred probabilities concerning the observable state 
and expected half-cycle durations at each point of the sample. 
Section 4 provides some concluding comments. 

2. A STOCHASTIC REGIME-SWITCHING MODEL 
FOR CYCLICAL PROCESSES 

2.1 The Stochastic Setting 

Consider a time series denoted yt generated by the stochas- 
tic process 

q 

Yt 
= P(S) + •j j(St-i)(yt-i 

- 
l(St-i)) + r(St)vt, 

i=1 

vt ' N(0, 1). (1) 

The state operative at time t is indexed by the discrete-valued 
variable St. Assume a k-state Markov process for the state 
vector St. The true state is unobservable (is hidden or em- 
bedded) and must be inferred from the observations on the 
series y from time 0 to time t. 

2.2 The Hamilton Model 

Hamilton (1989) applied a filter that draws on the informa- 
tion contained in the observable series to make probabilistic 
inferences about the historical sequence of states {S,}N. The 
filter iterates over the length of the time series sample, pro- 
ducing, as a by-product, the likelihood that is maximized to 
obtain estimates of the vector of parameters that define the 
model. He set the number of states k = 2 and assumed a 
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first-order Markov process for state transitions. The latter 
assumption implies that the transition probabilities are com- 
pletely defined by the current (t - 1) state. That is, using 
uppercase S to refer to the random state variable and lower- 
case to refer to a particular realization, P(St = st I St-, = 

St-1) = P(St = st I St-, = St-1, ...,So = so). Hamilton also 
assumed that the state transition probabilities are constant 
over the sample. 

2.3 Time-Varying State Transition Probabilities 

As noted previously, several recent works have extended 
the Hamilton model by incorporating time-varying state tran- 
sition probabilities. Diebold et al. (in press) and Filardo 
(1992a,b) allowed the state transition probabilities to evolve 
as logistic functions of observable economic fundamentals, 
whereas Ghysels (1992) conditioned on seasonal indicators. 

In particular, Diebold et al. (in press) provided an EM 
algorithm for estimation of the parameters of a model for 
which the transition probabilities evolve as logistic functions 
of xt,_/3s, in which the conditioning vector xt-1 contains 
economic variables that might influence the transition prob- 
abilities. In this case, Hamilton's P(St = st I St-1 = st-i) 
is extended to P(S = st I St-l = st-, , xt-1). In his model 
and empirical applications, Filardo (1992b) conditioned on 
leading economic indicators at time t. Filardo (1992a) ex- 
tended his time-varying transition-probability specification 
to a bivariate process. 

2.4 Higher-Order Markov Processes 

As suggested by Hamilton (1989), one way of increas- 
ing the information to his filter is to apply a higher-order 
transition matrix. One difficulty with estimating unrestricted 
high-order Markov models, however, is that the number of 
transition parameters, and thus the order of computational 
magnitude, grows rapidly with the order of the Markov pro- 
cess. This results in a substantial reduction in the degrees of 
freedom and eventual intractability. Some restrictions would 
be desirable. 

2.4.1 Duration-Dependent Transition Probabilities. It 
is possible that time series that appear cyclical, or exhibit 
long swings, might have higher-order embedded Markov pro- 
cesses with state transition probabilities that exhibit duration 
dependence. We extend the Hamilton model by allowing the 
state transition probabilities to be functions of both the in- 
ferred current state and the associated number of periods the 
system has been in the current state. We refer to the latter as 
duration dependence and summarize it by the integer-valued 
random variable Dt_ 1i. 

In our case, the conditional state transition probabilities 
can be written as P(S, = st St I_ = s_-1, Dr-1 = d). That is, 
unlike Hamilton's specification, state transition probabilities 
are not completely defined by the current state. In particular, 
we extend his first-order Markov specification to a 7-order 
(1 < 7 < N) model, where N is the length of the sample 
for the time series being modeled. To focus on duration 
dependence, any effects of long lags of the Markov states are 
collapsed into the inferred duration variable Dt-1. In other 

words, restrictions are imposed on the (27 x 27) transition 
matrix such that it is very sparse. 

Therefore, unlike Hamilton's (1989) specification, which 
imposes constant state transition probabilities over the sam- 
ple, our conditional state transition probabilities are allowed 
to vary as a function of the number of periods (duration) that 
the system has been in a particular inferred state. On the 
other hand, unlike the extensions of Hamilton discussed in 
Section 2.3, our duration-dependent transition probabilities, 
P(St = st I St-1 = st-l, Dt-i = d), are inferred from the 
observable series {Yt-l, Yt-2, ... , Yo} rather than being pa- 
rameterized as functions of additional observable economic 
fundamentals. Although simpler in that respect, our spec- 
ification incorporates higher-order effects to focus on state 
temporal dependence in cyclical data. 

It remains to parameterize our conditional state transition 
probabilities P(St = s, I St-I = st-1, Dt,_ = d). There are 
certain necessary properties and other desirable properties 
that such functions should exhibit. First, because they repre- 
sent probabilities their values must always lie in the interval 
(0, 1). Second, their sum over all st must be equal to one for 
each t. Third, it would be useful for testing purposes if the 
functional specification nested a first-order Markov model 
with constant transition probabilities by being independent 
ofDt_ 1 for given parameter values. Fourth, it is desirable that 
the specification be flexible so that it is capable of capturing 
a broad range of possible duration structures. 

As is common in parameterizing probabilities or rates (e.g., 
Diebold et al. in press; Filardo 1992a, b), these objectives can 
be accommodated by a logistic functional form. For the two- 
state case (i = 0, 1), this results in the following functional 
specification for our characterization of the probabilities as- 
sociated with changes of regime: 

P(St = i I S,_1 = i, Dt_1 = d) = Pii 

= exp (a(i) + b(i)d) / (1 + exp (a(i) + b(i)d)) 
if d < 7 (2) 

= exp (a(i) + b(i)r) / (1 + exp (a(i) + b(i)r)) 

if d > 7, 

P(St =j I St-1 = i, Dt-1 = d) - Py = (1 - Pii), (3) 

where 7 defines the memory of the process. 
Therefore, the conditional probability matrix can be writ- 

ten as 

P1o P1J 

exp(a(0) + b(0)d) exp(a(0) + b(O)d) 
1 + exp(a(0) + b(0)d) 1 + exp(a(0) + b(0)d) 
""exp(a(1) + b(1)d) exp(a(1)+ b(1)d) (4) 

1 - 1 + exp(a(1) + b(1)d) 1 + exp(a(1) + b(1)d) 

That is, in the notation of Hamilton (1989) and others, 
for which the state i = 0 corresponds to recessions and the 
state i = 1 refers to expansions, P00oo is the probability of 
being in a recession next period if in a recession this period, 
Po01 is the probability of moving out of a recession, P11 is 
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the probability of staying in an expansion, and P10 is the 
probability of moving out of an expansion. 

Note that this parameterization of the conditional proba- 
bilities ensures that they lie in the interval (0, 1), sum to 1, 
and, if b(i) = 0 for all i, then P(St = st j S,_1 = St-i, Dt-I = 

d) = P(St = st St-1 = st-l) and the process collapses 
to a first-order Markov process identical to that assumed by 
Hamilton (1989). 

The Appendix describes the filter we use to estimate the 
nonlinear model and to infer probabilities concerning the un- 
observable states, as well as initialization of the filter using 
unconditional probabilities. The Appendix also summarizes 
the algorithms used to compute those unconditional proba- 
bilities and provides a numerical example, computed at the 
parameter estimates given in Table 4, Section 3.2, and using 
the easily illustrated case of r = 3. 

3. APPLICATION TO THE GROWTH RATES OF 
U.S. REAL GNP 

3.1 Data and Empirical Models 

Three models are compared using the data on postwar U.S. 
real GNP growth rates used by Hamilton (1989). These mod- 
els include a linear (AR) specification, a first-order Markov 
model for regime switches with constant state transition prob- 
abilities, and our Markov model, which allows for duration 
dependence. Therefore, the test equations are nested ver- 
sions of (1) with conditional probability matrices that are 
nested versions of (4). 

The data are 100 times the change in the log of U.S. real 
GNP from the second quarter of 1951 to the fourth quarter 
of 1984. As in Hamilton (1989), the number of states k is 
set equal to 2 and q (the number of AR lags included in the 
mean) is set equal to 4. In this case, (1) can be rewritten as 

4 

yr = p(St) +  (y (t-i - A(St-i)) + avt, (5) 
i=1 

in which lz(St) = ao for S = 0 and IL(St) = ao + al for S = 1. 
That is, Hamilton assumed that the AR coefficients and the 
standard deviation are constant so that regime switches only 
shift the mean growth rate. 

As demonstrated by Perron (1989), once one models dis- 
crete changes in regime, it may be possible to reject the unit- 
root specification. As noted previously, in this regard Lam 
(1990) generalized the Hamilton (1989) filter to allow for an 

Table 1. BDS Statistics for Real GNP Growth Rates 

e = normalized SD 
e = normalized SD scaled by 1.2 

Embedding dimension BDS BDS 

3 2.29 2.34 
5 1.90 2.52 
7 2.32 3.44 
9 2.30 3.68 

NOTE: The BDS statistics are distributed as standard normal variates. The e is chosen to 
be proportional to the standard deviation divided by its range. 

Table 2. Linear Autoregressive Model 

Parameter Estimate Robust standard error 

no .720 .103 

ol .310 .075 
002 .127 .090 

03--.121 .082 
004 -.089 .078 
a .983 .061 

NOTE: = ao + ?41 0oiYt- + ovt. Value of the log-likelihood (excluding the constant) 
= -63.288. 

AR process without a unit root and applied the Markov trend 
specification to GNP data in levels. Hansen (1991 a) intro- 
duced a "modified Markov trend" model in which the states 
shift the intercept of growth rates rather than the mean. In 
that case, the 4i(St-i) and the I(St-i) in (1) are functions of 
St-1 for all lags rather than functions of St-i. 

3.2 Results 

Table 1 presents some nonparametric evidence that the 
growth rates in this sample are not iid. Estimates for a linear 
fourth-order AR model are reported in Table 2. QMLE for 
the Hamilton (1989) specification are given in Table 3. That 
model specifies that the transition probabilities are constant 
and follow a first-order Markov process. Finally, Table 4 
presents the estimates for the duration-dependent model for 
which the evolution of the states is determined by the condi- 
tional probability matrix parameterized as in (4). 

Figure 1 plots the duration dependence associated with the 
model summarized in Table 4. Figure 2 presents the filtered 
probability that St = 0, the recession state, for each point in 
the sample according to the Hamilton model reported in Table 
3. Figure 3 provides the corresponding probabilities for the 
model reported in Table 4 that allows duration dependence. 
These predictors of turning points are not smoothed. That is, 
they are ex ante in that they are conditional on current (t - 1) 
information. Finally, Figures 4 and 5 plot expected half-cycle 
durations conditional on the inferred state of recessions and 
expansions, respectively. As comparisons, the NBER dating 
of business-cycle peaks and troughs is marked with vertical 
lines from the horizontal axes of Figures 2 to 5. 

Table 3. First-Order Markov Model: Constant Transition 
Probabilities 

Parameter Estimate Robust standard error 

ano -.359 .491 
a1 1.522 .474 
$oi .014 .226 

02 -.058 .283 

o03 -.247 .197 

•o4 -.213 .192 
a .769 .122 

a(0) 1.124 .688 
a(1) 2.243 .296 

NOTE: Yt = g(St)+E41 4ooi(Yt-I- g(St-))+'vt, j(St) = oe if St = 0, j(St) = ao+a1 
if St = 1, and Poo = exp(a(0))/(1 + exp(a(0))) = .76, P11 = exp(a(1))/(1 + exp(a(1))) = .90. 
Value of the log-likelihood (excluding the constant) = -60.882. 
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Table 4. Markov Model With Duration-Dependent 
Transition Probabilities 

Parameter Estimate Robust standard error 

ao -.448 .264 
a1 1.594 .273 

oli -.017 .105 
)02 -.092 .107 

o3 -.255 .094 
04 -.246 .103 
a .761 .063 
a(O) 6.516 2.055 
a(1) 4.305 2.363 
b(0) -1.348 .296 
b(1) -.243 .282 

NOTE: Yt p= (St)+ E41= Oi(Yt_- - (St_I))+ avt, vt - N(O, 1), pj(St) = a if St = 0, 
and p(St) = ao + a1 if St = 1. 

P(St =J I St-i = i, Dt-1 = d) 
= exp(a(i) + b(d)/(1 + exp(a() + b(md)) for i = = 0, 1 
= 1 - exp(a(l) + b(i)d)/(1 + exp(a(i + b()d)) for i 9 j. 

Value of the log-likelihood (excluding the constant) = -55.860. 

As discussed in Section 1, one can evaluate whether the 
GNP growth data exhibit (potentially nonlinear) dependence 
using the BDS test statistic. Table 1 presents a battery of BDS 
test statistics for alternative values of m and e. The embed- 
ding dimension m refers to the dimension of the histories used 
to compute the correlation integral. The correlation integral 
measures the proportion of the m-dimensional points that are 
e-close to each other according to the supnorm criterion. The 
e is chosen to be proportional to the standard deviation of the 
series of real GNP growth rates divided (normalized) by its 
range. The proportionality factor in column 1 is unity and 
that in column 2 is 1.2. Although these BDS statistics are not 
independent, all but one have a p value of less than .05 in- 
dicating evidence against the null hypothesis that these GNP 
growth rates are iid. We now proceed to report estimation 
results for various models that incorporate linear or nonlinear 
temporal dependence. 

Given correct specification of the first two moments, our 
QMLE of the parameters will generally be consistent and 
asymptotically normal (Bollerslev and Wooldridge 1992; 

0.- 

0.8 

0.7 

S0. 

S0.- 

0.- 

Number of Quarters in Current State 

Figure 1. Duration-Dependent Transition Probabilities: -----, 
Expansion[P(S(t) = 1 I S(t - 1) = 1, D(t - 1)= d)]; , Reces- 
sion [P(S(t) = O I S(t - 1) = O, D(t - 1) = d)]. 

o 09 

0.7 

i I. iP 
f 

S0.5 

S i 
0.2 

1950 /' 1955 1960 1965 1970 1975 1980 / '1985 
NBER Peak t (end of quarter) NBER Trough 

Figure 2. Inferred Probabilities That S(t) = 0: Hamilton Model. 

Domowitz and White 1982). We compute standard errors 
that are robust to departures from the maintained condi- 
tional normality assumption using the diagonal of the matrix 
(J-'KJ-')/T, where J is the numerical approximation to the 
Hessian and K is the inner product of the score matrix, which 
we also evaluate numerically [Engle and Gonzalez-Rivera 
(1991) discussed potential loss of efficiency associated with 
QMLE and proposed a more efficient semiparametric ap- 
proach]. Note that the scores used to compute K will reflect 
the smoothed probabilities as indicated by Garcia (1992a) 
and Hamilton (1993). 

Table 2 reports estimates for a linear fourth-order AR 
model for the GNP growth rates. There is evidence of strong 
persistence associated with the first lag only. 

Our estimates for the Hamilton specification (5) are given 
in Table 3. That model specifies that the state transition 
probabilities are constant and follow a first-order Markov 
process. The alternative regimes appear to be identifying 
a low growth state (conditional on St = 0, the growth rate, 
/t(0) = ao, is estimated to be -.36% per quarter) and a high 
growth state (conditional on St = 1, /(1) = &o + &l = 1.16% 
per quarter). 

The robust t statistic associated with &1(^ /(1) - F(0)) be- 
ing significantly different from 0 is 3.21. As discussed in our 
introduction and in Section 3.3, the asymptotic distribution 

0.8 

0.7 

> 0.6 

80.4 

0.3 

1950 1955 1960 1965 1970 1975 1980 1985 
NBER Peak t (end of quarter) NBERTrough 

Figure 3. Inferred Probabilities That S(t) = O: Duration- 
Dependent Model 
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3 5 
3- 

IIi 
1.5 I I 

0 

"K I-1 6- 
1950 / 1955 1960 1965 1970 1975 1980 1985 

NBER Peak t (end of quarter) NBER Trough 

Figure 4. Expected Duration of Recessions. 

for this test will be nonstandard. Using the critical values 
reported by Garcia (1992b), this t statistic has a p value of 
between .05 and .01. This suggests that we cannot reject the 
hypothesis that the growth rates are the same in the two states 
very convincingly. More on this follows. 

The estimated constant transition probability associated 
with recessions (Poo = .76, 1 - Poo = .24) is quite different 
from that associated with expansions (P11 = .90, 1 - P11 = 

.10). These estimates imply shorter expected (constant) du- 
ration for recessions [(1 - Poo)-1 = 4.1 quarters] than for 
expansions. Consequently, this nonlinear model suggests 
that the cycles are asymmetric. 

Table 4 presents estimates for our model for which the evo- 
lution of the states is characterized by a duration-dependent 
process with conditional probability matrix parameterized as 
in (4). As discussed in Section 2, our specification nests 
the Hamilton first-order Markov model. For example, if 
b(0) = 0, there will be no duration dependence associated 
with recessions. The memory, -7, of the Markov process is 
set equal to nine quarters as a result of a grid search with the 
likelihood value as criterion. 

Table 4 reports that the robust t statistic for b(O) is -4.55, 
which rejects that it is 0 and indicates a significant duration 
dependence for the probability of a transition out of reces- 
sions. In particular, as the recession ages, the probability of 

30 [i1 i 1 i 1 I I 

- !, j f j I ii i 

i H ii 

1950 / 1955 1960 1965 1970 1975 1980 / 1985 
NBER Peak t (end of quarter) NBER Trough 

Figure 5 Expected Duration of Expansions. 

a transition into an expansion increases. The robust t statistic 
for b(1) is -.86, which suggests that, at least for 7 = 9 in this 
sample, there is no significant duration dependence associ- 
ated with the probability of a transition out of expansions. 

Graphic evidence of this asymmetry between recessions 
and durations is given in Figure 1. The inferred conditional 
probability that we stay in a recession appears to be strongly 
dependent on the number of quarters the system has been in a 
recession. Using an inferred probability of .5, the model pre- 
dicts that on average there will be a move out of the recession 
after a duration of between four and five quarters. In contrast, 
U.S. postwar expansions do not exhibit nearly as strong dura- 
tion dependence. These plots support the statistical inference 
based on the estimates reported in Table 4. 

Figures 2 and 3 present, for each point in the sample, 
the inferred probability of being in the recession state [i.e., 
P(St =0 I Yt-1, ... , yo)] according to the models reported in 
Tables 3 (the Hamilton model) and 4 (the duration-dependent 
model), respectively. These predictors of turning points are 
conditional on ex ante (t - 1) information rather than on con- 
temporaneous (t) information and information available one 
year later (t + 4) as in Hamilton's figure 1. 

As a comparison, the NBER dating of business-cycle peaks 
and troughs is marked with vertical lines from the horizontal 
axes of these figures. Both models do quite well at indicating 
turning points. Using the same dating of information, how- 
ever, the duration-dependent specification leads the Hamil- 
ton specification in predicting turning points and also exhibits 
more decisive probabilities associated with the inferred state. 

Figures 4 and 5 plot the expected half-cycle durations, at 
each t, conditional on the inferred state of recessions and 
expansions, respectively. That is, for i = 0, 1, 

E[Dt I St = i, yt-, . . ,yo] 
00 

= P(Do, = dSt = i, yt-l,...,yo) x d. (6) 
d=1 

For example, Figure 5 indicates that changes in the expected 
half-cycle durations lead NBER turning points. This suggests 
that such a variable might also serve as a useful conditioning 
variable or leading indicator. 

3.3 Model Comparisons 

Formal comparison of the two alternative nonlinear mod- 
els with the linear AR null is difficult because the transition 
probabilities are not identified under the null and the scores 
associated with parameters of interest under the alternative 
will be identically 0 under the null for certain values of those 
parameters (e.g., P11 = 1). As discussed in the introduction, 
these nonstandard conditions affect the asymptotic distribu- 
tions of typical tests. To compute asymptotic critical values 
under these conditions, Garcia (1992a,b) treated the param- 
eters associated with the transition probabilities as nuisance 
parameters and bounded the unconditional probabilities away 
from the degenerate cases of 0 and 1. 
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Our likelihood ratio (LR) test statistic comparing the linear 
AR(4) model (Table 2) with the Hamilton first-order Markov 
specification (Table 3) is 4.812, but the LR test statistic com- 
paring the linear AR(4) model with our duration-dependent 
specification (Table 4) is 14.856. Based on the appropri- 
ate critical values [Garcia 1992b, table 2] for the LR test 
statistic comparing a linear AR(4) model against a two-state 
Markov trend AR(4) model, we are unable to reject the linear 
model in favor of the first-order Markov model with constant 
transition probabilities (p value between .25 and .30). We 
are able however, to reject the linear model in favor of our 
model, which allows duration dependence (p value less than 
.01). Although this rejection of the linear model in favor 
of a duration-dependent parameterization of the state tran- 
sition probabilities in a regime-switching model appears to 
be decisive, our results in this regard are preliminary. More 
work needs to be done with respect to any potential effect the 
additional nuisance parameters (introduced by our duration- 
dependence specification) might have on LR test statistics 
comparing nonlinear alternatives to a linear null. 

In any event, we are able to reject the nonlinear first-order 
Markov specification for regime switches (Table 3) in favor of 
our nonlinear Markov model, which allows duration depen- 
dence (Table 4). The LR test statistic is 10.044, which has ap 
value of less than .01 according to the chi-squared distribution 
with 2 df. In addition, as discussed in the previous section, 
the robust t statistic for b(0) rejects that it is 0 and indicates 
significant positive duration dependence for the probability 
of a transition out of recessions. The robust t statistic for b(1) 
suggests that there is insignificant duration dependence asso- 
ciated with the probability of a transition out of expansions. 

As discussed in Section 1, much recent work on duration 
dependence in GNP data has used hazard functions. Using 
nonparametric tests, Diebold and Rudebusch (1990) found 
the strongest evidence for duration dependence in prewar ex- 
pansions. With respect to postwar data, they detected some 
weak evidence of positive duration dependence associated 
with postwar contractions but none for postwar expansions. 
This empirical evidence led them to conclude that the assump- 
tion of constant Markov transition probabilities by Hamilton 
(1989) is "particularly valid for expansions and perhaps less 
so for contractions, although the very small size of these 
samples may impair the power of the tests" (p. 613). 

That concern about sample size no doubt motivated 
Diebold et al. (1993) to propose the exponential-quadratic 
hazard as balance between parsimony and flexibility. Their 
extensive empirical evidence includes the postwar U.S. expe- 
rience for which they found strong positive duration depen- 
dence for contractions and no dependence for expansions. 

As noted previously, our duration-dependent specification 
rejected Hamilton's constant transition model for his postwar 
sample. Therefore, our parametric approach produces evi- 
dence of duration dependence that is considerably stronger 
than that of Diebold and Rudebusch (1990) and closer to 
that of Diebold et al. (1993). The results are also similar, 
however, in that all three approaches detect an asymmetry 
with respect to duration dependence for recessions and ex- 
pansions. 

4. CONCLUDING COMMENTS 

The econometric modeling of nonlinear temporal depen- 
dence in time series data involves many interesting chal- 
lenges. This article takes one step in that direction by extend- 
ing Hamilton's (1989) nonlinear Markov-switching model to 
allow duration dependence in the state transition probabili- 
ties. Explicit conditional probability representation of time 
duration in any given state allows inference concerning sev- 
eral hypotheses. For example, such dependence is one im- 
portant source of asymmetries in the cycles that necessitate 
the use of nonlinear models. 

QMLE allows inference concerning nonlinearity, asym- 
metry, and state dependence of parameters associated with 
the first two conditional moments for various business-cycle 
indicators. Our results, for a sample of postwar U.S. real GNP 
growth rates, provide evidence in support of nonlinearity and 
in particular of asymmetry between contractions and expan- 
sions. This asymmetry is indicated by the difference in the 
transition probabilities associated with these states and also 
evidence of considerably stronger (positive) duration depen- 
dence associated with postwar recessions than with expan- 
sions. This duration dependence result rejects the first-order 
Markov specification with constant transition probabilities 
for regime switches between two states in these data. 
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APPENDIX: ESTIMATION ALGORITHM 

A.1 A Nonlinear Filter 

This appendix describes a nonlinear filter that extends that 
of Hamilton (1989) by relaxing the restrictions imposed by 
Hamilton's first-order Markovian filter and allowing the con- 
ditional state transition probabilities to be duration depen- 
dent. In particular, we impose restrictions on the transition 
matrix associated with a 7-order system such that the evo- 
lution of the corresponding first-order process depends not 
only on the current state but also on the number of periods 
the process has been in the current state. 

A.2 Computing the --order Transition Matrix and 
Unconditional Probabilities 

Given a 7r-order system with two state variables, S and D, 
and assuming that dt < 7, the state vector at time t is 

Xt = [(St = 0, Dt = 1)(St = 0, Dt = 2) ... 

(St = 0, Dt = 7)(St = 1, DO = 1) ... (St = 1, Dt = 7)] 

(A.1) 
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so that ir, the vector of unconditional probabilities of X, is 
(2r x 1) and the associated transition matrix, T, is (2r x 2r). 
Given T, one can solve for the unconditional probabilities 7r 
as the solution to 

T'r = ir (A.2) 

subject to 

7r' = 1, (A.3) 

in which t is a (2r x 1) vector of ones. 

Using our parameterization of the conditional probability 
functions in (2) and (3), the sparse (2r x 2r) transition matrix, 
T, can be computed as follows: 

For j= 1, 

Ti = 1 exp(a(1) + b(1)(i - r)) or 
"1 + exp(a(1) + b(1)(i - r)) 

(A.4) 

= 0 otherwise. 

(A.5) 

For 1 <j < 7, 

exp(a(0) + b(O)i) Ti,j = exp(a() + b(O)i) for i=j- 1 (A.6) 
1 + exp(a(0) + b(0)i) 

= 0 otherwise. (A.7) 

For j = r + 1, 

exp (a(0) + b(0)(i)) 
Ti, = 1 - for 1 < i < 7 (A.8) "1 + exp(a(O) + b(0)(i)) 

= 0 otherwise. (A.9) 

For 7+1 <j< 2r, 

exp (a(1) + b(1)(i - r)) 
1 + exp(a(1) + b(1)(i - r)) 

= 0 otherwise. (A. 11) 

Finally, 

exp(a(O) + b(0)r) 
rT7, r= 1 + exp (a(0) + b(0)r) 

exp (a(1)+ b(1)r) 
1 + exp(a(1) + b(1)r) (A.12) 

For example, using the parameter estimates from our 
duration-dependent model reported in Table 4, and for ease 
of illustration setting 7 = 3, the sparse (27 x 27) transition 
matrix T is 

i: .000 .994 .000 .006 .000 .000 
.000 .000 .979 .021 .000 .000 
.000 .000 .922 .078 .000 .000 
.017 .000 .000 .000 .983 .000 
.021 .000 .000 .000 .000 .979 
.027 .000 .000 .000 .000 .973 

and the corresponding unconditional probabilities, associ- 
ated with the state vector (A.1) with r = 3, are r = 

[.0193 .0191 .2415 .0193 .0190 .6817]'. 

A.3 Initialization of the Filter 

Compute the unconditional joint probabilities 

P(Sq-1 
= Sq-1, Sq-2 = Sq-2,. . ., SO = so, Dt-1 = d), 

(A.13) 

using the unconditional probabilities computed in Section 
A.2, and the conditional transition probability functions from 
(2) and (3). For example, 

P(S4 = 1,S3 = 1,S2 = 1,S1 = 1,D4 = 7) 

= P(So = 1,Do = 2) x P(Si = 1 ) So = 1,Do = 3) 

"x P(S2 = 1 S = 1,D = 4) 

"x P(S3 = 1I S2 = 1, D2 = 5) 

"x P(S4 = 1 S3= 1,D3= 6). 

We are grateful to a referee for very helpful suggestions 
concerning initialization of the filter. 

A.4 Iterative Structure of the Filter 

Step 1. In Step 1, use the input 

P(St-I = 
st-l,..., St-q= St-q, Dt-1 

= d I yt,-1, YO) 

(A.14) 

and compute 

P(St = st, St-1 = st-1, . .. , St-q 

= St-q, Dt-1 = d I yt-1, ... ,Yo) 

= P(St = s, I St-i = st-,, ,t-i = d) 
x P(St-I = st-1,...,St-q = St-q, 

D,-1 = dI y,-1,... , yo), (A.15) 
where the first term on the right side is the time t conditional 

probability matrix given by (4). 
For the first iteration the input (A. 14) comes from the ini- 

tialization described in Section A.3. For subsequent itera- 
tions, that input is provided as output of the last step. 

Step 2. From the output of Step 1, compute the joint 
conditional distribution 

P(Yt, St = st, . .., St-q = St-q, Dt-1 = d I yt-1,. . , Yo) 

= P(yt I St = st, ..., St-q = St-q,yt-1,... yO0) 

X P(St = st,..., St-q = St-q, 

Dr-1 = d lyt-1,.. ,yo). (A.16) 

The second term on the right side is given by (A.15), and 
the first term is the state-dependent likelihood of Yt, which 
under the distributional assumption of conditional normality 
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is given by 

P(Yt I S, = s,,..., S,_q = s,_q, yJt,..., yo) 

_ 1 exp 1 (yt-p(St)) 
q 2 

(A.17) 

Step 3. Using (A.16), which is the output of Step 2, in- 
tegrate out St,..., St-q and D,_I to compute the conditional 
likelihood of yt: 

P(yt Iytr-I,...,yo)Z=... 
st st-q d 

P(t, St = st,...,St-q = st-q, Dt-I = d I yt-1, . . . , yo), 

(A.18) 

from which the log-likelihood function is formed as 
T 

L = logP(yt Yt-1,... ,yo), (A.19) 
t 

which may be maximized numerically to form estimates of 
the parameter set 

S-- (p, , , Pii), i = 0, 1. (A.20) 

Finally, to create the necessary input for the next iteration 
of the filter, we must obtain 

P(St = st,...,S$t-q+l = stq+l, D = dlyt, ... ,yo). (A.21) 

This is accomplished in two steps. 

Step 4. First, we must addyt to the right side of the condi- 
tional operator in the output of Step 2 to obtain the conditional 
probability 

P(St = s,,...,St-q = St-q, Dt-I = d yt,...I ,yo) 

P(yt, St = st,... ,St-q4 = st-q, Dt-1 
= d I Yt-1, ... , Yo) 

P(yt Yt-1, . . . , o) 
(A.22) 

which is the output from Step 2 standardized by the output 
of Step 3. 

Step 5. Now, using the output of Step 4, compute 

P(S, = s,, .. ., St-q+1 = stq+1, DI = x I yt, . . , yo). (A.23) 

For 1 <x __ r, 

P(St = st,..., St-q+1 = St-q+, Dt = X Yt,..., yo) 

= P(St = s, . ... , St-q = S -q, 
St-q 

Dt-1 = x - l l yt, . . . ,yo) for St = St-i 

(A.24) 

= O0 for St # Sti. 

(A.25) 

For x = 1, that is 

P(St = st,..., St-q+1 = st-q+1, t = 1 yt, . , y0) 

E P(St = st,)..., St-q = St-, 
d St-q 

Dt-1 = d yt, ... ,yo) for St St-1 (A.26) 

= 0 for St = St-1. (A.27) 

Using (A.23) as input, proceed to the first step of the next 
iteration and continue until convergence is obtained. 

[Received May 1993. Revised October 1993.] 
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