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Abstract
Many matrix-valued functions of an m×m Wishart matrix W , Fk(W), say, are homogeneous of degree k in W ,
and are equivariant under the conjugate action of the orthogonal groupO(m), i.e., Fk(HWHT) = HFk(W)HT,
H ∈ O(m). It is easy to see that the expectation of such a function is itself homogeneous of degree k inΣ, the
covariance matrix, and are also equivariant under the action of O(m) on Σ. The space of such homogeneous,
equivariant, matrix-valued functions is spanned by elements of the type W rpλ(W), where r ∈ {0, . . . , k} and,
for each r, λ varies over the partitions of k –r, and pλ(W) denotes the power-sum symmetric function indexed
by λ. In the analogous case where W is replaced by W–1, these elements are replaced by W–rpλ(W–1). In
this paper we derive recurrence relations and analytical expressions for the expectations of such functions.
Our results provide highly efficient methods for the computation of all such moments.
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1 INTRODUCTION

We are concerned throughout most this paper with functions of a real symmetric matrix W having a Wishart distribution on
n ≥ m degrees of freedom and m × m positive definite symmetric covariance matrix Σ. We denote this setup by W ∼ Wm(n,Σ).
Many of the results can be extended to different versions of the Wishart distribution – for example, the complex Wishart case –
the latter being treated briefly in Section 7 here.

Our interest is in the properties of the distribution, such as the expectations E[Wk], i.e., the moments of W , or expectations of
functions like E[f (W)W r], where f (W) is a scalar function of W . Examples of the second type arise in evaluating the properties
of estimators for Σ (see Haff (1979), for instance). The first of these expectations is evidently a matrix-valued function of Σ, and
possibly also of n and m, say Ψk(Σ). The second is also a matrix-valued function of Σ, say Ψr,f (Σ). Similar expressions that
may be of interest involve the inverse Wishart matrix W–1, rather than W itself.

In the case of the moments, it is not difficult to confirm that Ψk(Σ) is symmetric, homogeneous of degree k in Σ, and
equivariant under the conjugate action of the orthogonal groupO(m). That is, for all H ∈ O(m),Ψk(HΣHT) = HΨk(Σ)HT (see
Hillier & Kan (2021)). In problems of the second type the scalar function f (W) may itself be invariant under the action of O(m),
i.e., f (HWHT) = f (W) for all H ∈ O(m). For instance, f (W) may be a polynomial in tr(W). In that case, Ψr,f (Σ) will again be
equivariant under O(m), and homogeneous of degree r + degree(f ). It is functions of this type that are the focus in this paper.

Thus, in this paper we will be concerned with the space of matrix-valued functions on P(m), the set of m × m symmetric
matrices, that are homogeneous of degree k and equivariant under the action of O(m). Specifically, we describe, and provide
methods for evaluating, the expectations of the generators of this space, thus providing an efficient method for dealing with
arbitrary matrix functions in this class.

The rest of the paper is organized as follows. In Section 2 we introduce the notation, the matrix-valued functions of interest,
and preliminary results that will be needed later. In Section 3 we review existing approaches for computing some special cases of
the terms of interest. Section 4 presents two new recurrence relations for the objects of interest, one for functions of W itself, the
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other for the analogous functions of W–1. Based on these new recurrence relations, Sections 5 and 6 develop efficient methods
for obtaining explicit expressions for terms of both types. Section 7 discusses the analogues of the earlier results for the complex
Wishart case. Section 8 concludes.

2 NOTATION AND PRELIMINARIES

We first consider the set of functions of W , each homogeneous of degree k in W :

{W rpλ(W); r = 0, 1, . . . , k, λ ` k – r}. (1)

Here, λ ` k means that λ = (λ1,λ2, . . . ,λk) is a partition of an integer k into non-negative integers satisfying λ1 ≥ λ2 ≥ · · · ≥
λk ≥ 0 and |λ| =

∑k
i=1 λi = k. The number of nonzero parts of λ is denoted by `(λ). The power-sum symmetric function

pλ(W) of W corresponding to a partition λ is defined as

pλ(W) =

`(λ)∏
i=1

pλi(W), (2)

where pi(W) = tr(W i). Exactly analogous constructions apply with W replaced by W–1. Thus, we shall be interested in evaluating
the following expectations:

γr,λ(Σ) = E[W rpλ(W)], (3)

and
γ̃r,λ(Σ

–1) = E[W–rpλ(W–1)], (4)

for all r = 0, 1, . . . , k and all partitions λ ` k – r. In fact, we shall omit the term r = 0 in both cases, since these are proportional
to the identity matrix Im. The expectations E[pλ(W)] and E[pλ(W–1)] for λ ` k can be evaluated separately. The power-sum
symmetric functions that appear in these expressions can be replaced by any other homogeneous symmetric functions invariant
under the conjugate action of O(m). For example, elementary symmetric functions, zonal polynomials, etc. The results depend
on the choice, of course, and the power-sums do seem the most convenient at the moment. For later use we note the following
well-known results: E[W ] = nΣ, and, for n – m – 1 > 0, E[W–1] = Σ–1/ñ, where ñ = n – m – 1.

Remark 1. For the case of the γr,λ(Σ), it is easy to see that the expectations exist for all k. In the case of the γ̃r,λ(Σ
–1), though,

the expectation for given k may not exist unless n is sufficiently large. A necessary and sufficient condition for the existence of
all such expectations in this case is that n – m + 1 > 2k. To avoid distracting from the main message we will assume throughout
that this condition is satisfied.

We assemble the scalars pλ(W) when λ ` k – r into a vector p(k–r)(W), with λ arranged in reverse lexicographical order.
The length of p(i)(W) is π(i), where π(i) denotes the number of partitions of i (by convention, π(0) = 1). We will also denote
by dk =

∑k–1
i=0 π(i) the aggregate number of partitions of the integers below k. We then assemble all the terms for powers

r = 1, . . . , k of W , in descending order, into a matrix

Lk(W) =


Wk

p(1)(W)⊗ Wk–1

p(2)(W)⊗ Wk–2

...
p(k–1)(W)⊗ W

 (5)

of dimension mdk × m. Here ⊗ denotes the Kronecker product. The identical construction is defined with W replaced by W–1,
and denoted by Lk(W–1). For example, for k = 1, 2, 3 we have

L1(W) = W , L2(W) =

[
W2

tr(W)W

]
, L3(W) =


W3

tr(W)W2

tr(W2)W
tr(W)2W

 . (6)
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As observed in Hillier & Kan (2021) for the case E[Wk] = Ψk(Σ), the elements of Lk(W) span the space of matrices that are
homogeneous of degree k and equivariant under the action of O(m) (see, for instance, Procesi (1976) (where the equivariants
under the group action are called “concomitants”), or Letac & Massam (2004)).

Now, it is easy to check that both γr,λ(Σ) = E[W rpλ(W)] and γ̃r,λ(Σ
–1) = E[W–rpλ(W–1)] are homogeneous of degree k in

their arguments, and equivariant under the action of O(m). It follows that, for each pair (r,λ), γr,λ(Σ) is a linear combination of
the elements of Lk(Σ), i.e., we can write

E[W rpλ(W)] =

k∑
i=1

∑
ρ`k–i

cλ,ρpρ(Σ)

Σi, (7)

E[W–rpλ(W–1)] =

k∑
i=1

∑
ρ`k–i

c̃λ,ρpρ(Σ
–1)

Σ–i, (8)

where cλ,ρ and c̃λ,ρ are constants that do not depend on Σ. Assembling all these expressions for the entire matrices Lk(W) and
Lk(W–1), we have:

Proposition 1. There are dk × dk matrices of constants Ck and C̃k such that

Qk ≡ E[Lk(W)] = (Ck ⊗ Im)Lk(Σ), (9)
Q̃k ≡ E[Lk(W–1)] = (C̃k ⊗ Im)Lk(Σ

–1). (10)

Thus, the only unknowns in the expressions for the expectations of the matrices Lk(W) and Lk(W–1) are the (rather large)
dk ×dk matrices of constants Ck and C̃k . In Hillier & Kan (2021), we dealt with the top-order term in Lk(W), E[Wk], and obtained
the coefficients in the first row of Ck for k ≤ 10 using an algorithm based on the properties of products of quadratic forms. Our
task in this paper will be to analyse the structure and properties of the complete matrices Ck and C̃k, and to provide efficient
methods for computing them. Our results are very much more direct, and vastly more efficient, than those used in the earlier
paper. Before undertaking this we introduce a little more notation.

If the matrices Ck and C̃k in Proposition 1 are partitioned as

Ck = [Ck,0, Ck,1, . . . , Ck,k–1], (11)
C̃k = [C̃k,0, C̃k,1, . . . , C̃k,k–1], (12)

with Ck,i and C̃k,i of dimension dk × π(i), we have alternative expressions for Qk and Q̃k:

Proposition 2.

Qk =

k∑
i=1

ck,i ⊗ Σi, (13)

Q̃k =

k∑
i=1

c̃k,i ⊗ Σ–i, (14)

where

ck,i = Ck,k–ip(k–i)(Σ), i = 1, . . . , k, (15)
c̃k,i = C̃k,k–ip(k–i)(Σ–1), i = 1, . . . , k. (16)

We give explicit expressions for the vectors ck,i and c̃k,i, and the matrices Ck,i and C̃k,i in Sections 5 and 6 below.
Taking the trace of each m × m sub-matrix in Lk(W) produces elements like pr(W)pλ(W). These are not distinct. In fact,

there are π(k) distinct elements of this type, each corresponding to a partition κ of k, and, for k > 2, π(k) is very much smaller
than dk. For example, π(7) = 15, while d7 = 30, and π(10) = 42 while d10 = 97. The distinct elements of this type are the
elements of the vector p(k)(W), the π(k)× 1 vector of power-sum symmetric functions pκ(W), with partitions κ ` k arranged
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in reverse lexicographical order:

p(k)(W) =


p(k)(W)

p(k–1,1)(W)
...

p(1k)(W)

 . (17)

We define the vector qk as the expectation of p(k)(W):

qk = E[p(k)(W)]. (18)

Correspondingly, we define q̃k = E[p(k)(W–1)]. We note that, if C(k)(W) is the analogously defined vector of zonal polynomials
Cκ(W) indexed by partitions of κ ` k, it is well known that there is a transition matrix Dk , say, satisfying

p(k)(W) = DkC(k)(W), (19)

where Dk is a π(k)× π(k) matrix of constants. James (1961) presented a method for computing the coefficients of the matrix
D–1

k . He also showed that the coefficients of D–1
k satisfy an orthogonality condition which guarantees that D–1

k is invertible. The
same relation holds with W replaced by W–1. Since the expectations of the elements of C(k)(W) and C(k)(W–1) are known (and
quite simple), this relation provides one expression for qk and q̃k . These are discussed in the next section.

3 REVIEW OF EXISTING RESULTS

As just mentioned, equation (19), and its analogue for W–1, provide explicit expressions for the expectations E[p(k)(W)] and
E[p(k)(W–1)] in terms of the transition matrix Dk , because the expectations of the vectors C(k)(W) and C(k)(W–1) are known to
be of the form

E[C(k)(W)] = AkC(k)(Σ), (20)

and
E[C(k)(W–1)] = ÃkC(k)(Σ–1), (21)

where Ak and Ãk are π(k)× π(k) diagonal matrices with diagonal elements 2k(n/2)κ and 1/[(–2)k(–ñ/2)κ], respectively, with
the partitions κ ` k arranged in reverse lexicographical order. Note that the first result is due to Constantine (1963) and the
second result is due to Khatri (1966). Here,

(a)κ =

`(κ)∏
i=1

(
a –

i – 1

2

)
κi

, (22)

where (c)r = c(c + 1) · · · (c + r – 1) is the Pochhammer symbol, and ñ = n – m – 1. These results yield the simple expression
(see Hayakawa & Kikuchi (1979))

qk = E[p(k)(W)] = Hkp(k)(Σ), (23)

where Hk = DkAkD–1
k , and (see Watamori (1990))

q̃k = E[p(k)(W–1)] = H̃kp(k)(Σ–1), (24)

with H̃k = DkÃkD–1
k . These results provide one set of expressions for the expectations E[pκ(W)] and E[pκ(W–1)], when κ ` k

(i.e., the elements of qk and q̃k). We will give alternative, simpler, expressions later.
While these two expressions are elegant, their usefulness is limited by the practical challenge of computing the transition

matrix Dk (and its inverse). For k ≤ 6, Dk is tabulated in Mathai, Provost & Hayakawa (1995) (pp.187–188). Currently, the most
efficient approach of computing D–1

k involves first expressing the zonal polynomials in terms of monomial symmetric functions
(see James (1968)) and then express the monomial symmetric functions in terms of power-sum symmetric functions (see David
& Kendall (1955)). However, this method is prohibitively time-consuming even for moderately large k. For example, with
k = 20, Gutiérrez, Rodriguez & Saeź (2000) spent about 8 days to compute a transition matrix that is crucial for the computation
of D–1

20, and that was only done in double precision. Recent advances in computer technology and improved algorithms have
made it possible to compute Dk faster. Nevertheless, it is still very time-consuming to compute Dk and D–1

k for large k.
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Note that the transition matrix Dk is universal – i.e., it does not depend on n, m, or Σ. Hence, the elements of Hk and H̃k

are polynomials in n and rational polynomials in ñ, respectively. Once Hk and H̃k are computed, they can be used to compute
E[p(k)(W)] and E[p(k)(W–1)] for any Σ. We will find similar properties in the results that follow.

Next, in an approach that is similar to ours, Letac & Massam (2004) define an m × m matrix for a given κ ` k:

Lκ(W) =

`(κ)∑
i=1

κiWκi pκ(i)(W), (25)

where κ(i) = (κ1, · · · ,κi–1,κi+1, . . . ,κm), i.e., κwith its i-th element removed. These are then assembled into a large mπ(k)×m
matrix L(k)(W), with, as usual, the matrix elements Lκ(W) arranged in reverse lexicographical order of κ ` k. Note that the
matrix L(k)(W) contains many fewer sub-matrices than our Lk(W). Theorem 4 of Letac & Massam (2004) proves that, in our
notation,

E[L(k)(W)] = (Hk ⊗ Im)L(k)(Σ), (26)
E[L(k)(W–1)] = (H̃k ⊗ Im)L(k)(Σ–1), (27)

In particular, the first sub-matrix of L(k)(W) is L(k)(W) = kWk, so Hk provides an analytical expression for E[Wk]. Similarly,
we can compute E[L(k)(W–1)] = kE[W–k] using H̃k and L(k)(Σ–1). However, for κ with two or more distinct parts, Lκ(W) is a
polynomial in W with at least two terms, so the results in Letac &Massam (2004) give the expectations of sums of terms like ours,
but cannot provide those of the constituents. For example, their method delivers an expression for E[2W2tr(W)] + W tr(W2)]

but cannot give us the expressions for E[W2tr(W)] and E[W tr(W2)]. Our results provide the many terms in the expectations of
Lk(W) and Lk(W–1) that are not available from the results in Letac & Massam (2004).

In this paper, we will develop recurrence relations for the expectations of the terms in Lk(W). Similar recurrence relations for
the case Σ = Im are already available from Graczyk & Vostrikova (2006), Pielaszkiewicz, von Rosen & Singull (2017), and
Pielaszkiewicz & Holgersson (2020). However, those results do not yield recurrence relations for the case of general Σ. More
importantly, our recurrence relations in fact allow us to obtain explicit expressions for the elements of Qk and Q̃k . These results
reveal the structure of these moments, as well as delivering a very efficient method for either obtaining analytical expressions,
or for numerically evaluating them, even for very high values of k. While methods of obtaining analytical expressions for the
elements of Qk and Q̃k have hitherto not been available for the general case, one can numerically evaluate them. This is because
the terms in Lk(W) can be written sums of various products of elements of W , which are quadratic forms in normal random
vectors. So, the problem boils down to computing expectations of products of multiple quadratic forms in normal random
vectors. Both explicit expressions and recurrence relations for such objects are available in the literature. For example, explicit
expressions are available from Lu & Richard (2001), Graczyk, Letac & Massam (2005), and Redelmeier (2011), and recurrence
relations are available from Hillier & Kan (2021). However, it is prohibitively expensive to perform this exercise when k is large.

4 RECURRENCE RELATIONS

We now present the main results of the paper – recurrence relations for the elements ofQk and Q̃k . These two recurrence relations
are obtained by applying a matrix version of an identity for a Wishart matrix that was given in Haff (1981). The complete proof
of Theorem 1 is given in Appendix A. We first give a more general result, then specialize it to the matrices Lk(W) and Lk(W–1).

Theorem 1. For r ≥ 0 and λ ` l, we have the following recurrence relations for E[W rpλ(W)] and E[W–rpλ(W–1)]:

E[W r+1pλ(W)] = (n + r)ΣE[W rpλ(W)] +

r∑
j=1

ΣE[W r–jpj(W)pλ(W)] + 2

`(λ)∑
i=1

λiΣE
[
W r+λi pλ(i)(W)

]
, (28)

Σ–1E[W–rpλ(W–1)] = (ñ – r)E[W–(r+1)pλ(W–1)] –
r∑

j=1

E[W–r–1+jpj(W–1)pλ(W–1)]

– 2

`(λ)∑
i=1

λiE[W–r–1–λi pλ(i)(W
–1)]. (29)
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These formulae hold for general r and l, but for the term on the left hand side of (28) to be an element of Lk+1(W), it must be
of the form W r+1pλ(W) for some r ∈ {0, . . . , k}, and with λ a partition of k – r. To see that equation (28) is indeed a recurrence
relation, consider the individual terms in order. First, the term on the left is of degree k+1, and by construction is the expectation
of one term in the sub-matrix p(k–r)(W)⊗ W r+1 of Lk+1(W). On the right, each term is of degree k. The first term is one of the
elements of Qk , that indexed by λ in the sub-matrix corresponding to p(k–r)(W)⊗ W r . In the second term, the term in the sum
for j = r is a multiple of Im, with coefficient E[pr(W)pλ(W)], which is an element of qk . This can obviously be obtained from
Qk , but this term is not a sub-matrix of Qk . Each of the remaining terms in the sum corresponds to an element of the sub-matrix
p(k–r+j)(W)⊗ W r–j of Lk(W), so that term is also a sub-matrix of Qk . Finally, the i-th term in the last sum is an element of the
sub-matrix p(k–r–λi)(W)⊗ W r+λi of Lk(W). Thus, Qk+1 can indeed be constructed from Qk and qk .

Turning now to equation (29), for the left hand side to be an element of Lk(W–1), we need r ∈ {1, . . . , k} and λ ` k – r. In
this case, all terms on the right come from Lk+1(W–1). Thus, although a recursion, equation (29) is of a different character from
(28) – the reverse of what is required. We will show in Section 6 below that this recursion can be inverted to provide a recurrence
relation that is in the correct direction.

It should be emphasized that although Haff’s identity typically assumes Σ is nonsingular and n > m + 1, (28) continues to
hold when Σ is singular and n ≤ m + 1. This is because each element of W r+1pλ(W) is a product of k + 1 elements of W ,
and the elements of W can be written as quadratic forms in mn normal random variables that have mean zero and a covariance
matrix In ⊗ Σ. As shown in Don (1979), the explicit expression for the expectation of a product of quadratic forms in normal
random variables is the same regardless of whether Σ is singular or nonsingular, and the expression holds for any n. As a result,
the explicit expression of E[W r+1pλ(W)] and its recurrence relation continues to hold when Σ is singular or n ≤ m + 1.

Two special cases of Theorem 1 are of interest. The first is for the top-order term E[W r+1], in which case the final term in
each recursion drops out, and we have

E[W r+1] = (n + r)ΣE[W r] +

r∑
j=1

ΣE[W r–jpj(W)], (30)

Σ–1E[W–r] = (ñ – r)E[W–(r+1)] –
r∑

j=1

E[W–r–1+jpj(W–1)]. (31)

Equation (30) produces the coefficients for the moments of a Wishart matrix dealt with in Hillier & Kan (2021). The second
special case is the case r = 0, when the second terms drop out and we have

E[pλ(W)W ] = nE[pλ(W)]Σ + 2

`(λ)∑
i=1

λiΣE
[
Wλi pλ(i)(W)

]
, (32)

E[pλ(W–1)]Σ–1 = ñE[W–1pλ(W–1)] – 2

`(λ)∑
i=1

λiE[W–λi–1pλ(i)(W
–1)]. (33)

Now, the recursion for the elements of Qk can be written in a more compact notation, as follows:

Proposition 3. There is a dk+1 × dk+1 matrix Dk of coefficients, with linear terms in n on the diagonal, and constants off the
diagonal, satisfying

Qk+1 = (Dk ⊗ Σ)

[
Qk

qk ⊗ Im

]
= (Dk,a ⊗ Σ)Qk + Dk,bqk ⊗ Σ, (34)

where Dk,a contains the first dk columns of Dk (which relate to Qk), and Dk,b the last π(k) columns of Dk (which relate to qk).

The diagonal terms in Dk come from the first term on the right hand side in equation (28). The matrix Dk is quite sparse
because each sub-matrix inQk+1 depends on just a few sub-matrices ofQk , and a single element of qk . Further details of how Dk

is constructed from the recursion (28) are given in Appendix B. In the next section we will show that the matrix of coefficients
Ck is completely determined by the matrices D1, D2, . . . , Dk–1.
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Example 1. For k = 1 to 3, we have

D1 =

[
n + 1 1

2 n

]
, (35)

D2 =


n + 2 1 1 0

2 n + 1 0 1

4 0 n 0

0 4 0 n

 , (36)

D3 =



n + 3 1 1 0 1 0 0

2 n + 2 0 1 0 1 0

4 0 n + 1 0 0 1 0

0 4 0 n + 1 0 0 1

6 0 0 0 n 0 0

0 4 2 0 0 n 0

0 0 0 6 0 0 n


. (37)

Remark 2. Notice that the row sums of Dk are constant and all equal to n + 2k. That is because equation (34) holds for all m,
including m = 1. In that case every term on the left is (2σ2)k+1(n/2)k+1, because W /σ2 is a χ2

n variate, while on the right each
term is the sum of the elements in a row of Dk multiplied by σ2(2σ2)k(n/2)k . Hence, each row sum of Dk is equal to

2(n/2)k+1

(n/2)k
= n + 2k.

Since all elements of Dk are nonnegative, and its row sums are equal, Dk is a (generalized) row-stochastic matrix.

Remark 3. When Σ = Im, taking the trace on both sides of (28) and (29) gives

E[pr+1(W)pλ(W)] = (n + r)E[pr(W)pλ(W)] +

r∑
j=1

E[pj(W)pr–j(W)pλ(W)]

+ 2

`(λ)∑
i=1

λiE
[
pr+λi(W)pλ(i)(W)

]
, (38)

E[pr(W–1)pλ(W–1)] = (ñ – r)E[pr+1(W–1)pλ(W–1)] –
r∑

j=1

E[pj(W–1)pr+1–j(W–1)pλ(W–1)]

– 2

`(λ)∑
i=1

λiE[pr+1+λi(W
–1)pλ(i)(W

–1)]. (39)

These are recurrence relations for E[pκ(W)] and E[pκ(W–1)] in the case Σ = Im. Equation (38) is the same as the recurrence
relation given in Theorem 3.1 of Pielaszkiewicz, von Rosen & Singull (2017). Similarly, (39) is the same as the recurrence
relation as given in Theorem 3.1 of Pielaszkiewicz & Holgersson (2020). For the case of Σ = Im, Cunden, Mezzadri, Simm &
Vivo (2016) showed that there exists a double recurrence (on both k and m) relation for E[pk(W)] and E[pk(W–1)]. However, for
general Σ, taking the trace on both sides of (28) and (29) does not lead to recurrence relations for E[pκ(W)] and E[pκ(W–1)].

Remark 4. Although we focus on the case that λi > 0, the recurrence relations (28) and (29) actually hold even when some or all
of the λi’s are negative. So our recurrence relation also holds for mixed moments of Wishart and inverse Wishart distributions.
For example, setting r = 0 and λ = (–1) in (28) and (29) gives us

E[W tr(W–1)] = nΣE[tr(W–1)] – 2ΣE[W–1] =
ntr(Σ–1)Σ – 2Im

ñ
, (40)

Σ–1E[tr(W)] = ñE[W–1tr(W)] + 2E[W0]

⇒ E[W–1tr(W)] =
ntr(Σ)Σ–1 – 2Im

ñ
, (41)

where we use the fact E[W ] = nΣ and E[W–1] = Σ–1/ñ.
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5 EXPLICIT EXPRESSIONS FOR MOMENTS INVOLVING W

Although the recurrence relation in (28) allows us to compute the expectations of the elements of Lk(W), it is generally not
computationally efficient to use a recursive algorithm for this task. Instead, one would like to obtain an analytical expression for
Qk to reduce the burden of computation, and equation (34) provides the means to obtaining such an expression. We will show in
this section that the matrices D1, D2, . . . , Dk–1 in equation (34) completely determine the coefficient matrix Ck . The first step in
establishing this claim is:

Proposition 4. Partition Dk as Dk = [Dk,a, Dk,b], as in Proposition 3. The coefficients ck,i in the expansion

Qk =

k∑
i=1

ck,i ⊗ Σi (42)

in Proposition 2 are given by

ck,i =

 i–1∏
j=1

Dk–j,a

Dk–i,bqk–i for i = 1, . . . , k – 1, (43)

ck,k = n
k–1∏
i=1

Dk–i,a, (44)

and the matrices Ck,i in Proposition 1 are given by Ck,0 = ck,k , and

Ck,s =

 k–s∏
j=1

Dk–j,a

Ds,bHs, for s = 1, . . . , k – 1. (45)

Proof. Back-substitution in equation (34) gives, since Q1 = nΣ,

Qk = n
k–1∏
i=1

Dk–i,a ⊗ Σk + (Dk–1,aDk–2,a · · ·D2,aD1,bq1)⊗ Σk–1 + (Dk–1,aDk–2,a · · ·D3,aD2,bq2)⊗ Σk–2 + · · ·

+ Dk–1,aDk–2,bqk–2 ⊗ Σ2 + Dk–1,bqk–1 ⊗ Σ

=

k∑
i=1

ck,i ⊗ Σi. (46)

This establishes the formulae for the ck,i in terms of the qr . The formulae for the Ck,s in terms of the Hs follow from equation
(23).

The result in Proposition 4 expresses the coefficient matrix Ck in terms of the matrices Dr and Hr for r = 1, . . . , k – 1. The
final step in showing that the Dr matrices completely determine Ck is to show that the matrices Hr can be written in terms of the
Dr and the Cr . We have:

Proposition 5. Partition Dk as

Dk =

[
Dk,11 Dk,12
Dk,21 Dk,22

]
, (47)

where Dk,11 is of dimension dk × dk . The matrices Hk defined below equation (23) and Ck defined in Proposition 1 are related by:

Hk =
1

2k
Dk,21CkDk,12. (48)

Proof. Let Q̄k and L̄k denote the dk × 1 vectors containing the traces of the m × m sub-matrices in Qk and Lk , respectively. The
properties of Dk discussed above and in Appendix B imply that Q̄k = Dk,12qk and, likewise, L̄k(Σ) = Dk,12p(k)(Σ). Hence,

Q̄k = CkL̄k(Σ) = CkDk,12p(k)(Σ) = Dk,12qk . (49)
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Premultiplying by Dk,21 and using Dk,21Dk,12 = 2kIπ(k), we have

qk = (2k)–1Dk,21CkDk,12p(k)(Σ) (50)

On the other hand, qk = Hkp(k)(Σ). But, two polynomials that agree on a continuum of values of their argument must be
identical, which gives the result.

Remark 5. Proposition 5 provides an alternative and more efficient way of computing the matrixHk that relates qk to p(k)(Σ). This
is because this formula does not require the transition matrixDk , which involves fractions and is very time consuming to construct
for large k. In contrast, the Ck and the Dk matrices involve only integers, and are easily computed by matrix multiplication.

We have therefore established:

Theorem 2. The component matrices of Ck are given by Ck,0 = ck,k , and

Ck,s = (2s)–1

 k–s∏
j=1

Dk–j,a

Ds,bDs,21CsDs,12, for s = 1, . . . , k – 1, (51)

with the initial condition C1 = n.

The following corollary is immediate, and gives simple recurrence relations for the coefficient vectors ck,i and the matrices Ck:

Corollary 1. The coefficient vectors ck,i satisfy the update equations

ck+1,1 = Dk,bqk , (52)
ck+1,i = Dk,ack,i–1 for i = 2, . . . , k + 1, (53)

and the coefficient matrices Ck satisfy the update equation

Ck+1 = [Dk,aCk , Dk,bHk] = [Dk,aCk , (2k)–1Dk,bDk,21CkDk,12], (54)

with the initial condition C1 = n.

Example 2. To illustrate these results we now compute the coefficient matrices Ck for k = 1 to 4, obtained by using the matrices
D1 to D3 given in (35)–(37). For k = 1, we have Q1 = E[W ] = C1Σ with C1 = n. For k = 2, we have π(2) = d2 = 2,

Q2 =

[
E[W2]

E[W tr(W)]

]
= (C2 ⊗ Im)

[
Σ2

Σtr(Σ)

]
, (55)

and, since C1 = H1 = n,

C2 = nD1 =

[
n(n + 1) n

2n n2

]
. (56)

For k = 3, we have π(3) = 3, d3 = 4,

Q3 =


E[W3]

E[W2tr(W)]

E[W tr(W2)]

E[W tr(W)2]

 = (C3 ⊗ Im)


Σ3

Σ2tr(Σ)
Σtr(Σ2)]

Σtr(Σ)2

 , (57)
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and

C3 =




n + 2 1

2 n + 1

4 0

0 4

[
n(n + 1) n

2n n2

]
,


1 0

0 1

n 0

0 n

[
n(n + 1) n

2n n2

]

=


n3 + 3n2 + 4n 2n2 + 2n n2 + n n

4n2 + 4n n3 + n2 + 2n 2n n2

4n2 + 4n 4n n3 + n2 n2

8n 4n2 2n2 n3

 . (58)

For k = 4, we have π(4) = 5, d4 = 7,

Q4 =



E[W4]

E[W3tr(W)]

E[W2tr(W2)]

E[W2tr(W)2]

E[W tr(W3)]

E[W tr(W2)tr(W)]

E[W tr(W)3]


= (C4 ⊗ Im)



Σ4

Σ3tr(Σ)
Σ2tr(Σ2)

Σ2tr(Σ)2

Σtr(Σ3)

Σtr(Σ2)tr(Σ)
Σtr(Σ)3


, (59)

and similar computations using D3 and C3 produces C4 = [C4,a, C4,b], with

C4a =



n4 + 6n3 + 21n2 + 20n 3n3 + 9n2 + 12n 2n3 + 5n2 + 5n
6n3 + 18n2 + 24n n4 + 3n3 + 12n2 + 8n 6n2 + 6n
8n3 + 20n2 + 20n 12n2 + 12n n4 + 2n3 + 5n2 + 4n

24n2 + 24n 8n3 + 8n2 + 8n 2n3 + 2n2 + 8n
6n3 + 18n2 + 24n 12n2 + 12n 6n2 + 6n

24n2 + 24n 4n3 + 4n2 + 16n 2n3 + 2n2 + 8n
48n 24n2 12n2


, (60)

C4b =



3n2 + 3n n3 + 3n2 + 4n 3n2 + 3n n
2n3 + 2n2 + 2n 4n2 + 4n n3 + n2 + 4n n2

n3 + n2 + 4n 4n2 + 4n n3 + n2 + 4n n2

n4 + n3 + 4n2 8n 6n2 n3

6n n4 + 3n3 + 4n2 3n3 + 3n2 n2

6n2 4n3 + 4n2 n4 + n3 + 4n2 n3

6n3 8n2 6n3 n4


. (61)

The terms in the first row of C3, and of C4, both agree with those in Table 1 of Hillier & Kan (2021), where the coefficients
defining E[Wk] for k = 5may also be found. Those values were obtained by a completely different, and much less direct, method.
It is striking that the coefficient matrix Ck depends on n, but not on the dimension m of W .

Remark 6. Note that again the row sums in the matrix Ck are constant, in this case equal to 2k(n/2)k. That is again because
equation (9) holds for all m, including m = 1, and in that case each term on the left is (2σ2)k(n/2)k, while every term on the
right is the sum of the elements in a row of Ck multiplied by (σ2)k . Again, therefore, Ck is a generalized row-stochastic matrix.

Remark 7. Like the transition matrices Dk, the coefficients of the polynomials in the elements of Ck are universal. They do
not depend on Σ, so need only be computed once. In fact, our program only produces the coefficients in the polynomials, and
researchers can use the coefficients to compute Qk and qk for any n and Σ.

Remark 8. The matrix Ck allows us to derive an unbiased estimator of Lk(Σ). This is because from (9), we have

E[(C–1
k ⊗ Im)Lk(W)] = Lk(Σ). (62)
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For example, when k = 2, this gives us the following unbiased estimators of Σ2 and tr(Σ)Σ:

E
[

nW2 – tr(W)W
n(n2 + n – 2)

]
= Σ2, (63)

E
[
(n + 1)tr(W)W – 2W2

n(n2 + n – 2)

]
= tr(Σ)Σ. (64)

We have written a set of Matlab programs to create the Dk matrices, as well as to construct Hk and Ck for arbitrary k. Our
programs are extremely efficient and they are available at https://www-2.rotman.utoronto.ca/~kan/research.htm. In
the following table, we compare the speed of computing Hk and Ck with existing methods. For Hk , we compare our method with
the formulaDkAkD–1

k . For Ck , we compare our method with the algorithm used in Hillier & Kan (2021), after modifying it to deal
with E[W rpλ(W)]. The comparison is performed on a PC with a Ryzen 5950X CPU. As we can see from Table 1, our new method
provides a spectacular speed improvement over the existing methods, especially for large k. In fact, for the computation of Ck , the
algorithm based on Hillier & Kan (2021) cannot produce an answer for k > 10 even after running the programs for a few days.

Table 1 about here

6 EXPLICIT EXPRESSIONS FOR MOMENTS INVOLVING W–1

In Section 4, we observed that since the recurrence relation (29) relates sub-matrices of Q̃k to sub-matrices of Q̃k+1, it cannot
be directly used to obtain Q̃k . However, if we can find a way to invert this recurrence relation, the resulting recurrence will be a
forward recurrence, as for Qk in the previous section. To this end, we first observe the following: In equation (29), on the left the
terms for r = 1, . . . , k correspond to sub-matrices of Q̃k , and for r = 0 they correspond to elements of q̃k . Also, all terms on the
right are sub-matrices of Q̃k+1, and, importantly, all sub-matrices of Q̃k+1 appear. Thus, stacking the terms on both sides of the
recurrence relations in (29) we have: [

(Idk ⊗ Σ–1)Q̃k

q̃k ⊗ Σ–1

]
= (D–k ⊗ Im)Q̃k+1, (65)

where D–k is a dk+1 × dk+1 matrix of coefficients that are obtained from the recurrence relation in (29) . For k = 1 to 3, we have

D–1 =

[
ñ – 1 –1
–2 ñ

]
, (66)

D–2 =


ñ – 2 –1 –1 0

–2 ñ – 1 0 –1
–4 0 ñ 0

0 –4 0 ñ

 , (67)

D–3 =



ñ – 3 –1 –1 0 –1 0 0

–2 ñ – 2 0 –1 0 –1 0

–4 0 ñ – 1 0 0 –1 0

0 –4 0 ñ – 1 0 0 –1
–6 0 0 0 ñ – 1 0 0

0 –4 –2 0 0 ñ 0

0 0 0 –6 0 0 ñ


. (68)

Note that D–k looks exactly the same as Dk except that we need to replace n in Dk with ñ and change the sign of all the constants
in Dk. The row-sums of D–k are again constant, and equal to ñ – 2k. Provided – as we assume – ñ > 2k, D–k is a diagonally
dominant matrix, so by the Levy-Desplanques theorem, D–k is nonsingular. We denote its inverse by D̃k = D–1

–k . Multiplying
both sides of equation (65) by D̃k ⊗ Im, and simplifying slightly, we obtain the required recurrence:

Proposition 6. The matrices Q̃k = E[Lk(W–1)] satisfy the recurrence relation

Q̃k+1 = (D̃k ⊗ Im)

[
(Idk ⊗ Σ–1)Q̃k

q̃k ⊗ Σ–1

]
= (D̃k ⊗ Σ–1)

[
Q̃k

q̃k ⊗ Im

]
. (69)

https://www-2.rotman.utoronto.ca/~kan/research.htm
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Thus, after this step we have, as before, a recurrence relation that expresses each sub-matrix in Q̃k+1 as a linear combination
of sub-matrices of Q̃k pre-multiplied by Σ–1, and various elements of q̃k multiplied by Σ–1. For k = 1 and 2, we have

D̃1 =

[
ñ 1

2 ñ – 1

]
(ñ + 1)(ñ – 2)

, (70)

D̃2 =


ñ3 – ñ2 – 4ñ ñ2 ñ2 – ñ – 4 ñ

2ñ2 ñ3 – 2ñ2 – 4ñ 2ñ ñ2 – 2ñ – 4

4ñ2 – 4ñ – 16 4ñ ñ3 – 3ñ2 – 4ñ + 8 4

8ñ 4ñ2 – 8ñ – 16 8 ñ3 – 3ñ2 – 4ñ + 4


(ñ + 1)(ñ – 4)(ñ2 – 4)

. (71)

We do not report D̃3 here because the expression is too long to fit on the page. Unlike D–k , D̃k is a dense matrix, and its elements
are no longer linear in ñ. Instead, they are rational polynomials in ñ, with the polynomials in the numerator and denominator of
order dk+1 – 1 and dk+1, respectively.

From this point the steps involved are identical to those given earlier, and are omitted. The key results are:

Theorem 3. With D̃k partitioned as D̃k = [D̃k,a, D̃k,b], where D̃k,a is the first dk columns of D̃k and D̃k,b is the last π(k) columns
of D̃k , we have

Q̃k =

k∑
i=1

c̃k,i ⊗ Σ–i, (72)

with

c̃k,i =

 i–1∏
j=1

D̃k–j,a

 D̃k–i,bq̃k–i for i = 1, . . . , k – 1, (73)

c̃k,k =
1

ñ

k–1∏
i=1

D̃k–i,a. (74)

Similar to Corollary 1, we have

Corollary 2. The coefficient vectors c̃k,i satisfy the recurrence relations,

c̃k+1,1 = D̃k,bq̃k , (75)
c̃k+1,i = D̃k,ac̃k,i–1 for i = 2, . . . , k + 1, (76)

and the coefficient matrices C̃k satisfy the update equation

C̃k+1 = [D̃k,aC̃k , D̃k,bH̃k] = [D̃k,aC̃k , (2k)–1D̃k,bD–k,21C̃kD–k,12], (77)

with the initial condition of C̃1 = ñ–1, and D–k,12 and D–k,21 are two sub-matrices of D–k , similarly defined as the corresponding
sub-matrices of Dk as in Proposition 5.

Example 3. For k = 1 and ñ > 0, C̃1 = 1/ñ. The coefficient matrices C̃k for k = 2 to 4 are as follows: For k = 2, we have for
ñ > 2

C̃2 =
1

ñ(ñ – 2)(ñ + 1)

[
ñ 1

2 ñ – 1

]
. (78)

For k = 3, we have for ñ > 4,

C̃3 =
1

ñ(ñ2 – 4)(ñ – 4)(ñ + 1)


ñ2 2ñ ñ 2

4ñ ñ2 – 2ñ 4 ñ – 2

4ñ 8 ñ2 – 2ñ – 4 ñ – 2

16 4ñ – 8 2ñ – 4 ñ2 – 3ñ – 2

 . (79)



13

For k = 4, we have for ñ > 6, C̃4 = [C̃4,a, C̃4,b]/∆4 with ∆4 = (ñ – 2)6(ñ – 4)(ñ – 6) and

C̃4a =



ñ4 – ñ3 + 2ñ2 3ñ3 – 3ñ2 + 6ñ 2ñ3 – 3ñ2 – 6ñ 5ñ2 – 6ñ
6ñ3 – 6ñ2 + 12ñ ñ4 – 4ñ3 + 3ñ2 + 36 12ñ2 – 18ñ – 36 2ñ3 – 8ñ2

8ñ3 – 12ñ2 – 24ñ 24ñ2 – 36ñ – 72 ñ4 – 5ñ3 – 6ñ2 + 36ñ + 72 ñ3 – 5ñ2 + 18ñ
40ñ2 – 48ñ 8ñ3 – 32ñ2 2ñ3 – 10ñ2 + 36ñ ñ4 – 6ñ3 + 3ñ2 + 6ñ

6ñ3 – 6ñ2 + 12ñ 18ñ2 – 18ñ + 36 12ñ2 – 18ñ – 36 30ñ – 36

40ñ2 – 48ñ 4ñ3 – 16ñ2 + 60ñ – 72 2ñ3 – 10ñ2 + 36ñ 10ñ2 – 42ñ + 36

240ñ – 288 48ñ2 – 192ñ 12ñ2 – 60ñ + 216 6ñ3 – 36ñ2 + 18ñ + 36


, (80)

C̃4b =



ñ3 – ñ2 + 2ñ 5ñ2 – 6ñ 5ñ – 6

6ñ2 – 6ñ + 12 ñ3 – 4ñ2 + 15ñ – 18 2ñ2 – 8ñ
8ñ2 – 12ñ – 24 ñ3 – 5ñ2 + 18ñ ñ2 – 5ñ + 18

40ñ – 48 10ñ2 – 42ñ + 36 ñ3 – 6ñ2 + 3ñ + 6

ñ4 – 4ñ3 – 9ñ2 + 12ñ + 12 3ñ3 – 12ñ2 – 15ñ + 18 2ñ2 – 8ñ
4ñ3 – 16ñ2 – 20ñ + 24 ñ4 – 6ñ3 + 3ñ2 + 6ñ ñ3 – 6ñ2 + 3ñ + 6

16ñ2 – 64ñ 6ñ3 – 36ñ2 + 18ñ + 36 ñ4 – 7ñ3 + ñ2 + 35ñ – 6


. (81)

Remark 9. From a computational point of view, it is not ideal to compute D̃k , C̃k and H̃k , especially for the purpose of obtaining
analytical formulae for Q̃k and q̃k . This is because elements in D̃k , C̃k and H̃k are all rational polynomials in ñ and their orders
grow rapidly as k increases. Symbolic computation of sums of products of such terms is very slow, especially for large k. In
order to overcome this problem, we work instead with D–k , H̃–1

k and C̃–1
k , because these matrices have elements that are only k-th

order polynomials in ñ. Similarly to Ck , it can be readily shown that C̃–1
k satisfies the following updating formula:

C̃–1
k+1 = [D–k,aC̃–1

k , D–k,bH̃–1
k ] = [D–k,aC̃–1

k , (2k)–1D–k,bD–k,21C̃–1
k D–k,12], (82)

where D–k,a and D–k,b are the first dk and last π(k) columns of D–k, respectively. Using the boundary condition C̃–1
1 = ñ, we

can use this updating formula to obtain C̃–1
k . Once we obtain C̃–1

k , we only need one matrix inversion to obtain C̃k symbolically.
Alternatively, if we just need a numerical answer for Q̃k or q̃k , we can simply numerically invert C̃–1

k or H̃–1
k to accomplish that.

Remark 10. The matrix C̃k allows us to derive an unbiased estimator of Lk(Σ
–1). This is because from (10), we have

E[(C̃–1
k ⊗ Im)Lk(W–1)] = Lk(Σ

–1). (83)

For example, when k = 2, this gives us the following unbiased estimators of Σ–2 and tr(Σ–1)Σ–1:

E
[
ñ(ñ – 1)W–2 – ñtr(W–1)W–1] = Σ–2, (84)

E
[
ñ2tr(W–1)W–1 – 2ñW–2] = tr(Σ–1)Σ–1. (85)

7 THE COMPLEX CASE

In this section we discuss the generalization of our results for the real Wishart distribution to the complex Wishart distribution.
Let W ∼ Wc

m(n,Σ) follow a complexWishart distribution with n degrees of freedom and a positive definite Hermitian covariance
matrix of Σ. The complex Wishart distribution was introduced by Goodman (1963). For the special case of W ∼ Wc

m(n, Im),
Haagerup & Thorbjørnsen (2003) provided a recurrence relation of E[pk(W)], and the recurrence relation was extended to deal
with E[pk(W–1)] by Cunden, Mezzadri, Simm & Vivo (2016). For the complex Wishart with generalΣ, we have slightly different
recurrence relations as compared with those for the real Wishart case in Theorem 1. These are given in the following Theorem:
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Theorem 4. Suppose r ≥ 0 and let n̂ = n – m. For W ∼ Wc
m(n,Σ), we have

E[W r+1pλ(W)] = nΣE[W rpλ(W)] +

r∑
j=1

ΣE[W r–jpj(W)pλ(W)] +

`(λ)∑
i=1

λiΣE
[
W r+λi pλ(i)(W)

]
, (86)

Σ–1E[W–rpλ(W–1)] = n̂E[W–(r+1)pλ(W–1)] –
r∑

j=1

E[W–r–1+jpj(W–1)pλ(W–1)]

–
`(λ)∑
i=1

λiE[W–r–1–λi pλ(i)(W
–1)]. (87)

The boundary conditions are E[W ] = nΣ and E[W–1] = Σ–1/n̂.

The proof of Theorem 4 is given in Appendix A. Compared with the real case, the matrices Dk and D–k for the complex case
are slightly different. On the upper left block of Dk and D–k for the complex Wishart case, the diagonal elements are n or n̂,
rather than n + r or ñ – r. On the lower left block, all the elements of Dk and D–k are reduced by half for the complex case. Other
than these two changes, everything else stays the same. In particular, we have

Qk = (Ck ⊗ Im)Lk(Σ), (88)
Q̃k = (C̃k ⊗ Im)Lk(Σ

–1), (89)

where Ck and C̃k satisfy the following update equations

Ck+1 = [Dk,aCk , k–1Dk,bDk,21CkDk,12], (90)
C̃k+1 = [D̃k,aC̃k , k–1D̃k,bD̃k,21C̃kD̃k,12], (91)

with the initial conditions C1 = n and C̃1 = n̂–1. Note that unlike Corollaries 1 and 2, we have k–1 instead of (2k)–1 in the
updating equations. This is because for the complex case, Dk,21Dk,12 = kIπ(k) instead of (2k)Iπ(k) as in the real case.

8 CONCLUDING COMMENTS

This paper provides analytical results, and highly efficient computational methods, for evaluating the expectations of a complete
set of generators for the space of equivariant matrix-valued functions of a Wishart matrix, or of the inverse of such a matrix. These
results are based on new recurrence relations for moments of the type E[W rpλ(W)] and E[W–rpλ(W–1)] when W ∼ Wm(n,Σ).
Thus, the paper provides a structure for analysing the properties of any matrix-valued function in this class. The paper provides
results for the (many) moments that could not be dealt with by Letac & Massam (2004), and the corresponding results for the
complex case are also given.

The challenge now is to develop analogous results for the case of a noncentral Wishart matrix, or its inverse. It is not
immediately obvious how to do that, but the results in Hillier & Kan (2021) indicate that precisely the same coefficients seem to
appear in the noncentral case as they do here. So, generalization should be possible.
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APPENDIX A

Proof of Theorem 1: Let V be an m × q matrix, which is a function of W and Σ. Haff (1981) shows that under mild regularity
conditions and when the moment exists, we have

E[Σ–1V ] = 2E[DV ] + (n – m – 1)E[W–1V ], (92)

where D = (di,j) is an m × m matrix of differentiation operator for a symmetric matrix, with

di,j =

(
1 + δi,j

2

)
∂

∂wi,j
, (93)

where wi,j is the (i, j)-th element of W , and δi,j = 1 if i = j and zero otherwise.
We first present two basic properties for this differential operator.

Lemma 1. Let wi,j be the (i, j)-th element of W–1. We have

ds,twi,j =
δi,sδt,j + δi,tδs,j

2
, (94)

ds,twi,j = –
wi,swt,j + wi,tws,j

2
. (95)

Proof. For (94), we first consider the case that s = t. For this case, we must have i = j = s for ds,swi,j 6= 0, and

ds,sws,s =
∂

∂ws,s
ws,s = 1. (96)

If s 6= t, then there are two cases that ds,twi,j can be potentially nonzero: (1) i = s and j = t, and (2) i = t and j = s. For the first
case, we have

ds,tws,t =
1

2

∂

∂ws,t
ws,t =

1

2
. (97)

For the second case, we have wt,s = ws,t because W is a symmetric matrix. It follows that

ds,twt,s =
1

2

∂

∂ws,t
wt,s =

1

2
. (98)

Combining these three cases, we obtain (94).
For (95), we consider the (i, j)-th element of W–1 = W–1WW–1, which gives us

ds,twi,j =

m∑
r1=1

m∑
r2=1

ds,t(wi,r1wr1,r2wr2,j)

=

m∑
r1=1

m∑
r2=1

(ds,twi,r1)wr1,r2wr2,j +

m∑
r1=1

m∑
r2=1

wi,r1(ds,twr1,r2)w
r2,j +

m∑
r1=1

m∑
r2=1

wi,r1wr1,r2(ds,twr2,j). (99)

For the first term on the right hand side, we have

m∑
r1=1

m∑
r2=1

(ds,twi,r1)wr1,r2wr2,j =

m∑
r1=1

(ds,twi,r1)δr1,j = ds,twi,j, (100)
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where the first equality follows because
∑m

r2=1 wr1,r2wr2,j is the (r1, j)-th element of WW–1 = Im. Similarly, the third term is
also equal to ds,twi,j. Therefore, we have by using (94)

ds,twi,j = –
m∑

r1=1

m∑
r2=1

wi,r1(ds,twr1,r2)w
r2,j

= –
m∑

r1=1

m∑
r2=1

wi,r1
(
δr1,sδr2,t + δr1,tδr2,s

2

)
wr2,j

= –
wi,swt,j + wi,tws,j

2
. (101)

This completes the proof.

We choose V = W r+1pλ(W) for (28) and V = W–rpλ(W–1) for (29). Using V = W r+1pλ(W) in (92), we obtain

Σ–1E[W r+1pλ(W)] = 2E[DW r+1pλ(W)] + (n – m – 1)E[W rpλ(W)]. (102)

It remains to obtain E[DW r+1pλ(W)]. In the following, we use Lemma 1 to establish that

DW r+1pλ(W) =
1

2

r∑
j=0

W r–jpj(W)pλ(W) +

(
r + 1

2

)
W rpλ(W) +

`(λ)∑
i=1

λiW r+λi pλ(i)(W). (103)

Substituting this in (102), we obtain

Σ–1E[W r+1pλ(W)] =

r∑
j=0

E[W r–jpj(W)pλ(W)] + (r + 1)E[W rpλ(W)] + 2

`(λ)∑
i=1

λiE[W r+λi pλ(i)(W)]

+ (n – m – 1)E[W rpλ(W)]

= (n + r)E[W rpλ(W)] +

r∑
j=1

E[W r–jpj(W)pλ(W)] + 2

`(λ)∑
i=1

λiE[W r+λi pλ(i)(W)], (104)

where the last equality is obtained by taking out the term for j = 0 in the first summation and using the fact that p0(W) =

tr(W0) = tr(Im) = m. Pre-multiplying by Σ on both sides of the equation gives us (28).
For (103), it can be obtained by using the chain rule and the following two derivatives:

DW r+1 =
1

2

r∑
j=0

W r–jpj(W) +

(
r + 1

2

)
W r for r ≥ 0, (105)

Dtr(W j) = jW j–1 for j ≥ 1. (106)

Both (105) and (106) can be proved by using (94). For (105), we use the chain rule to write the (s, t)-th element of DW r+1 as

m∑
l=1

m∑
i1=1

· · ·
m∑

ir=1

ds,l(wl,i1wi1,i2 · · ·wir ,t) =

m∑
l=1

m∑
i1=1

· · ·
m∑

ir=1

(ds,lwl,i1)wi1,i2 · · ·wir ,t

+

m∑
l=1

m∑
i1=1

· · ·
m∑

ir=1

wl,i1(ds,lwi1,i2) · · ·wir ,t + · · ·

+

m∑
l=1

m∑
i1=1

· · ·
m∑

ir=1

wl,i1wi1,i2 · · · (ds,lwir ,t). (107)

For the first term, we use (94) to obtain

m∑
l=1

m∑
i1=1

· · ·
m∑

ir=1

(ds,lwl,i1)wi1,i2 · · ·wir ,t =
1

2

m∑
l=1

m∑
i2=1

· · ·
m∑

ir=1

ws,i2 · · ·wir ,t +
1

2

m∑
i2=1

· · ·
m∑

ir=1

ws,i2 · · ·wir ,t , (108)
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which is the (s, t)-th element of mW r/2 + W r/2 = p0(W)W r/2 + W r/2. For the second term, we have

m∑
l=1

m∑
i1=1

· · ·
m∑

ir=1

wl,i1(ds,lwi1,i2)wi2,i3 · · ·wir ,t =
1

2

m∑
l=1

m∑
i3=1

· · ·
m∑

ir=1

wl,lws,i3 · · ·wir ,t

+
1

2

m∑
l=1

m∑
i3=1

· · ·
m∑

ir=1

ws,lwl,i3 · · ·wir ,t , (109)

which is the (s, t)-th element of p1(W)W r–1/2 + W r/2. Repeating this exercise for the other terms, we obtain for r ≥ 0,

DW r+1 =
1

2

r∑
j=0

W r–jpj(W) +

(
r + 1

2

)
W r . (110)

For (106), we have

ds,ttr(W j) =

m∑
i1=1

m∑
i2=1

· · ·
m∑

ij=1

ds,t(wi1,i2wi2,i3 · · ·wij ,i1)

=

m∑
i1=1

m∑
i2=1

· · ·
m∑

ij=1

(ds,twi1,i2)wi2,i3 · · ·wij ,i1 +

m∑
i1=1

m∑
i2=1

· · ·
m∑

ij=1

wi1,i2(ds,twi2,i3) · · ·wij ,i1 + · · ·

+

m∑
i1=1

m∑
i2=1

· · ·
m∑

ij=1

wi1,i2wi2,i3 · · · (ds,twij ,i1). (111)

Using (94), the first term can be written as
m∑

i1=1

m∑
i2=1

· · ·
m∑

ij=1

(ds,twi1,i2)wi2,i3 · · ·wij ,i1 =
1

2

m∑
i3=1

m∑
i4=1

· · ·
m∑

ij=1

wt,i3 · · ·wij ,s +
1

2

m∑
i3=1

m∑
i4=1

· · ·
m∑

ij=1

ws,i3 · · ·wij ,t

=
1

2
eT

t W
j–1es +

1

2
eT

t W
j–1es = eT

sW
j–1et , (112)

which is the (s, t)-th element of W j–1. Repeating this for the other terms, we obtain Dtr(W j) = jW j–1 for j ≥ 1.
For V = W–rpλ(W–1), we first use (95) to show that (the proof is omitted as it is similar to the one before)

DW–r = –
1

2

r∑
j=1

W–r–1+jpj(W–1) –
( r
2

)
W–r–1 for r ≥ 1, (113)

Dtr(W–j) = –jW–j–1 for j ≥ 1, (114)

which then gives us

DW–rpλ(W–1) = –
1

2

r∑
j=1

W–r–1+jpj(W–1)pλ(W) –
( r
2

)
W–r–1pλ(W) –

`(λ)∑
i=1

λiW–r–1–λi pλ(i)(W
–1). (115)

Substituting this in (92) and after simplification, we obtain (29). This completes the proof.

Proof of Theorem 4: For the proof of (86) and (87), we need a complex version of Haff’s identity. Such an identity was first
developed by Svensson (2004). The version that we use is based on a matrix version of Lemma 3.1 of Konno (2010), which
suggests that under mild regularity conditions and when the moments exist, we have

E[Σ–1V ] = E[D̃V ] + (n – m)E[W–1V ], (116)

where V is an m × q matrix, which is a function of W ∼ Wc
m(n,Σ) and Σ, and D̃ = (d̃i,j) is an m × m matrix of differentiation

operators for a Hermitian matrix, with

d̃i,j =

(
1 + δi,j

2

)[
∂

∂<(wi,j)
+ i(1 – δi,j)

∂

∂=(wi,j)

]
, (117)
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where i =
√

–1, and <(wi,j) and =(wi,j) stand for the real and imaginary parts of the (i, j)-th element of W , respectively.
The following Lemma summarizes the basic properties of D̃.

Lemma 2. Let wi,j be the (i, j)-th element of W–1. We have

d̃s,twi,j = δi,tδs,j, (118)
d̃s,twi,j = –wi,tws,j. (119)

We skip the proof because it is similar to that of Lemma 1. Using Lemma 2, we can follow the same proof as in Theorem 1 to
establish

D̃W r+1pλ(W) =

r∑
j=0

W r–jpj(W)pλ(W) +

`(λ)∑
i=1

λiW r+λi pλ(i)(W), (120)

D̃W–rpλ(W–1) = –
r∑

j=1

W–r–1–jpj(W–1)pλ(W–1) –
`(λ)∑
i=1

λiW–r–1–λi pλ(i)(W
–1). (121)

Then substituting these two equations in (116) and after simplification, we obtain (86) and (87). This completes the proof.

APPENDIX B

This Appendix discusses the structure of the matrix Dk defined in Proposition 3. The key to the structure of Dk is the recurrence
equation (28),

E[W r+1pλ(W)] = (n + r)ΣE[W rpλ(W)] +

r∑
j=1

ΣE[W r–jpj(W)pλ(W)] + 2

`(λ)∑
i=1

λiΣE
[
W r+λi pλ(i)(W)

]
, (122)

and the defining equation

Qk+1 = (Dk,a ⊗ Σ)Qk + Dk,bqk ⊗ Σ. (123)

The question then becomes: which elements of Qk and qk on the right are present in the recursion for a given term on the left,
and what are their coefficients? These are the elements of Dk .

To answer this, we partition the dk+1 × dk+1 matrix Dk into four sub-matrices as follows:

Dk =

[
Dk,11 Dk,12
Dk,21 Dk,22

]
, (124)

where Dk,11 is dk × dk and Dk,12 is dk × π(k), etc. Note that the first dk rows of Dk are determined by the recursion for the
sub-matrices E[p(k+1–r)(W) ⊗ W r] with 1 < r ≤ k + 1, and the last π(k) rows of Dk are determined by the recursion for
E[p(k)(W)W ].

Consider first Dk,11, which identifies the elements ofQk that enter the recursion for E[p(k+1–r)(W)⊗W r] when 1 < r ≤ k +1.
From the recurrence relation, we know (1) in the block relating to p(k+1–r)(W)⊗W r , the diagonal element is n+ r (from the first
term of the recursion), (2) there are r – 1 elements to the right of the diagonal, all equal to one (coming from the second term),
and (3) to the left of the diagonal, the number of nonzero elements is equal to the number of distinct elements in λ (because of
the third term).

Next, the dk × π(k) matrix Dk,12, which identifies the elements of qk that enter the recursion for E[p(k+1–r)(W)⊗ W r] when
1 < r ≤ k+1. Each row has a single element of unity, coming from the term j = r in the sum in the second term. Specifically, the
non-zero term in column κ of Dk,12 is that for which prpλ = pκ. This matrix encodes useful information: for each row, it tells us
how to map (r, λ ` k – r) to κ ` k. On the other hand, each column contains non-zero terms for just those pairs (r,λ) that map
to the same κ ` k. It can be seen, in fact, that the number of nonzero elements in column κ is the number of distinct integers in κ.
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The lower blocks of Dk tell us the mapping from Qk and qk to each E[Wpκ(W)], with |κ| = k. The recurrence relation for
these terms is

E[Wpκ(W)] = nE[pκ(W)]Σ + 2Σ

`(κ)∑
i=1

κiE[Wκi pκ(i)(W)]. (125)

From this recurrence relation, we see that there is only one element, equal to n, in the lower block of Dk that comes from qk , and
those are the diagonal elements of Dk,22. That is, Dk,22 = nIπ(k).

It follows at once from this result, and the fact that each row-sum of Dk is n + 2k, that the row sums of Dk,21 are all equal
to 2k. Moreover, the location of the nonzero elements in each row of Dk,21 is exactly the same as the location of the nonzero
elements in the corresponding column in Dk,12, because the nonzero elements correspond to all the combinations of (κi,κ(i))

or (r,λ) such that κ = (r,λ). Therefore, multiplying a given row of Dk,21 by the corresponding column of Dk,12 must give 2k.
Finally, the row of Dk,21 labelled κ is obviously orthogonal to all columns of Dk,12 other than that corresponding to κ. These
facts imply the important result:

Dk,21Dk,12 = 2kIπ(k). (126)

This result is used in the proof of Proposition 5. These various properties of Dk make its construction for each k quite
straightforward, and quick.
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T A B L E 1 Speed comparison of different methods for computing Hk and Ck

Computation Time (in seconds)
Hk Ck

k DkAkD–1
k Our Method Hillier and Kan (2021) Our Method

5 0.235 0.0006 0.243 0.0006
6 0.418 0.0011 0.459 0.0009
7 0.739 0.0021 2.414 0.0014
8 1.396 0.0033 19.182 0.0025
9 2.597 0.0046 351.13 0.0038
10 5.187 0.0068 9598.2 0.0061
11 9.744 0.0105 – 0.0094
12 20.287 0.0192 – 0.0159
13 41.105 0.0401 – 0.0310
14 90.988 0.0843 – 0.0573
15 216.51 0.1703 – 0.1304
16 537.77 0.3152 – 0.2740
17 1207.8 0.6237 – 0.5699
18 2820.7 1.2419 – 1.1509
19 6857.6 2.4334 – 2.2165
20 23329 4.7775 – 4.3033
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