Hermite Polynomials

This note discusses various expressions of Hermite polynomials. Define the k-th order
Hermite polynomial as
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Hy(z) = (—1)*e> Pl (1)

Note that there is another definition of Hermite polynomials that replaces the x*/2 by x?.
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The first couple of Hermite polynomials are given by
Hy(z) =1, Hi(z) =z, Hy(z) = 2° — 1, Hs(z) = 2° — 3. (2)
To compute the Hermite polynomials, we can use the following recurrence relation

Hii1(z) = xHig(z) — kH—1 (). (3)

There are many explicit expressions of Hermite polynomials. A popular one is to write it in
terms of the generalized hypergeometric function:
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Note that this hypergeometric function terminates, and we can also write it as
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Also note that Hy(—z) = (—1)*Hy(z).

In an earlier note, we show that the UMVU estimator of § = exp(ap + bo) is 0, =

exp(aft)g(a), where
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When a # 0, let £ =7+ j and we can rewrite g(d) as
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where 52

A direct proof of E[g(6)] = exp(bo — (ac)?/(2T)) can be given as follows. Using the expo-
nential generating function of Hermite polynomial, we have

Using the fact that

we obtain
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Putting z = vTb/a and t = ao/v/T in (9), we prove the identity.

For computational purpose, we can use the following expression of ¢(d):

where

Hj(x) can be obtained using the recurrence relation

a:f[k(x) — F[k,l(:c)
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and the boundary conditions of Hy(z) = 1 and H,(z) = .



