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1. Introduction and motivation

The search for theoretically justified or empirically motivated risk factors that improve the

pricing performance of various asset pricing models has generated a large, and constantly growing,

literature in financial economics. A typical empirical strategy involves the development of a struc-

tural asset pricing model and the evaluation of the pricing ability of the proposed factors in the

linearized version of the model using actual data. The resulting linear asset pricing model can be

estimated and tested using a beta representation. Given the appealing efficiency and invariance

properties of the maximum likelihood (ML) estimator, opting for this or other invariant estimators

seems natural when conducting statistical inference (estimation, testing, and model evaluation) in

these linear asset pricing models (see, for example, Shanken and Zhou, 2007; Almeida and Garcia,

2012, 2017; Peñaranda and Sentana, 2015; Manresa, Peñaranda, and Sentana, 2017; Barillas and

Shanken, 2017, 2018; Ghosh, Julliard, and Taylor, 2017). Often, a high correlation between the re-

alized and fitted expected returns or statistically small model pricing errors appears to be sufficient

for the applied researcher to conclude that the model is well specified and proceed with testing for

statistical significance of the risk premium parameters using the standard tools for inference. Many

asset pricing studies have followed this empirical strategy and, collectively, have identified a large

set of macroeconomic and financial factors (see Harvey, Liu, and Zhu, 2016; Feng, Giglio, and Xiu,

2017) that are believed to explain the cross-sectional variation in various portfolio expected returns,

such as the expected returns on the 25 Fama-French size and book-to-market ranked portfolios.

Despite these advances in the asset pricing literature, two observations that consistently emerge

in empirical work could call for a more cautious approach to statistical validation and economic

interpretation of asset pricing models. First, all asset pricing models should be viewed only as

approximations to reality and, hence, potentially misspecified. Overwhelming empirical evidence,

mainly based on non-invariant estimators, suggests that the asset pricing models used in practice

are misspecified. This raises the concern of using standard errors, derived under the assumption of

correct model specification, that tend to underestimate the degree of uncertainty that the researcher

faces. Second, the macroeconomic factors in several asset pricing specifications appear to be only

weakly correlated with the portfolio returns. As a result, many of these macroeconomic factors pos-

sibly could be irrelevant for pricing and explaining the cross-sectional variation in expected equity

returns. The inclusion of spurious factors, defined as factors that are uncorrelated with the returns
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on the test assets, leads to serious identification issues regarding the parameters associated with

all risk factors and gives rise to a nonstandard statistical inference (see, for instance, Gospodinov,

Kan, and Robotti, 2014a).

Under standard regularity conditions (that include global and local identification as well as

correct model specification), the ML estimator considered here, which is invariant to data scaling,

reparameterizations, and normalizations, is asymptotically well behaved and efficient. We show

that, in the presence of spurious factors, the tests and goodness-of-fit measures based on this

estimator could be highly misleading. In summary, we argue that the standard inference procedures

based on the ML estimator lead to spurious results suggesting that the model is correctly specified

and the risk premium parameters are highly significant (i.e., the risk factors are priced) when, in

fact, the model is misspecified and the factors are irrelevant.

To illustrate the seriousness of the problem, we start with some numerical evidence on the widely

studied static capital asset pricing model (CAPM) with the market excess return (the return on

the value-weighted NYSE, Amex, and Nasdaq stock market index in excess of the one-month T-

bill rate, vw) as a risk factor. The test asset returns are the monthly returns on the popular

value-weighted 25 Fama-French size and book-to-market ranked portfolios from January 1967 until

December 2012.

The first column of Table 1 reports some conventional statistics for evaluating the performance

of the CAPM in the beta-pricing framework estimated by ML. The statistics include the test of

correct model specification S (Shanken, 1985), the t-statistics of statistical significance constructed

using standard errors that assume correct model specification, and the (pseudo) R2 computed as the

squared correlation between the fitted expected returns and average returns. In line with the results

reported elsewhere in the literature, the market factor appears to be characterized by a statistically

significant risk premium. Also, consistent with the existing studies, the CAPM is rejected by the

data. This requires the use of misspecification-robust standard errors in constructing the t-statistics

(see Gospodinov, Kan, and Robotti, 2018). Finally, the R2 points to some, but not particularly

strong, explanatory power.

Table 1 about here

We now add a factor, sp, to the CAPM and, for the time being, we do not reveal its informational
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content and construction method. The test assets, the sample period, and the market factor remain

unchanged; the only change is the addition of the sp factor to the model. The results from this

specification of the model are presented in the second column (CAPM + sp factor) of Table 1. The

specification test now suggests that the model is correctly specified. Even more surprisingly, the

R2 jumps from 14.47% to 99.99%. The sp factor is highly statistically significant while the market

factor becomes insignificant. An applied researcher who is interested in selecting a parsimonious

statistical model could be willing to remove the market factor and reestimate the model with the

sp factor only.

The results from this third specification are reported in the last column of Table 1. The results

are striking. This one-factor model exhibits a perfect fit. Based on the specification test, the model

appears to be correctly specified. Furthermore, the sp factor is highly statistically significant and is

deemed to be priced. Given this exceptional performance of the model, we now ask: “What is this

sp factor?” It turns out that this factor is generated as a standard normal random variable that is

independent of returns. The results of this numerical exercise are completely spurious because the

sp factor does not contribute, by construction, to pricing. In summary, a misspecified model with

a spurious factor is concluded to be a correctly specified model with a spectacular fit and pricing

ability. Even worse, the priced factors that are highly correlated with the test asset returns are

driven out (become statistically insignificant) when a spurious factor is included in the model.

The results in Table 1 are based on one draw from the standard normal distribution. Our

conclusions are qualitatively similar when the analysis in the table is based on the average of

100,000 replications. Starting from the CAPM + sp factor specification, the average S is 22.50

(p-value = 0.4806) and the average t-statistic for vw is −0.63 (p-value = 0.4096). As for the

spurious sp factor, the average absolute value of the t-ratio is 4.76 (p-value = 0.0001). Finally,

the average R2 is 0.9946. Turning to the sp factor specification, the average S is 23.69 (p-value

= 0.4738), the average absolute value of the t-ratio for the sp factor is 4.90 (p-value = 0.0000),

and the average R2 is 0.9948. The results are also largely unchanged when we augment the 25

Fama-French portfolio returns with additional test asset returns (for example, the 17 Fama-French

industry portfolio returns) as recommended by Lewellen, Nagel, and Shanken (2010).

This type of behavior is not specific to artificial setups and also arises in well known empirical

asset pricing models. To substantiate this claim, we consider three other popular asset pricing
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models. The first model is the three-factor model (FF3) of Fama and French (1993) with the

market excess return (vw), the return difference between portfolios of stocks with small and large

market capitalizations (smb), and the return difference between portfolios of stocks with high and

low book-to-market ratios (hml) as risk factors. All of these risk factors are either portfolio excess

returns or return spreads and exhibit a relatively high correlation with the 25 Fama-French portfolio

returns. The other two models have traded and non-traded factors: the model (C-LAB) proposed

by Jagannathan and Wang (1996), which, in addition to the market excess return, includes the

growth rate in per capita labor income (labor) and the lagged default premium (prem, the yield

spread between Baa- and Aaa-rated corporate bonds) as risk factors, and the model (CC-CAY)

proposed by Lettau and Ludvigson (2001) with risk factors that include the growth rate in real per

capita nondurable consumption (cg), the lagged consumption-aggregate wealth ratio (cay), and an

interaction term between cg and cay (cg · cay).

Table 2 reports results for these three models. For ease of comparison, we also present results

for the CAPM. We include a version of the rank test of Cragg and Donald (1997) to determine

whether the asset pricing models are properly identified (for details, see Section 3), and the widely

used specification test based on the non-invariant, generalized least squares (GLS) estimator: the

heteroskedasticity-consistent version of the cross-sectional regression (CSR) test of Shanken (1985)

denoted by Q.

Table 2 about here

Fig. 1 depicts the cross-sectional goodness of fit of the models by plotting average realized

returns versus (fitted by ML) expected returns for each model.

Fig. 1 about here

The results of this empirical illustration confirm the evidence from the models with artificial

data above. Models that contain factors that are only weakly correlated with the test asset returns

(C-LAB and CC-CAY), as reflected in the non-rejection of the null hypothesis of a reduced rank

in Table 2, exhibit an almost perfect fit. The specification test based on the ML estimator cannot

reject the null of correct specification, which suggests that the models are well specified and one
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could proceed with constructing significance tests based on standard errors derived under the correct

model specification.1 These t-tests indicate that the proposed non-traded factors (default premium

in C-LAB and consumption growth and the cay interaction term in CC-CAY, for example) are

highly statistically significant. A benchmark model such as FF3 does not perform nearly as well

according to these statistical measures. Similarly to CAPM in Table 1, the test for correct model

specification suggests that FF3 is rejected by the data even with an R2 of 73.37%.

For comparison, Fig. 2 plots the average realized returns versus the fitted expected returns

based on the non-invariant (GLS) estimator for each model. In sharp contrast with the results

for the ML estimator in Fig. 1, the models that contain factors that are only weakly correlated

with the test asset returns (C-LAB and CC-CAY) no longer exhibit a perfect fit. As a result, the

non-invariant GLS estimator appears to be more robust to lack of identification and can detect

model misspecification with a higher probability than its invariant counterpart.

Fig. 2 about here

In this paper, we show that, due to the combined effect of identification failure and model mis-

specification, the results for C-LAB and CC-CAY are likely to be spurious. While some warning

signs of these problems are already present in Table 2, they are often ignored by applied researchers.

For example, the rank tests provide strong evidence that C-LAB and CC-CAY are not identified,

which violates the regularity conditions for consistency and asymptotic normality of the ML esti-

mator. Furthermore, the Q test points to severe misspecification of all the considered asset pricing

models.

Another interesting observation that emerges from these results is that the factors with low

correlations with the returns tend to drive out the factors that are highly correlated with the

returns. For example, the highly significant market factor in CAPM turns insignificant with the

inclusion of labor growth and default premium in the C-LAB model. To further examine this

point, we simulate data for the returns on the test assets and the market factor from a misspecified

model that is calibrated to the CAPM as estimated in Table 1 (for more details on the simulation

design, see Section 3). With a sample size of six hundred time series observations, the rejection

1Gospodinov, Kan, and Robotti (2014b, 2017a) show that the specification test, based on an invariant estimator,
lacks power under the alternative of misspecified models when spurious factors are present. They demonstrate that
the specification test has power equal to (or below) its size in reduced-rank asset pricing models.
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rate (at the 5% significance level) of the t-test of whether the market factor is priced is 93.4%, and

the mean R2 is 18.6%. In sharp contrast, when a spurious factor (generated as an independent

standard normal random variable) is added to the model, the rejection rate of the t-test for the

market factor drops to 9.9% and the mean R2 jumps to 99.7%. Strikingly, the rejection rate of the

t-test for the spurious factor is 100%. This example clearly illustrates the severity of the problem

and the perils for inference based on invariant estimators in unidentified models.2 In summary, a

misspecified model with factors that are uncorrelated with the test asset returns would be deemed

correctly specified with a spectacular fit and priced risk factors.

In addition to identifying a serious problem with invariant estimators of asset pricing models,

we characterize the limiting behavior of the ML estimator and the t-statistics under model misspec-

ification and identification failure. We show that the ML estimator is inconsistent and the t-tests

have a bimodal and heavy-tailed distribution. The estimates on the spurious factors exhibit an

explosive behavior that forces the goodness-of-fit statistic to approach one.

Some recent asset pricing studies have also expressed concerns about the appropriateness of the

R2 as a reliable goodness-of-fit measure. In models with excess returns, Burnside (2016) derives a

similar behavior of the goodness-of-fit statistic for non-invariant generalized method of moments

(GMM) estimators. This result, however, is normalization- and setup-specific, and alternative

normalizations or models based on gross returns render the non-invariant estimators immune to

the perfect fit problem. Furthermore, Kleibergen and Zhan (2015) show that a sizable unexplained

factor structure (generated by a low correlation between the observed proxy factors and the true

unobserved factors) in a two-pass CSR framework can also produce spuriously large values of the

ordinary least squares (OLS) R2 coefficient. Their results complement the findings of Lewellen,

Nagel, and Shanken (2010), who criticize the use of the OLS R2 coefficient by showing that it

provides an overly positive assessment of the performance of the asset pricing model. Despite the

suggestive nature of these findings, model evaluation tests based on non-invariant estimators, which

are the focus of the analysis in these studies, tend to be more robust to lack of identification. For

invariant estimators in under-identified asset pricing models, the spurious perfect fit is pervasive

regardless of the model structure (gross or excess returns), estimation framework, and chosen

2An earlier version of the paper (Gospodinov, Kan, and Robotti, 2017b) contains the corresponding limiting
results for the stochastic discount factor representation estimated by the continuously-updated generalized method
of moments (CU-GMM) estimator. The results are qualitatively very similar to the ones for the ML estimator.
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normalization.

The rest of the paper is organized as follows. Section 2 studies the limiting behavior of the

parameter estimates, t-statistics, and goodness-of-fit measures in the beta-pricing setup. Section 3

reports Monte Carlo simulation results. Section 4 presents our empirical findings. Section 5 sum-

marizes our main conclusions and provides some practical recommendations. The technical proofs

are in the Appendix.

2. Beta-pricing model and maximum likelihood

This section presents the main theoretical results for ML-based inference in a misspecified beta-

pricing model with a spurious factor.

2.1. Model and notation

Let ft be a (K − 1)-vector of systematic risk factors and Rt denote the returns on N (N > K)

test assets. We define Yt = [f ′t , R
′
t]
′ and its population mean and covariance matrix as

µ = E[Yt] ≡

[
µf

µR

]
(1)

and

V = Var[Yt] ≡

[
Vf VfR

VRf VR

]
, (2)

where V is assumed to be a positive-definite matrix. Furthermore, let γ = [γ0, γ
′
1]
′ be a K-vector

of zero-beta rate and risk premium parameters associated with the factors. When the asset pricing

model is correctly specified and well identified, there exists a unique γ∗ = [γ∗0, γ
∗′
1 ]′ such that

µR = 1Nγ
∗
0 + βγ∗1, (3)

where β = [β1, . . . , βK−1] = VRfV
−1
f is an N × (K − 1) matrix of the betas of the N assets. Also,

define

α = µR − βµf , (4)

and Σ = VR − VRfV −1f VfR. Combining Eqs. (3) and (4), we arrive at the restriction

α = 1Nγ
∗
0 + β(γ∗1 − µf ). (5)
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The primary focus of our analysis lies in characterizing the limiting behavior of the t-tests for

statistical significance of the γ1 estimates and the goodness-of-fit statistic defined as the squared

correlation between the realized and model-implied expected returns.3 The asymptotic approxi-

mations of these statistics are crucially affected by the rank of the matrix G ≡ [1N , B], where

B = [α, β]. The reduced rank of G can result either from validity of the asset pricing model

restriction α = 1Nγ0 + β(γ1 − µf ) or from a rank deficiency in the matrix B = [1N , β], which is

caused by the presence of spurious factors.

2.2. ML-based inference and main results

We consider the ML estimation of the beta-pricing model that imposes the joint normality

assumption on Yt. The joint normality of Yt is assumed for convenience, and the results continue

to hold under weaker conditions. For example, this assumption could be relaxed by assuming

conditional normality on the regression errors or adopting a quasi-maximum likelihood framework

as in White (1994). The main reason for making this assumption here is to interpret µ̂f in γ1−µ̂f as

the ML estimator of µf . Otherwise, we need to replace µ̂f below with its appropriate ML estimator.

The CU-GMM results in an earlier version of the paper (see Gospodinov, Kan, and Robotti, 2017b)

do not hinge on any distributional assumptions. This comes at the cost of losing the closed-form

solution for the estimator and some of the sharpness of the results. Thus, for expositional clarity,

the focus of this paper is on the ML estimator under the normality assumption.

Then, the ML estimator of γ∗ is defined as (see Shanken, 1992; Shanken and Zhou, 2007)

γ̂ML = argmin
γ

[α̂− 1Nγ0 − β̂(γ1 − µ̂f )]′Σ̂−1[α̂− 1Nγ0 − β̂(γ1 − µ̂f )]

1 + γ′1V̂
−1
f γ1

, (6)

where α̂, β̂, µ̂f , V̂f , and Σ̂ are the sample estimators of α, β, µf , Vf , and Σ, respectively. By

rewriting Eq. (6) as γ̂ML = argmin
γ

(µ̂R − B̂γ)′
[
(1 + γ′1V̂

−1
f γ1)Σ̂

]−1
(µ̂R − B̂γ), where B̂ = [1N , β̂],

the ML estimator becomes equivalent to the asymptotic least squares estimator of Gourieroux,

Monfort, and Trognon (1985) and Kodde, Palm, and Pfann (1990).

3In a multi-factor model, acceptance or rejection of γ1,i = 0 does not indicate whether the ith factor makes an
incremental contribution to the model’s overall explanatory power, given the presence of the other factors. See Kan,
Robotti, and Shanken (2013) for a discussion of this subtle point.
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The test for correct model specification of Shanken (1985) is given by

S = T min
γ

(α̂− 1Nγ0 − β̂(γ1 − µ̂f ))′Σ̂−1(α̂− 1Nγ0 − β̂(γ1 − µ̂f ))

1 + γ′1V̂
−1
f γ1

(7)

and is asymptotically distributed as S d→ χ2
N−K under the null H0 : α = 1Nγ0 + β(γ1 − µf ) when

the model is identified.

Due to the special structure of this objective function, the ML estimator of γ∗ can be obtained

explicitly as the solution to an eigenvector problem.4 Letting v = [−γ0, 1, −(γ1 − µ̂f )′]′ and

Ĝ = [1N , α̂, β̂], and noting that α̂− 1Nγ0 − β̂(γ1 − µ̂f ) = Ĝv, we can write the objective function

of the ML estimator as

min
v

v′Ĝ′Σ̂−1Ĝv

v′A(X ′X/T )−1A′v
, (8)

where A = [0K , IK ]′ and X is a T × K matrix with a typical row x′t = [1, f ′t ]. Let v̂ be the

eigenvector associated with the largest eigenvalue of

Ω̂ = (Ĝ′Σ̂−1Ĝ)−1[A(X ′X/T )−1A′]. (9)

Then, the ML estimator of γ∗ can be constructed as

γ̂ML
0 = − v̂1

v̂2
(10)

and

γ̂ML
1,i = µ̂f,i −

v̂i+2

v̂2
, i = 1, . . . ,K − 1. (11)

When the model is correctly specified and B is of full column rank, we have that Gv∗ = 0N for

v∗ = [−γ∗0, 1, −(γ∗1 − µ̂f )′]′ and

√
T

[
γ̂ML
0 − γ∗0
γ̂ML
1 − γ∗1

]
d→ N

(
0K , (1 + γ∗′1 V

−1
f γ∗1)(B

′Σ−1B)−1 +

[
0 0′K−1

0K−1 Vf

])
. (12)

As a result, the t-statistics for statistical significance of γ̂ML
0 and γ̂ML

1,i (i = 1, . . . ,K − 1) are

constructed as

t(γ̂ML
0 ) =

√
T γ̂ML

0

s(γ̂ML
0 )

(13)

4See also Zhou (1995) and Bekker, Dobbelstein, and Wansbeek (1996) for expressing the beta-pricing model as a
reduced-rank regression whose estimated parameters are obtained as an eigenvalue problem.
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and

t(γ̂ML
1,i ) =

√
T γ̂ML

1,i

s(γ̂ML
1,i )

, (14)

where s(γ̂ML
0 ), s(γ̂ML

1,1 ), . . . , s(γ̂ML
1,K−1) denote the square roots of the diagonal elements of

Vγ̂ = (1 + γ̂ML′
1 V̂ −1f γ̂ML

1 )(B̂′Σ̂−1B̂)−1 + V̂x, (15)

where B̂ = [1N , β̂] and V̂x =

[
0 0′K−1

0K−1 V̂f

]
. Using the ML estimates, γ̂ML

0 and γ̂ML
1 , the ML

estimate of β, β̂
ML

, and the fitted expected returns on the test assets, µ̂ML
R , are obtained as

β̂
ML

= β̂ +
[α̂− 1N γ̂

ML
0 − β̂(γ̂ML

1 − µ̂f )]γ̂ML′
1 V̂ −1f

1 + γ̂ML′
1 V̂ −1f γ̂ML

1

(16)

and

µ̂ML
R = 1N γ̂

ML
0 + β̂

ML
γ̂ML
1 . (17)

An equivalent way to obtain β̂
ML

is by running an OLS regression of Rt−1N γ̂
ML
0 on ft+γ̂

ML
1 −µ̂f .5

Because the empirical evidence strongly suggests that linear asset pricing models are misspecified

(as emphasized in our empirical application and many papers in the literature), in the following

analysis we present results only for the misspecified model case. The analytical and simulation

results for the correctly specified model case are available upon request. We briefly summarize

some of these results in Subsection 2.3 and Section 3.

The following theorem and Auxiliary Lemma 1 in the Appendix characterize the limiting be-

havior of the ML estimates γ̂ML, the t-statistics t(γ̂ML
0 ) and t(γ̂ML

1,i ) (i = 1, . . . ,K− 1), and the R2

statistic R2 = Corr(µ̂ML
R , µ̂R)2 in misspecified models that contain a spurious factor.

Without loss of generality, we assume that the spurious factor is the last element of the vector

ft with βK−1 = 0N and is independent of the test asset returns and the other factors. Our analysis

can be easily modified to deal with the case in which the betas of the factors are constant across

assets instead of being equal to zero and the case of a model with two (or more) factors that are

noisy versions of the same underlying factor. In these scenarios, B is also of reduced rank. Let Z̄i,

i = 0, . . . ,K − 2, denote a bounded random variable defined in the Appendix.

5We are grateful to an anonymous referee for pointing this out.
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Theorem 1. Assume that Yt is independent and identically normally distributed (i.i.d.). Suppose

that the model is misspecified (that is, µR 6= Bγ for all γ) and contains a spurious factor [that is,

rank(B) = K − 1]. Then, as T →∞,

(a) (i) t(γ̂ML
0 )

d→ Z̄0; (ii) t(γ̂ML
1,i )

d→ Z̄i for i = 1, . . . ,K − 2; (iii) t2(γ̂ML
1,K−1)

d→ χ2
N−K+1; and

(b) R2 p→ 1.

Proof. See the Appendix.

2.3. Discussion of results and intuition

Theorem 1 establishes the limiting behavior of the t-tests and R2 statistic in misspecified models

with identification failure. The t-tests for the useful factors converge to bounded random variables

and, hence, are inconsistent. As our simulations illustrate, the tests t(γ̂ML
1,i ) for i = 1, . . . ,K − 2

tend to exhibit power that is close to their size. In contrast, the t-test for the spurious factor will

over-reject substantially (with the probability of rejection rapidly approaching one as N increases)

when N (0, 1) critical values are used. Furthermore, part (b) of Theorem 1 shows that the R2 of

a misspecified model that contains a spurious factor approaches one. This leads to a completely

spurious inference procedure as the spurious factors do not contribute to the pricing performance

of the model and yet the R2 would indicate that the model perfectly explains the cross-sectional

variation in the expected returns on the test assets.

To visualize the limiting behavior of the t-statistics in part (a), Panel A of Fig. 3 plots the

limiting rejection rates of t(γ̂ML
1,i ) and t(γ̂ML

1,K−1) as functions of N − K for a misspecified model

with a spurious factor when one uses the standard normal critical values. The sample quantities

that enter the computation of the t-statistics for the useful factor are calibrated to the CAPM.

Fig. 3 confirms that t(γ̂ML
1,i ) is inconsistent as its power does not go to one asymptotically. The

over-rejection of t(γ̂ML
1,K−1) increases with N −K, and the probability of rejecting H0 : γ1,K−1 = 0

for the spurious factor is effectively one when N −K ≥ 15.

Fig. 3 about here
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When the model is correctly specified, the limiting distribution of the t-statistics for the useful

factors is still nonstandard but, unlike the misspecified model case, useful factors that are priced

are maintained in the model with probability approaching one. Although less pronounced than in

the misspecified model case, using N (0, 1) critical values will still lead to substantial over-rejections

of H0 : γ1,K−1 = 0 for the spurious factor. This is revealed by Panel B of Fig. 3.

The reason for the over-rejection for the parameter on the spurious factor is clearly illustrated in

Fig. 4, which plots the limiting probability density functions of t(γ̂ML
1,K−1) under correctly specified

and misspecified models (N −K = 7), along with the standard normal density. Given the bimodal

shape and large variance of the probability density function of the limiting distribution of t(γ̂ML
1,K−1)

under correctly specified models (which arises from the model’s under-identification), using N (0, 1)

critical values will lead to an over-rejection of the hypothesis that the spurious factor is not priced.

This over-rejection is further exacerbated by model misspecification, as illustrated by the outward

shift of the probability density function. Hence, with lack of identification, misleading inference

arises in correctly specified models as well as in misspecified models, although the inference problems

are more pronounced in the latter case.

Fig. 4 about here

Assuming that µf = 0K−1, some further intuition behind these results can be gained from

considering the simpler case of a model without γ0.
6 In this case, the eigenvector associated with

the largest eigenvalue of the matrix in Eq. (9) is identical to the eigenvector associated with the

smallest root of the characteristic polynomial∣∣∣ξ(X ′X)− B̂′Σ̂−1B̂
∣∣∣ = 0. (18)

Under correct model specification, α = βγ1, and absence of spurious factors, B̂ converges to the

reduced-rank matrix B0 = [βγ∗1, β] as the sample size increases, and the smallest root of the above

characteristic polynomial converges to zero with its corresponding eigenvector v̂ = [v̂1, . . . , v̂K ]′

being proportional to [1, −γ∗′1 ]′. Then, γ̂ML
1 = −[v̂2, . . . , v̂K ]′/v̂1 is a consistent estimator of γ∗1,

and the usual limiting characterization applies.

Under the conditions of Theorem 1, a misspecified model with one spurious factor (ordered last),

matrix B takes a different form, B = [α, β1, . . . , βK−2, 0N ], and it is still of reduced column rank

6We would like to thank an anonymous referee for suggesting this.
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K−1. The rank deficiency here is not caused by correct model specification but by the reduced rank

of the β matrix. An immediate consequence is that the specification test S has asymptotic power

that is equal to its size, and a researcher who ignores this rank failure in the β matrix will likely

conclude that the model is correctly specified even when the degree of misspecification is arbitrarily

large (see Gospodinov, Kan, and Robotti, 2014b, 2017a). Furthermore, the limiting properties of the

ML estimator, significance tests, and goodness-of-fit statistic are highly nonstandard. The smallest

root of the characteristic polynomial in Eq. (18) again approaches zero, but its corresponding

eigenvector v̂ is now proportional to [0′K−1, 1]′ because [α, β1, . . . , βK−2, 0N ][0′K−1, 1]′ = 0N .

Then,
√
T [v̂1, . . . , v̂K−1, v̂K − 1]′

d→ z, where z is a mean-zero normally distributed random vector.

Hence, γ̂ML
1,i

d→ −zi+1/z1 for i = 1, . . . ,K − 2 and T−1/2γ̂ML
1,K−1

d→ 1/z1.

These results suggest that when a spurious factor is present, the estimates for the useful factors

are inconsistent and converge to ratios of normal random variables, the estimate for the spurious

factor, γ̂ML
1,K−1, diverges at rate root T, and the standardized estimator converges to the reciprocal of

a normal random variable (see also Kan and Zhang, 1999, and Kleibergen, 2009, for similar results

for non-invariant two-pass CSR estimators). In contrast, when the model is correctly specified,

γ̂ML
0 and γ̂ML

1,i (i = 1, . . . ,K − 2) for the useful factors are consistent estimators (although with

a non-normal asymptotic limit) of γ∗0 and γ∗1,i, respectively, and γ̂ML
1,K−1 for the spurious factor

is inconsistent but has a limiting Cauchy distribution. These nonstandard properties of the ML

estimator give rise to the nonstandard asymptotic distribution of the t-statistics in part (a) of

Theorem 1.

The limiting behavior of R2, which measures the squared correlation between µ̂ML
R and µ̂R,

is also directly driven by γ̂ML
1,i = Op(1) (for i = 1, . . . ,K − 2) and the divergent behavior of

γ̂ML
1,K−1 = Op(T

1
2 ). Because µ̂ML

R = β̂
ML

γ̂ML
1 = µ̂R −

µ̂R−β̂γ̂ML
1

1+γ̂ML′
1 V̂ −1

f γ̂ML
1

= µ̂R + op(1) from Eq. (16)

and the limiting properties of γ̂ML
1 , it immediately follows that the R2 converges to one in large

samples. These limiting characterizations, albeit at the expense of some technicalities, provide

guidance and a conceptual framework for explaining the seemingly abnormal empirical results

presented in the introduction and Sections 3 and 4.

Qualitatively similar results extend to other invariant estimators. An earlier version of the paper

(Gospodinov, Kan, and Robotti, 2017b) contained results for the continuously updated generalized

method of moments estimator. Other popular likelihood-based estimators, such as generalized
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empirical likelihood and Bayesian estimators, are also not immune to this problem as they exhibit

heightened sensitivity to departures from full identification and correct model specification.

3. Simulation experiment

In this section, we undertake a Monte Carlo simulation experiment to study the empirical

rejection rates of the t-tests for the ML estimator as well as the finite-sample distribution of the

goodness-of-fit measure. We consider three linear models: (1) a model with a constant term and

a useful factor, (2) a model with a constant term and a spurious factor, and (3) a model with a

constant term, a useful, and a spurious factor. All three models are misspecified.

The returns on the test assets and the useful factor are drawn from a multivariate normal

distribution. In all simulation designs, the covariance matrix of the simulated test asset returns

is set equal to the sample covariance matrix from the January 1967 to December 2012 sample

of monthly returns on the 25 Fama-French size and book-to-market ranked portfolios (from Ken-

neth French’s website at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_

library.html). The means of the simulated returns are set equal to the sample means of the

actual returns, and they are not exactly linear in the chosen betas for the useful factor. As a result,

the models are misspecified in all three cases. The mean and variance of the simulated useful factor

are calibrated to the sample mean and variance of the value-weighted market excess return. The

covariances between the useful factor and the returns are chosen based on the sample covariances

estimated from the data. The spurious factor is generated as a standard normal random variable,

which is independent of the returns and the useful factor. The time series sample size is T = 200,

600, and 1000, and all results are based on 100,000 Monte Carlo replications, with the exception of

the results in Fig. 5, which are based on 500,000 Monte Carlo simulations to obtain a smoother plot

of the cumulative distribution function of the R2. We also report the limiting rejection probabilities

(denoted by T =∞) for the t-tests based on our asymptotic results in Section 2.

A popular way to assess the performance of the model is to compute the squared correlation

between the fitted expected returns of the model and the average realized returns. The empirical

distribution of this R2 is reported in Fig. 5. As our theoretical analysis suggests, the empirical

distribution of the R2 in misspecified models with a spurious factor collapses to one as the sample
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size gets large.7 As a result, this measure will indicate a perfect fit for models that include a factor

that is independent of the returns on the test assets. These spurious results should serve as a

warning signal in applied work in which many macroeconomic factors are only weakly correlated

with the returns on the test assets.

Fig. 5 about here

Table 3 presents the rejection probabilities of the t-tests of H0 : γ1,i = 0 (tests of parameter

significance) for the useful and the spurious factors in models (1), (2), and (3). The t-statistics

are computed under the assumption that the model is correctly specified and are compared against

the critical values from the standard normal distribution, as is commonly done in the literature.

Table 3 reveals that for models with a spurious factor, the t-tests will give rise to spurious results,

suggesting that these completely irrelevant factors are priced. Moreover, the spurious factor (which,

by construction, does not contribute to the pricing performance of the model) drives out the useful

factor and leads to the grossly misleading conclusion to keep the spurious factor and drop the useful

factor from the model (see Panel C of Table 3).

Table 3 about here

The spuriously high R2 values and the perils of relying on the traditional t-tests of parameter

significance in unidentified models suggest that the decision regarding the model specification should

be augmented with additional diagnostics. One approach to restoring the validity of the standard

inference is based on the following model reduction procedure.8 To assess the degree of identification

of the model, the matrix B = [1N , β] is subjected to a rank test. To this end, we employ a version of

the rank test of Cragg and Donald (1997) denoted by CDB(L), where 1 ≤ L ≤ K−1 is the reduced

rank under the null. Under our assumptions, we have
√
Tvec(β̂ − β)

d→ N (0N(K−1), V
−1
f ⊗ Σ).

7In the presence of spurious factors, the empirical distributions of the R2s in correctly specified and misspecified
models are very different. For example, when the model is correctly specified with a spurious factor and T = 600, the
10%, 50%, and 90% percentiles of the R2 distribution are 0.049, 0.686 and 0.989, respectively, and the corresponding
ones for the misspecified model case are 0.993, 0.999 and 1.000. This holds true even though we expect the R2 for
correctly specified models to be higher than the R2 for misspecified models.

8If the integrity of the model needs to be preserved, one could use the limiting distribution in Theorem 1 to conduct
inference on the risk premia parameters that is valid under possible lack of identification and model misspecification.
However, this requires knowledge of which factor is spurious. Kleibergen (2009) develops alternative test procedures
for constructing confidence intervals that are asymptotically valid irrespective of the degree of identification. When
the model is of reduced rank, the corresponding confidence intervals are unbounded.
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Because the covariance matrix of β̂ is in Kronecker form, the rank test of H0 : rank(B) = L reduces

to a solution to an eigenvalue problem and takes the form

CDB(L) = T (λL+1 + · · ·+ λK), (19)

where λL+1, . . . , λK are the K −L smallest generalized eigenvalues of the square matrices B̂′Σ̂−1B̂

and V̂x. Under the null H0 : rank(B) = L, CDB(L)
d→ χ2

(N−L)(K−L) (Cragg and Donald, 1997).

If the null hypothesis of a reduced rank is rejected, the researcher can proceed with the standard

inference although the t-tests of parameter significance could still need to be robustified against

possible model misspecification. If the null of a reduced rank is not rejected, the researcher needs to

estimate consistently the reduced rank L of B. The estimation of the rank of B can be performed

using the modified Bayesian information criterion (MBIC) of Ahn, Horenstein, and Wang (2018)

by choosing the value of L (for L = 1, . . . ,K − 1) that minimizes

MBIC(L) = CDB(L)− T 0.2(N − L)(K − L), (20)

where CDB(L) is the test in Eq. (19) of the null that the rank of B is equal to L. To minimize

the probability of rejecting the null of a reduced rank when the true rank of B is deficient and to

guard the procedure against the selection of nearly spurious factors (see also Wright, 2003), we fix

the level of the rank test on B to be the same and small (say, 1%) for all levels of the subsequent

tests.

This step of the model reduction procedure can be implemented using any available rank test. In

our setup, the intercept is always included in the model. If the rank is estimated to be 1 ≤ l ≤ K−1,

construct N×l matrices B̃ by selecting all possible combinations of l−1 risk factors, f̃ , and perform

a rank test on each B̃. Then, choose the f̃ that gives rise to the largest rejection of the reduced-

rank hypothesis. See also Bryzgalova (2016) and Feng, Giglio, and Xiu (2017) for alternative model

selection methods based on the lasso estimator in a two-pass setting.

Columns 2, 3, and 4 of Table 4 report the probabilities of retaining factors in the proposed

model reduction procedure. We fix the significance level of the rank test on B to be 1%. In

addition, we denote by PA, PB, and PC the marginal probability of retaining the useful factors,

the marginal probability of eliminating the spurious factors, and the joint probability of retaining

the useful factors and eliminating the spurious factors, respectively. The reported probabilities are

numerically identical for the correctly specified and misspecified versions of each model.
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Table 4 about here

To make the simulation design more challenging for the model reduction procedure, we consider,

in addition to the three models described above, a model with a constant term, three useful factors,

and two spurious factors. The results for all models suggest that our model reduction procedure is

very effective in retaining the useful factors and eliminating the spurious factors from the analysis.

For sample sizes T ≥ 600, the most challenging scenario, the model with three useful and two

spurious factors, retains (removes) the useful (spurious) factors with probability one.

Assessing the empirical rejection probabilities of the parameter significance tests before and

after the identification-inducing reduction procedure is implemented could be desirable. The Wald

test provides a convenient way to perform this comparison. In the evaluation of the empirical

size of the Wald test, we use γ∗ as the pseudo-true values for the useful factors and zero as the

reference values for the spurious factors. We denote the augmented parameter vector by γ̃∗. The

Wald test for all parameters prior to the reduction procedure takes the form W
(all)
c = T (γ̂ −

γ̃∗)′V −1γ̂ (γ̂− γ̃∗), where Vγ̂ is the covariance matrix of γ̂ defined in Eq. (15). The subscript in W
(all)
c

indicates that the covariance matrix of the parameter estimates is obtained under the assumption

that the model is correctly specified. The corresponding Wald test for the factors selected by

the identification-inducing procedure is denoted by W
(selected)
c . Finally, we present results for

the Wald test W
(selected)
m , where the covariance matrix is computed allowing for potential model

misspecification (see Gospodinov, Kan, and Robotti, 2018). The empirical rejection rates of these

Wald tests are reported in Table 4.

In line with our theoretical results, when all factors are included and the model contains spuri-

ous factors, the empirical size of the Wald test is characterized by strong over-rejections. When the

model does not contain spurious factors [W
(all)
c in Panel A of Table 4] or after the identification-

inducing model reduction procedure is performed [W
(selected)
c ], the tests also exhibit over-rejections

that are due to the fact that the true model is misspecified while W
(all)
c and W

(selected)
c are con-

structed under the assumption of correct model specification. The test W
(selected)
m accounts for the

misspecification uncertainty and has the correct size, after the full rank condition for the model is

ensured. Finally, while not reported in Table 4 to conserve space, the power of the ML specifica-

tion test, S, is very low and bounded by the size of the test when a spurious factor is present (see

Gospodinov, Kan, and Robotti, 2014b, 2017a), but it increases to one in large samples when the
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full identification of the model is restored.

In unreported experiments, we also consider intermediate cases in which priced factors, that

is, factors that carry nonzero risk premia, are only weakly correlated with the returns on the test

assets. In these scenarios, the Wald test exhibits some size distortions in small samples, but these

distortions tend to disappear as the sample size increases. A more rigorous treatment of these

intermediate cases is a promising direction for future research.

4. Empirical analysis

We evaluate the performance of several prominent asset pricing models with traded and non-

traded factors in light of our analytical and simulation results in Sections 2 and 3. First, we describe

the data used in the empirical analysis and outline the different specifications of the asset pricing

models considered. Next, we present our results.

4.1. Data and asset pricing models

The return data are from Kenneth French’s website and consist of the monthly value-weighted

gross returns on the 25 Fama-French size and book-to-market ranked portfolios, 25 Fama-French

size- and momentum-ranked portfolios, and 32 Fama-French size-, operating profitability-, and

investment-ranked portfolios. The data are from January 1967 to December 2012 (552 monthly

observations). The beginning date of our sample period is dictated by profitability and investment

data availability.9

We analyze six asset pricing models starting with the conditional labor model (C-LAB) of

Jagannathan and Wang (1996). This model incorporates measures of the return on human capital

as well as the change in financial wealth and allows the conditional moments to vary with a state

variable, prem, the lagged yield spread between Baa- and Aaa-rated corporate bonds from the

Board of Governors of the Federal Reserve System. The cross-sectional specification for this model

is

µC−LABR = 1Nγ0 + βvwγvw + βlaborγlabor + βpremγprem, (21)

9We thank Lu Zhang for sharing his data with us.
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where vw is the excess return (in excess of the one-month T-bill rate from Ibbotson Associates)

on the value-weighted stock market index (NYSE, Amex, and Nasdaq) from Kenneth French’s

website, and labor is the growth rate in per capita labor income, L, defined as the difference

between total personal income and dividend payments, divided by the total population (from the

Bureau of Economic Analysis). Following Jagannathan and Wang (1996), we use a two-month

moving average to construct the growth rate labort = (Lt−1 + Lt−2)/(Lt−2 + Lt−3) − 1, for the

purpose of minimizing the influence of measurement error.

Our second model (CC-CAY) is a conditional version of the consumption CAPM of Lettau and

Ludvigson (2001). The relation is

µCC−CAYR = 1Nγ0 + βcgγcg + βcayγcay + βcg·cayγcg·cay, (22)

where cg is the growth rate in real per capita nondurable consumption (seasonally adjusted at

annual rates) from the Bureau of Economic Analysis, and cay, the conditioning variable, is a

consumption-aggregate wealth ratio. This specification is obtained by scaling the constant term

and the cg factor of a linearized consumption CAPM by a constant and cay. Following Vissing-

Jørgensen and Attanasio (2003), we linearly interpolate the quarterly values of cay to permit

analysis at the monthly frequency.

The third model (ICAPM) is an empirical implementation of the Merton (1973) intertemporal

extension of the CAPM based on Campbell (1996), who argues that innovations in state vari-

ables that forecast future investment opportunities should serve as the factors. The cross-sectional

relation for the five-factor specification proposed by Petkova (2006) is

µICAPMR = 1Nγ0 + βvwγvw + βtermγterm + βdefγdef + βdivγdiv + βrfγrf , (23)

where term is the difference between the yields of ten- and one-year government bonds (from the

Board of Governors of the Federal Reserve System), def is the difference between the yields of

long-term corporate Baa bonds and long-term government bonds (from Ibbotson Associates), div

is the dividend yield on the Center for Research in Security Prices (CRSP) value-weighted stock

market portfolio, and rf is the one-month T-bill yield (from CRSP, Fama risk-free rates). The

actual factors for term, def , div, and rf are their innovations from a VAR(1) system of seven state

variables that also includes vw, smb, and hml [the market, size, and value factors, respectively, of

the three-factor model of Fama and French (1993)].
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We complete our list of models with traded and non-traded factors by considering the (D-

CCAPM) specification of Yogo (2006), which highlights the cyclical role of durable consumption in

asset pricing. The asset pricing restriction is

µD−CCAPMR = 1Nγ0 + βvwγvw + βcgγcg + βcgdurγcgdur, (24)

where cgdur is the growth rate in real per capita durable consumption (seasonally adjusted at

annual rates) from the Bureau of Economic Analysis.

Our fifth model (FF3) is the three-factor model of Fama and French (1993). The cross-sectional

relation is given by

µFF3
R = 1Nγ0 + βvwγvw + βsmbγsmb + βhmlγhml, (25)

where smb is the return difference between portfolios of stocks with small and large market capi-

talizations and hml is the return difference between portfolios of stocks with high and low book-

to-market ratios (from Kenneth French’s website).

Finally, we consider the newly proposed empirical specification (HXZ) of Hou, Xue, and Zhang

(2015), which is built on the neoclassical q theory of investment. The beta representation of the

model is

µHXZR = 1Nγ0 + βvwγvw + βmeγme + βroeγroe + βiaγia, (26)

where me is the difference between the return on a portfolio of small size stocks and the return

on a portfolio of big size stocks, roe is the difference between the return on a portfolio of high

profitability stocks and the return on a portfolio of low profitability stocks, and ia is the difference

between the return on a portfolio of low investment stocks and the return on a portfolio of high

investment stocks. This four-factor model has been shown to successfully explain many asset pricing

anomalies.

Empirical results for the five-factor model of Fama and French (2015), the three-factor model of

Fama and French (1993) augmented with the momentum factor of Carhart (1997), and the three-

factor model of Fama and French (1993) augmented with the non-traded liquidity factor of Pastor

and Stambaugh (2003) are available upon request.

4.2. Results
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The results for all models are reported for both the invariant (ML) and non-invariant (GLS)

estimators. Starting with C-LAB (Table 5), we investigate whether this model is well identified.

The outcomes of the rank test suggest that C-LAB is poorly identified across different sets of test

assets. The p-values of these tests are large, ranging from 0.53 to 0.72, and indicate that the null

hypothesis of a deficient column rank for the B matrix cannot be rejected. Similar concerns were

also raised by Kleibergen and Paap (2006) using the original data in Jagannathan and Wang (1996).

This identification failure results in the inability of the specification test to reject the model (see

Gospodinov, Kan, and Robotti, 2014b) and in spuriously high R2s (indistinguishable from one in

the columns labeled “All” in Table 5) for ML. Based on S and the R2 for ML, C-LAB appears to

have a spectacular fit, and a researcher would likely proceed with t-tests of parameter significance

with standard errors computed under the assumption of correct model specification. This would

lead us to conclude that the labor and prem factors are often priced in the cross section of expected

returns, as emphasized by the high traditional t-ratios on the prem and labor factors for ML. The

evidence of pricing for the market factor is rather weak, with traditional absolute t-ratio values

ranging from 0.67 to 1.42 for ML. These empirical findings are consistent with our methodological

results and reveal the spurious nature of inference as factors that are spurious are selected with

high probability, while factors that are useful (such as the market factor) are driven out of the

model.

Table 5 about here

Applying the model reduction procedure, described in Section 3, to C-LAB reveals that only the

market factor survives the identification-inducing procedure. Essentially, C-LAB reduces to CAPM,

and the S test now has power to reject the model (see columns labeled “Selected” in Table 5). In

turn, the R2s provide a completely different and more realistic assessment of the goodness of fit of

the model, ranging from 0.11 to 0.14. The high misspecification-robust t-ratios on vw in Panel A

(see Gospodinov, Kan, and Robotti, 2018, for the derivation of misspecification-robust t-ratios for

ML) suggest some strong pricing ability for the market factor when the test portfolios are formed on

size and book-to-market. In contrast, when considering portfolios formed on size and momentum,

the evidence of pricing for vw is very limited, consistent with the uncontroversial finding that

CAPM cannot explain the returns on portfolios formed on momentum. Panel C also shows that
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the pricing ability of vw is somewhat weak when employing misspecification-robust t-ratios and

considering portfolios formed on size, operating profitability, and investment.

Non-invariant estimators, such as the GLS estimator, provide a less optimistic picture of C-LAB

compared with ML. The p-values of Q in Table 5 are always zero even before applying the model

reduction procedure. Therefore, even if Q is inconsistent under identification failure (Gospodinov,

Kan, and Robotti, 2014b), it seems to be more robust to lack of identification and can detect

model misspecification with higher probability than S. In sharp contrast with the R2s based on

ML, the R2s for the GLS estimator are much smaller (see the columns labeled “All” in the table).

Finally, after applying our model selection procedure, the pricing implications for vw (based on

misspecification-robust t-ratios as in Kan, Robotti, and Shanken, 2013) are largely consistent across

invariant and non-invariant estimators.

The spurious nature of the results analyzed in this paper are probably best illustrated with

CC-CAY in Table 6. The rank tests in all three panels provide strong evidence that the model is

not identified. Ignoring the outcome of the rank tests would lead us to conclude that the model

estimated by ML is correctly specified and that scaled consumption growth, cg · cay, is highly

significant. However, none of the factors survives after applying the proposed model reduction

procedure because none of the factors (or a subset of factors) in this model satisfies the rank

condition. Supporting evidence for this conclusion is provided in Kleibergen (2009). Kleibergen

(2009) finds that the identification-robust confidence intervals for the risk premia on cg, cay, and

cg · cay are unbounded, which suggests that these factors are likely to be spurious.

Table 6 about here

The results for ICAPM and D-CCAPM in Tables 7 and 8 further reveal the fragility of statis-

tical inference in models with factors that are only weakly correlated with the test asset returns.

Similar to the case of C-LAB in Table 5, only the market factor survives the identification-inducing

procedure in ICAPM and D-CCAPM.

Tables 7 and 8 about here

Turning to models with traded factors only, the results for the rank tests in Tables 9 and 10 for

FF3 and HXZ suggest that these models are well identified, albeit misspecified. Our main empirical
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findings can be summarized as follows. Models with non-traded factors are often poorly identified

and tend to produce highly misleading inference in terms of spuriously high statistical significance

and lack of power in rejecting the null of correct model specification. In addition to the outcome

of the rank tests, two observations cast doubts on the validity of the results for these models:

the difference between the t-statistics computed under the assumption of correct specification and

the misspecification-robust t-statistics (with the misspecification-robust t-statistics being typically

small) and the unrealistically high value of the R2. The models that perform the best are FF3

and especially HXZ in which all the factors appear to contribute to pricing and are characterized

by statistically significant risk premia. Out of the different sets of test portfolios, the portfolios

formed on size and momentum, and size and short- and long-term reversal appear to be the most

challenging from a pricing perspective.

Tables 9 and 10 about here

In unreported empirical investigations, we explore the performance of these six models using

the 25 Fama-French portfolios formed on size and short-term reversal, 25 Fama-French portfolios

formed on size and long-term reversal, and 25 Fama-French portfolios formed on size and book-

to-market plus 17 industry portfolios (all the test assets are from Kenneth French’s website). The

results based on these three additional sets of test asset returns are largely consistent with the

results reported in this section.

5. Concluding remarks

In this paper, we study the limiting properties of ML-based tests of statistical significance

and goodness of fit in asset pricing models and show that the inference based on these tests can

be spurious when the models are unidentified. The spurious results in these models arise from

the combined effect of identification failure and model misspecification, which is not an isolated

problem limited to a particular sample (data frequency), test assets, and asset pricing models.

This suggests that the statistical evidence on the pricing ability of many macro factors and their

usefulness in explaining the cross section of asset returns should be interpreted with caution. Some

warning signs about this problem (for example, the outcome of a rank test) are often ignored

by researchers. While the non-invariant GLS estimator also suffers from similar problems, the
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invariant ML estimator turns out to be much more sensitive to model misspecification and lack of

identification.

Given the severity of the inference problems associated with invariant estimators of possibly

unidentified and misspecified asset pricing models that we show in this paper, our recommenda-

tions for empirical practice can be summarized as follows. Any model should be subjected to a

rank test that will provide evidence on whether the model parameters are identified or not. If the

null hypothesis of a reduced rank is rejected, a researcher can proceed with the standard tools for

inference in analyzing and evaluating the model. If the null of a reduced rank is not rejected, a

researcher needs to estimate consistently the reduced rank of the model and select the combination

of factors that delivers the largest rejection of the reduced rank hypothesis. This procedure would

restore the standard inference, although it could still need to be robustified against possible model

misspecification as in Gospodinov, Kan, and Robotti (2018). An alternative empirical strategy is

to work with non-invariant estimators and pursue misspecification-robust inference that is asymp-

totically valid regardless of the degree of identification (Kleibergen, 2009; Gospodinov, Kan, and

Robotti, 2014a).
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Appendix

A.1. Auxiliary lemma

Auxiliary Lemma 1. Let z = [z1, z2, . . . , zK ]′ ∼ N (0K , (G
′
1Σ
−1G1)

−1/σ2f,K−1), where G1 =

[1N , α, β1, . . . , βK−2] and σ2f,K−1 = Var[fK−1,t]. Assume that Yt is i.i.d. normal. Suppose that

the model is misspecified and it contains a spurious factor (that is, rank(B) = K − 1). Then,

as T → ∞, we have (i) γ̂ML
0

d→ −z1
z2

; (ii) γ̂ML
1,i

d→ µf,i −
zi+2

z2
for i = 1, . . . ,K − 2; and (iii)

γ̂ML
1,K−1√
T

d→ 1

z2
.

Proof. When the model is misspecified and contains a spurious factor (ordered last), we have

Gv∗ = 0N for v∗ = [0′K , 1]′. Let v̂ be the eigenvector associated with the largest eigenvalue of

Ω̂ = (Ĝ′Σ̂−1Ĝ)−1[A(X ′X/T )−1A′]. (A.1)

Define ψ̂ = [ψ̂1, ψ̂2, . . . , ψ̂K ]′ as

ψ̂i = − v̂i
v̂K+1

, i = 1, . . . ,K, (A.2)

which is asymptotically equivalent to the estimator

ψ̃ = (Ĝ′1Σ̂
−1Ĝ1)

−1(Ĝ′1Σ̂
−1β̂K−1). (A.3)

Because
√
T β̂K−1

d→ N (0N ,Σ/σ
2
f,K−1), we have

√
T ψ̃

d→ N (0K , (G
′
1Σ
−1G1)

−1/σ2f,K−1), (A.4)

and
√
T ψ̂ also has the same asymptotic distribution. Therefore, we can write

γ̂ML
0 = −

√
T ψ̂1√
T ψ̂2

d→ −z1
z2
, (A.5)

γ̂ML
1,i = µ̂f,i −

√
T ψ̂i+2√
T ψ̂2

d→ µf,i −
zi+2

z2
, i = 1, . . . ,K − 2, (A.6)

and
γ̂ML
1,K−1√
T

=
µ̂f,K−1√

T
+

1√
T ψ̂2

d→ 1

z2
. (A.7)
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This completes the proof of the lemma.

A.2. Proof of Theorem 1

part (a). Let σ2i = Var[zi], σi,j ≡ Cov[zi, zj ], ρi,j = σi,j/(σiσj), G2 = [1N , β1, . . . , βK−2], and

Ĝ2 = [1N , β̂1, . . . , β̂K−2], and define the random variables z̃2 ≡ z2/σ2 ∼ N (0, 1), x ∼ χ2
N−K ,

and qi ∼ N (0, 1), where x and qi are independent of z̃2, and bi = (x + z̃22)/(x + z̃22 + q2i ) for

i = 1, . . . ,K − 1. We start with the squared t-ratio of the spurious factor, t2(γ̂ML
1,K−1). Using the

formula for the inverse of a partitioned matrix, we obtain

s2(γ̂ML
1,K−1) = (1 + γ̂ML′

1 V̂ −1f γ̂ML
1 )

(
β̂
′
K−1[Σ̂

−1 − Σ̂−1Ĝ2(Ĝ
′
2Σ̂
−1Ĝ2)

−1Ĝ′2Σ̂
−1]β̂K−1

)−1
+ σ̂2f,K−1

=

(
γ̂ML
1,K−1
σ̂f,K−1

)2 (
β̂
′
K−1[Σ̂

−1 − Σ̂−1Ĝ2(Ĝ
′
2Σ̂
−1Ĝ2)

−1Ĝ′2Σ̂
−1]β̂K−1

)−1
+Op(T

1
2 ) (A.8)

by using the fact that γ̂ML
1,i = Op(1) for i = 1, . . . ,K − 2 and γ̂ML

1,K−1 = Op(T
1
2 ). In addition, by

defining u as
√
T σ̂f,K−1Σ̂

− 1
2 β̂K−1

d→ u ∼ N (0N , IN ), (A.9)

we obtain

t2(γ̂ML
1,K−1) =

T (γ̂ML
1,K−1)

2β̂
′
K−1[Σ̂

−1 − Σ̂−1Ĝ2(Ĝ
′
2Σ̂
−1Ĝ2)

−1Ĝ2Σ̂
−1]β̂K−1

(γ̂ML
1,K−1/σ̂f,K−1)

2
+Op(T

− 1
2 )

= u′[IN − Σ̂−
1
2 Ĝ2(Ĝ

′
2Σ̂
−1Ĝ2)

−1Ĝ′2Σ̂
− 1

2 ]u+Op(T
− 1

2 )

d→ u′[IN − Σ−
1
2G2(G

′
2Σ
−1G2)

−1G′2Σ
− 1

2 ]u ∼ χ2
N−K+1. (A.10)

For the limiting distributions of t(γ̂ML
0 ) and t(γ̂ML

1,i ), i = 1, . . . ,K − 2, we use the formula for

the inverse of a partitioned matrix to obtain the upper left (K− 1)× (K− 1) block of (B̂′Σ̂−1B̂)−1

as

(Ĝ′2Σ̂
−1Ĝ2)

−1 +
(Ĝ′2Σ̂

−1Ĝ2)
−1Ĝ′2Σ̂

−1β̂K−1β̂
′
K−1Σ̂

−1Ĝ2(Ĝ
′
2Σ̂
−1Ĝ2)

−1

β̂
′
K−1Σ̂

−1β̂K−1 − β̂
′
K−1Σ̂

−1Ĝ2(Ĝ′2Σ̂
−1Ĝ2)−1Ĝ′2Σ̂

−1β̂K−1

= (G′2Σ
−1G2)

−1 +
(G′2Σ

−1G2)
−1G′2Σ

− 1
2uu′Σ−

1
2G2(G

′
2Σ
−1G2)

−1

u′[IN − Σ−
1
2G2(G′2Σ

−1G2)−1G′2Σ
− 1

2 ]u
+Op(T

− 1
2 ). (A.11)

We can write

IN − Σ−
1
2G1(G

′
1Σ
−1G1)

−1G′1Σ
− 1

2 = IN − Σ−
1
2G2(G

′
2Σ
−1G2)

−1G′2Σ
− 1

2 − hh′, (A.12)
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where

h =
[IN − Σ−

1
2G2(G

′
2Σ
−1G2)

−1G′2Σ
− 1

2 ]Σ−
1
2α(

α′Σ−
1
2 [IN − Σ−

1
2G2(G′2Σ

−1G2)−1G′2Σ
− 1

2 ]Σ−
1
2α
) 1

2

. (A.13)

With this expression, we can write

u′[IN − Σ−
1
2G2(G

′
2Σ
−1G2)

−1G′2Σ
− 1

2 ]u = u′[IN − Σ−
1
2G1(G

′
1Σ
−1G1)

−1G′1Σ
− 1

2 ]u+ (h′u)2

= x+ z̃22 , (A.14)

where x ∼ χ2
N−K and it is independent of z̃2 ∼ N (0, 1). To establish the last equality, we need

to show that h′u = z̃2. Denote by ιm,i an m-vector with its ith element equal to one and zero

elsewhere, and let σi,j ≡ Cov[zi, zj ] = ι′K,i(G
′
1Σ
−1G1)

−1ιK,j/σ
2
f,K−1. Using the formula for the

inverse of a partitioned matrix, we obtain

z2 =
1

σf,K−1
ι′K,2(G

′
1Σ
−1G1)

−1G′1Σ
− 1

2u

=
1

σf,K−1

α′Σ−
1
2 [IN − Σ−

1
2G2(G

′
2Σ
−1G2)

−1G′2Σ
− 1

2 ]u

α′Σ−
1
2 [IN − Σ−

1
2G2(G′2Σ

−1G2)−1G′2Σ
− 1

2 ]Σ−
1
2α
. (A.15)

It follows that

σ22 =
1

σ2f,K−1α
′Σ−

1
2 [IN − Σ−

1
2G2(G′2Σ

−1G2)−1G′2Σ
− 1

2 ]Σ−
1
2α

(A.16)

and h′u = z2/σ2 = z̃2.

Denote by wi the ith diagonal element of (B̂′Σ̂−1B̂)−1, i = 1, . . . ,K − 1. Using Eq. (A.11), we

have

wi
d→ ι′K−1,i(G

′
2Σ
−1G2)

−1ιK−1,i +
ι′K−1,i(G

′
2Σ
−1G2)

−1G′2Σ
− 1

2uu′Σ−
1
2G2(G

′
2Σ
−1G2)

−1ιK−1,i

x+ z̃22

= ι′K−1,i(G
′
2Σ
−1G2)

−1ιK−1,i

(
1 +

q2i
x+ z̃22

)
, (A.17)

where

qi =
ι′K−1,i(G

′
2Σ
−1G2)

−1G′2Σ
− 1

2u

[ι′K−1,i(G
′
2Σ
−1G2)−1ιK−1,i]

1
2

∼ N (0, 1). (A.18)

Using the fact that Var[u] = IN and

(G′1Σ
−1G1)

−1G′1Σ
−1G2 = [ιK,1, ιK,3, . . . , ιK,K ], (A.19)
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it is straightforward to show that

Cov[z1, q1] =
ι′K,1(G

′
1Σ
−1G1)

−1G′1Σ
−1G2(G

′
2Σ
−1G2)

−1ιK−1,1

σf,K−1[ι
′
K−1,1(G

′
2Σ
−1G2)−1ιK−1,1]

1
2

= [ι′K−1,1(G
′
2Σ
−1G2)

−1ιK−1,1/σ
2
f,K−1]

1
2 (A.20)

and

Cov[z2, q1] =
ι′K,2(G

′
1Σ
−1G1)

−1G′1Σ
−1G2(G

′
2Σ
−1G2)

−1ιK−1,1

σf,K−1[ι
′
K−1,1(G

′
2Σ
−1G2)−1ιK−1,1]

1
2

= 0. (A.21)

From the formula for the inverse of a partitioned matrix, we have

1

σ2f,K−1
ι′K−1,1(G

′
2Σ
−1G2)

−1ιK−1,1 = σ21 −
σ21,2
σ22

= σ21(1− ρ21,2). (A.22)

It follows that

Cov

[
z1 −

σ1,2
σ22

z2, q1

]
= [ι′K−1,1(G

′
2Σ
−1G2)

−1ιK−1,1/σ
2
f,K−1]

1
2 = σ1

√
1− ρ21,2. (A.23)

Therefore, z1 − (σ1,2/σ
2
2)z2 is perfectly correlated with q1, and we can write

z1 =
σ1,2
σ22

z2 +
√

1− ρ21,2σ1q1 = σ1

(
ρ1,2z̃2 +

√
1− ρ21,2q1

)
. (A.24)

Similarly,

zi+1 =
σi+1,2

σ22
z2+

√
1− ρ2i+1,2σi+1qi = σi+1

(
ρi+1,2z̃2 +

√
1− ρ2i+1,2qi

)
, i = 2, . . . ,K−1. (A.25)

Let

bi =
x+ z̃22

x+ z̃22 + q2i
, i = 1, . . . ,K − 1. (A.26)

With the above results, we can now write the limiting distribution of the t-ratios as

t(γ̂ML
0 )

d→ − z1|z2|b
1
2
1

z2[ι′K−1,1(G
′
2Σ
−1G2)−1ιK−1,1/σ2f,K−1]

1
2

= −

 ρ1,2|z̃2|√
1− ρ21,2

+ q1

 b
1
2
1 (A.27)

and

t(γ̂ML
1,i )

d→

(
µf,i −

zi+2

z2

)
|z2|b

1
2
i+1

[ι′K−1,i+1(G
′
2Σ
−1G2)−1ιK−1,i+1/σ2f,K−1]

1
2

=

 µf,iσ2

σi+2
− ρi+2,2√

1− ρ2i+2,2

|z̃2| − qi+1

 b
1
2
i+1, i = 1, . . . ,K − 2. (A.28)
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Defining Z̄0 = −

(
ρ1,2|z̃2|√
1−ρ21,2

+ q1

)
b
1
2
1 and Z̄i =

(
µf,iσ2
σi+2

−ρi+2,2√
1−ρ2i+2,2

|z̃2| − qi+1

)
b
1
2
i+1, for i = 1, . . . ,K − 2,

delivers the desired result. This completes the proof of part (a).

part (b). Let ê = µ̂R− 1N γ̂
ML
0 − β̂γ̂ML

1 , and note that the fitted expected returns can be rewritten

as

µ̂ML
R = 1N γ̂

ML
0 + β̂

ML
γ̂ML
1

= 1N γ̂
ML
0 + β̂γ̂ML

1 + ê
γ̂ML′
1 V̂ −1f γ̂ML

1

1 + γ̂ML′
1 V̂ −1f γ̂ML

1

= µ̂R − ê+ ê
γ̂ML′
1 V̂ −1f γ̂ML

1

1 + γ̂ML′
1 V̂ −1f γ̂ML

1

= µ̂R − ê
1

1 + γ̂ML′
1 V̂ −1f γ̂ML

1

. (A.29)

Using the result from Auxiliary Lemma 1 that γ̂ML
1,i = Op(1) for i = 1, . . . ,K − 2 and γ̂ML

1,K−1 =

Op(T
1
2 ), we have µ̂ML

R − µ̂R
p→ 0N and

R2 = Corr(µ̂ML
R , µ̂R)2

p→ 1 (A.30)

as T →∞. This completes the proof of part (b).
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Table 1
Test statistics for capital asset pricing model (CAPM) and CAPM augmented with the sp factor.

The table reports test statistics for the capital asset pricing model (CAPM), the CAPM augmented with
the sp factor, and a model with the sp factor only. The test asset returns are the monthly returns on the
value-weighted 25 Fama-French size and book-to-market ranked portfolios from January 1967 until December
2012. S denotes the Shanken (1985) test of correct model specification based on the maximum likelihood
estimator. tx denotes the t-test of statistical significance for the parameter associated with factor x, with
standard errors computed under the assumption of correct model specification. R2 denotes the squared
correlation coefficient between the fitted expected returns and the average realized returns.

CAPM CAPM + sp factor sp factor

tvw −3.65 0.52
(p-value) (0.0003) (0.6027)
tsp −4.62 −4.64
(p-value) (0.0000) (0.0000)
S 68.79 21.32 21.56
(p-value) (0.0000) (0.5011) (0.5471)
R2 0.1447 0.9999 1.0000
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Table 2
Test statistics for various asset pricing models.

The table reports test statistics for four asset pricing models: capital asset pricing model (CAPM),
Fama and French three-factor model (FF3), conditional labor model (C-LAB), and conditional version of
the consumption CAPM (CC-CAY). The test asset returns are the monthly returns on the value-weighted
25 Fama-French size and book-to-market ranked portfolios from January 1967 until December 2012. CDB

denotes the Cragg and Donald (1997) test for the null of a reduced rank in the beta-pricing setup. Q and
S denote the Shanken (1985) tests of correct model specification based on the generalized least squares and
maximum likelihood (ML) estimators, respectively. The rows for the different factors report the t-tests of
statistical significance with standard errors computed under the assumption of correct model specification.
R2 denotes the squared correlation coefficient between the fitted expected returns and the average realized
returns.

CAPM FF3 C-LAB CC-CAY

Panel A: Rank and CSR tests

CDB 465.03 321.18 20.87 14.10
(p-value) (0.0000) (0.0000) (0.5290) (0.8978)
Q 71.96 55.61 69.68 71.77
(p-value) (0.0000) (0.0004) (0.0000) (0.0009)

Panel B: ML

S 68.79 51.05 20.87 13.85
(p-value) (0.0000) (0.0003) (0.4672) (0.8758)
vw −3.65 −3.80 1.42
smb 1.73
hml 3.04
labor −3.14
prem −4.07
cg −2.23
cay −0.77
cg · cay 3.63
R2 0.1447 0.7337 1.0000 0.9995
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Table 3
Rejection rates of t-tests.

The table presents the rejection rates of t-tests of statistical significance under misspecified models for
the maximum likelihood estimator. The null hypothesis is that the parameter of interest is equal to zero.
The results are reported for different levels of significance (10%, 5%, and 1%) and for different values of the
number of time series observations (T ). The t-statistics with standard errors computed under the assumption
of correct model specification are compared with the critical values from a standard normal distribution. The
rejection rates for the limiting case (T = ∞) in Panels B and C are based on the asymptotic distributions
in part (a) of Theorem 1.

Useful Spurious

T 10% 5% 1% 10% 5% 1%

Panel A: Model with a useful factor only

200 0.698 0.616 0.442 — — —
600 0.959 0.934 0.848 — — —
1000 0.996 0.992 0.971 — — —
∞ 1.000 1.000 1.000 — — —

Panel B: Model with a spurious factor only

200 — — — 0.996 0.996 0.993
600 — — — 1.000 1.000 1.000
1000 — — — 1.000 1.000 1.000
∞ — — — 1.000 1.000 1.000

Panel C: Model with a useful and a spurious factor

200 0.271 0.185 0.075 0.992 0.991 0.986
600 0.171 0.099 0.025 1.000 1.000 1.000
1000 0.152 0.083 0.019 1.000 1.000 1.000
∞ 0.124 0.062 0.011 1.000 1.000 1.000
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Table 4
Probabilities of retaining factors in the model reduction procedure.

The table presents the probabilities of retaining factors in our proposed model reduction procedure. The
results are reported for different values of the number of time series observations (T ). The level of the rank
test on B is 1%. PA, PB , and PC are the marginal probability of retaining the useful factors, the marginal
probability of eliminating the spurious factors, and the joint probability of retaining the useful factors and
eliminating the spurious factors, respectively. The table also reports the size of the Wald test with weighting

matrix constructed under correct model specification when all the factors are included in the model (W
(all)
c ),

the size of the Wald test with weighting matrix constructed under correct model specification when only the

selected factors are included in the model (W
(selected)
c ), and the size of the Wald test with weighting matrix

constructed under potential model misspecification when only the selected factors are included in the model

(W
(selected)
m ).

Selection probabilities W
(all)
c W

(selected)
c W

(selected)
m

T PA PB PC 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: One useful factor only

200 1.000 — 1.000 0.288 0.207 0.098 0.288 0.207 0.098 0.110 0.057 0.013
600 1.000 — 1.000 0.219 0.142 0.055 0.219 0.142 0.055 0.103 0.053 0.011
1000 1.000 — 1.000 0.207 0.132 0.048 0.207 0.132 0.048 0.103 0.052 0.011

Panel B: One spurious factor only

200 — 0.948 0.948 0.996 0.994 0.990 0.219 0.153 0.082 0.122 0.066 0.016
600 — 0.982 0.982 1.000 1.000 0.998 0.157 0.097 0.039 0.107 0.055 0.012
1000 — 0.986 0.986 1.000 1.000 0.997 0.147 0.088 0.034 0.104 0.053 0.011

Panel C: One useful and one spurious factor

200 1.000 0.951 0.951 0.991 0.988 0.972 0.318 0.238 0.134 0.108 0.056 0.012
600 1.000 0.982 0.982 1.000 0.999 0.985 0.232 0.157 0.071 0.102 0.051 0.010
1000 1.000 0.986 0.986 1.000 0.999 0.983 0.217 0.145 0.061 0.103 0.052 0.010

Panel D: Three useful and two spurious factors

200 1.000 0.998 0.998 0.942 0.864 0.560 0.268 0.187 0.085 0.111 0.058 0.013
600 1.000 1.000 1.000 0.913 0.812 0.489 0.197 0.122 0.042 0.104 0.053 0.011
1000 1.000 1.000 1.000 0.903 0.792 0.456 0.181 0.111 0.037 0.103 0.052 0.011
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Table 5
Test statistics for conditional labor model (C-LAB).

The table reports test statistics for C-LAB. CDB denotes the Cragg and Donald (1997) test for the
null of a reduced rank. Q and S denote the Shanken (1985) tests of correct model specification based
on the generalized least squares (GLS) and maximum likelihood (ML) estimators, respectively. The rows
for the different factors report the t-tests of statistical significance with standard errors computed under
the assumption of correct model specification and the misspecification-robust t-tests (in square brackets).
R2 denotes the squared correlation coefficient between the fitted expected returns and the average realized
returns.

Method Factor All Selected

Panel A: 25 portfolios formed on size and book-to-market

Rank test CDB (p-value) 20.87 (0.5290) 465.03 (0.0000)

ML S (p-value) 20.87 (0.4672) 68.79 (0.0000)
R2 1.0000 0.1447
vw 1.42 [0.01] −3.65 [−2.92]
labor −3.14 [−0.01] —
prem −4.07 [−0.01] —

GLS Q (p-value) 69.68 (0.0000) 71.96 (0.0000)
R2 0.1111 0.0993
vw −2.66 [−2.09] −3.14 [−2.97]
labor −1.05 [−0.47] —
prem 0.56 [0.23] —

Panel B: 25 portfolios formed on size and momentum

Rank test CDB (p-value) 17.71 (0.7231) 505.71 (0.0000)

ML S (p-value) 17.71 (0.6674) 105.80 (0.0000)
R2 1.0000 0.1128
vw −0.67 [−0.00] −0.95 [−0.68]
labor 2.82 [0.00] —
prem 3.97 [0.00] —

GLS Q (p-value) 97.23 (0.0000) 106.09 (0.0000)
R2 0.6890 0.0963
vw −0.49 [−0.42] −0.75 [−0.68]
labor 1.89 [0.98] —
prem −0.89 [−0.37] —

Panel C: 32 portfolios formed on size, profitability, and investment

Rank test CDB (p-value) 25.57 (0.6486) 575.04 (0.0000)

ML S (p-value) 25.56 (0.5972) 159.18 (0.0000)
R2 1.0000 0.1055
vw 0.73 [0.06] −2.61 [−1.68]
labor −4.86 [−0.06] —
prem −1.74 [−0.06] —

GLS Q (p-value) 161.93 (0.0000) 161.99 (0.0000)
R2 0.0679 0.0717
vw −1.88 [−1.69] −1.90 [−1.71]
labor −0.18 [−0.07] —
prem 0.07 [0.03] —
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Table 6
Test statistics for a conditional version of the consumption capital asset pricing model (CC-CAY).

The table reports test statistics for CC-CAY. CDB denotes the Cragg and Donald (1997) test for the
null of a reduced rank. Q and S denote the Shanken (1985) tests of correct model specification based
on the generalized least squares (GLS) and maximum likelihood (ML) estimators, respectively. The rows
for the different factors report the t-tests of statistical significance with standard errors computed under
the assumption of correct model specification and the misspecification-robust t-tests (in square brackets).
R2 denotes the squared correlation coefficient between the fitted expected returns and the average realized
returns.

Method Factor All Selected

Panel A: 25 portfolios formed on size and book-to-market

Rank test CDB (p-value) 14.10 (0.8978) —

ML S (p-value) 13.85 (0.8758) 81.90 (0.0000)
R2 0.9995 —
cg −2.23 [−0.12] —
cay −0.77 [−0.04] —
cg · cay 3.63 [0.19] —

GLS Q (p-value) 71.77 (0.0009) 81.90 (0.0000)
R2 0.0475 —
cg 0.70 [0.40] —
cay 1.34 [0.70] —
cg · cay 1.84 [0.94] —

Panel B: 25 portfolios formed on size and momentum

Rank test CDB (p-value) 21.10 (0.5146) —

ML S (p-value) 20.79 (0.4721) 106.65 (0.0000)
R2 0.9977 —
cg −0.63 [−0.05] —
cay −0.20 [−0.01] —
cg · cay 4.69 [0.16] —

GLS Q (p-value) 73.91 (0.0098) 106.65 (0.0000)
R2 0.0368 —
cg 1.71 [1.27] —
cay 3.59 [2.51] —
cg · cay 1.64 [1.01] —

Panel C: 32 portfolios formed on size, profitability, and investment

Rank test CDB (p-value) 23.79 (0.7394) —

ML S (p-value) 23.68 (0.6985) 165.59 (0.0000)
R2 0.9999 —
cg −4.21 [−0.15] —
cay 1.21 [0.05] —
cg · cay 4.04 [0.10] —

GLS Q (p-value) 163.80 (0.0000) 165.59 (0.0000)
R2 0.0009 —
cg −0.37 [−0.16] —
cay 1.07 [0.41] —
cg · cay 0.72 [0.31] —
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Table 7
Test statistics for intertemporal capital asset pricing model (ICAPM).

The table reports test statistics for ICAPM. CDB denotes the Cragg and Donald (1997) test for the
null of a reduced rank. Q and S denote the Shanken (1985) tests of correct model specification based
on the generalized least squares (GLS) and maximum likelihood (ML) estimators, respectively. The rows
for the different factors report the t-tests of statistical significance with standard errors computed under
the assumption of correct model specification and the misspecification-robust t-tests (in square brackets).
R2 denotes the squared correlation coefficient between the fitted expected returns and the average realized
returns.

Method Factor All Selected

Panel A: 25 portfolios formed on size and book-to-market

Rank test CDB (p-value) 23.85 (0.2488) 465.03 (0.0000)

ML S (p-value) 21.46 (0.3118) 68.79 (0.0000)
R2 0.9942 0.1447
vw 1.79 [0.61] −3.65 [−2.92]
term 4.78 [1.05] —
def 1.16 [0.41] —
div −2.14 [−0.60] —
rf −3.19 [−0.90] —

GLS Q (p-value) 63.72 (0.0016) 71.96 (0.0000)
R2 0.3692 0.0993
vw −1.77 [−1.38] −3.14 [−2.97]
term 2.13 [1.16] —
def −0.23 [−0.14] —
div 1.00 [0.64] —
rf −1.66 [−0.91] —

Panel B: 25 portfolios formed on size and momentum

Rank test CDB (p-value) 25.36 (0.1879) 505.71 (0.0000)

ML S (p-value) 24.55 (0.1757) 105.80 (0.0000)
R2 0.9976 0.1128
vw 2.02 [0.62] −0.95 [−0.68]
term 3.41 [0.57] —
def −3.72 [−0.60] —
div −3.44 [−0.66] —
rf −1.63 [−0.49] —

GLS Q (p-value) 99.90 (0.0000) 106.09 (0.0000)
R2 0.1048 0.0963
vw 0.17 [0.13] −0.75 [−0.68]
term 1.05 [0.56] —
def −0.25 [−0.13] —
div −1.33 [−0.74] —
rf −1.35 [−0.84] —
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Table 7 (Continued)
Test statistics for intertemporal capital asset pricing model (ICAPM).

Method Factor All Selected

Panel C: 32 portfolios formed on size, profitability, and investment

Rank test CDB (p-value) 18.70 (0.8805) 575.04 (0.0000)

ML S (p-value) 18.39 (0.8611) 159.18 (0.0000)
R2 0.9996 0.1055
vw −2.42 [−0.45] −2.61 [−1.68]
term −3.64 [−0.47] —
def −3.58 [−0.46] —
div 2.70 [0.43] —
rf 1.55 [0.35] —

GLS Q (p-value) 152.35 (0.0000) 161.99 (0.0000)
R2 0.2528 0.0717
vw −1.62 [−0.98] −1.90 [−1.71]
term −1.56 [−0.61] —
def −0.79 [−0.32] —
div 0.23 [0.10] —
rf 0.30 [0.14] —
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Table 8
Test statistics for durable consumption capital asset pricing model (D-CCAPM).

The table reports test statistics for D-CCAPM. CDB denotes the Cragg and Donald (1997) test for the
null of a reduced rank. Q and S denote the Shanken (1985) tests of correct model specification based
on the generalized least squares (GLS) and maximum likelihood (ML) estimators, respectively. The rows
for the different factors report the t-tests of statistical significance with standard errors computed under
the assumption of correct model specification and the misspecification-robust t-tests (in square brackets).
R2 denotes the squared correlation coefficient between the fitted expected returns and the average realized
returns.

Method Factor All Selected

Panel A: 25 portfolios formed on size and book-to-market

Rank test CDB (p-value) 37.87 (0.0190) 465.03 (0.0000)

ML S (p-value) 28.37 (0.1299) 68.79 (0.0000)
R2 0.9762 0.1447
vw −2.17 [−1.77] −3.65 [−2.92]
cg 5.31 [1.77] —
cgdur 2.35 [0.54] —

GLS Q (p-value) 61.96 (0.0023) 71.96 (0.0000)
R2 0.3642 0.0993
vw −3.09 [−2.93] −3.14 [−2.97]
cg 2.61 [1.69] —
cgdur 1.09 [0.79] —

Panel B: 25 portfolios formed on size and momentum

Rank test CDB (p-value) 30.73 (0.1019) 505.71 (0.0000)

ML S (p-value) 30.15 (0.0889) 105.80 (0.0000)
R2 0.9926 0.1128
vw −0.81 [−0.62] −0.95 [−0.68]
cg −0.07 [−0.00] —
cgdur 5.52 [0.22] —

GLS Q (p-value) 95.14 (0.0000) 106.09 (0.0000)
R2 0.0143 0.0963
vw −1.10 [−0.96] −0.75 [−0.68]
cg 2.21 [1.24] —
cgdur 2.04 [1.07] —

Panel C: 32 portfolios formed on size, profitability, and investment

Rank test CDB (p-value) 29.93 (0.4175) 575.04 (0.0000)

ML S (p-value) 29.82 (0.3717) 159.18 (0.0000)
R2 0.9990 0.1055
vw 0.08 [0.00] −2.61 [−1.68]
cg −2.89 [−0.02] —
cgdur 4.02 [0.08] —

GLS Q (p-value) 154.38 (0.0000) 161.99 (0.0000)
R2 0.5117 0.0717
vw −2.14 [−1.83] −1.90 [−1.71]
cg 1.07 [0.50] —
cgdur 2.32 [1.13] —
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Table 9
Test statistics for the Fama and French three-factor model (FF3).

The table reports test statistics for FF3. CDB denotes the Cragg and Donald (1997) test for the null
of a reduced rank. Q and S denote the Shanken (1985) tests of correct model specification based on
the generalized least squares (GLS) and maximum likelihood (ML) estimators, respectively. The rows for
the different factors report the t-tests of statistical significance with standard errors computed under the
assumption of correct model specification and the misspecification-robust t-tests (in square brackets). R2

denotes the squared correlation coefficient between the fitted expected returns and the average realized
returns.

Method Factor All Selected

Panel A: 25 portfolios formed on size and book-to-market

Rank test CDB (p-value) 321.18 (0.0000) 321.18 (0.0000)

ML S (p-value) 51.05 (0.0003) 51.05 (0.0003)
R2 0.7337 0.7337
vw −3.80 [−3.03] −3.80 [−3.03]
smb 1.73 [1.72] 1.73 [1.72]
hml 3.04 [3.03] 3.04 [3.03]

GLS Q (p-value) 55.61 (0.0004) 55.61 (0.0004)
R2 0.6901 0.6901
vw −3.29 [−3.02] −3.29 [−3.02]
smb 1.73 [1.73] 1.73 [1.73]
hml 3.04 [3.04] 3.04 [3.04]

Panel B: 25 portfolios formed on size and momentum

Rank test CDB (p-value) 111.25 (0.0000) 111.25 (0.0000)

ML S (p-value) 77.55 (0.0000) 77.55 (0.0000)
R2 0.8805 0.8805
vw −5.32 [−1.76] −5.32 [−1.76]
smb 4.06 [2.84] 4.06 [2.84]
hml −4.63 [−1.48] −4.63 [−1.48]

GLS Q (p-value) 93.49 (0.0000) 93.49 (0.0000)
R2 0.4934 0.4934
vw −1.88 [−1.48] −1.88 [−1.48]
smb 2.99 [2.76] 2.99 [2.76]
hml −1.30 [−0.95] −1.30 [−0.95]

Panel C: 32 portfolios formed on size, profitability, and investment

Rank test CDB (p-value) 256.43 (0.0000) 256.43 (0.0000)

ML S (p-value) 133.50 (0.0000) 133.50 (0.0000)
R2 0.5981 0.5981
vw −0.46 [−0.20] −0.46 [−0.20]
smb 0.94 [0.88] 0.94 [0.88]
hml 4.66 [2.85] 4.66 [2.85]

GLS Q (p-value) 141.97 (0.0000) 141.97 (0.0000)
R2 0.5394 0.5394
vw −0.92 [−0.77] −0.92 [−0.77]
smb 1.12 [1.09] 1.12 [1.09]
hml 3.96 [3.46] 3.96 [3.46]
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Table 10
Test statistics for the Hou, Xue, and Zhang model (HXZ).

The table reports test statistics for HXZ. CDB denotes the Cragg and Donald (1997) test for the null
of a reduced rank. Q and S denote the Shanken (1985) tests of correct model specification based on
the generalized least squares (GLS) and maximum likelihood (ML) estimators, respectively. The rows for
the different factors report the t-tests of statistical significance with standard errors computed under the
assumption of correct model specification and the misspecification-robust t-tests (in square brackets). R2

denotes the squared correlation coefficient between the fitted expected returns and the average realized
returns.

Method Factor All Selected

Panel A: 25 portfolios formed on size and book-to-market

Rank test CDB (p-value) 138.27 (0.0000) 138.27 (0.0000)

ML S (p-value) 50.72 (0.0002) 50.72 (0.0002)
R2 0.7607 0.7607
vw −3.29 [−2.25] −3.29 [−2.25]
me 2.53 [2.37] 2.53 [2.37]
roe 1.65 [1.03] 1.65 [1.03]
ia 2.72 [2.05] 2.72 [2.05]

GLS Q (p-value) 56.09 (0.0003) 56.09 (0.0003)
R2 0.6938 0.6938
vw −2.98 [−2.67] −2.98 [−2.67]
me 2.38 [2.34] 2.38 [2.34]
roe 1.24 [1.06] 1.24 [1.06]
ia 2.54 [2.35] 2.54 [2.35]

Panel B: 25 portfolios formed on size and momentum

Rank test CDB (p-value) 65.73 (0.0000) 65.73 (0.0000)

ML S (p-value) 51.56 (0.0001) 51.56 (0.0001)
R2 0.9347 0.9347
vw 3.21 [0.75] 3.21 [0.75]
me 3.80 [3.60] 3.80 [3.60]
roe 3.71 [1.81] 3.71 [1.81]
ia 3.35 [0.66] 3.35 [0.66]

GLS Q (p-value) 65.79 (0.0009) 65.79 (0.0009)
R2 0.8784 0.8784
vw 0.74 [0.58] 0.74 [0.58]
me 3.46 [3.41] 3.46 [3.41]
roe 3.23 [3.17] 3.23 [3.17]
ia 0.96 [0.71] 0.96 [0.71]
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Table 10 (Continued)
Test statistics for the Hou, Xue, and Zhang model (HXZ).

Method Factor All Selected

Panel C: 32 portfolios formed on size, profitability, and investment

Rank test CDB (p-value) 169.09 (0.0000) 169.09 (0.0000)

ML S (p-value) 69.36 (0.0000) 69.36 (0.0000)
R2 0.8810 0.8810
vw 2.94 [1.80] 2.94 [1.80]
me 3.59 [3.40] 3.59 [3.40]
roe 6.74 [4.45] 6.74 [4.45]
ia 6.42 [5.65] 6.42 [5.65]

GLS Q (p-value) 102.44 (0.0001) 102.44 (0.0001)
R2 0.7499 0.7499
vw 0.90 [0.82] 0.90 [0.82]
me 2.97 [2.86] 2.97 [2.86]
roe 4.63 [4.56] 4.63 [4.56]
ia 5.73 [5.57] 5.73 [5.57]

44



Fig. 1. Realized versus fitted [by maximum likelihood (ML)] returns: 25 Fama-French portfolios.
The figure shows the average realized returns versus fitted expected returns (by ML) for each of the
25 Fama-French portfolios for capital asset pricing model (CAPM), Fama and French three-factor
model (FF3), conditional labor model (C-LAB), and conditional version of the consumption CAPM
(CC-CAY).
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Fig. 2. Realized versus fitted [by generalized least squares (GLS)] returns: 25 Fama-French portfo-
lios. The figure shows the average realized returns versus fitted expected returns (by GLS) for each
of the 25 Fama-French portfolios for capital asset pricing model (CAPM), Fama and French three-
factor model (FF3), conditional labor model (C-LAB), and conditional version of the consumption
CAPM (CC-CAY).
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Fig. 3. Limiting rejection rates of t-tests of statistical significance. Panel A plots the limiting
rejection rates under misspecified models of t(γ̂ML

1,i ) and t(γ̂ML
1,K−1) as functions of N −K when one

uses the standard normal critical values. Panel B plots the limiting rejection rates under correctly
specified and misspecified models of t(γ̂ML

1,K−1) as functions of N −K when one uses the standard
normal critical values.
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Fig. 4. Limiting distributions of t(γ̂ML
1,K−1) under correctly specified and misspecified models. The

figure plots the limiting densities of t(γ̂ML
1,K−1) for correctly specified and misspecified models that

contain a spurious factor (for N −K = 7), along with the standard normal density.
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Fig. 5. Cumulative distribution function of the R2. The figure plots the cumulative distribution
function of the R2 computed as the squared correlation between the realized and fitted expected
returns based on the maximum likelihood estimator.

49


	Introduction and motivation
	Beta-pricing model and maximum likelihood
	Simulation experiment
	Empirical analysis
	Concluding remarks

