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Abstract

We derive asymptotic standard errors of risk premia estimates based on the popular two-
pass cross-sectional regression methodology developed by Black, Jensen, and Scholes (1972)
and Fama and MacBeth (1973) when univariate betas are used as regressors. Our standard
errors are robust to model misspecification and allow for general distributional assumptions. In
testing whether the beta risk of a given factor is priced, our misspecification robust standard
error can lead to economically different conclusions from those based on the Jagannathan and
Wang (1998) standard error which is derived under the correctly specified model.

Keywords: Asset pricing models; Risk premia; Univariate betas; Model misspecification

JEL classification: G12

∗Kan is from the University of Toronto. Robotti is from the Federal Reserve Bank of Atlanta. We thank Esther
Eiling and an anonymous referee for helpful discussions and comments and Martin Lettau and Kenneth French for
making their data available to us. Kan gratefully acknowledges financial support from the National Bank Financial
of Canada, the Social Sciences and Humanities Research Council of Canada, and the Center for Financial Innovation
and Stability at the Federal Reserve Bank of Atlanta. The views expressed here are the authors’ and not necessarily
those of the Federal Reserve Bank of Atlanta or the Federal Reserve System. Corresponding author: Cesare Robotti,
Research Department, Federal Reserve Bank of Atlanta, 1000 Peachtree St. N.E., Atlanta, Georgia, 30309, USA; Tel:
(404) 498-8543; Fax: (404) 498-8810; E-mail: cesare.robotti@atl.frb.org.

1



1. Introduction

The popular two-pass cross-sectional regression (CSR) methodology developed by Black, Jensen,

and Scholes (1972) and Fama and MacBeth (1973) is often used for estimating risk premia and

testing pricing models that relate expected security returns to asset betas on economic factors

(beta pricing models). Usually, asset betas are defined as the ordinary least squares (OLS) slope

coefficients in the multiple regression of asset returns on factors and are referred to as multivariate

or multiple regression betas. Unless the factors are uncorrelated, the beta of an asset with respect

to a particular factor in general depends on what other factors are included in the first-pass time-

series OLS regression. As a result, a factor can possess additional explanatory power for the

cross-sectional differences in expected returns but yet have a zero risk premium in a model with

multiple factors. This makes it problematic to use the risk premium of a factor for the purpose

of model selection. To overcome this problem, Chen, Roll, and Ross (1986) and Jagannathan and

Wang (1996, 1998) define the beta of an asset with respect to a given factor as the OLS slope

coefficient in a simple regression of its return on the factor. These betas are usually referred to as

univariate or simple regression betas. In models with univariate betas, adding or deleting a factor

will not change the values of the betas corresponding to the other factors and selecting models

based on risk premia becomes more meaningful.

Jagannathan and Wang (1998) present an asymptotic theory for models with univariate betas.

However, their results rest on the assumption that the model is correctly specified. It is difficult

to justify this assumption when estimating the zero-beta rate and risk premia parameters from

many different models because some (if not all) of the models are bound to be misspecified. The

main contribution of this paper is to propose misspecification robust asymptotic standard errors of

the estimated zero-beta rate and risk premia in models with univariate betas. In addition, under a

multivariate elliptical assumption, we provide simple expressions for the asymptotic variances of the

zero-beta rate and risk premia estimates. In the case of the generalized least squares (GLS) CSR

estimators, we show that the asymptotic variances are always larger when the model is misspecified.

The paper is organized as follows. Section 2 presents an asymptotic analysis of the zero-beta rate

and risk premia estimates for models with univariate betas under potential model misspecification.

Section 3 provides an empirical example and Section 4 concludes.
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2. Asymptotic analysis under potentially misspecified models

Let f be a K-vector of factors and R a vector of returns on N test assets. We define Y = [f ′, R′]′

with mean and covariance matrix

µ = E[Y ] ≡

[
µ1

µ2

]
, (1)

V = Var[Y ] ≡

[
V11 V12

V21 V22

]
, (2)

where V is assumed to be positive definite. The univariate betas of the N portfolios w.r.t. the K

factors are defined as β∗ = V21D
−1, where D = Diag(V11) is a diagonal matrix of the diagonal

elements of V11. When the proposed beta pricing model is correctly specified, µ2 is exactly linear

in β∗. As a result, the pricing errors, e, of the N test assets are

e ≡ µ2 −X∗γ∗ = 0N , (3)

where X∗ = [1N , β
∗] is assumed to be of full column rank, 0N is an N -vector of zeros, 1N is an

N -vector of ones, and γ∗ = [γ∗0 , γ
∗
1
′]′ is a vector consisting of the zero-beta rate (γ∗0) and risk premia

(γ∗1). When the model is misspecified, e will be nonzero regardless of the choice of γ∗. Then, γ∗ is

chosen to minimize some form of aggregate pricing errors. Denoting by W an N × N symmetric

positive definite matrix,

γ∗W ≡

[
γ∗W,0

γ∗W,1

]
= argminγ∗(µ2 −X∗γ∗)′W (µ2 −X∗γ∗) = (X∗′WX∗)−1X∗′Wµ2 (4)

and

eW = µ2 −X∗γ∗W . (5)

Unless the model is correctly specified, γ∗W and eW depend on the choice of W . Popular choices of

W are W = IN (OLS CSR), W = V −122 (GLS CSR), and W = Σ−1d (weighted least squares (WLS)

CSR), where Σd = Diag(Σ) and Σ = V22 − V21V −111 V12. To simplify the notation, we suppress the

subscript W from γ∗W and eW when the choice of W is clear from the context.

Let Yt = [f ′t , R
′
t]
′, where ft and Rt are the vectors of factors and returns at time t, respectively.

Assume that Yt is jointly stationary and ergodic with finite fourth moment. Suppose we have T
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observations on Yt and denote the sample moments of Yt by

µ̂ ≡

[
µ̂1

µ̂2

]
=

1

T

T∑
t=1

Yt, (6)

V̂ ≡

[
V̂11 V̂12

V̂21 V̂22

]
=

1

T

T∑
t=1

(Yt − µ̂)(Yt − µ̂)′. (7)

Letting β̂∗ = V̂21D̂
−1, when the weighting matrix W is known, we can estimate γ∗W in (4) by

γ̂∗ = (X̂∗′WX̂∗)−1X̂∗′Wµ̂2, (8)

where X̂∗ = [1N , β̂
∗]. In the GLS and WLS cases, we need to substitute a consistent estimate

of W , say Ŵ , in (5) and (8) (e.g., Ŵ = V̂ −122 for GLS and Ŵ = Σ̂−1d for WLS). The following

proposition presents the asymptotic distribution of γ̂∗.

Proposition 1. Under a potentially misspecified model, the asymptotic distribution of γ̂∗ is given

by
√
T (γ̂∗ − γ∗) A∼ N(0K+1, V (γ̂∗)), (9)

where

V (γ̂∗) =
∞∑

j=−∞
E[hth

′
t+j ]. (10)

To simplify the ht expressions in the different CSRs, we define H∗ = (X∗′WX∗)−1, A∗ = H∗X∗′W ,

γ∗t = A∗Rt, z
∗
t = [0, (ft−µ1)′D−1]′, Dt = Diag((ft−µ1)(ft−µ1)′), G∗t = [β∗Dt−(Rt−µ2)(ft−µ1)′],

and ut = e′W (Rt − µ2), where W equals V −122 in the GLS case and Σ−1d in the WLS case.

(1) In the known weighting matrix W case,

ht = (γ∗t − γ∗) +A∗G∗tD
−1γ∗1 +H∗z∗t ut. (11)

(2) In the GLS case,

ht = (γ∗t − γ∗) +A∗G∗tD
−1γ∗1 +H∗z∗t ut − (γ∗t − γ∗)ut. (12)

(3) In the WLS case,

ht = (γ∗t − γ∗) +A∗G∗tD
−1γ∗1 +H∗z∗t ut −A∗ΨtΣ

−1
d e, (13)
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where Ψt = Diag(εtε
′
t), and εt = Rt − µ2 − V21V −111 (ft − µ1).

When the model is correctly specified, we have

ht = (γ∗t − γ∗) +A∗G∗tD
−1γ∗1 . (14)

Proof. See Appendix.

In the known W case, we can easily construct a consistent estimator of V (γ̂∗) by replacing ht

with

ĥt = (γ̂∗t − γ̂∗) + Â∗Ĝ∗t D̂
−1γ̂∗1 + Ĥ∗ẑ∗t ût, (15)

where Ĥ∗ = (X̂∗′WX̂∗)−1, Â∗ = Ĥ∗X̂∗′W , γ̂∗t = Â∗Rt, ût = ê′W (Rt − µ̂2), D̂ = Diag(V̂11),

D̂t = Diag[(ft − µ̂1)(ft − µ̂1)′], Ĝ∗t = [β̂∗D̂t − (Rt − µ̂2)(ft − µ̂1)′], and ẑ∗t = [0, (ft − µ̂1)′D̂−1]′.

Similarly, one needs to replace the population quantities in (12)–(13) with their sample counterparts

to obtain a consistent estimator of V (γ̂∗) in the GLS and WLS cases.1 Note that for the case of

correctly specified model, our expressions in (10) and (14) provide a substantial simplification of

the corresponding expressions in Theorem 7 of Jagannathan and Wang (1998).

An inspection of (11) reveals that there are three sources that contribute to the asymptotic

variance of γ̂∗. The first term, γ∗t −γ∗, measures the asymptotic variance of γ̂∗ when the true betas

are used in the CSR. For example, when Rt is i.i.d., then γ∗t is also i.i.d. and we can use the time-

series variance of γ∗t to compute the standard error of γ̂∗ (see Fama and MacBeth (1973)). However,

since the estimated β∗ is used in the second-pass CSR, there is an errors-in-variables (EIV) problem

and the second term, A∗G∗tD
−1γ∗1 , represents the necessary EIV adjustment. These two terms

together give us V (γ̂∗) under the correctly specified model. When the model is misspecified, there

is a third term H∗z∗t ut, the misspecification adjustment term, that contributes to the asymptotic

variance of γ̂∗. This term has been ignored by Jagannathan and Wang (1998) and other researchers.2

To better understand the importance of the misspecification adjustment term, in the following

lemma we derive an explicit expression for V (γ̂∗).

Lemma 1. Suppose that factors and returns are i.i.d. multivariate elliptically distributed with kur-

1If ht is uncorrelated over time, then V (γ̂∗) = E[hth
′
t] and V̂ (γ̂∗) = 1

T

∑T
t=1 ĥtĥ

′
t. When ht is autocorrelated, one

can use the method of Newey and West (1987).
2In the estimated GLS and WLS cases, the misspecification adjustment term contains the additional quantities

−(γ∗t − γ∗)ut and −A∗ΨtΣ
−1
d e, respectively. These additional terms are due to the estimation error in Ŵ .
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tosis parameter κ.3 Let D̃ =

[
0 0′K

0K D−1V11D
−1

]
and � denote the Hadamard product. Define

Υw = [1 + (1 + κ)(γ∗1
′D−1V11D

−1γ∗1)]A∗V22A
∗′ + (1 + κ)×[

0 0′K

0K 2(D−1γ∗1γ
∗
1
′D−1)� V11 � V11 − 4Diag(γ∗1γ

∗
1
′D−1V11) + γ∗1γ

∗
1
′

]
, (16)

Υw1 = −(1 + κ)A∗V22We[0, γ∗1
′D−1V11D

−1]H∗, (17)

where W = V −122 in the GLS case and W = Σ−1d in the WLS case. The asymptotic variance of γ̂∗

is given by

V (γ̂∗) = Υw + Υw1 + Υ′w1 + Υw2, (18)

where Υw is the asymptotic variance of γ̂∗ when the model is correctly specified, and Υw1+Υ′w1+Υw2

is the adjustment term due to model misspecification.

(1) In the known weighting matrix W case,

Υw2 = (1 + κ)(e′WV22We)H∗D̃H∗. (19)

(2) In the GLS case, Υw1 vanishes and

Υw2 = (1 + κ)(e′V −122 e)(H̃D̃H̃ + H̃), (20)

where H̃ = (X∗′Σ−1X∗)−1.

(3) In the WLS case,

Υw2 = (1 + κ)
[
(e′Σ−1d V22Σ

−1
d e)H∗D̃H∗ + 2A∗ΦA∗′

]
, (21)

where Φ is an (N ×N) matrix with its (i, j)-th element equal to ρ2ijeiej and ρij = Corr[εit, εjt].

Proof. See Appendix.

In the known W and WLS cases, the misspecification adjustment term is not necessarily positive

semidefinite. In contrast, in the GLS case, the misspecification adjustment term is positive definite

and can be rewritten as

(1 + κ)(e′V −122 e)H
∗
22D

−1[V11 − V12V −122 V21 + V12V
−1
22 1N (1′NV

−1
22 1N )−11′NV

−1
22 V21]D

−1H∗22, (22)

3The kurtosis parameter for an elliptical distribution is defined as κ = µ4/(3σ
4) − 1, where σ2 and µ4 are the

second and fourth central moments of the elliptical distribution, respectively.
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where H∗22 is the lower right K × K submatrix of H∗. Therefore, this adjustment is positively

related to e′V −122 e and κ, and depends on the correlation between factors and returns through the

term V11 − V12V −122 V21. For factors that have very low correlation with returns, the impact of this

term and hence of the misspecification adjustment on the asymptotic variance of γ̂∗1 can be large.

3. An empirical example

We apply our methodology to the same data and asset pricing models considered by Lettau and

Ludvigson (2001).4 The results for the Fama and French (1993) three-factor model (FF3) indicate

that the Fama and MacBeth (1973), the Jagannathan and Wang (1998), and our misspecification

robust t-ratios based on Proposition 1 are all close as the factors are mimicked well by the returns

on the test assets. For example, we find that the OLS t-ratios associated with the market factor

in FF3 are, in the order, 0.77, 0.73, and 0.57. However, when we consider models with scaled

factors such as the scaled capital asset pricing model proposed by Lettau and Ludvigson (2001),

the picture changes substantially. For the scaled market factor (i.e., the market factor scaled by

the lagged consumption-wealth ratio (CAY)), the OLS t-ratios of Fama and MacBeth (1973) and

Jagannathan and Wang (1998) are 3.63 and 2.70, respectively. But, once we account for potential

model misspecification, the t-ratio goes down to 1.27. The GLS and WLS results deliver a similar

message. In summary, ignoring potential model misspecification can lead to the incorrect conclusion

that a given risk factor is priced.

4. Conclusion

We propose a simple methodology for computing misspecification robust asymptotic standard errors

of risk premia estimates in models with univariate betas. A nice feature of the proposed standard

errors is that they can be used whether the model is correctly specified or not. We show empirically

that some factors commonly used in the literature are no longer priced once model misspecification

is taken into account.

4Detailed estimation results are available from the authors upon request.

6



Appendix

Proof of Proposition 1: In the following, we provide the proof of Proposition 1 in the estimated

GLS and WLS cases as the proof in the known weighting matrix W case is very similar. The proof

relies on the fact that γ̂∗ is a smooth function of µ̂ and V̂ . Therefore, once we have the asymptotic

distribution of µ̂ and V̂ , we can use the delta method to obtain the asymptotic distribution of γ̂∗.

Let

ϕ =

[
µ

vec(V )

]
, ϕ̂ =

[
µ̂

vec(V̂ )

]
. (A1)

We first note that µ̂ and V̂ can be written as the GMM estimator that uses the moment conditions

E[rt(ϕ)] = 0(N+K)(N+K+1), where

rt(ϕ) =

[
Yt − µ

vec((Yt − µ)(Yt − µ)′ − V )

]
. (A2)

Assuming that Yt is stationary and ergodic with finite fourth moments, we have5

√
T (ϕ̂− ϕ)

A∼ N(0(N+K)(N+K+1), S0), (A3)

where

S0 =
∞∑

j=−∞
E[rt(ϕ)rt+j(ϕ)′]. (A4)

Using the delta method, the asymptotic distribution of γ̂∗ under the misspecified model is given by

√
T (γ̂∗ − γ∗) A∼ N

(
0K+1,

[
∂γ∗

∂ϕ′

]
S0

[
∂γ∗

∂ϕ′

]′)
. (A5)

In both the GLS and the WLS cases, we have

∂γ∗

∂µ′1
= 0(K+1)×K ,

∂γ∗

∂µ′2
= A∗. (A6)

In the GLS case, the derivative of γ∗ = H∗X∗′V −122 µ2 w.r.t. vec(V ) is given by

∂γ∗

∂vec(V )′
=

[
H∗[0K , D

−1]′, 0(K+1)×N
]
⊗ [0′K , e

′V −122 ]− [γ∗1
′D−1, e′V −122 ]⊗ [0(K+1)×K , A

∗]

+
(
γ∗1
′D−1 ⊗A∗β∗

)
Θ1 ([IK , 0K×N ]⊗ [IK , 0K×N ]) , (A7)

5Note that S0 is a singular matrix as V̂ is symmetric, so there are redundant elements in ϕ̂. We could have written
ϕ̂ as [µ̂′, vech(V̂ )′]′, but the results are the same under both specifications.
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where Θ1 is a K2 × K2 matrix such that vec(D) = Θ1vec(V11).
6 Using the above expression of

∂γ∗/∂ϕ′, we can simplify the asymptotic variance of γ̂∗ to

V (γ̂∗) =
∞∑

j=−∞
E[ht(ϕ)h′t+j(ϕ)], (A8)

where

ht(ϕ) =
∂γ∗

∂ϕ′
rt(ϕ) = (γ∗t − γ∗) +A∗G∗tD

−1γ∗1 +H∗z∗t ut − (γ∗t − γ∗)ut. (A9)

In the WLS case, the derivative of γ∗ = H∗X∗′Σ−1d µ2 w.r.t. vec(V ) is given by

∂γ∗

∂vec(V )′
=

[
H∗[0K , D

−1]′, 0(K+1)×N
]
⊗ [0′K , e

′Σ−1d ]− [γ∗1
′D−1, 0′N ]⊗ [0(K+1)×K , A

∗]

+
(
γ∗1
′D−1 ⊗A∗β∗

)
Θ1 ([IK , 0K×N ]⊗ [IK , 0K×N ])

− (e′Σ−1d ⊗A
∗)Θ ([−β, IN ]⊗ [−β, IN ]) , (A10)

where Θ is an N2 × N2 matrix such that vec(Σd) = Θvec(Σ). Using the above expression of

∂γ∗/∂ϕ′, we can simplify the asymptotic variance of γ̂∗ to

V (γ̂∗) =

∞∑
j=−∞

E[ht(ϕ)h′t+j(ϕ)], (A11)

where

ht(ϕ) =
∂γ∗

∂ϕ′
rt(ϕ) = (γ∗t − γ∗) +A∗G∗tD

−1γ∗1 +H∗z∗t ut −A∗ΨtΣ
−1
d e. (A12)

Note that when the model is correctly specified, we have e = 0N , so ut = 0 and the ht(ϕ)

in both the GLS and the WLS cases can be simplified to ht(ϕ) = (γ∗t − γ∗) + A∗G∗tD
−1γ∗1 . This

completes the proof.

Proof of Lemma 1: We rely on the mixed moments of multivariate elliptical distributions.7 Starting

from the known weighting matrix case, the asymptotic variance of γ̂∗ is given by

V (γ̂∗) = E[hth
′
t], (A13)

where

ht = h1t + h2t + h3t, (A14)

6Specifically, Θ1 is a matrix with its (i, i)-th element equals to one, where i = 1, 1+1(K+1), 1+2(K+1), . . . , 1+
(K − 1)(K + 1), and zero elsewhere.

7See, for example, Lemma 2 of Maruyama and Seo (2003).
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with

h1t = A∗(Rt − µ2), h2t = A∗[β∗Dt − (Rt − µ2)(ft − µ1)′]D−1γ∗1 , h3t = H∗z∗t ut. (A15)

It can be shown that the means of h1t to h3t are all equal to zero and

E[h1th
′
1t] = A∗V22A

∗′. (A16)

In addition, h1t is uncorrelated with h2t and h3t. For h2t, using that Rt − µ2 = β(ft − µ1) + εt =

β∗DV −111 (ft−µ1)+ εt and that A∗β∗ = [0K , IK ]′, we have that h2t =

[
0

qt

]
−A∗εt(ft−µ1)′D−1γ∗1 ,

where qt = [Dt −DV −111 (ft − µ1)(ft − µ1)′]D−1γ∗1 . Since εt and ft are uncorrelated and since ut is

uncorrelated with ft, we have

E[h2th
′
2t] = (1 + κ)(γ∗1

′D−1V11D
−1γ∗1)A∗V22A

∗′ + (1 + κ)×[
0 0′K

0K 2(D−1γ∗1γ
∗
1
′D−1)� V11 � V11 − 4Diag(γ∗1γ

∗
1
′D−1V11) + γ∗1γ

∗
1
′

]
, (A17)

E[h3th
′
3t] = H∗

[
0 0′K

0K (1 + κ)(e′WV22We)D−1V11D
−1

]
H∗, (A18)

E[h2th
′
3t] = −(1 + κ)A∗V22We[0, γ∗1

′D−1V11D
−1]H∗. (A19)

Collecting terms, we obtain

Υw = E[h1th
′
1t] + E[h2th

′
2t]

= [1 + (1 + κ)(γ∗1
′D−1V11D

−1γ∗1)]A∗V22A
∗′ + (1 + κ)×[

0 0′K

0K 2(D−1γ∗1γ
∗
1
′D−1)� V11 � V11 − 4Diag(γ∗1γ

∗
1
′D−1V11) + γ∗1γ

∗
1
′

]
, (A20)

Υw1 = E[h2th
′
3t] = −(1 + κ)A∗V22We[0, γ∗1

′D−1V11D
−1]H∗, (A21)

Υw2 = E[h3th
′
3t] = (1 + κ)(e′WV22We)H∗D̃H∗. (A22)

Turning to the GLS case, we have

ht = h1t + h2t + h3t + h4t, (A23)

where h4t = −(γ∗t − γ∗)ut and h1t to h3t are the same as those in the known weighting matrix case

after setting W = V −122 . It follows that the Υw and Υw1 expressions are the same as the ones in the

9



known weighting matrix case. In the GLS case, Υw1 is a zero matrix because A∗V22V
−1
22 e = A∗e =

0K+1. It can be shown that h1t and h2t are uncorrelated with h4t. In addition,

E[h3th
′
3t] = (1 + κ)(e′V −122 e)H

∗D̃H∗, (A24)

E[h3th
′
4t] = −(1 + κ)(e′V −122 e)H

∗

[
0 0′K

0K IK

]
, (A25)

E[h4th
′
4t] = (1 + κ)(e′V −122 e)H

∗. (A26)

Collecting terms and using that H∗ = H̃ +

[
0 0′K

0K DV −111 D

]
, we obtain

Υw2 = E[h3th
′
3t] + E[h3th

′
4t] + E[h4th

′
3t] + E[h4th

′
4t] = (1 + κ)(e′V −122 e)(H̃D̃H̃ + H̃). (A27)

Finally, in the WLS case, we have

ht = h1t + h2t + h3t + h4t, (A28)

where h4t = −A∗ΨtΣ
−1
d e and h1t to h3t are the same as those in the known weighting matrix case

after setting W = Σ−1d . It follows that the Υw and Υw1 expressions are the same as the ones in

the known weighting matrix case. Since h4t is uncorrelated with h1t to h3t, E[ΨtΣ
−1
d ee′Σ−1d Ψt] =

(1 + κ)(2Φ + ee′), and A∗e = 0K+1, we obtain

E[h4th
′
4t] = 2(1 + κ)A∗ΦA∗′ (A29)

and

Υw2 = E[h3th
′
3t] + E[h4th

′
4t] = (1 + κ)

[
(e′Σ−1d V22Σ

−1
d e)H∗D̃H∗ + 2A∗ΦA∗′

]
. (A30)

When the model is correctly specified, e = 0N and as a result both Υw1 and Υw2 vanish and we

have V (γ̂∗) = Υw. This completes the proof.
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