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Misspecification-Robust Inference in Linear Asset-Pricing Models

with Irrelevant Risk Factors

Abstract

This paper shows that in misspecified models with risk factors that are uncorrelated with the

test asset returns, the conventional inference methods tend to erroneously conclude, with high

probability, that these factors are priced. Our proposed model selection procedure, which is robust

to identification failure and potential model misspecification, restores the standard inference and

proves to be effective in eliminating factors that do not improve the model’s pricing ability. Applying

our methodology to several popular asset-pricing models suggests that only the market and book-

to-market factors appear to be priced, while the statistical evidence on the pricing ability of many

macroeconomic factors is rather weak. (JEL G12, C12, C52)



The main objective of this paper is to raise the awareness of applied researchers about the pitfalls

of incorrectly assuming correct specification and identification of asset-pricing models. We show

that in the presence of misspecification and lack of identification, the finite-sample distributions

of the statistics of interest can depart substantially from the standard asymptotic approximations

developed under the assumption of correctly specified and fully identified models. In general, ig-

noring possible model misspecification and identification failure tends to result in an overly positive

assessment of the pricing performance of the asset-pricing model and the individual risk factors.

To address these problems, we propose a new approach, which is robust to potential model mis-

specification and lack of identification, to selecting risk factors and determining whether they are

priced.

It is now widely documented that misspecification is an inherent feature of many asset-pricing

models, and reliable statistical inference crucially depends on its robustness to potential model

misspecification. Kan and Robotti (2008, 2009), Kan, Robotti, and Shanken (2013), and Gospodi-

nov, Kan, and Robotti (2013) show that by ignoring model misspecification, one can mistakenly

conclude that a risk factor is priced when, in fact, it does not contribute to the pricing ability

of the model. While these papers provide a general statistical framework for inference, evalua-

tion and comparison of potentially misspecified asset-pricing models (see also Ludvigson 2013), the

misspecification-robust inference is developed under the assumption that the covariance matrix of

asset returns and risk factors is of full column rank—that is, the parameters of interest in these

models are identified. Importantly, the issues with statistical inference under potential model mis-

specification become particularly acute when the pricing model includes factors that exhibit very

low correlations with the returns on the test assets, which may jeopardize the identifiability of the

model parameters.

In this paper, we further generalize the setup in the articles mentioned above to allow for

possible identification failure in a stochastic discount factor (SDF) framework. We show that in

the extreme case of model misspecification with one or more “useless” factors (i.e., factors that are

independent of the asset returns), the identification condition fails and the validity of the statistical

inference is compromised. We focus on linear SDFs mainly because the useless factor problem is

well defined for this class of models. In addition, we choose to present our results for the distance

metric introduced by Hansen and Jagannathan (HJ, 1997). This measure has gained increased
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popularity in the empirical asset-pricing literature and has been used both as a model diagnostic

and as a tool for model selection by many researchers.

The impact of the violation of this identification condition on the asymptotic properties of

parameter restriction and specification tests in linear asset-pricing models estimated via generalized

method of moments (GMM) was first studied by Kan and Zhang (1999a).1 Kan and Zhang (1999a)

analyze the behavior of the standard Wald test (which uses a variance matrix derived under the

assumption of correct model specification) for potentially misspecified models. They show that in

this setup, using the standard Wald tests would lead one to conclude too often that the useless

factor is priced. Furthermore, the specification tests have low power in rejecting a misspecified

model. An immediate implication of this result is that many poor models and risk factors may

have erroneously been deemed empirically successful, as our empirical applications illustrate.

We extend the analysis of Kan and Zhang (1999a) along several dimensions. First, unlike Kan

and Zhang (1999a), we study the asymptotic and finite-sample properties of misspecification-robust

parameter tests and investigate whether the model misspecification adjustment can restore the va-

lidity of the standard inference in the presence of useless factors. In particular, we demonstrate

that the misspecification-robust Wald test for the significance of the SDF parameter on the useless

factor is asymptotically distributed as a chi-squared random variable with one degree of freedom.

This result is new to the literature and is somewhat surprising given the identification failure. It

stands in sharp contrast with the Wald test constructed under the assumption of correct specifica-

tion, which is shown by Kan and Zhang (1999a) to be asymptotically chi-squared distributed with

degrees of freedom given by the difference between the number of assets and the number of factors

included in the model. As a consequence, using standard inference will result in a rather extreme

overrejection (with limiting rejection probability equal to one) of the null hypothesis that the risk

premium on the useless factor is equal to zero.2

Second, we add to the analysis in Kan and Zhang (1999a) by also studying the limiting behavior

of the estimates and Wald tests associated with the useful factors. We show that in misspecified

1Burnside (2010, 2011) discusses analogous identification failures for alternative normalizations of the SDF. Kan
and Zhang (1999b) study the consequences of lack of identification for two-pass cross-sectional regressions, while
Kleibergen (2009, 2010) and Khalaf and Schaller (2011) propose test procedures that exhibit robustness to the degree
of correlation between returns and factors in a two-pass cross-sectional regression framework.

2Our use of the term “overrejection” is somewhat nonstandard since the true risk premium on a useless factor is
not identifiable. Nevertheless, since a useless factor does not improve the pricing performance of the model, testing
the null of a zero risk premium is of most practical importance.
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models, the estimator of the coefficient associated with the useless factor diverges with the sample

size, while the parameters on the useful factors are not consistently estimable. The limiting distri-

butions of the t-statistics corresponding to the useful factors are found to be non-standard and less

dispersed when a useless factor is present. Regardless of whether the model is correctly specified

or misspecified, the misspecification-robust standard errors ensure asymptotically valid inference

and allow us to identify factors that do not contribute to the pricing of the test assets. To conserve

space, we relegate some of the theoretical results on the explicit form of the limiting distributions

of the estimators, the t-tests under correct model specification and misspecification, as well as the

HJ-distance test to an online appendix available on the authors’ websites.

Third, we provide a constructive solution to the useless factor problem that restores the standard

inference for the t-tests on the parameters associated with the useful factors and for the test of

correct model specification. In particular, we propose an easy-to-implement sequential procedure

that allows us to eliminate the useless factors from the model and show its asymptotic validity. More

specifically, our model selection procedure is designed to remove factors that do not improve the

model’s pricing ability—that is, useless factors as well as useful factors with zero SDF parameters.

In this paper, we refer to the useless and unpriced useful factors that do not reduce the HJ-distance

as irrelevant factors. Monte Carlo simulation results suggest that our sequential model selection

procedure is effective in retaining useful factors in the model and eliminating irrelevant factors.

As a result, our proposed method is robust to both model misspecification and presence of useless

factors in the analysis.3

Several remarks regarding our theoretical results are in order. We should stress that, similarly

to White (1982) in a maximum likelihood framework, our misspecification-robust approach to in-

ference allows for the model to be correctly specified and is asymptotically valid (albeit possibly

slightly conservative) even when the model holds. This is important because a pre-test for cor-

rect model specification lacks power in distinguishing between correctly specified and misspecified

models when a useless factor is included in the model. This leaves the misspecification-robust

approach as the only feasible way to conduct inference, especially if a reduced rank test suggests

an identification failure of the model. Another important issue that requires some clarification

3While we study explicitly only the GMM estimator based on the HJ-distance, our results continue to hold for
the class of optimal GMM estimators. Some simulation results for the optimal GMM case are provided in Section 3
of the online appendix.
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concerns our definition of a useless factor. While the paper studies the knife-edge case of a factor

that is independent of the returns on the test assets, in practice all factors exhibit some nonzero

correlation in finite samples and are probably better characterized as near-useless. Fortunately, our

theoretical results conveniently encompass the possibility of weakly correlated factors without the

need of local asymptotics, which is often used in the instrumental variable and unit root literature.

It should be stressed that the presence of a useless factor represents the least favorable scenario for

our proposed testing and model selection procedure based on the N(0, 1) critical values. In other

words, our robust method is most conservative in the knife-edge case of a useless factor in the sense

that it tends to underreject the null for the remaining useful factors. If the useless factor is instead

replaced by a factor that exhibits a nonzero correlation with the returns, these underrejections

will be smaller and the finite-sample properties of our method improve as we move away from the

benchmark useless factor parameterization. We further discuss this issue in the simulation section

of the paper.

Empirically, our interest is in robust estimation of several prominent asset-pricing models with

macroeconomic and financial factors, also studied in Kan, Robotti, and Shanken (2013), using the

HJ-distance measure. In addition to the basic CAPM and consumption CAPM (CCAPM), the

theory-based models considered in our main empirical analysis are the CCAPM conditioned on

the consumption-wealth ratio (CC-CAY) of Lettau and Ludvigson (2001), a time-varying version

of the CAPM with human capital (C-LAB) of Jagannathan and Wang (1996), where the state

variable driving the time variation in the SDF coefficients is the consumption-wealth ratio, the

durable consumption model (D-CCAPM) of Yogo (2006), and the five-factor implementation of

the intertemporal CAPM (ICAPM) used by Petkova (2006). We also study the well-known “three-

factor model” of Fama and French (FF3, 1993). Although this model was primarily motivated by

empirical observation, its size and book-to-market factors are sometimes viewed as proxies for more

fundamental economic factors.

Our main empirical analysis uses the one-month T-bill, the monthly gross returns on the 25

Fama-French size and book-to-market portfolios, and the monthly gross returns on the 17 Fama-

French industry portfolios from February 1959 until December 2012. The industry portfolios are

included to provide a greater challenge to the various asset-pricing models, as recommended by

Lewellen, Nagel, and Shanken (2010). The HJ-distance test rejects the hypothesis of correct spec-
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ification for all models. In addition, the test for reduced rank indicates that only CAPM and FF3,

two models with traded factors only, are properly identified. This clearly points to the need for

statistical methods that are robust to model misspecification and weak identification. We show em-

pirically that when misspecification-robust standard errors are employed, several macroeconomic

factors – notably, the durable and nondurable consumption factors, the consumption-wealth factor

of Lettau and Ludvigson (2001) and its interaction with nondurable consumption, labor income

and the market return, the term and default spreads in ICAPM – do not appear to be priced at

the 5% significance level. The only factors that survive our sequential procedure, which eliminates

useless factors and the factors with zero risk premia, are the market factor in CAPM and FF3 and

the book-to-market factor in FF3.

It is important to stress that the useless factor problem is not an isolated problem limited to the

data and asset-pricing models considered in our main empirical analysis. We show that qualitatively

similar pricing conclusions can be reached using different test assets and SDF specifications. Overall,

our results suggest that the statistical evidence on the pricing ability of many macroeconomic and

financial factors is weak, and their usefulness in explaining the cross-section of asset returns should

be interpreted with caution.

The rest of the paper is organized as follows. Section 1 reviews some of the main results for

asymptotically valid inference under potential model misspecification. In Section 2, we introduce

a useless factor in the analysis and present limiting results for the parameters of interest and their

t-statistics under both correct model specification and model misspecification. In Section 3, we

discuss some practical implications of our theoretical analysis and suggest an easy-to-implement

and asymptotically valid model selection procedure. Section 4 reports results from a Monte Carlo

simulation experiment. In Section 5, we investigate the performance of some popular asset-pricing

models with traded and nontraded factors. Section 6 concludes.

1. Asymptotic Inference with Useful Factors

This section introduces the notation and reviews some main results that will be used in the subse-

quent analysis. Let

yt(γ1) = f̃ ′tγ1 (1)
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be a candidate linear SDF, where f̃t = [1, f ′t ]
′ is a K-vector with ft being a (K − 1)-vector of risk

factors, and γ1 is a K-vector of SDF parameters with generic element γ1i for i = 1, . . . ,K. The

specification in Equation (1) is general enough to allow f̃t to include cross-product terms (using

lagged state variables as scaling factors); see Cochrane (1996).

Also, let xt be the random payoffs of N assets at time t and q 6= 0N be a vector of their

original costs. This setup covers the case of gross returns on the test assets. For the case of

excess returns (q = 0N ), the mean of the SDF cannot be identified and researchers have to choose

some normalization of the SDF (see, for example, Kan and Robotti 2008 and Burnside 2010). The

theoretical and simulation results for the case of excess returns are very similar to those of the gross

returns case presented below and are provided in Section 2 of the online appendix. We assume

throughout that the second moment matrix of xt, U = E[xtx
′
t], is nonsingular so that none of the

test assets are redundant.

Define the model pricing errors as

e(γ1) = E[xtf̃
′
tγ1 − q] = Bγ1 − q, (2)

where B = E[xtf̃
′
t ]. If there exists no value of γ1 for which e(γ1) = 0N , the model is misspecified.

This corresponds to the case when q is not in the span of the column space of B. The pseudo-true

parameter vector γ∗1 is defined as the solution to the quadratic minimization problem

γ∗1 = arg min
γ1∈Γ1

e(γ1)′We(γ1) (3)

for some symmetric and positive-definite weighting matrixW , where Γ1 denotes the parameter space

(see also White 1982 for a definition of a pseudo-true value in a maximum likelihood framework).

The HJ-distance is obtained when W = U−1 and is given by

δ =
√
e(γ∗1)′U−1e(γ∗1). (4)

Given the computational simplicity and the nice economic and maximum pricing error interpreta-

tion of the HJ-distance, this measure of model misspecification is often used in applied work for

estimation and evaluation of asset-pricing models. For this reason, we consider explicitly only the

case of the HJ-distance, although results for the optimal GMM estimator are also available from

the authors upon request.
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The estimator γ̃1 of γ∗1 is obtained by minimizing the sample analog of Equation (3):

γ̃1 = arg min
γ1∈Γ1

ê(γ1)′Û−1ê(γ1), (5)

where Û = 1
T

∑T
t=1 xtx

′
t, ê(γ1) = B̂γ1 − q and

B̂ =
1

T

T∑
t=1

xtf̃
′
t . (6)

Then, the solution to the above minimization problem is given by

γ̃1 = (B̂′Û−1B̂)−1B̂′Û−1q. (7)

Let et(γ
∗
1) = xtf̃

′
tγ
∗
1 − q and S = E[et(γ

∗
1)et(γ

∗
1)′]. Assuming that [x′t, f

′
t ]
′ are jointly stationary

and ergodic processes with finite fourth moments, et(γ
∗
1) − e(γ∗1) forms a martingale difference

sequence and B is of full column rank, Kan and Robotti (2009) show that

√
T (γ̃1 − γ∗1)

d→ N(0K ,Σγ̃1), (8)

where Σγ̃1 = E[hth
′
t],

ht = (B′U−1B)−1B′U−1et(γ
∗
1) + (B′U−1B)−1(f̃t −B′U−1xt)ut (9)

and

ut = e(γ∗1)′U−1xt. (10)

Note that if the model is correctly specified (i.e., ut = 0), the expression for ht specializes to

h0
t = (B′U−1B)−1B′U−1et(γ

∗
1) (11)

and the asymptotic covariance matrix of
√
T (γ̃1 − γ∗1) is simplified to

Σ0
γ̃1

= E[h0
th

0′
t ] = (B′U−1B)−1B′U−1SU−1B(B′U−1B)−1. (12)

Suppose now that the interest lies in testing hypotheses on the individual parameters of the form

H0 : γ1i = γ∗1i (for i = 1, . . . ,K) and define a selector vector ιi with one for its i-th element and zero

otherwise (the length of ιi is implied by the matrix that it is multiplied to). Then, the t-statistic
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for γ̃1i with standard error computed under potential model misspecification is asymptotically

distributed as

tm(γ̃1i) =
γ̃1i − γ∗1i√
ι′iΣ̂γ̃1ιi

d→ N(0, 1), (13)

where Σ̂γ̃1 is a consistent estimator of Σγ̃1 . Note that this result is valid irrespective of whether the

model is misspecified or correctly specified.

In applied work, it is a common practice to test parameter restrictions using t-tests based on

standard errors computed under the assumption of correct model specification. For this reason, it

is instructive to consider the large sample behavior of the t-test

tc(γ̃1i) =
γ̃1i − γ∗1i√
ι′iΣ̂

0
γ̃1
ιi

, (14)

where Σ̂0
γ̃1

is a consistent estimator of Σ0
γ̃1
. If the model is indeed correctly specified, the t-test

tc(γ̃1i) is asymptotically distributed as a standard normal random variable

tc(γ̃1i)
d→ N(0, 1). (15)

However, using the result in Equations (8)–(9), we have that under misspecified models

tc(γ̃1i)
d→ N

(
0,
ι′iΣγ̃1ιi

ι′iΣ
0
γ̃1
ιi

)
. (16)

Furthermore, under the assumption that xt and ft are multivariate elliptically distributed, it can be

shown (Kan and Robotti 2009) that (ι′iΣγ̃1ιi)/(ι
′
iΣ

0
γ̃1
ιi) > 1, which implies that standard inference

based on critical values from the N(0, 1) distribution would tend to overreject the null hypothesis

H0 : γ1i = γ∗1i. This also suggests that the testing procedure based on tc would reject too often the

null hypothesis that the SDF parameter is equal to zero.

We conclude this section with several observations that emerge from a closer inspection of

the function ht in Equation (9), which is used for computing the covariance matrix Σγ̂1 under

misspecification. It proves useful to rewrite ht as

ht = h0
t + (B′U−1B)−1(f̃t −B′U−1xt)ut. (17)

The adjustment term (B′U−1B)−1(f̃t − B′U−1xt)ut contains three components: (i) a misspecifi-

cation component ut, (ii) a spanning component f̃t − B′U−1xt that measures the degree to which
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the factors are mimicked by the returns on the test assets, and (iii) a component (B′U−1B)−1 that

measures the usefulness of factors. The adjustment term is zero if the model is correctly specified

(ut = 0) or if the factors are fully mimicked by the returns (f̃t = B′U−1xt). If the factors are nearly

uncorrelated with the returns (i.e., B is close to zero), the component (B′U−1B)−1 can be large

and the adjustment term tends to dominate the behavior of ht. Intuitively, near-uncorrelatedness

between the factors and the returns magnifies the consequences of small model specification errors

and imperfectly mimicked factors.

2. Asymptotic Inference in the Presence of a Useless Factor

As argued in the introduction, many popular asset-pricing models include macroeconomic risk

factors that often exhibit very low correlations with the returns on the test assets. For this reason,

we now consider a candidate SDF that is given by

yt = f̃ ′tγ1 + gtγ2, (18)

where gt is assumed to be a useless factor such that it is independent of xt and ft for all time

periods. Note that the independence between gt and xt implies d = E[xtgt] = 0N .

Now let D = [B, d], γ = [γ′1, γ2]′, e(γ) = Dγ − q, d̂ = 1
T

∑T
t=1 xtgt, and D̂ = [B̂, d̂]. Note that

since d = 0N , the vector of pricing errors

e(γ) = Bγ1 + dγ2 − q = Bγ1 − q (19)

is independent of the choice of γ2. For the pseudo-true values of the SDF parameters, we can set γ∗1

as in Equation (3), but the parameter associated with the useless factor (γ∗2) cannot be identified.

In the following, we set γ∗2 = 0, which is a natural choice because we show that γ̂2 is symmetrically

distributed around zero (see Section 1 of the online appendix for details). While the pseudo-true

value of γ∗2 is not identifiable, the sample estimates of the SDF parameters are always identified

and are given by

γ̂ = (D̂′Û−1D̂)−1D̂′Û−1q. (20)

We make the following assumptions.

Assumption 1. Assume that (i) N > K + 1; (ii) [x′t, f
′
t , gt]

′ are jointly stationary and ergodic
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processes with finite fourth moments; (iii) et(γ
∗
1) − e(γ∗1) forms a martingale difference sequence;

and (iv) the matrices B (N ×K) and D (N×(K + 1)) have a column rank K.

Assumption 2. Let εt = xt − B(E[f̃tf̃
′
t ])
−1f̃t and assume that E[εtε

′
t|f̃t] = Σ (conditional ho-

moscedasticity).

Assumption 1 imposes relatively mild restrictions on the data. The martingale difference se-

quence assumption allows for time-varying second- and higher-order moments of the pricing errors.

This martingale difference sequence structure can be further relaxed to allow for serially correlated

et(γ
∗
1)− e(γ∗1) at the cost of more tedious notation. Part (iv) of Assumption 1 accommodates our

setup in which gt is a useless factor. Assumption 2 is made for convenience in order to simplify

some limiting results and can also be relaxed.

Our first results are concerned with the limiting behavior of γ̂1 and γ̂2 under correctly specified

and misspecified models. Before we present these results, note that D is not of full column rank

due to the presence of a useless factor. Therefore, the identification of the parameter vector γ∗

fails and the sufficient conditions for the consistency and the asymptotic normality of the GMM

estimator are not satisfied.

Proposition 1. Assume that the conditions in Assumption 1 are satisfied.

(a) If δ = 0, that is, the model is correctly specified, we have γ̂1−γ∗1 = Op(T
−1/2) and γ̂2 = Op(1).

(b) If δ > 0, that is, the model is misspecified, we have γ̂1 − γ∗1 = Op(1) and γ̂2 = Op(T
1/2).

The explicit forms of the limiting distributions of the estimators and the proof of Proposition 1

are available in Section 1 of the online appendix. All of the asymptotic distributions are non-

normal, and only the rate of convergence for γ̂1 under correctly specified models is standard. The

estimator γ̂2 for the parameter on the useless factor converges to a bounded random variable and,

hence, it is inconsistent.4 The presence of model misspecification further exacerbates the inference

problems, with the estimator γ̂1 becoming inconsistent and the estimator γ̂2 diverging at rate T
1
2 .

4Convergence to a random variable arises in other contexts, such as spurious regressions with nonstationary data
and instrumental variable models with weak instruments.
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Despite the highly non-standard limits of the SDF parameter estimates, it is possible that their

t-statistics are well behaved. To investigate this, we define two types of t-statistics: (i) tc(γ̂1i), for

i = 1, . . . ,K, and tc(γ̂2) that use standard errors obtained under the assumption that the model

is correctly specified, and (ii) tm(γ̂1i), for i = 1, . . . ,K, and tm(γ̂2) that use standard errors under

potentially misspecified models. The two types of t-statistics are based on the estimated covariance

matrices Σ̂0
γ̂ = 1

T

∑T
t=1 ĥ

0
t ĥ

0′
t and Σ̂γ̂ = 1

T

∑T
t=1 ĥtĥ

′
t, where

ĥ0
t = (D̂′Û−1D̂)−1D̂′Û−1êt, (21)

ĥt = ĥ0
t + (D̂′Û−1D̂)−1([f̃ ′t , gt]

′ − D̂′Û−1xt)ê
′Û−1xt, (22)

êt = xt(f̃
′
t γ̂1 +gtγ̂2)−q and ê = 1

T

∑T
t=1 êt. We explicitly consider the behavior of tc(γ̂1i) and tc(γ̂2)

because it is a common practice for researchers to assume correct specification when computing the

t-statistics.

In particular, the t-statistics of H0 : γ1i = γ∗1i and H0 : γ2 = 0 under the assumption of a

correctly specified model have the form

tc(γ̂1i) =

√
T (γ̂1i − γ∗1i)√
ι′iΣ̂

0
γ̂ιi

(23)

and

tc(γ̂2) =

√
T γ̂2√

ι′K+1Σ̂0
γ̂ιK+1

. (24)

Kan and Zhang (1999a) studied the limiting behavior of tc(γ̂2), when no useful factor is present

in the model, and showed that under H0 : γ2 = 0, tc(γ̂2)2 is stochastically dominated by χ2
1 for

correctly specified models and tc(γ̂2)2 d→ χ2
N−K for misspecified models. As stated below, these

results continue to hold in the presence of useful factors. We further extend the results in Kan

and Zhang (1999a) by deriving the explicit form of the limiting distributions of tc(γ̂2) for correctly

specified models and of tc(γ̂1i) for correctly specified and misspecified models (see Section 1 of the

online appendix), which allows us to compute the limiting rejection probabilities of these tests when

N(0, 1) critical values are used for inference.

The t-statistics of H0 : γ1i = γ∗1i and H0 : γ2 = 0 under a potentially misspecified model are

given by

tm(γ̂1i) =

√
T (γ̂1i − γ∗1i)√
ι′iΣ̂γ̂ιi

(25)
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and

tm(γ̂2) =

√
T γ̂2√

ι′K+1Σ̂γ̂ιK+1

. (26)

One of the main contributions of this paper is to establish that the use of misspecification robust

standard errors in constructing the t-tests restores the standard inference on γ2 in misspecified

models. In the other three cases (inference on γ2 in correctly specified models or on γ1 in correctly

specified and misspecified models), the misspecification-robust t-tests are still asymptotically valid,

but they tend to be conservative. The results for tm(γ̂1i) and tm(γ̂2) are presented in the following

proposition. For completeness, we also include the results for tc(γ̂1i) and tc(γ̂2) under correctly

specified and misspecified models. For presentational convenience, Proposition 2 states the limiting

results for the squared t-tests (Wald tests).

Proposition 2.

(a) Suppose that the conditions in Assumptions 1 and 2 hold. If δ = 0, that is, the model is

correctly specified, then tc(γ̂1i)
2, tc(γ̂2)2, tm(γ̂1i)

2, and tm(γ̂2)2 are stochastically dominated

by χ2
1.

(b) Suppose that the conditions in Assumption 1 hold. If δ > 0, that is, the model is misspecified,

then tc(γ̂1i)
2 and tm(γ̂1i)

2 are stochastically dominated by χ2
1, and

tc(γ̂2)2 d→ χ2
N−K , (27)

tm(γ̂2)2 d→ χ2
1. (28)

Explicit expressions for the limiting distributions of the four tests statistics in part (a) and

tc(γ̂1i) and tc(γ̂2) in part (b) as well as the proof of Proposition 2 are provided in Section 1 of the

online appendix. Proposition 2 illustrates the implications of using standard inference procedures

(critical values from N(0, 1)) for testing the individual statistical significance of the SDF parameters

γ in the presence of a useless factor. Apart from tm(γ̂2) in misspecified models, all the other

statistics are not asymptotically distributed as standard normal random variables. For example,

in misspecified models, the test statistic tc(γ̂2) will overreject the null hypothesis when N(0, 1) is

used as a reference distribution, and this overrejection increases with the number of test assets N

(see Equation (27)). As a result, researchers will conclude erroneously (with high probability) that
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the factor gt is important and should be included in the model. In order to visualize the source of

the overrejection problem, Figure 1 plots the probability density function of tc(γ̂2) for N −K = 7

when the model is misspecified (see Theorem 2 in the online appendix).

Figure 1 about here

Given the bimodal shape and a variance of 7 for the limiting distribution of tc(γ̂2), using the

critical values from the standard normal distribution would obviously result in highly misleading

inference. Importantly, part (b) of Proposition 2 shows that the t-statistic under potentially mis-

specified models, tm(γ̂2), retains its standard normal asymptotic distribution even when the factor

is useless, and Figure 1 provides a graphical illustration of this result. The reduction in the degrees

of freedom from N−K for the asymptotic chi-squared distribution of tc(γ̂2)2 to 1 for the asymptotic

chi-squared distribution of tm(γ̂2)2 is striking.

Proposition 2 also suggests that the presence of a useless factor renders the inference on all

the remaining parameters non-standard. Testing the statistical significance of the parameters on

the useful factors, in both correctly specified and misspecified models, against the standard normal

critical values would lead to underrejection of the null hypothesis and conservative inference.

The main conclusion that emerges from these results is that one should use misspecification-

robust t-statistics when testing the statistical significance of individual SDF parameters. This

will ensure that the statistical decision from this test is robust to possible model misspecification

and useless factors. If the model happens to be correctly specified, this will result in conservative

inference, but the useless factor will be removed with probability greater than 1−α, where α is the

size of the test. If a useless factor is not present in the model, the standard normal asymptotics for

the misspecification-robust test is restored as discussed in Section 1.5

3. Model Selection Procedure

It is worthwhile stressing an important aspect of the approach adopted in this paper. Economic

theory often dictates which risk factors should be included in the model. In a regression framework,

5Theorem 3 in the online appendix characterizes the limiting behavior of the sample squared HJ-distance in the
presence of a useless factor and reveals that the HJ-distance test of correct model specification is inconsistent under
the alternative.
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the inclusion of economic factors that are irrelevant does not affect the statistical inference in the

model and only results in slightly inflated standard errors. In contrast, in the SDF setup studied

in this paper, the inclusion of a useless factor has detrimental effects on the statistical inference on

the remaining SDF parameters, their associated t-statistics and the model specification test. Our

theoretical analysis reveals that the presence of a useless factor renders the remaining parameter

estimates inconsistent and causes their t-statistics under both correct model specification and model

misspecification to underreject the null. Only after the useless factor is identified and removed

using the misspecification-robust t-test are the validity of the inference and the consistency of the

parameters restored.

These considerations suggest that a sequential procedure based on the misspecification-robust

t-statistics is necessary. One possibility is to select a subset of risk factors that survive a sequential

testing procedure of individual significance of the SDF parameters γ based on p-values that are

obtained from the quantiles of the N(0, 1) distribution and compared with a common significance

level α. Specifically, in the first stage, the full model is estimated and the factor with the smallest (in

absolute value) t-statistic, for which the null of zero risk premium is not rejected at the prespecified

nominal level, is eliminated from the model. The model is then reestimated with only the factors

that survive the first stage. This procedure is repeated until either all factors are eliminated or the

SDF parameter estimates on the remaining factors are found to be statistically significant at the

desired nominal level when using the misspecification-robust t-test.

However, this model selection procedure does not account for the multitude of tests and could

result in a substantially inflated rate of false discoveries (i.e., falsely identifying risk factors as

being priced) depending on the number of tested hypotheses, the number of irrelevant factors and

the dependence structure of the individual tests. The common solution to this multiple testing

problem is to devise adjustments in the testing procedure that control the probability of one or

more false discoveries, which is referred to in the statistical literature as familywise error rate. For

a review of the large literature on controlling the familywise error rate in multiple testing problems

and model selection, see Romano, Shaikh, and Wolf (2008), and for some recent applications of

these techniques in empirical finance, see Barras, Scaillet, and Wermers (2010) and Bajgrowicz and

Scaillet (2012). In this paper, we adopt the Bonferroni method for controlling the number of false

discoveries and ensuring the asymptotic validity of our model selection procedure. While several
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refinements of the Bonferroni procedure have been proposed in the literature (see Benjamini and

Hochberg 1995; Goeman and Solari 2010; Romano, Shaikh, and Wolf 2008; among others), the

Bonferroni method has some advantages that are appealing to applied researchers.

First, the Bonferroni modification to the multiple testing problem is rather straightforward.

Let K be the total number of SDF parameters being tested and let the p-value for testing the

hypothesis H0 : γi = 0 be denoted by pT,i. Recall that all of the hypotheses H0 : γi = 0 for

i = 1, ...,K are tested by comparing the misspecification-robust t-statistic against the critical value

of the N(0, 1) distribution for a significance level α. Then, the Bonferroni method rejects the null

hypothesis if pT,i ≤ α/K instead of pT,i ≤ α as in the standard approach. Second, while some of

the proposed methods require independence or some knowledge of the dependence structure of the

individual test statistics, the Bonferroni method is robust to any form of dependence by assuming

a worst-case dependence structure (Romano, Shaikh, and Wolf 2008). Naturally, the cost of this

robustness is conservative inference. However, given that the number of risk factors in asset-pricing

models rarely exceeds five, we show in our simulations that the Bonferroni method is only mildly

conservative (i.e., it tends to select the relevant factors with high probability) while it fully controls

the familywise error rate.

The Bonferroni method is asymptotically valid if (Romano, Shaikh, and Wolf 2008)

lim supT→∞P{pT,i ≤ u} ≤ u,

for any uniformly distributed random variable u on the interval (0, 1). The asymptotic validity

of our proposed model selection procedure then follows from combining this asymptotic control of

the Bonferroni method with the result in Proposition 2 that states that the limiting distribution of

tm(γ̂i)
2 is stochastically dominated by the χ2

1 distribution.

Instead of eliminating factors with insignificant t-ratios one at a time, one may be tempted

to drop all the factors with insignificant t-ratios in each stage. Unlike our proposed method, this

alternative procedure can lead to the undesirable outcome of eliminating multiple useful factors

when a linear combination of them is useless.6 In this situation, only one of these useful factors

should be dropped to restore the full rank condition for the remaining factors. The effectiveness

of our model selection procedure in eliminating useless factors (and factors with zero risk premia)

6See Section 1 of the online appendix for a simulation experiment in which no single factor is useless but a linear
combination of them is.
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and retaining useful factors in the model is analyzed in the simulation section below.

4. Monte Carlo Simulations

In this section, we undertake a Monte Carlo experiment to assess the small-sample properties of

the various test statistics in models with useful and useless factors. In our simulations, we also

evaluate the effectiveness of the sequential model selection procedure described above in retaining

useful factors and eliminating useless factors and factors with zero risk premia.

4.1 Size of tests of parameter restrictions

For the analysis of the SDF parameter restriction tests, we consider three linear models: (i) a model

with a constant term and a useful factor, (ii) a model with a constant term and a useless factor,

and (iii) a model with a constant term, a useful factor, and a useless factor. For each model, we

consider two separate cases: the case in which the model is correctly specified and the case in which

the model is misspecified. The returns on the test assets, denoted by Rt, and the useful factor ft

are drawn from a multivariate normal distribution with mean µ and covariance matrix V , where

µ = E

[
ft

Rt

]
=

[
µ1

µ2

]
(29)

and

V = Var

[
ft

Rt

]
=

[
V11 V12

V21 V22

]
. (30)

Let µ̂ and V̂ denote the sample estimates obtained from actual data. In all simulation designs, the

covariance matrix of the simulated test asset returns V22 is set equal to the estimated covariance

matrix V̂22 from the 1959:2–2012:12 sample of monthly gross returns on the one-month T-bill,

the 25 Fama-French size and book-to-market ranked portfolios, and the 17 Fama-French industry

portfolios (from Kenneth French’s website). Note that in this case, N = 43 and q = 1N . For

the simulated useful factor, we calibrate its mean µ1 and variance V11 to the sample mean µ̂1 and

sample variance V̂11 of the value-weighted market excess return. The covariances between the useful

factor and the returns, V12, are chosen based on the covariances estimated from the data, V̂12.

The pseudo-true values of the SDF parameters on the constant and the useful factor, γ∗ =
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[γ∗0, γ
∗
1]′, are chosen as

γ∗ = (X ′V̂ −1
22 X)−1X ′V̂ −1

22 1N ,

where X = [µ̂2, V̂21 + µ̂2µ̂1]. Since the pricing errors of the model are given by

e(γ∗) = E[Rt(γ
∗
0 + ftγ

∗
1)]− 1N = µ2(γ∗0 + µ1γ

∗
1) + V21γ

∗
1 − 1N , (31)

we set µ2 = (1N −V21γ
∗
1)/(γ∗0 +µ1γ

∗
1) for the pricing errors to be zero and the model to be correctly

specified. For misspecified models, the means of the simulated returns, µ2, are set equal to the

sample means of the actual returns µ̂2. Finally, the useless factor is generated as a standard normal

random variable independent of the returns and the useful factor. Using this approach to generating

data allows the models in our simulation experiment to exhibit a similar degree of misspecification

as some benchmark asset-pricing models such as the CAPM. More specifically, the HJ-distance for

models (i) and (iii) is 0.523, while the HJ-distance for model (ii) is 0.535.

The time-series sample sizes that we consider in the simulations are T = 200, 600, and 1000.

These choices of T cover the range of sample sizes that are typically encountered in empirical work

with quarterly (T = 200) and monthly (T = 600) data. The sample size T = 1000 is used to assess

the quality of our asymptotic approximations. We also present the limiting rejection probabilities

based on our asymptotic results in Theorem 2 in the online appendix.7

In Tables 1 to 3, we report the probabilities of rejection (based on 100,000 simulations) of

H0 : γi = γ∗i for models (i), (ii), and (iii), respectively, where the γ∗i ’s for the constant and

the useful factor are the chosen pseudo SDF parameters, and the γ∗i for the useless factor is set

equal to zero. We present results by comparing two different t-statistics with the standard normal

distribution, the one computed under the assumption that the model is correctly specified, tc(γ̂i),

and the one computed under the assumption that the model is potentially misspecified, tm(γ̂i). For

each table, Panel A reports the probabilities of rejection when the model is correctly specified, and

Panel B reports the probabilities of rejection when the model is misspecified.

Table 1 about here

The results in Table 1, Panel A, show that for models that are correctly specified and contain

only useful factors, the standard asymptotics provides an accurate approximation of the finite-

7The limiting rejection probabilities of tc in Table 1, Panel B, are computed based on Equation (16) assuming
that the factor and the returns are multivariate normally distributed.
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sample behavior of the t-tests. Since the useful factor, calibrated to the properties of the value-

weighted market excess return, is closely replicated by the returns on the test assets, the differences

between the t-tests under correctly specified models (tc) and the t-tests under potentially misspec-

ified models (tm) exhibit no differences even when the model fails to hold exactly (see Panel B).

Tables 2 and 3 present the empirical size of the t-tests in the presence of a useless factor. The

simulation results for the t-tests on the parameters of the useful factor (and the constant term)

confirm our theoretical findings that the null hypothesis is underrejected when N(0, 1) is used as a

reference distribution. This is the case for correctly specified and misspecified models. For example,

the underrejections are particularly pronounced for the tm test on the constant term in Tables 2

and 3.

Tables 2 and 3 about here

Similarly, the inference on the useless factor proves to be conservative when the model is cor-

rectly specified. However, when the model is misspecified, there are substantial differences be-

tween tc and tm for the useless factor. Under this scenario, we argued in Section 2 that the

t-statistics under correct model specification have a non-normal asymptotic distribution, while the

misspecification-robust t-statistic for the parameter on the useless factor has a N(0, 1) asymptotic

distribution. Since the tc test on the useless factor is asymptotically distributed (up to a sign) as√
χ2
N−K , it tends to overreject severely when the critical values from N(0, 1) are used, and the

degree of overrejection increases with the sample size. In contrast, the tm test on the useless factor

has good size properties, although for small sample sizes, it slightly underrejects. As the sample

size increases, the empirical rejection rates approach the limiting rejection probabilities (as shown

in the rows for T = ∞) computed from the corresponding asymptotic distributions in Theorem 2

in the online appendix.

Some comments about the underrejections reported in Tables 2 and 3 for useful (in correctly

specified and misspecified models) and useless (for correctly specified models) factors are in order.

Starting with the useless factor, it turns out that the statistical underrejection of the null hypothesis

of a zero SDF coefficient is actually economically beneficial for our selection procedure since this

useless factor will be selected even less often than the nominal size of the test. For the useful factor,

the underrejections may raise more concerns. However, note that the t-tests for the constant and
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the useful factors in Tables 1 to 3 are testing the null hypothesis H0 : γi = γ∗i . In practice, the

researchers are interested in testing the null hypothesis of whether the factor is priced or not—that

is, H0 : γi = 0. While the underrejections in Tables 2 and 3 will affect the local power of the test,

it is still quite possible that these tests reject with reasonably high probability the null H0 : γi = 0

for useful factors with a nonzero risk premium parameter. This is illustrated in the model selection

procedure below, which selects factors based on whether their parameter estimates are significantly

different from zero or not. The results show that the useful factors with nonzero risk premium

parameters tend to be selected with sufficiently high probability (97–99% for T = 1000).

As mentioned in the introduction, all factors are expected to exhibit a nonzero correlation with

the returns in finite samples, and the case of a completely useless factor may seem extreme. We

reiterate, however, that the useless factor case represents the least favorable scenario in our testing

setup, as it places an upper bound on the conservativeness of our robust method. In Section 1

of the online appendix, we numerically illustrate this by considering a model with a priced useful

factor and an unpriced factor, where the unpriced factor is calibrated to three observed factors

with a different correlation (weak, moderate, and strong) with the returns on the test assets. The

simulation results clearly indicate that the misspecification-robust t-test for the priced useful factor

exhibits smaller underrejections (and improved power) compared with those in Table 3, while the

rejection rates for the unpriced factor remain largely unchanged. The complete set of results and

the specifics of the simulation design are presented in Section 1 of the online appendix.

4.2 Survival rates of risk factors in the sequential testing procedure

Our findings suggest that the misspecification-robust t-test should be used when it is uncertain

whether the factor is useful or useless and the model is correctly specified or misspecified. How-

ever, since the procedure based on the tm test is often conservative, some useful factors might be

erroneously excluded from the model. The frequency at which this happens is evaluated in the

model selection procedure presented below.

Table 4 reports the survival rates of different factors when using the sequential procedure

described in Section 3. In particular, we compare the survival rates from using the tm test with

the survival rates from using the tc test. The false discovery rate of the multiple testing problem is

controlled using the Bonferroni method. In our simulations, we consider (i) a linear model with a
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constant term, two useful factors with γ∗i 6= 0, an unpriced useful factor with γ∗i = 0, and a useless

factor, and (ii) a linear model with a constant term, two useful factors with γ∗i 6= 0, and two useless

factors. The mean and variance of the useful factors with γ∗i 6= 0 are calibrated to the mean and

variance of the excess market return and the high-minus-low factor of Fama and French (1993).

The mean and variance of the unpriced useful factor with γ∗i = 0 are calibrated to the mean and

variance of the small-minus-big factor of Fama and French (1993). As in Tables 1–3, the returns

and the useful factors are drawn from a multivariate normal distribution.8 Finally, the useless

factor is generated as a standard normal random variable, independent of the test asset returns

and the useful factors. The time-series sample size is taken to be T = 200, 600, and 1000. The

nominal level of the sequential testing procedure is set equal to 5%. The probability that at least

one irrelevant (useless or unpriced) factor survives the model selection (MS) procedure is reported

in the last two columns of the table, with MSc denoting the survival probability computed from

the tc tests and MSm denoting the survival probability computed from the tm tests.

Table 4 about here

Panel A shows that when the model is correctly specified, the procedures based on tc and tm

do a similarly good job in retaining the useful factors with nonzero SDF parameters in the model

(the survival probabilities are 99–100% for T = 600) and eliminating the irrelevant factors. This

indicates that using the tc test in the presence of a useless factor is not problematic when the

underlying model holds exactly. However, as shown in Panel B, the situation drastically changes

when the model is misspecified. In this case, the procedures based on tc and tm still retain the

useful factors with nonzero SDF parameters with similarly high probability (85–100% for T = 600),

but they produce very different results when it comes to the useless factor. For example, despite its

conservative nature (due to the Bonferroni adjustment), the procedure based on tc will retain the

useless factor 28–30% of the time for T = 1000. In contrast, the procedure based on tm will retain

the useless factor only about 0.8–0.9% of the time for T = 1000. Similarly, the probability of at

least one irrelevant factor being selected in the final specification of the model is 31–52% (2.0–2.1%)

for T = 1000 when the tc (tm) test is used and the model is misspecified. It should be emphasized

that the effectiveness of the proposed sequential procedure in retaining the useful factors in the

8See Gospodinov, Kan, and Robotti (2013) for a description on how to impose zero restrictions on the parameters
in correctly specified and misspecified models. The HJ-distance of the misspecified model used in this section is 0.522.
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model depends on the correlation between the useful factors and the returns on the test assets and

on the magnitude of the SDF coefficient associated with the useful factor. Our procedure will be

more effective in retaining a useful factor in the model, the higher this correlation and the larger

the SDF coefficient on the useful factor.

Some aspects of our model selection procedure deserve additional remarks. It should be stressed

that the objective of our proposed sequential test is to find the most parsimonious model with the

same HJ-distance as the full model. The fact that our method eliminates unpriced useful factors

along with useless factors is not of particular concern since these factors do not contribute to the

reduction of the HJ-distance. As a result, our model selection procedure purges the model from

useless factors (that give rise to inference problems) and unpriced factors (that do not improve the

pricing ability of the model) and restores the standard asymptotic theory for the remaining factors

in the SDF.

5. Empirical Analysis

Our theoretical and simulation results point out some serious pitfalls in the empirical analysis of

asset-pricing models with nontraded factors. In the following, we use monthly data to demonstrate

the relevance of our theoretical results.

To show that our findings are not specific to the test assets and SDFs considered in the main

empirical application, we also use an alternative set of test assets and SDFs with macroeconomic

risk factors that are available only at quarterly frequency.

5.1 Main application

First, we describe the data used in the empirical analysis and outline the different specifications of

the asset-pricing models considered. Then, we present our results.

5.1.1 Data and asset-pricing models

As in the Monte Carlo simulations, the test asset returns are the monthly gross returns on the one-

month T-bill, the value-weighted 25 Fama-French size and book-to-market ranked portfolios, and
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the 17 industry portfolios from Kenneth French’s website.9 The data are from February 1959 until

December 2012. We analyze seven asset-pricing models, starting with the simple static CAPM.

The SDF specification for this model is

yCAPMt (γ) = γ0 + γ1vwt, (32)

where vw is the excess return (in excess of the one-month T-bill rate) on the value-weighted stock

market index (NYSE-AMEX-NASDAQ) from Kenneth French’s website. The CAPM performed

well in the early tests—for example, Fama and MacBeth (1973)—but has fared poorly since.

One extension that has performed better is our second model, the three-factor model (FF3)

of Fama and French (1993). This model extends the CAPM by including the two empirically

motivated factors smb and hml, where smb is the return difference between portfolios of stocks

with small and large market capitalizations, and hml is the return difference between portfolios of

stocks with high and low book-to-market ratios (“value” and “growth” stocks, respectively) from

Kenneth French’s website. The SDF specification is

yFF3
t (γ) = γ0 + γ1vwt + γ2smbt + γ3hmlt. (33)

The third model (ICAPM) is an empirical implementation of Merton’s (1973) intertemporal

extension of the CAPM based on Campbell (1996), who argues that innovations in state variables

that forecast future investment opportunities should serve as factors. The five-factor specification

proposed by Petkova (2006) is

yICAPMt (γ) = γ0 + γ1vwt + γ2termt + γ3deft + γ4divt + γ5rft, (34)

where term is the difference between the yields of ten-year and one-year government bonds (from

the Board of Governors of the Federal Reserve System), def is the difference between the yields of

long-term corporate Baa bonds (from the Board of Governors of the Federal Reserve System) and

long-term government bonds (from Ibbotson Associates), div is the dividend yield on the Center for

Research in Security Prices (CRSP) value-weighted stock market portfolio, and rf is the one-month

T-bill yield (from CRSP, Fama Risk Free Rates). The actual factors for term, def, div, and rf are

their innovations from a VAR(4) system of seven state variables that also includes vw, smb, and

9Using only the 25 Fama-French size and book-to-market ranked portfolios as test assets yields qualitatively similar
results.
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hml. Following Petkova (2006), the innovations are orthogonalized and scaled to have the same

variance as the innovation in the excess market return.

Our fourth model is the scaled CAPM specification including human capital (C-LAB) of Jagan-

nathan and Wang (1996), also considered by Lettau and Ludvigson (2001). This model incorporates

measures of the return on human capital as well as the change in financial wealth, and allows the

conditional SDF coefficients to vary with the consumption-aggregate wealth ratio (cay) of Lettau

and Ludvigson (2001).10 The SDF specification is

yC−LABt (γ) = γ0 + γ1cayt−1 + γ2vwt + γ3labt + γ4vwt ·cayt−1 + γ5labt ·cayt−1, (35)

where lab is the growth rate in per capita labor income, L, defined as the difference between

total personal income and dividend payments, divided by the total population (from the Bureau

of Economic Analysis). Following Jagannathan and Wang (1996), we use a two-month moving

average to construct the growth rate labt = (Lt−1 + Lt−2)/(Lt−2 + Lt−3) − 1, for the purpose of

minimizing the influence of measurement error. The SDF specification in Equation (35) is obtained

by scaling the constant term, the vw and the lab factors by a constant and cay. Scaling factors

by instruments is one popular way of allowing factor risk premia to vary over time. Gagliardini,

Ossola, and Scaillet (2013), for example, provide strong empirical evidence of time-varying risk

premia in standard factor models.

Next, we consider consumption-based models. Our fifth model (CCAPM) is the unconditional

consumption model with

yCCAPMt (γ) = γ0 + γ1cnd,t, (36)

where cnd is the growth rate in real per capita nondurable consumption (seasonally adjusted at

annual rates) from the Bureau of Economic Analysis. This model has generally not performed

well empirically (see Lettau and Ludvigson 2001 for a summary of the poor empirical performance

of CCAPM). Therefore, we also examine two other consumption models that have yielded more

encouraging results.

One such model (CC-CAY) is a conditional version of the CCAPM due to Lettau and Ludvigson

10Following Jørgensen–Vissing and Attanasio (2003), we linearly interpolate the quarterly values of cay to permit
analysis at the monthly frequency.
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(2001). The relation is

yCC−CAYt (γ) = γ0 + γ1cnd,t + γ2cayt−1 + γ3cnd,t ·cayt−1. (37)

The SDF specification in Equation (37) is obtained by scaling the constant term and the cnd factor

by a constant and cay.

The last model (D-CCAPM), due to Yogo (2006), highlights the cyclical role of durable con-

sumption in asset pricing. The specification is

yD−CCAPMt (γ) = γ0 + γ1vwt + γ2cnd,t + γ3cd,t, (38)

where cd is the growth rate in real per capita durable consumption (seasonally adjusted at annual

rates) from the Bureau of Economic Analysis.

5.1.2 Results

Before presenting the estimation results for the SDF parameters, we first investigate whether the

various risk factors are correlated with the asset returns and whether the seven models described

above are properly identified. As mentioned in the theoretical section of the paper, the presence

of a useless factor leads to a violation of the crucial identification condition that the N × K

matrix B = E[xtf̃
′
t ] is of full column rank. Therefore, it is of interest to test if B is of (reduced)

rank K − 1. Since B̂ is not invariant to rescaling of the data, we first perform a normalization

on B̂. Define Θ̂ = Û−
1
2 B̂Ŝ

− 1
2

f̃
and its corresponding population counterpart Θ = U−

1
2BS

− 1
2

f̃
,

where Ŝf̃ = 1
T

∑T
t=1 f̃tf̃

′
t and Sf̃ = E[f̃tf̃

′
t ]. Note that Θ̂ is invariant to rescaling of the data and

rank(Θ) = rank(B).

Let Π̂ be a consistent estimator of the asymptotic covariance matrix of
√
Tvec(Θ̂ − Θ), where

vec(·) is the vec operator. Following Ratsimalahelo (2002) and Kleibergen and Paap (2006), we

perform a singular value decomposition on Θ̂ such that Θ̂ = Ũ S̃Ṽ ′, where Ũ ′Ũ = IN , Ṽ ′Ṽ = IK ,

and S̃ is an N ×K matrix with the singular values of Θ̂ in decreasing order on its diagonal. Let

Ũ2 be the last N −K + 1 columns of Ũ , Ṽ2 be the last column of Ṽ , and

Π̃ = (Ṽ ′2 ⊗ Ũ ′2)Π̂(Ṽ2 ⊗ Ũ2). (39)

Then, a test of H0 : rank(Θ) = rank(B) = K − 1 is given by

W∗ = T s̃2
KΠ̃11 d→ χ2

N−K+1, (40)
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where s̃K is the smallest singular value of Θ̂, and Π̃11 is the (1, 1) element of Π̃−1.

Table 5, Panel A, reports the rank restriction test (W∗) and its p-value (p-val) of the null

that E[xt(1, fit)] has a column rank of one. The panel shows that we cannot reject the null of a

column rank of one at the 5% significance level for seven out of 14 macroeconomic and financial

factors. This finding suggests that several risk factors in ICAPM, C-LAB, CCAPM, CC-CAY,

and D-CCAPM can be reasonably considered as useless and that our asymptotic results on useless

factors are of practical importance. Panel B further shows that only CAPM and FF3 pass the test

of full rank condition at the 5% nominal level. This is consistent with the fact that vw, smb, and

hml are highly correlated with the returns on the test assets, while most factors in the other models

are not. Panel B also shows that no model passes the HJ-distance specification test at conventional

levels of significance. Since the HJ-distance test has been shown to substantially overreject under

the null in realistic simulation settings with many test assets, we also consider an alternative test

of H0 : λ = U−1e = 0N (which is equivalent to the test of H0 : δ = 0). Gospodinov, Kan, and

Robotti (2013) show that this alternative Lagrange multiplier (LM) test has excellent size and

power properties. The results in Panel B indicate that one would reach the same conclusions using

the LM and HJ-distance tests. Therefore, the model rejections documented in Table 5, Panel B,

do not seem to be driven by the finite-sample properties of the HJ-distance test. Overall, these

empirical findings suggest that valid inference should account for the fact that some of the models

are potentially misspecified and poorly identified.

Table 5 about here

Although the rank restriction test serves as a useful pre-test for possible identification problems,

this test does not allow us to unambiguously identify which factor contributes to the identification

failure of the model. In addition, this test does not address the question of which risk factors

are important in explaining the cross-sectional differences in asset returns. Our misspecification-

robust test of H0 : γi = 0 proves to be of critical importance in (i) providing the direction of

the identification failure and (ii) allowing us to determine whether a given risk factor is priced.

Panels C and D of Table 5 present the t-tests under correct model specification and potential

model misspecification as well as the model selection procedure described in Section 3. Using t-

tests under correct specification, the results in Panel C suggest that the factors term in ICAPM,
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lab · cay in C-LAB, cay in CC-CAY, and cnd in CCAPM, CC-CAY, and D-CCAPM survive the

sequential testing procedure at the 5% significance level using the Bonferroni correction. However,

given the violation of the full rank condition for these models, the standard normal distribution is

not the appropriate reference distribution in this case. Since some of these factors are very weakly

correlated with the returns on the test assets and effectively behave as useless factors, they tend

to be included in the model much more often than they should (see the simulation results for the

irrelevant factors in Panel B of Table 4). Therefore, the model selection procedure needs to be

implemented using misspecification-robust t-tests.

Panel D shows that none of the nontraded factors listed above survives the sequential procedure

based on misspecification-robust t-tests at the 5% significance level. Finally, for traded factors, we

find strong evidence of pricing for the vw factor in CAPM and the vw and hml factors in FF3 in

both Panels C and D.11

5.2 Additional empirical evidence

The results in Table 5 suggest that the statistical evidence on the pricing ability of several macroe-

conomic and financial factors is weak and their usefulness in explaining the cross-section of asset

returns should be interpreted with caution. In this section, we further emphasize the importance

of accounting for model misspecification and weak identification in empirical work. The following

application uses an alternative set of test assets and SDFs that includes macroeconomic risk factors

whose data are available only at quarterly frequency.

The test asset returns are the quarterly gross returns on the one-month T-bill, the value-

weighted 6 Fama-French size and book-to-market ranked portfolios, the 17 industry portfolios, and

the 10 momentum portfolios from Kenneth French’s website. The sample period is from 1952:Q2

until 2012:Q4. We consider the following asset-pricing specifications: (i) the conditional CCAPM

(CC-CAY) version of Lettau and Ludvigson (2001) with cnd, cay, and cnd ·cay as described in the

previous section; (ii) the conditional CAPM (C-ML) of Santos and Veronesi (2006) with vw and vw

11It is possible that the individual risk factors considered in this section do not capture adequately the risk in-
corporated in all of the macroeconomic data that is available to market participants. One approach to extract
parsimoniously the common variation in macroeconomic variables is the factor analysis advocated by Stock and Wat-
son (2002). In unreported results, we follow this approach and construct three orthogonal factors that summarize
the dynamics of 130 U.S. macroeconomic time series for the period March 1960–December 2011. Using the same
set of tests assets, we find that no factor survives the misspecification-robust model selection procedure at the 5%
significance level using the Bonferroni adjustment.
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scaled by the labor income-consumption ratio (ml) as risk factors; (iii) a version of the conditional

consumption CAPM (CC-MY) proposed by Lustig and Van Nieuwerburgh (2005) with the housing

collateral ratio (my), cnd, and the interaction term cnd ·my as risk factors; and (iv) the sector

investment model (SIM) of Li, Vassalou, and Xing (2006) with the log investment growth rates

for households (ih), nonfinancial corporations (ic), and non–corporate sector (inc) as risk factors.

We include the CC-CAY model again since the original data for the cay factor are available at a

quarterly frequency. These four models with nontraded factors have yielded encouraging results in

cross-sectional asset pricing.12

The empirical results for quarterly data are reported in Table 6, with Panel A showing that for

all factors except for vw and vw·ml, we cannot reject the null that E[xt(1, fit)] has a column rank

of one at the 5% significance level. In addition, the results in Panel B indicate that we cannot reject

the null of reduced rank for all models, except for C-ML, and that all models are rejected by the

HJ-distance and LM specification tests. This clearly points to the need of statistical procedures

that are robust to model misspecification and weak identification.

Table 6 about here

Panel D of Table 6 shows that all factors except for vw ·ml do not survive the model selection

procedure based on the misspecification-robust t-test.13 This stands in sharp contrast to the results

in Panel C of Table 6, where the t-test under correctly specified models is employed. However,

our theoretical and simulation analyses clearly showed that relying on the t-test under correct

specification is grossly inappropriate when the underlying model is misspecified and the factors are

very weakly correlated with the returns on the test assets. As one example, consider CC-MY. In the

final stage of the model selection procedure in Panel C, both cg and my seem to be priced. On the

contrary, no factor in CC-MY survives the model selection procedure based on misspecification-

robust t-tests. Taken together, these results serve as a warning signal to researchers that are

interested in estimating and analyzing SDF parameters on nontraded risk factors.

12We also estimated the CAPM, FF3, CCAPM, and D-CCAPM models considered in the previous section using
quarterly data, and the results are very similar to the ones for the monthly application.

13Although vw·ml is in principle a nontraded factor, it is very highly correlated with the returns on the test assets.
This is a situation in which, as discussed at the end of Section 1, the t-ratios under correctly specified and misspecified
models are likely to deliver a similar answer.
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6. Conclusion

It is well known that asset returns are, at best, only weakly correlated with many macroeconomic

factors. Nonetheless, researchers in finance have typically relied on inference methods that are not

robust to weak identification and model misspecification when evaluating the incremental pricing

ability of these factors. Our paper demonstrates that when a model is misspecified, the standard

t-test of statistical significance will lead us to erroneously conclude, with high probability, that a

useless factor is relevant and should be included in the model. Importantly, we show that the t-test

of statistical significance will be valid only if it is computed using misspecification-robust standard

errors. Furthermore, we argue that the presence of a useless factor affects the inference on the

remaining model parameters and the test of correct specification. In particular, when a useless

factor is present in the model, the limiting distributions of the t-statistics for the useful factors are

nonstandard and the HJ-distance specification test is inconsistent.

In order to overcome these problems, we propose an easy-to-implement sequential model se-

lection procedure based on misspecification-robust t-tests that restores the standard inference on

the parameters of interest. We show via simulations that the proposed procedure is effective in

eliminating useless factors as well as factors that do not improve the pricing ability of the model.

Finally, we employ our methodology to investigate the empirical performance of several promi-

nent asset-pricing models with traded and nontraded factors. While the market factor and the

book-to-market factor of Fama and French (1993) are often found to be priced, the statistical

evidence on the pricing ability of many nontraded factors is rather weak when using the model

selection procedure based on misspecification-robust t-tests.

28



References

Bajgrowicz, P., and O. Scaillet. 2012. Technical trading revisited: Persistence tests, transaction

costs, and false discoveries. Journal of Financial Economics 106:473–91.

Barras, L., O. Scaillet, and R. Wermers. 2010. False discoveries in mutual fund performance:

Measuring luck in estimated alphas. Journal of Finance 65:179–216.

Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and

powerful approach to multiple testing. Journal of the Royal Statistical Society Series B

57:289–300.

Burnside, C. A. 2010. Identification and inference in linear stochastic discount factor models.

NBER working paper 16634.

Burnside, C. A. 2011. The cross-section of foreign currency risk premia and consumption growth

risk: Comment. American Economic Review 101:3456–76.

Campbell, J. Y. 1996. Understanding risk and return. Journal of Political Economy 104:298–345.

Cochrane, J. H. 1996. A cross-sectional test of an investment-based asset pricing model. Journal

of Political Economy 104:572–621.

Fama, E. F., and J. D. MacBeth. 1973. Risk, return, and equilibrium: Empirical tests. Journal

of Political Economy 71:607–36.

Fama, E. F., and K. R. French. 1993. Common risk factors in the returns on stocks and bonds.

Journal of Financial Economics 33:3–56.

Gagliardini, P., E. Ossola, and O. Scaillet. 2013. Time-varying risk premia in large cross-sectional

equity datasets. Working Paper, University of Lugano.

Goeman, J. J., and A. Solari. 2010. The sequential rejection principle of familywise error control.

Annals of Statistics 38:3782–3810.

Gospodinov, N., R. Kan, and C. Robotti. 2013. Chi-squared tests for evaluation and comparison

of asset pricing models. Journal of Econometrics 173:108–25.

29



Hansen, L. P., and R. Jagannathan. 1997. Assessing specification errors in stochastic discount

factor models. Journal of Finance 52:557–90.

Jagannathan, R., and Z. Wang. 1996. The conditional CAPM and the cross-section of expected

returns. Journal of Finance 51:3–53.

Jørgensen–Vissing, A., and O. P. Attanasio. 2003. Stock-market participation, intertemporal

substitution, and risk-aversion. American Economic Review Papers and Proceedings 93:383–

91.

Kan, R., and C. Robotti. 2008. Specification tests of asset pricing models using excess returns.

Journal of Empirical Finance 15:816–38.

Kan, R., and C. Robotti. 2009. Model comparison using the Hansen-Jagannathan distance.

Review of Financial Studies 22:3449–90.

Kan, R., C. Robotti, and J. Shanken. 2013. Pricing model performance and the two-pass cross-

sectional regression methodology. Journal of Finance 68:2617–49.

Kan, R., and C. Zhang. 1999a. GMM tests of stochastic discount factor models with useless

factors. Journal of Financial Economics 54:103–27.

Kan, R., and C. Zhang. 1999b. Two-pass tests of asset pricing models with useless factors.

Journal of Finance 54:204–35.

Khalaf, L. A., and H. Schaller. 2011. How Fama-MacBeth can go wrong – and an informative

solution. Working Paper, Carleton University.

Kleibergen, F. 2009. Tests of risk premia in linear factor models. Journal of Econometrics

149:149–73.

Kleibergen, F. 2010. Reality checks for and of factor pricing. Working Paper, Brown University.

Kleibergen, F., and R. Paap. 2006. Generalized reduced rank tests using the singular value

decomposition. Journal of Econometrics 133:97–126.

Lettau, M., and S. C. Ludvigson. 2001. Resurrecting the (C)CAPM: A cross-sectional test when

risk premia are time-varying. Journal of Political Economy 109:1238–87.

30



Lewellen, J. W., S. Nagel, and J. Shanken. 2010. A skeptical appraisal of asset-pricing tests.

Journal of Financial Economics 96:175–94.

Li, Q., M. Vassalou, and Y. Xing. 2006. Sector investment growth rates and the cross-section of

equity returns. Journal of Business 79:1637–65.

Ludvigson, S. C. 2013. Advances in consumption-based asset pricing: Empirical tests. Chapter

12 in Handbook of the economics of finance, Vol. 2, 799–906. Ed. G. M. Constantinides,

M. Harris, and R. M. Stulz. Amsterdam: North Holland.

Lustig, H., and S. Van Nieuwerburgh. 2005. Housing collateral, consumption insurance, and risk

premia: An empirical perspective. Journal of Finance 60:1167–1219.

Merton, R. C. 1973. An intertemporal capital asset pricing model. Econometrica 41:867–87.

Petkova, R. 2006. Do the Fama-French factors proxy for innovations in predictive variables?

Journal of Finance 61:581–612.

Ratsimalahelo, Z. 2002. Rank test based on matrix perturbation theory. Working Paper, Univer-

sity of Franche-Comté.
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Table 1
Empirical size of the t-tests in a model with a useful factor

Panel A: Correctly specified model

γ̂0 γ̂1

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.168 0.139 0.108 0.098 0.049 0.010
600 0.134 0.098 0.063 0.099 0.049 0.009

1,000 0.123 0.081 0.044 0.101 0.049 0.009
∞ 0.100 0.050 0.010 0.100 0.050 0.010

tm 200 0.168 0.139 0.108 0.097 0.049 0.010
600 0.134 0.098 0.063 0.099 0.049 0.009

1,000 0.123 0.081 0.044 0.101 0.049 0.009
∞ 0.100 0.050 0.010 0.100 0.050 0.010

Panel B: Misspecified model

γ̂0 γ̂1

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.173 0.144 0.112 0.099 0.048 0.009
600 0.137 0.099 0.063 0.098 0.049 0.010
1000 0.123 0.081 0.043 0.098 0.048 0.010
∞ 0.100 0.050 0.010 0.100 0.050 0.010

tm 200 0.173 0.144 0.112 0.099 0.048 0.009
600 0.137 0.099 0.063 0.098 0.049 0.010
1000 0.123 0.081 0.043 0.098 0.048 0.010
∞ 0.100 0.050 0.010 0.100 0.050 0.010

The table presents the empirical size of the t-tests of H0 : γi = γ∗i (i = 0, 1) in a model with a constant
and a useful factor. γ0 is the coefficient on the constant term, and γ1 is the coefficient on the useful factor.
tc denotes the t-test constructed under the assumption of correct model specification, and tm denotes the
misspecification-robust t-test. We report results for different levels of significance (10%, 5%, and 1%) and for
different values of the number of time-series observations (T ) using 100,000 simulations, assuming that the
returns are generated from a multivariate normal distribution with means and covariance matrix calibrated
to the 25 size and book-to-market Fama-French portfolio returns, the 17 Fama-French industry portfolio
returns, and the one-month T-bill rate for the period 1959:2–2012:12. The various t-statistics are compared
with the critical values from a standard normal distribution.
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Table 2
Empirical size of the t-tests in a model with a useless factor

Panel A: Correctly specified model

γ̂0 γ̂1

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.008 0.002 0.000 0.131 0.067 0.012
600 0.002 0.000 0.000 0.099 0.046 0.006
1000 0.002 0.000 0.000 0.098 0.045 0.007
∞ 0.001 0.000 0.000 0.088 0.039 0.005

tm 200 0.001 0.000 0.000 0.036 0.012 0.001
600 0.000 0.000 0.000 0.022 0.006 0.000
1000 0.000 0.000 0.000 0.022 0.006 0.000
∞ 0.000 0.000 0.000 0.018 0.004 0.000

Panel B: Misspecified model

γ̂0 γ̂1

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.020 0.006 0.000 0.328 0.234 0.103
600 0.020 0.005 0.000 0.472 0.383 0.228
1000 0.024 0.007 0.000 0.557 0.476 0.327
∞ 0.088 0.039 0.005 1.000 1.000 1.000

tm 200 0.002 0.000 0.000 0.081 0.036 0.005
600 0.001 0.000 0.000 0.081 0.038 0.006
1000 0.001 0.000 0.000 0.086 0.041 0.007
∞ 0.001 0.000 0.000 0.100 0.050 0.010

The table presents the empirical size of the t-tests of H0 : γi = γ∗i (i = 0, 1) in a model with a constant
and a useless factor. γ0 is the coefficient on the constant term, and γ1 is the coefficient on the useless
factor. tc denotes the t-test constructed under the assumption of correct model specification, and tm denotes
the misspecification-robust t-test. We report results for different levels of significance (10%, 5%, and 1%)
and for different values of the number of time-series observations (T ) using 100,000 simulations, assuming
that the returns are generated from a multivariate normal distribution with means and covariance matrix
calibrated to the 25 size and book-to-market Fama-French portfolio returns, the 17 Fama-French industry
portfolio returns, and the one-month T-bill rate for the period 1959:2–2012:12. The various t-statistics are
compared with the critical values from a standard normal distribution. The rejection rates for the limiting
case (T =∞) are based on the asymptotic distributions given in Theorem 2 in the online appendix.
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Table 3
Empirical size of the t-tests in a model with a useful and a useless factor

Panel A: Correctly specified model

γ̂0 γ̂1 γ̂2

t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%

tc 200 0.054 0.023 0.007 0.094 0.045 0.008 0.128 0.066 0.012
600 0.059 0.028 0.008 0.096 0.047 0.009 0.100 0.046 0.006
1000 0.056 0.025 0.007 0.096 0.046 0.009 0.095 0.043 0.005
∞ 0.052 0.020 0.002 0.096 0.047 0.009 0.088 0.039 0.005

tm 200 0.027 0.011 0.004 0.090 0.042 0.007 0.036 0.012 0.001
600 0.037 0.016 0.006 0.092 0.045 0.008 0.022 0.006 0.000
1000 0.037 0.016 0.005 0.092 0.044 0.008 0.019 0.005 0.000
∞ 0.037 0.014 0.002 0.092 0.045 0.008 0.018 0.004 0.000

Panel B: Misspecified model

γ̂0 γ̂1 γ̂2

t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%

tc 200 0.056 0.023 0.005 0.095 0.046 0.008 0.319 0.227 0.098
600 0.057 0.023 0.004 0.095 0.046 0.009 0.464 0.376 0.224
1000 0.057 0.021 0.003 0.094 0.046 0.009 0.550 0.469 0.319
∞ 0.088 0.039 0.005 0.088 0.039 0.005 1.000 1.000 1.000

tm 200 0.016 0.006 0.002 0.086 0.040 0.006 0.080 0.036 0.005
600 0.013 0.005 0.002 0.079 0.037 0.006 0.082 0.038 0.006
1000 0.009 0.003 0.001 0.071 0.032 0.005 0.087 0.042 0.007
∞ 0.001 0.000 0.000 0.001 0.000 0.000 0.100 0.050 0.010

The table presents the empirical size of the t-tests of H0 : γi = γ∗i (i = 0, 1, 2) in a model with a constant, a
useful, and a useless factor. γ0 is the coefficient on the constant term, γ1 is the coefficient on the useful factor,
and γ2 is the coefficient on the useless factor. tc denotes the t-test constructed under the assumption of correct
model specification, and tm denotes the misspecification-robust t-test. We report results for different levels
of significance (10%, 5%, and 1%) and for different values of the number of time-series observations (T ) using
100,000 simulations, assuming that the returns are generated from a multivariate normal distribution with
means and covariance matrix calibrated to the 25 size and book-to-market Fama-French portfolio returns,
the 17 Fama-French industry portfolio returns, and the one-month T-bill rate for the period 1959:2–2012:12.
The various t-tests are compared with the critical values from a standard normal distribution. The rejection
rates for the limiting case (T = ∞) are based on the asymptotic distributions given in Theorem 2 in the
online appendix.
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Table 4
Survival rates of risk factors: Two useful and two irrelevant factors

Panel A: Correctly specified model

Useful (γ∗1 6= 0) Useful (γ∗2 6= 0) Useful (γ∗3 = 0) Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.519 0.517 0.674 0.661 0.027 0.023 0.023 0.002 0.049 0.025
600 0.986 0.987 0.999 0.999 0.014 0.013 0.009 0.001 0.023 0.014
1000 1.000 1.000 1.000 1.000 0.013 0.013 0.008 0.000 0.022 0.013

Useful (γ∗1 6= 0) Useful (γ∗2 6= 0) Useless Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.520 0.521 0.666 0.658 0.023 0.002 0.024 0.002 0.046 0.004
600 0.988 0.989 0.999 0.999 0.009 0.001 0.010 0.001 0.019 0.001
1000 1.000 1.000 1.000 1.000 0.008 0.000 0.008 0.000 0.016 0.001

Panel B: Misspecified model

Useful (γ∗1 6= 0) Useful (γ∗2 6= 0) Useful (γ∗3 = 0) Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.498 0.502 0.648 0.633 0.033 0.025 0.108 0.008 0.138 0.033
600 0.971 0.981 0.993 0.996 0.018 0.014 0.206 0.008 0.220 0.022
1000 0.996 0.998 0.999 0.999 0.015 0.012 0.295 0.009 0.306 0.021

Useful (γ∗1 6= 0) Useful (γ∗2 6= 0) Useless Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.300 0.308 0.398 0.389 0.105 0.007 0.106 0.007 0.205 0.015
600 0.853 0.900 0.921 0.951 0.202 0.009 0.204 0.009 0.384 0.018
1000 0.959 0.983 0.981 0.992 0.279 0.010 0.282 0.010 0.517 0.020

The table presents the survival rates of the factors in a model with a constant, two useful factors (with γ∗1 6= 0 and
γ∗2 6= 0), and two irrelevant factors. The first irrelevant factor is either a useful factor that does not contribute to
pricing (with γ∗3 = 0) or a useless factor (with γ∗3 unidentified), and the second irrelevant factor is a useless factor
(with γ∗4 unidentified). The sequential procedure is implemented by using the misspecification-robust t-tests (tm(γ̂i)
column) as well as the t-tests under correctly specified models (tc(γ̂i) column). The false discovery rate of the multiple
testing procedure is controlled using the Bonferroni method. The last two columns of the table report the probability
that at least one useless or unpriced useful factor survives using the t-tests under correctly specified models (MSc)
and misspecification-robust t-tests (MSm). The nominal level of the sequential testing procedure is set equal to
5%. We report results for different values of the number of time-series observations (T ) using 100,000 simulations,
assuming that the returns are generated from a multivariate normal distribution with means and covariance matrix
calibrated to the 25 size and book-to-market Fama-French portfolio returns, the 17 Fama-French industry portfolio
returns, and the one-month T-bill rate for the period 1959:2–2012:12.
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Table 5
Monthly analysis of some popular linear asset-pricing models

Panel A: Rank test for individual factors

Test vw smb hml term def div rf cay lab vw·cay lab·cay cnd cnd ·cay cd
W∗ 205.7 199.9 189.7 47.1 89.2 61.1 44.8 54.0 54.8 83.1 49.7 54.6 43.0 58.6
p-val 0.000 0.000 0.000 0.270 0.000 0.029 0.354 0.101 0.088 0.000 0.193 0.092 0.430 0.046

Panel B: HJ-distance, Lagrange multiplier, and rank tests

Model δ̂ p-val LM p-val W∗ p-val
CAPM 0.523 0.000 139.766 0.000 205.7 0.000
FF3 0.487 0.000 121.265 0.000 190.7 0.000
ICAPM 0.469 0.000 84.567 0.000 42.1 0.298
C-LAB 0.481 0.000 78.892 0.000 31.1 0.780
CCAPM 0.513 0.000 112.888 0.000 54.6 0.092
CC-CAY 0.484 0.000 81.523 0.000 40.9 0.430
D-CCAPM 0.510 0.000 114.966 0.000 46.4 0.225
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Table 5 (continued)
Monthly analysis of some popular linear asset-pricing models

Panel C: Model selection procedure using standard errors under correct model specification

Model vw smb hml term def div rf cay lab vw·cay lab·cay cnd cnd ·cay cd
CAPM -2.64
FF3 -3.43 -0.57 -4.59

-3.69 -4.62
ICAPM -2.04 -2.70 0.50 1.86 0.85

-2.06 -2.93 1.80 0.72
-2.10 -3.76 1.88
-2.20 -3.77

-3.74
C-LAB -0.72 0.15 0.59 2.46 -2.22

-0.71 0.60 2.45 -3.36
-0.80 2.39 -3.43

2.38 -3.63
-3.79

CCAPM -3.23
CC-CAY -3.13 -3.05 0.97

-3.24 -3.03
D-CCAPM -1.12 -2.41 -0.67

-1.14 -2.58
-3.23

Panel D: Model selection procedure using model misspecification-robust standard errors

Model vw smb hml term def div rf cay lab vw·cay lab·cay cnd cnd ·cay cd
CAPM -2.64
FF3 -3.35 -0.53 -4.40

-3.68 -4.45
ICAPM -2.04 -1.86 0.36 1.36 0.62

-2.06 -2.13 1.38 0.52
-2.10 -2.61 1.42
-2.20 -2.60

-2.52
C-LAB -0.64 0.08 0.36 1.88 -1.09

-0.61 0.37 1.88 -1.81
-0.71 1.87 -1.80

1.89 -2.07
-1.98

CCAPM -1.75
CC-CAY -1.85 -1.88 0.47

-1.89 -1.84
-1.89

D-CCAPM -0.90 -1.22 -0.41
-0.90 -1.27

-1.75

37



Table 5 (continued)
Monthly analysis of some popular linear asset-pricing models
The table presents the estimation and testing results of the seven asset-pricing models described in Sec-
tion 5.1.1. The models are estimated using monthly gross returns on the 25 size and book-to-market Fama-
French portfolios, the 17 Fama-French industry portfolios, and the one-month T-bill. The data are from
1959:2 until 2012:12. Panel A reports the rank restriction test (W∗) and its p-value (p-val) of the null that

E[xt(1, fit)] has a column rank of one. In Panel B, we report the sample HJ-distance (δ̂), the Lagrange
multiplier (LM) test, and the rank restriction test (W∗) with the corresponding p-values (p-val) for each
model. The t-tests of the model selection procedures based on the standard errors under correct model
specification and model misspecification are in Panels C and D, respectively. We use boldface to highlight
those cases in which the factors survive the model selection procedure at the 5% significance level using the
Bonferroni adjustment.
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Table 6
Quarterly analysis of some popular linear asset-pricing models

Panel A: Rank test for individual factors
Test vw vw·ml cnd cay cnd ·cay my cnd ·my ih ic inc
W ∗ 92.2 92.5 46.0 43.9 33.6 39.0 39.6 42.4 33.5 28.1
p-val 0.000 0.000 0.066 0.098 0.438 0.218 0.199 0.128 0.444 0.708

Panel B: HJ-distance, Lagrange multiplier, and rank tests

Model δ̂ p-val LM p-val W ∗ p-val

C-ML 0.790 0.000 95.378 0.000 54.2 0.008
CC-CAY 0.761 0.000 73.471 0.000 29.8 0.527
CC-MY 0.751 0.002 86.353 0.000 40.8 0.111
SIM 0.776 0.000 87.339 0.000 24.3 0.800

Panel C: t-tests using standard errors under correct model specification
Model vw vw·ml cnd cay cnd ·cay my cnd ·my ih ic inc
C-ML 1.91 -1.97

-2.99
CC-CAY -2.77 -2.17 0.51

-2.95 -2.33
-3.36

CC-MY -2.74 2.51 -0.99
-2.91 2.41

SIM -2.89 -0.59 0.26
-3.04 -0.60
-3.42

Panel D: t-tests using model misspecification-robust standard errors
Model vw vw·ml cnd cay cnd ·cay my cnd ·my ih ic inc
C-ML 1.34 -1.38

-2.97
CC-CAY -1.80 -1.57 0.31

-1.92 -1.64
-1.99

CC-MY -1.88 1.64 -0.64
-1.97 1.51
-1.99

SIM -1.92 -0.38 0.15
-2.04 -0.38
-2.27
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Table 6 (continued)
Quarterly analysis of some popular linear asset-pricing models
The table presents the estimation and testing results of the four asset-pricing models described in Section 5.2.
The models are estimated using quarterly gross returns on the 6 size and book-to-market Fama-French
portfolios, the 17 Fama-French industry portfolios, the 10 momentum portfolios, and the one-month T-bill.
The data are from 1952:Q2 until 2012:Q4. Panel A reports the rank restriction test (W∗) and its p-value
(p-val) of the null that E[xt(1, fit)] has a column rank of one. In Panel B, we report the sample HJ-distance

(δ̂), the Lagrange multiplier (LM) test, and the rank restriction test (W∗) with the corresponding p-values
(p-val) for each model. The t-tests of the model selection procedures based on the standard errors under
correct model specification and model misspecification are in Panels C and D, respectively. We use boldface
to highlight those cases in which the factors survive the model selection procedure at the 5% significance
level using the Bonferroni adjustment.
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Figure 1
Asymptotic distributions of tc(γ̂2) and tm(γ̂2) under misspecified models
The figure presents the probability density functions of the limiting distributions of tc(γ̂2) and
tm(γ̂2), the t-statistics for the useless factor that use standard errors constructed under correctly
specified and potentially misspecified models, respectively, for N−K = 7 (see part (b) of Theorem 2
in the online appendix).
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