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On the Explanatory Power of Asset Pricing Models

Across and Within Portfolios

ABSTRACT

We investigate the effect of using portfolios in assessing the explanatory power of

an asset pricing model, where the portfolios are formed by sorting firms using a firm-

specific variable. We show that the explanatory power of an asset pricing model at

the individual firm level can be grossly exaggerated or nullified at the portfolio level,

depending on the choice of the sorting variable. We also study the explanatory power of

an asset pricing model on the firms within each portfolio, and show that in general the

explanatory power of an asset pricing model for firms within a portfolio can increase or

decrease with the number of portfolios.



Although asset pricing models are supposed to work for individual firms as well as

portfolios, they are often estimated and tested using portfolios only. There are various

reasons for using portfolios to assess asset pricing models, most of them statistical in

nature. For most applications, we are ultimately interested in how good an asset pricing

model is at explaining the expected returns of individual firms. It is therefore important

to know what we can learn about asset pricing relations for individual firms from asset

pricing studies that are based on portfolios. In the recent literature, there are also

studies that examine the performance of asset pricing models within the firms of each

portfolio. Unless an asset pricing model is perfect, its performance within the portfolios

will be in general different from its performance in the entire sample. It is of interest to

understand the theoretical relation between these two measures of performance.1

Cautions regarding use of portfolios to test asset pricing models abound in the lit-

erature. Roll (1977), for example, suggests that pricing errors of individual firms can

disappear in portfolios, and hence tests based on portfolios may produce supporting

results even when the model is false. Grauer and Janmaat (2001) provide the condition

under which pricing errors of individual firms disappear in portfolios; they also provide

an example demonstrating that even when the CAPM has no explanatory power for

the expected returns of individual firms, it can perfectly explain the expected returns

of some portfolios. While using portfolios can make a bad asset pricing model look

good, it can also make a good asset pricing model look bad. Lo and MacKinlay (1990)

suggest that when portfolios are formed based on a sorting variable that is known to be

correlated with ex post pricing errors, then the asset pricing model, despite being true,

will be over-rejected at the portfolio level. Kandel and Stambaugh (1995) show that

even though the CAPM is almost true for a set of firms, there exist some (repackaged)

portfolios of the firms for which the CAPM has almost no explanatory power. Finally,

Liang (2000) suggests that if there are measurement errors in the sorting variable that is

1Understanding of this theoretical relation is particularly relevant in light of the debate between
Berk (2000) and Daniel and Titman (1999) as to whether explanatory power of betas will be reduced
after controlling for some stock characteristics like size and book-to-market ratio.
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used to form portfolios, then there could be serious biases in the estimation of the asset

pricing relation using data at the portfolio level.

In this paper, we focus on portfolios that are formed based on sorting by a firm-

specific variable. We address the issue of how the theoretical explanatory power of an

asset pricing model on such portfolios is related to its explanatory power for individual

firms and to the sorting variable. On an ex ante basis, without knowing the pricing

errors of an asset pricing model on individual firms, it is not entirely clear how sorting

could systematically strengthen or weaken the explanatory power of an asset pricing

model for the portfolios. Our analysis shows that the explanatory power of an asset

pricing model on such portfolios is only determined by the sorting variable, and that

the explanatory power for individual firms plays absolutely no role in determining the

explanatory power for portfolios. In extreme cases, an asset pricing model for portfolios

can be either perfect or completely incapable of explaining portfolio expected returns,

regardless of how good or how bad the asset pricing model is for individual firms. These

results cast serious doubts on what we can really learn from empirical asset pricing

studies that use portfolios.

In addition, we address the issue of how the explanatory power of an asset pricing

model is affected if we examine it only using firms within a portfolio. Berk (2000)

suggests that increasing the number of portfolios would decrease the explanatory power

of an asset pricing model within each portfolio. Our analysis suggests that his result

does not hold in general. In the case where the sorting variable is not perfectly correlated

with expected return, increasing the number of portfolios can increase or decrease the

explanatory power of an asset pricing model on the firms within a portfolio.

The rest of the paper is organized as follows. Section I discusses the explanatory

power of an asset pricing model for individual firms, across portfolios, and within port-

folios. It provides an analysis of the relation between the explanatory power of an asset

pricing model for individual firms and for portfolios. Section II provides an analysis of
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how the explanatory power of an asset pricing model for individual firms within a port-

folio changes with the number of portfolios. Section III provides simulation evidence to

illustrate our theoretical results under some realistic settings. Section IV provides our

conclusions. The Appendix contains proofs of all propositions.

I. The Theory

A. Explanatory Power of an Asset Pricing Model for Individ-
ual Firms

We assume that there are N individual firms in our sample, where these firms are

considered to be randomly drawn from a much larger population, such that the N

firms that we choose are representative of the firms in the population. Each firm in the

population is characterized by a triplet y = [µ,m, s]′, where µ is the true expected return

of the firm, m is the expected return of the firm predicted by an asset pricing model,2

and s is the value of a firm-specific variable that is used to sort firms into portfolios. We

assume that the cross-sectional distribution of this triplet in the population is continuous

with density function fy(y). We also assume that the mean and the variance-covariance

matrix of this distribution exist, and the variance-covariance matrix is denoted as

Σy = E[(y − E[y])(y − E[y])′] ≡

 σ2
µ σµm σµs

σµm σ2
m σms

σµs σms σ2
s

 . (1)

We assume Σy is positive semidefinite but it does not have to be nonsingular. For exam-

ple, if the asset pricing model is perfect, i.e., µ = m, or the sorting variable s completely

explains the expected return µ, or the sorting variable is a linear transformation of the

predicted expected return, then Σy is singular.

2For our purpose, an asset pricing model is a model that generates a prediction of expected returns
for individual firms. It includes both theoretically and empirically motivated models. Furthermore,
m does not have to be the predicted expected return; it can simply be a linear transformation of the
predicted expected return. For example, we can use β as m for the case of the CAPM.
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Since each firm is viewed as a random drawing from the population, it is natural to

define the theoretical explanatory power of the asset pricing model on the expected re-

turns of individual firms as the squared correlation coefficient between the true expected

return µ and the predicted expected return from the model m:

ρ2
µm =

σ2
µm

σ2
µσ

2
m

. (2)

Note that this theoretical measure is computed based on the population moments. It

is different from the measure of explanatory power that is computed using only the N

individual firms in the sample, which we define as

R2
µm =

[∑N
i=1(µi − µ̄)(mi − m̄)

]2
∑N
i=1(µi − µ̄)2

∑N
i=1(mi − m̄)2

, (3)

where µ̄ =
∑N
i=1 µi/N and m̄ =

∑N
i=1mi/N . This sample measure of explanatory power

is similar to the R2
OLS measure defined by Kandel and Stambaugh (1995). However,

when N →∞, R2
µm → ρ2

µm. In this paper, we are interested in the population measure

because we care about not only how good an asset pricing model is at explaining the

expected returns of the N firms in the sample, but also about how good it is at explaining

the expected returns of all the other firms that are not included in the sample.

Before we move on, we would like to clarify what are random variables and what

are constants in our model. The triplet y is a random variable before we select the

N firms from the population. Once the N firms in our sample are chosen, however,

y1, y2, . . . , yN are treated as constants. Of the three elements of y, the first element (µ)

is typically not observable to an econometrician and hence the measures ρ2
µm and R2

µm

are only theoretical and are not directly observable. In practice, one can use the average

return (R̄) as a proxy for the expected return and compute R2
R̄m, using R̄ in lieu of µ.

However, since the value of R2
R̄m depends on the realizations of average returns, it is a

random variable even after we have chosen the N firms in our sample.3 As the number

3Note that although we assume the firms are random samples drawn from the same population,
this does not preclude correlation between realized returns on two firms. Realized returns on all firms
are their expected returns plus unexpected returns; the latter are random variables defined in another
probability space.

4



of time series observations used in computing R̄ increases, we have R̄ → µ and hence

the measure of explanatory power that is computed using average returns converges to

the theoretical measure that is computed based on expected returns. In order to better

focus on our main issue, we do not consider measures that are based on average returns

in this paper.4

It is important to realize that while our definition of theoretical explanatory power is

a reasonable one and used by many others, it is not a perfect one. There exist also other

measures of the theoretical explanatory power of an asset pricing model (see Chen, Kan,

and Zhang (1998) for a discussion of various measures) but to avoid possible confusion,

we will limit our discussion to this particular choice.

B. Explanatory Power of an Asset Pricing Model Across Port-
folios

Portfolios are often used in tests of asset pricing models. In this paper, we limit our

attention to the so-called “equal-number, equal-weighted” portfolios. Namely, the N

firms are sorted by s in ascending order into n portfolios, where n ≥ 2. The n portfolios

are nonoverlapping (i.e., each firm can belong to only one portfolio) and each portfolio

contains (roughly) the same number of firms. Within each portfolio, the returns as well as

the firm-specific variables are equally weighted. Under this scheme of portfolio formation,

the population of the ith portfolio consists of all the firms with s∗i−1 ≤ s < s∗i , where∫ s∗i
−∞ fs(s) = i

n
.5 Conditional on a firm belonging to portfolio i, the joint distribution of

its triplet y is given by

fy(y|s∗i−1 ≤ s < s∗i ) =


fy(y)

P [s∗i−1≤s<s
∗
i ]

= nfy(y) if s∗i−1 ≤ s < s∗i ,

0 otherwise.
(4)

4Conditional on N firms being chosen, Chen, Kan, and Zhang (1998) provide an analysis of the
sampling distribution of R2

R̄m
.

5In practice, the cutoff points of the n portfolios are determined by the firm-specific variables of the
N firms in the sample. We assume N to be large enough so that the population cutoff points are good
approximations of the sample cutoff points.
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Since the portfolio is equally weighted, the theoretical values of the triplet y for portfolio

i are simply their conditional means. Therefore, we have

µip = E[µ|s∗i−1 ≤ s < s∗i ]

= n
∫ s∗i

s∗i−1

∫ ∞
−∞

µfµ,s(µ, s)dµds

= n
∫ s∗i

s∗i−1

E[µ|s]fs(s)ds, (5)

mi
p = E[m|s∗i−1 ≤ s < s∗i ]

= n
∫ s∗i

s∗i−1

∫ ∞
−∞

mfm,s(m, s)dmds

= n
∫ s∗i

s∗i−1

E[m|s]fs(s)ds, (6)

sip = E[s|s∗i−1 ≤ s < s∗i ]

= n
∫ s∗i

s∗i−1

sfs(s)ds. (7)

Similar to the measure of explanatory power for individual firms, we define the

theoretical explanatory power of the asset pricing model on the expected returns of

these n portfolios as the squared correlation between µip and mi
p:

ρ2
µm(n) =

[∑n
i=1(µip − µ̄p)(mi

p − m̄p)
]2

∑n
i=1(µip − µ̄p)2

∑n
i=1(mi

p − m̄p)2
, (8)

where µ̄p =
∑n
i=1 µ

i
p/n = E[µ] and m̄p =

∑n
i=1m

i
p/n = E[m].6

By comparing expressions (2) and (8), we can determine whether the explanatory

power of an asset pricing model is higher or lower for the individual firms than for the

portfolios. From (5) and (6), we can see that the theoretical explanatory power of an

asset pricing model on the n portfolios only depends on: (a) the cross-sectional distribu-

tion of the sorting variable, fs(s), (b) the mean of the expected return conditional upon

the sorting variable, E[µ|s], and (c) the mean of the expected return predicted by the

asset pricing model conditional upon the sorting variable, E[m|s]. In particular, it does

6Implicitly, we assume that mi
p are not constant across portfolios. If µip is constant across portfolios,

ρ2
µm(n) is equal to zero by convention.
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not depend on the joint distribution of fµ,m(µ,m), and hence ρ2
µm at the individual firm

level does not play any role in determining ρ2
µm(n) at the portfolio level.7 The only pos-

sible exception is when we sort the portfolios using s = m. However, even when ρ2
sm = 1,

there is still no obvious relation between ρ2
µm and ρ2

µm(n) since the former depends on

the entire joint distribution fµ,m(µ,m), whereas the latter only depends on the condi-

tional expectation E[µ|m] and the marginal distribution fm(m). Our observation that

ρ2
µm(n) for portfolios has no relation to ρ2

µm for individual firms applies to more general

portfolio formation schemes. For example, s could be a vector of firm-specific variables

and portfolios could be sorted on a multi-dimensional basis using different combinations

of elements of s. Moreover, the portfolios do not have to be equally weighted, and they

do not need to be composed of an equal number of firms.8

The observation that ρ2
µm(n) has no relation to ρ2

µm is surprising. It suggests that

we cannot infer the explanatory power of an asset pricing model for individual firms

(which presumably is what we care about) from empirical studies that only use portfolio

data. The explanatory power of an asset pricing model on the portfolios only depends

on the sorting variable and the sorting variable’s relation to µ and m. Different sorting

schemes could possibly provide a wide range of ρ2
µm(n), and none of them can be relied

upon to provide information about ρ2
µm. In what follows in this subsection, we focus on

the two extreme situations in which the explanatory power of an asset pricing model for

portfolios can appear very high or very low.

Proposition 1 If there exist scalars a and b such that E[µ|s] = a + bE[m|s], then for

7In general, we can write µ = E[µ|s] + e1 and m = E[m|s] + e2 where e1 and e2 are conditionally
independent of s. ρ2

µm(n) depends only on E[µ|s] and E[m|s], but ρ2
µm also depends on e1 and e2. For

any given value of ρ2
µm(n), we can set the covariance matrix of e1 and e2 to make ρµm equal to any

value in (−1, 1). Therefore, ρ2
µm does not tell us anything about ρ2

µm(n).
8If the population has a finite number of firms, then when the number of portfolios is equal to the

number of firms, ρ2
µm(n) = ρ2

µm trivially. In our setup, the population from which our firms come from
has a continuous distribution, so this scenario will not occur even for a countably infinite number of
portfolios.
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all n > 1,

ρ2
µm(n) =

{
1 if b 6= 0,
0 otherwise.

(9)

An important case is when a sorting variable s is chosen so that the pricing error µ−m

for individual firms is conditionally independent of s, i.e., E[µ−m|s] = 0, hence E[µ|s] =

E[m|s] (the condition of Proposition 1 is satisfied with a = 0 and b = 1). Since the

pricing errors of individual firms are uncorrelated with the sorting variable, they averaged

out in portfolios to zero, and the model thus becomes perfect at the portfolio level.

Another important case is when the conditional expectations E[µ|s] and E[m|s] are

linear in s. In this case, the conditional expectations, E[µ|s] and E[m|s], must be linear

to each other. We immediately obtain a corollary.

Corollary 1 Suppose E[µ|s] and E[m|s] are linear in s. We have for all n > 1,

ρ2
µm(n) =

{
1 if σµs 6= 0 and σms 6= 0,
0 otherwise.

(10)

This case is also important because it depends merely on the distribution types without

reference to the pricing errors. For example, if the true expected return, the predicted

expected return, and the firm-specific variable have a multivariate elliptical distribution,

then E[µ|s] and E[m|s] are linear in s.9

Proposition 1 and its corollary suggest that when E[µ|s] and E[m|s] are linear func-

tion of each other, the theoretical explanatory power of an asset pricing model for port-

folios can take only two possible values, zero or one. The case of ρ2
µm(n) = 0 is easy

to understand. It happens when the sorting variable s is completely uncorrelated with

expected returns (or predicted expected returns) of individual firms. In this case, the

resulting portfolios will not display any cross-sectional differences in expected returns

9Note that Corollary 1 only requires E[µ|s] and E[m|s] to be linear in s. It does not require E[µ|m]
to be linear in m (or vice versa), so having multivariate elliptical distribution is sufficient but not
necessary for Corollary 1 to hold. Furthermore, the condition that E[µ|s] and E[m|s] are linear in s
can be relaxed to the condition that there exists a monotonic function u = ψ(s) such that E[µ|u] and
E[m|u] are linear in u. This is so because sorting by s is the same as sorting by u.
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(or predicted expected returns). Therefore, regardless of how good the asset pricing

model is, it has no explanatory power for portfolios.

In practice, it is most likely that one would sort firms into portfolios using a firm-

specific variable that would have at least some correlation with the true expected return

and possibly some correlation with the predicted expected return. In this case, Propo-

sition 1 suggests that as long as E[µ|s] and E[m|s] are linear functions of each other,

the asset pricing model will always perform perfectly for portfolios, regardless of the

number of portfolios used, and regardless of how poorly the asset pricing model actually

performs for individual firms.10 This will occur even when the asset pricing model alone

has no explanatory power on the expected returns of individual firms, i.e., ρ2
µm = 0.

Proposition 1 and its corollary are disturbing. They imply that finding an asset

pricing model that performs perfectly for portfolios says nothing about how that asset

pricing model performs for individual firms. The result that there exist some portfolios

on which a wrong asset pricing model can look good is not entirely new. However,

the implications of our Proposition 1 and its corollary are more dramatic than the

implications of other studies. Proposition 1 and its corollary suggest that one does not

need to know the pricing errors of an asset pricing model in order to find portfolios on

which the asset pricing model will have perfect explanatory power. All that is needed

is to sort firms using a firm-specific variable s such that E[µ|s] and E[m|s] are linear

functions of each other. The asset pricing model will then perform perfectly on any

number of portfolios that are formed based on such a firm-specific variable.

Proposition 1 also provides clues regarding the types of situations in which an asset

pricing model would have poor explanatory power on a set of portfolios, depending on

the nature of the sorting variable s. If E[µ|s] and E[m|s] are not highly correlated

with each other, portfolios formed based on such a sorting variable s have low ρ2
µm(n).

10ρ2
µm(n) = 1 does not imply µip = mi

p. However, to the extent that we can find a model the
predictions of which are perfectly correlated with expected returns, it is not difficult to impose a linear
transformation on it to make µip = mi

p.
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However, the poor performance of the asset pricing model on these portfolios is only due

to the choice of the sorting variable and says nothing about how good or how bad the

asset pricing model actually is for individual firms.

Empirically, even when the conditions for Proposition 1 are met, an asset pricing

model typically does not provide perfect explanatory power on the average returns of

the portfolios. This may be because average returns are noisy measures of expected

returns or because the total number of firms in the sample, N , or because the number of

firms in each portfolio, N/n, is not large enough to provide us a good approximation of

the population. In Section III, we provide simulation evidence to suggest that the second

reason is likely to be relatively unimportant in most empirical studies. In Section IV,

we provide a formal statistical test of the two hypotheses ρ2
µm(n) = 0 and ρ2

µm(n) = 1

using average returns.

II. Explanatory Power of an Asset Pricing Model

for Individual Firms within a Portfolio

There are cases (see, for example Daniel and Titman (1997)) in which researchers first

sort their sample firms into portfolios and then examine the validity of the asset pricing

model using firms within each portfolio. Berk (2000) provides such an analysis and

suggests that this procedure is biased in favor of rejecting the asset pricing model under

consideration when the sorting variable is correlated with expected returns. In this

subsection, we refine his analysis and provide conditions under which his claim is true.

If we limit our attention to firms in portfolio i, then the theoretical explanatory

power of an asset pricing model for firms in this portfolio is given by

ρ2
µm·i =

σ2
µm·i

σ2
µ·iσ

2
m·i
, (11)

where

σ2
µ·i = E[(µ− µip)2|s∗i−1 ≤ s < s∗i ], (12)
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σ2
m·i = E[(m−mi

p)
2|s∗i−1 ≤ s < s∗i ], (13)

σµm·i = E[(µ− µip)(m−mi
p)|s∗i−1 ≤ s < s∗i ]. (14)

Since, conditional on s∗i−1 ≤ s < s∗i , the joint density of µ and m is given by

fµm·i(µ,m) = n
∫ s∗i

s∗i−1

fy(µ,m, s)ds, (15)

we can rewrite the expressions above as

σ2
µ·i = n

∫ s∗i

s∗i−1

∫ ∞
−∞

(µ− µip)2fµ,s(µ, s)dµds, (16)

σ2
m·i = n

∫ s∗i

s∗i−1

∫ ∞
−∞

(m−mi
p)

2fm,s(m, s)dmds, (17)

σµm·i = n
∫ s∗i

s∗i−1

∫ ∞
−∞

∫ ∞
−∞

(µ− µip)(m−mi
p)fy(µ,m, s)dµdmds. (18)

Berk (2000) suggests that as long as s can generate cross-sectional differences in ex-

pected returns of the portfolios, then by sorting firms into portfolios, the cross-sectional

variations of expected returns within the portfolios are reduced and hence he claims11

ρ2
µm·i < ρ2

µm, i = 1, 2, . . . , n. (19)

For the case when n is large enough, he further claims that

ρ2
µm·i < ε, i = 1, 2, . . . , n, (20)

for any arbitrary small ε > 0. Based on these claims, he suggests that the explanatory

power of an asset pricing model within the firms of a portfolio is a decreasing function

of the number of portfolios, and that ρ2
µm·i understates the true explanatory power of an

asset pricing model.

We first show that neither claims is true in general. For example, if µ = m+ s where

m and s are independent, then ρ2
µm < 1 for the individual firms. However, if we sort the

11Berk’s (2000) definition of explanatory power of an asset pricing model differs slightly from ours
in that it is the cross-sectional R2 between average returns and the expected returns predicted by the
asset pricing model. However, it is clear from his analysis that the use of expected returns instead of
average returns would not alter his conclusions at all.
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firms into portfolios based on s, then there is little variation of s within each portfolio.

Consequently, µ and m are almost perfectly correlated within the firms of each portfolio

as the number of portfolios increases, and we have ρ2
µm·i ≈ 1 for every portfolio. So

the explanatory power of an asset pricing model within each portfolio does not have

to be lower than its explanatory power for the entire population of firms. Even in the

extreme case when the sorting variable is perfectly correlated with true expected returns,

these two claims are not always true. For example, if s = µ and it has an exponential

distribution, then it is easy to show that for the last portfolio, we have σ2
µ·n = σ2

µ and its

value is independent of n.12 If the pricing error α = µ−m is independent of µ, then we

have limn→∞ ρ
2
µm·n = ρ2

µm, so the explanatory power of the asset pricing model within

the last portfolio does not go to zero and always stays the same regardless of how many

portfolios are formed.13

The reason why ρ2
µm·i can be greater than ρ2

µm can be understood by examining the

familiar variance and covariance decomposition formulae,14

1

n

n∑
i=1

σ2
µ·i = σ2

µ −
1

n

N∑
i=1

(µp − µ̄p)2 < σ2
µ, (21)

1

n

n∑
i=1

σ2
m·i = σ2

m −
1

n

N∑
i=1

(mp − m̄p)
2 < σ2

m, (22)

1

n

n∑
i=1

σµm·i = σµm −
1

n

N∑
i=1

(µp − µ̄p)(mp − m̄p). (23)

Therefore, sorting will on average reduce the variation of expected returns and predicted

expected returns within a portfolio. Since the variance terms σ2
µ·i and σ2

m·i are in the

12This result follows from the familiar fact that if X has an exponential distribution, then P [X >
a+ b|X > a] = P [X > b] and hence the variance of the truncated exponential distribution is the same
as the variance of the unconditional distribution.

13Under the same conditions, but with µ having a t-distribution, we have limn→∞ ρ2
µm·1 =

limn→∞ ρ2
µm·n = 1 and the asset pricing model has almost perfect explanatory power within the first

and the last portfolios when n is large enough.
14The decomposition formulae state that for random variables X, Y , and Z, we have

E[Var[X|Z]] = Var[X]−Var[E[X|Z]],

E[Cov[X,Y |Z]] = Cov[X,Y ]− Cov[E[X|Z], E[Y |Z]].
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denominator of ρ2
µm·i, their reduction will actually increase ρ2

µm·i. The key question is

whether σ2
µm·i will fall enough to cause ρ2

µm·i to decrease because of sorting. From (23),

we can see that it depends on the cross-sectional covariance between µp and mp. Even

though we assume this term to have the same sign as σµm and both of them are positive,

it only guarantees the average covariance between µ and m within the portfolios to be

less than σµm. It does not guarantee the average σ2
µm·i to be less than σ2

µm. This is

so because the σµm·i could all be large but have different signs for different portfolios.

Therefore, unlike the average σ2
µ·i and σ2

m·i, the average σ2
µm·i does not have to decrease

with sorting.

Having shown that Berk’s claims are not true in general, we proceed to characterize

the conditions for which his claims are true. Analytical expressions for the general

case are difficult to derive. Moreover, for any arbitrary distribution of y, its mean

and variance-covariance matrix are not sufficient to characterize the entire distribution.

Therefore, we focus on the case when y has a multivariate elliptical distribution in the

following proposition.15 By sacrificing generality, we are able to provide analytical results

as well as better intuition.

Proposition 2 If y has a multivariate elliptical distribution with finite mean and vari-

ance, then

ρ2
µm·i =

[ρµm − ρµsρmsh(i)]2

[1− ρ2
µsh(i)][1− ρ2

msh(i)]
, (24)

where

h(i) = 1−

∫ s∗i
s∗i−1

n
(
s−sip
σs

)2

fs(s)ds∫ s∗i
s∗i−1

ng(s)fs(s)ds
(25)

and g(s) is a positive function which depends on the class of the elliptical distribution.

15y is said to have an elliptical distribution if fy(y) ∝ |Σy|−
1
2ϕ((y−E[y])′Σ−1

y (y−E[y])), where ϕ(u)
is a positive and nonincreasing function of u for u ≥ 0. See Kelker (1970) for a discussion of various
properties of multivariate elliptical distribution. For Proposition 2, all we need is that there exists a
monotonic function u = ψ(s) such that (µ,m, u) has a multivariate elliptical distribution.
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For the special case that y has a multivariate normal distribution, we have g(s) = 1 and

h(i) = n2 [φ(ci−1)− φ(ci)]
2 − n [ci−1φ(ci−1)− ciφ(ci)] , (26)

where φ(·) is the density function of the standard normal distribution and ci = Φ−1(i/n),

with Φ−1(·) being the inverse cumulative density function of a standard normal distribu-

tion.

Proposition 2 suggests that the explanatory power of an asset pricing model within a

portfolio depends on h(i), which is determined by the distribution of s as well as the

number of portfolios. In addition, it also depends on ρµm, ρµs, and ρms. Therefore, it

is not only the explanatory power of the asset pricing model for individual firms that

matters. The sorting variable also matters in determining the performance of an asset

pricing model within the firms of a portfolio. We first consider several special cases:

1. ρms = 0. In this case, we have

ρ2
µm·i =

ρ2
µm

1− ρ2
µsh(i)

.

For the case of the elliptical distribution, it can be shown that 0 < h(i) < 1.16

Therefore, as long as ρµs 6= 0, we have ρ2
µm·i > ρ2

µm and the explanatory power of

an asset pricing model within each portfolio is always greater than its explanatory

power on all the firms in the population. While sorting may reduce the cross-

sectional variation of expected returns within a portfolio, it does not reduce the

covariance between µ and m enough for ρµm·i to decrease. Similarly, if ρµs = 0,

then ρ2
µm·i ≥ ρ2

µm.

2. ρµm = 0. In this case, as long as ρµs 6= 0 and ρms 6= 0, we have

ρ2
µm·i =

ρ2
µsρ

2
msh(i)2

[1− ρ2
µsh(i)][1− ρ2

msh(i)]
> 0

16Proof is available upon request.
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and the asset pricing model will always have some explanatory power within the

firms in each portfolio, even though the asset pricing model alone is completely

incapable of explaining the expected returns of the firms in the population. Once

again, sorting can actually make a poor asset pricing model look good within the

portfolios.

3. ρµs = ±1. In this case, ρ2
µm = ρ2

ms and

ρ2
µm·i =

ρ2
µm [1− h(i)]

1− ρ2
µmh(i)

.

Therefore, we have ρ2
µm·i < ρ2

µm for all the portfolios if ρ2
µm 6= 1. This example was

used by Berk (2000) to show that as long as an asset pricing model is not perfect,

its explanatory power is lower within portfolios than for individual firms in the

population. However, as shown earlier, this is not always true outside of the class

of the multivariate elliptical distribution. Therefore, in general, sorting does not

always reduces ρ2
µm·i for every portfolio even when the sorting variable is perfectly

correlated with expected returns.

In general, when the number of portfolios is finite, ρ2
µm·i varies across portfolios and hence

comparison between ρ2
µm and ρ2

µm·i is somewhat difficult. However, as the number of

portfolios n goes to infinity,17 ρ2
µm·i converges to a common limit for most of the portfolios

and hence we can easily address the question as to whether sorting will eventually

improve or reduce the explanatory power of an asset pricing model. This result is given

in the following proposition.

Proposition 3 Suppose y has a multivariate elliptical distribution with finite mean and

variance. For any ε1 > 0 and ε2 > 0, there exists n0 such that for all n > n0, we have

h(i) > 1− ε1 for at least n(1− ε2)−2 portfolios. For the case where y has a multivariate

17We can let n go to infinity because the population is characterized by a continuous distribution and
has an uncountably infinite number of firms.
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normal distribution, we have the stronger result that h(i) > 1− ε1 for all portfolios when

n > n0.

Since h(i) ≤ 1, Proposition 3 suggests that for most of the portfolios, we have h(i)→ 1

and

lim
n→∞

ρ2
µm·i =

(ρµm − ρµsρms)2

(1− ρ2
µs)(1− ρ2

ms)
≡ ρ2

µm|s. (27)

Proposition 3 does not suggest that all portfolios will have ρ2
µm·i approaching to this

limit (except for the case of a normal distribution), but rather a majority of them will.

However, as n→∞, the set of portfolios that does not approach this limit is of measure

zero.18 The limit ρ2
µm|s is the familiar measure of partial coefficient of determination.

It measures the squared correlation of µ and m, conditional upon a particular value of

the sorting variable s. For the multivariate elliptical distribution, this partial coefficient

of determination is independent of s. As n → ∞, the cutoff point s∗i−1 converges to

s∗i for most of the portfolios. Therefore, for most of the portfolios, the within-portfolio

explanatory power of the asset pricing model converges to this common limit of ρ2
µm|s.

From the expression of ρ2
µm|s, unless the sorting variable is perfectly correlated with

expected returns or ρµm = ρµsρms,
19 sorting does not completely destroy the explanatory

power of an asset pricing model within the portfolios even when the number of portfolios

goes to infinity. We therefore focus on the question of when does increasing the number

of portfolios reduce the explanatory power of an asset pricing model within the portfolios.

The following proposition provides the condition for this to happen.

Proposition 4 Suppose y has a multivariate elliptical distribution with a finite mean

18For example, if y has a multivariate t-distribution with ν (ν > 2) degrees of freedom, we have
limn→∞ h(1) = limn→∞ h(n) = ν−2

ν−1 < 1. Sufficient conditions for all the portfolios to approach the

limit ρ2
µm|s are available upon request.

19When µ and s are perfectly correlated, then, conditional upon s, there is no cross-sectional variation
in µ and hence ρµm|s = 0 by convention.

16



and variance. For fixed ρµs and ρms, we have

ρ2
µm|s ≤ ρ2

µm if ρµm is between ρµsρms
1±d ,

ρ2
µm|s > ρ2

µm if ρµm is between ρµsρms ± d but not between ρµsρms
1±d ,

where d =
[
(1− ρ2

µs)(1− ρ2
ms)

] 1
2 .

Proposition 4 suggests that if we increase the number of portfolios, the explanatory

power of an asset pricing model within the portfolios could be eventually higher or lower

than the explanatory power for the firms in the entire population. Which is the case

depends crucially on ρµm, ρµs, and ρms. Simply because µ and s are highly correlated

does not guarantee that an asset pricing model will do a worse job within portfolios

than for the entire population. In Figure 1, we plot the feasible regions of ρµm and

ρms when ρµs = 0.9. The grey region is the region where ρ2
µm ≥ ρ2

µm|s and the dark

region is the region where ρ2
µm < ρ2

µm|s. Even though µ and s are highly correlated with

each other in this case, we can still see that there is quite a wide range of ρµm and ρms

that will lead to ρ2
µm < ρ2

µm|s. Without knowing the exact values of ρµm, ρµs, and ρms,

we cannot conclude that sorting firms into a large number of portfolios makes an asset

pricing model look bad within the portfolios.

III. Simulation Evidence

In the previous section, we derived the theoretical explanatory power of an asset pricing

model across and within portfolios but only for the population. In empirical studies, we

can only use a finite number of firms in our sample, which raises the question of how

relevant are our theoretical results in practice. We address this question by simulation.

The basic design of our simulation experiment is as follows. We sample 9000 firms from

a population that has a multivariate normal distribution for the triplet (µ,m, s). The

size of our sample roughly corresponds to the total number of firms listed on the NYSE,

AMEX and NASDAQ at the end of 1997. For the marginal distributions, we assume
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that both µ and m have a mean of 1%/month and a standard deviation of 0.2%/month.

Under this assumption, 99% of the firms have expected return and predicted expected

return in the range of 0.48%/month to 1.52%/month.20 We assume that the sorting

variable s has a mean of 1.5 and a standard deviation of 2.5. We interpret s as the

natural logarithm of market capitalization (in billions of dollars) of common equity.

With this assumption, 99% of the firms have market capitalization falling within the

range of $7.2 million to $281 billion. We have two sets of simulations. In both sets

of simulations, we assume ρµs = −0.8 and ρms = −0.5, so the expected return and

the predicted expected return are assumed to be negatively correlated with the sorting

variable. The choice of negative values for ρµs and ρms is motivated by the observation

that small firms seem to have higher average returns as well as higher market betas.

The only difference between the two sets of simulations is that we assume ρµm = 0 for

the first set of simulations and ρµm = 0.8 for the second set. Therefore, in the first set

of simulations, the asset pricing model alone is completely incapable of explaining the

expected returns of individual firms whereas in the second set of simulations, the asset

pricing model provides strong explanatory power on the expected returns of individual

firms. In Figures 2 and 3, we plot the variables against each other for both sets of

simulations. Since the 9000 firms are only a sample from the population, the sample

correlation coefficients are close, but not equal to their population counterparts.

For each set of simulations, we sort the firms into n = 10, 25, 50, and 100 portfolios

based on s, each with an equal number of firms. We then form equally weighted as well

as value-weighted portfolios (assuming s is the natural logarithm of size) to examine

the explanatory power of the asset pricing model across these portfolios. In Panel A of

Table I, we present the sample explanatory power of the asset pricing model, R2
µm(n),

across different sets of portfolios. To help us see the relation between µip and mi
p of these

portfolios, we also provide a scatter plot of µip against mi
p for the cases of 10 and 100

equally weighted and value-weighted portfolios in Figures 4 and 5.

20Alternatively, by dropping the “%/month,” we can treat m as the CAPM beta.
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Table I about here

From both plots as well as Panel A of Table I, we can observe that for both equally

weighted or value-weighted portfolios, the asset pricing model provides very strong ex-

planatory power across all sets of portfolios. Although the asset pricing model is com-

pletely incapable of explaining expected returns for individual firms in the first set of

simulations, its deficiency is hardly detectable at the portfolio level. Compared with

the very good asset pricing model in the second set of simulations, the R2
µm(n) at the

portfolio level only displays minor differences. A researcher looking at these portfolios

will find it difficult to distinguish the good model from the bad model. As n increases,

R2
µm(n) moves further away from its theoretical value of one. This is so because when n

is large, the number of firms in each portfolio is not large enough for the average pricing

errors to converge to zero. However, even for n = 100, the bad asset pricing model

still explains more than 97% of the cross-sectional variation of the expected returns for

portfolios. With this kind of consistent performance by the bad asset pricing model

across different sets of portfolios, one would be easily tempted to conclude that the bad

asset pricing model is really a good model. As we have shown, the truth is that R2
µm(n)

for portfolios tells us absolutely nothing about ρ2
µm for individual firms.

In Panel B of Table I, we present the sample explanatory power of the two asset

pricing models within the n portfolios, R2
µm·i. Since there are many portfolios, instead

of presenting all of the R2
µm·i, we simply present the minimum, maximum and average

R2
µm·i of the n portfolios. For the first set of simulations, we can see that the asset

pricing model performs substantially better within the portfolios than for the entire

sample. In all cases, we find that the average R2
µm·i is always greater than 50%. From

the within-portfolio explanatory power numbers, it would be difficult to infer that the

bad asset pricing model is in fact completely incapable of explaining expected returns

for individual firms. For the second set of simulations, the numbers for the within-

portfolio explanatory power of the asset pricing model are mostly lower than that for
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the population (ρ2
µm = 0.64). However, the average R2

µm·i stays approximately the same

as n increases, showing no sign of converging to zero.21 Although ρµm plays a role in

determining ρ2
µm|s, we still could not use R2

µm·i to obtain a meaningful inference about

ρ2
µm. For example, even though the ρ2

µm is very different for the two sets of simulations,

the average R2
µm·i for the first set of simulations is approximately the same or larger

than the average R2
µm·i for the second set of simulations. Therefore, just like the sample

explanatory power of an asset pricing model across portfolios, the sample explanatory

power of an asset pricing model within portfolios cannot be used to evaluate asset pricing

models.

IV. Concluding Remarks

The message of this paper is clear. The explanatory power of an asset pricing model

across and within portfolios does not provide useful information about the explanatory

power of the asset pricing model for individual firms. In the across portfolios case, the

only relevant factor is the sorting variable. The explanatory power of the asset pricing

model is only a function of the sorting variable and its relation to the expected return

and the expected return predicted by the asset pricing model. The joint distribution

of the expected return and the predicted expected return plays no role in determining

the explanatory power of the asset pricing model at the portfolio level. For the within

portfolios case, while the correlation between expected return and predicted expected

return plays a role in determining the explanatory power of the asset pricing model within

portfolios, the correlations between the sorting variable and the expected and predicted

expected returns also play important roles. Depending on the correlations between the

three variables, the explanatory power of an asset pricing model for individual firms

can be higher or lower than its explanatory power within the portfolios. Therefore,

21From (27), the theoretical limit for the within-portfolio explanatory power in the second set of
simulations is ρ2

µm|s = 0.593.
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neither the range nor the average explanatory power of an asset pricing model within

the portfolios are good indicators of the explanatory power of the asset pricing model

for individual firms.

The implications of our results are disturbing. Taken at face value, they suggest that

we learn nothing from empirical studies that use portfolios, and that we should never use

portfolios in empirical asset pricing studies since they provide no meaningful information.

Our view is far less pessimistic. There are merits to using portfolios, and researchers

will continue to use portfolios in empirical studies in the foreseeable future. While there

are problems with using portfolios, there are also problems with using individual firms.

The important task for finance researchers is to find ways to mitigate and address these

problems.

While we do not have perfect solutions to these problems, we can make one sugges-

tion. It is that we should not simply look at ρ2
µm(n) and ρ2

µm·i as the only measures of

explanatory power of an asset pricing model. Specifically, many theoretical asset pric-

ing models make predictions about the magnitude of the coefficients relating expected

returns to risk measures. Imposing additional restrictions like this will help us detect

misspecifications even at the portfolio level. However, this will put empirically motivated

models at an unfair advantage since they only suggest variables that are correlated with

expected returns, without making predictions about the magnitude or even the sign of

their slope coefficients.

Given the importance of portfolios in empirical asset pricing studies, we hope that

future research will continue to address the important issue of how portfolios should be

formed, and we caution about the proper interpretation of empirical results that use

portfolios.
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Appendix

Proof of Proposition 1: Substituting E[µ|s] = a + bE[m|s] in the definition of mi
p,

we obtain µip = a + bmi
p. As long as b 6= 0, µip is a linear function of mi

p and we

have ρ2
µm(n) = 1. Otherwise, if b = 0, µip are constant across portfolios and we have

ρ2
µm(n) = 0. This completes the proof.

Proof of Proposition 2: We start off the proof by deriving the expression of σµm·i for the

case of a multivariate elliptical distribution. From (18), we have

σµm·i = n
∫ s∗i

s∗i−1

∫ ∞
−∞

∫ ∞
−∞

(µ− µip)(m−mi
p)fy(µ,m, s)dµdmds

=
∫ s∗i

s∗i−1

[∫ ∞
−∞

∫ ∞
−∞

(µ− E[µ|s] + E[µ|s]− µip)(m− E[m|s] + E[m|s]−mi
p)

fµm|s(µ,m|s)dµdm
]
nfs(s)ds

=
∫ s∗i

s∗i−1

[∫ ∞
−∞

∫ ∞
−∞

(µ− E[µ|s])(m− E[m|s])fµm|s(µ,m|s)dµdm
]
nfs(s)ds

+
∫ s∗i

s∗i−1

[∫ ∞
−∞

∫ ∞
−∞

(µ− E[µ|s])(E[m|s]−mi
p)fµm|s(µ,m|s)dµdm

]
nfs(s)ds

+
∫ s∗i

s∗i−1

[∫ ∞
−∞

∫ ∞
−∞

(E[µ|s]− µip)(m− E[m|s])fµm|s(µ,m|s)dµdm
]
nfs(s)ds

+
∫ s∗i

s∗i−1

[∫ ∞
−∞

∫ ∞
−∞

(E[µ|s]− µip)(E[m|s]−mi
p)fµm|s(µ,m|s)dµdm

]
nfs(s)ds.

The expression inside the brackets of the first term is the conditional covariance between

µ and m. Under the assumption that y has a multivariate elliptical distribution, it is

equal to (see, for example, Theorem 1.5.4 of Muirhead (1982))

g(s)

(
σµm −

σµsσms
σ2
s

)
,

for some positive function g(s). The second term is equal to zero because E[m|s]−mi
p

is not a function of µ and m; it can therefore be taken out of the brackets. Similarly, the

third term is also equal to zero. For the last term, we take (E[µ|s]− µip)(E[m|s]−mi
p)

outside of the brackets and it becomes∫ s∗i

s∗i−1

(E[µ|s]− µip)(E[m|s]−mi
p)nfs(s)ds.
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Under the multivariate elliptical distribution assumption, we have

E[µ|s] = E[µ] +
σµs
σ2
s

(s− E[s])

=

(
E[µ]− σµs

σ2
s

E[s]

)
+
σµs
σ2
s

s. (A1)

Substituting (A1) into (5), we have

µip = n
∫ s∗i

s∗i−1

[(
E[µ]− σµs

σ2
s

E[s]

)
+
σµs
σ2
s

s

]
fs(s)ds

=

(
E[µ]− σµs

σ2
s

E[s]

)
+
σµs
σ2
s

sip, (A2)

where the second equality follows from the fact that∫ s∗i

s∗i−1

fs(s)ds =
1

n
. (A3)

From (A1) and (A2), we have

E[µ|s]− µip =
σµs
σ2
s

(s− sip).

Similarly,

E[m|s]−mi
p =

σms
σ2
s

(s− sip).

Substituting these expressions back, we have

σµm·i =

(
σµm −

σµsσms
σ2
s

)∫ s∗i

s∗i−1

ng(s)fs(s)ds+

(
σµsσms
σ2
s

)∫ s∗i

s∗i−1

n

(
s− sip
σs

)2

fs(s)ds

=

(∫ s∗i

s∗i−1

ng(s)fs(s)ds

)[
σµm −

(
σµsσms
σ2
s

)
h(i)

]
. (A4)

Using a similar proof, we can show that

σ2
µ·i =

(∫ s∗i

s∗i−1

ng(s)fs(s)ds

)[
σ2
µ −

(
σ2
µs

σ2
s

)
h(i)

]
, (A5)

σ2
m·i =

(∫ s∗i

s∗i−1

ng(s)fs(s)ds

)[
σ2
m −

(
σ2
ms

σ2
s

)
h(i)

]
. (A6)

With these expressions, ρ2
µm·i follows trivially from the definition of the correlation co-

efficient. For the case of multivariate normality, g(s) = 1 and we can verify that the
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denominator of h(i) is equal to one using (A3). The integral in the numerator of h(i) is

the variance of a doubly truncated normal distribution. Using (13.135) of Johnson and

Kotz (1994), we have

∫ s∗i

s∗i−1

n

(
s− sip
σs

)2

fs(s)ds = 1− n2 [φ(ci−1)− φ(ci)]
2 + n [ci−1φ(ci−1)− ciφ(ci)] , (A7)

where ci = (s∗i − E[s])/σs = Φ−1(i/n). This completes the proof.

Proof of Proposition 3: Without loss of generality, we assume E[s] = 0 and σs = 1. For

any ε2 > 0, we can find an M > 0 such that P [−M < s < M ] > 1 − ε2. Therefore,

allowing for possible rounding, there will be at least n(1− ε2)− 2 portfolios that consist

of firms with s ∈ (−M,M). Define f ∗ = min−M≤s≤M fs(s) and g∗ = min−M≤s≤M g(s).

Let n0 = 1
f∗
√
g∗ε1

, then for n > n0, we have

(s∗i − s∗i−1)f ∗ ≤ 1

n
<

1

n0

= f ∗
√
g∗ε1,

and hence (s∗i − s∗i−1)2 < g∗ε1. When n > n0, for every portfolio that consists of firms

with s ∈ (−M,M), we have

h(i) = 1−
∫ s∗i
s∗i−1

n(s− sip)2fs(s)ds∫ s∗i
s∗i−1

ng(s)fs(s)ds

> 1−
∫ s∗i
s∗i−1

n(s∗i − s∗i−1)2fs(s)ds∫ s∗i
s∗i−1

ng∗fs(s)ds

> 1−
∫ s∗i
s∗i−1

ng∗ε1fs(s)ds∫ s∗i
s∗i−1

ng∗fs(s)ds

= 1− ε1.

For the case of normality, we need to show that the portfolios of firms with s /∈ (−M,M)

also have h(i) → 1. By symmetry, we only need to show that the portfolios with

s ∈ (−∞,−M ] have h(i) → 1. Denote v1, v2, . . . , vk as the variance of s for the first to

the kth portfolio that consists of firms with s ∈ (−∞,−M ]. For the case of normality,

g(s) = 1 and h(i) = 1 − vi, so we only need to show that limn→∞ vi = 0 for this set
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of portfolios. Since the normal density is increasing over (−∞,−M ], it is easy to show

that v1 ≥ v2 · · · ≥ vk, and hence it suffices to show that limn→∞ v1 = 0. Denoting the

upper cutoff point of s for the first portfolio as c1 and Φ(·) as the cumulative density

function of the standard normal distribution, we have

lim
n→∞

v1 = lim
c1→−∞

1− c1φ(c1)

Φ(c1)
−
[
φ(c1)

Φ(c1)

]2

= lim
c1→−∞

Φ(c1)2 − c1φ(c1)Φ(c1)− φ(c1)2

Φ(c1)2

= lim
c1→−∞

1

c2
1 − 1

= 0,

where the last line is obtained by repeated use of L’Hôpital’s rule. This completes the

proof.

Proof of Proposition 4: We first establish the feasible range of ρµm for given values of

ρµs and ρms. It is well known that the necessary and sufficient condition for a matrix

to be positive semidefinite is that all of its principal minors are nonnegative. For a 3

by 3 correlation matrix, this condition is equivalent to requiring its determinant to be

nonnegative. The determinant of the correlation matrix of y is given by

−ρ2
µm + 2ρµsρmsρµm + (1− ρ2

µs − ρ2
ms), (A8)

which is a quadratic equation in ρµm. For it to be nonnegative, ρµm must lie between

the roots of the quadratic equation, which are

ρµsρms ±
(
ρ2
µsρ

2
ms + 1− ρ2

µs − ρ2
ms

) 1
2 = ρµsρms ± d. (A9)

For ρ2
µm ≥ ρ2

µm|s, we need

d2ρ2
µm − (ρµm − ρµsρms)2 ≥ 0

⇒ (d2 − 1)ρ2
µm + 2ρµsρmsρµm − ρ2

µsρ
2
ms ≥ 0. (A10)

The left hand side of the equation is also a quadratic equation in ρµm and it will be

nonnegative if ρµm is between the two roots:

−ρµsρms ± ρµsρmsd
d2 − 1

=
ρµsρms
1± d

. (A11)
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Since 0 ≤ d ≤ 1, these two roots fall inside the feasible range of ρµm. This completes

the proof.
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Figure 1: Feasible Regions of ρµm and ρms when ρµs = 0.9
The figure presents the feasible regions of ρms and ρµm when ρµs = 0.9. The grey region shows the

combinations of ρµm and ρµs that lead to ρ2
µm|s ≤ ρ2

µm, and the dark region shows the combinations

of ρµm and ρµs that lead to ρ2
µm|s > ρ2

µm. µ is the expected return of a firm, m is its expected return

predicted by an asset pricing model, and s is the value of a firm-specific variable which is used to sort

firms into portfolios. ρxy denotes correlation coefficients between variables x and y, and ρ2
µm|s is the

partial coefficient of determination between µ and m, conditional on the firm-specific variable being

equal to s. ρ2
µm|s measures the explanatory power of an asset pricing model within a portfolio, when

the number of portfolios increases to infinity.
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Figure 2: Scatter Plots of Expected Returns, Predicted Expected Returns
and Sorting Variables of 9000 Firms for the Bad Model
The figure presents scatter plots of expected return (µ) vs. predicted expected return (m), expected

return vs. sorting variable (s), and predicted expected return vs. sorting variable (s) for a sample of

9000 firms. The firms are drawn from a population where the triplet (µ,m, s) is multivariate normally

distributed with ρµm = 0, ρµs = −0.8, and ρms = −0.5.
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Figure 3: Scatter Plots of Expected Returns, Predicted Expected Returns
and Sorting Variables of 9000 Firms for the Good Model
The figure presents scatter plots of expected return (µ) vs. predicted expected return (m), expected

return vs. sorting variable (s), and predicted expected return vs. sorting variable for a sample of

9000 firms. The firms are drawn from a population where the triplet (µ,m, s) is multivariate normally

distributed with ρµm = 0.8, ρµs = −0.8, and ρms = −0.5.
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Figure 4: Scatter Plots of Expected Returns and Predicted Expected Returns
for 10 and 100 Equally Weighted and Value-Weighted Portfolios for the Bad
Model
The figure presents scatter plots of expected portfolio return (µp) vs. predicted expected portfolio

return (mp) for 10 and 100 equally weighted and value-weighted portfolios. The portfolios are formed

based on 9000 firms which are drawn from a population where the expected return (µ), the predicted

expected return (m), and the sorting variable (s) of the individual firms have a multivariate normal

distribution with ρµm = 0, ρµs = −0.8, and ρms = −0.5. The 9000 firms are sorted into 10 and 100

portfolios based on s, and each portfolio has the same number of firms.
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Figure 5: Scatter Plots of Expected Returns and Predicted Expected Returns
for 10 and 100 Equally Weighted and Value-Weighted Portfolios for the Good
Model
The figure presents scatter plots of expected portfolio return (µp) vs. predicted expected portfolio

return (mp) for 10 and 100 equally weighted and value-weighted portfolios. The portfolios are formed

based on 9000 firms which are drawn from a population where the expected return (µ), the predicted

expected return (m), and the sorting variable (s) of the individual firms have a multivariate normal

distribution with ρµm = 0.8, ρµs = −0.8, and ρms = −0.5. The 9000 firms are sorted into 10 and 100

portfolios based on s, and each portfolio has the same number of firms.
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Table I
Explanatory Power of Asset Pricing Models Across and Within Portfolios

Panel A of the table presents the sample explanatory power of the asset pricing models across different
sets of portfolios (R2

µm(n)). The portfolios are formed based on 9000 firms which are drawn from a
population where the expected return (µ), the predicted expected return (m), and the sorting variable
(s) of individual firms have a multivariate normal distribution with ρµs = −0.8 and ρms = −0.5. Two
sets of results are reported: one under the assumption that ρµm = 0 and the other under the assumption
that ρµm = 0.8. The 9000 firms are sorted into n portfolios based on s, and each portfolio has the same
number of firms. We present the cases with n = 10, 20, 50, and 100. For each case, we present the
sample explanatory power of the asset pricing model across the equally weighted and the value-weighted
portfolios. Panel B of the table presents the sample explanatory power of the asset pricing models within
different sets of portfolios (R2

µm·i) in Panel A. For each case, we present the minimum, the maximum,
and the average sample explanatory power of the asset pricing models within the n portfolios.

Panel A: Explanatory Power of Asset Pricing Models Across Portfolios

R2
µm(n)

ρ2
µm = 0 (Bad Model) ρ2

µm = 0.64 (Good Model)

Equally Value- Equally Value-
n Weighted Weighted Weighted Weighted

10 0.995 0.994 0.999 0.999
20 0.994 0.993 0.998 0.998
50 0.989 0.988 0.996 0.996
100 0.976 0.975 0.991 0.991

Panel B: Explanatory Power of Asset Pricing Models Within Portfolios

Distribution of R2
µm·i

ρ2
µm = 0 (Bad Model) ρ2

µm = 0.64 (Good Model)

n Minimum Maximum Average Minimum Maximum Average

10 0.276 0.627 0.523 0.539 0.611 0.584
20 0.318 0.662 0.570 0.504 0.628 0.583
50 0.278 0.690 0.590 0.469 0.682 0.583
100 0.297 0.738 0.596 0.428 0.727 0.583

34


