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We propose an optimal combining strategy to mitigate estimation risk for the popular mean-variance portfolio

choice problem in the case without a risk-free asset. We find that our strategy performs well in general, and

it can be applied to known estimated rules and the resulting new rules outperform the original ones. We

further obtain the exact distribution of the out-of-sample returns and explicit expressions of the expected
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the performance but also analytical insights into the portfolio construction.
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1. Introduction

Since Markowitz’s (1952) seminal paper, the mean-variance framework has been the major model

used in practice in asset allocation and active portfolio management.1 One main reason is that

many implementation issues, such as factor exposures and trading constraints, can be easily accom-

modated within this framework, which allows for analytical insights and fast numerical solutions.

Another reason is that the intertemporal hedging demand is typically found to be small. However,

to implement the mean-variance optimal portfolio, we need to know the true values of asset means,

variances, and covariances, which are unavailable in practice and must be estimated from historical

data. Treating estimated parameters as true parameters, the plug-in method typically results in a

substantial deterioration in out-of-sample portfolio performance. This is the well-known estimation

risk problem.

1 See, e.g., Grinold and Kahn (1999), Litterman (2003), Meucci (2005), Qian, Hua, and Sorensen (2007) for practical
applications of the mean-variance framework.
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Various strategies have been proposed in the literature to address the estimation risk problem.

Early works by Brown (1976) and Bawa, Brown, and Klein (1979) show that the plug-in method is

generally outperformed by the Bayesian decision rule under a diffuse prior. Jorion (1986, 1991) pro-

poses the use of a Bayes-Stein estimator instead of the sample mean. Ledoit and Wolf (2004, 2017)

recommend the use of shrinkage covariance matrix estimators in place of the sample covariance

matrix. MacKinlay and Pástor (2000) assume a single factor structure and exploit the implications

of an asset pricing model to parameter estimation. Jagannathan and Ma (2003) suggest imposing

no-short-sale constraints in estimating optimal portfolios. Due to the poor performance of the esti-

mated optimal portfolios, some studies focus on the global minimum variance (GMV) portfolio,

which ignores the means.2 DeMiguel, Garlappi and Uppal (2009) show that the 1/N rule, which

does not use any sample information thus without estimation errors, can outperform various esti-

mated optimal portfolios in many empirical datasets. Kirby and Ostdiek (2012) propose two timing

strategies, which use sample variances and sample means (but not sample covariances) in a way

different from the usual optimization framework.

Theoretically, the optimal strategy is to design a portfolio rule to minimize the utility loss resulted

from estimation risk. Along this line, Kan and Zhou (2007) develop an optimal three-fund rule

that maximizes the expected out-of-sample utility in the case where a risk-free asset is available.

Following similar theoretical optimization framework, Tu and Zhou (2011) further improve the

three-fund rule of Kan and Zhou (2007) by combining it with the 1/N rule.

For the case without a risk-free asset, similar portfolio rules are not available in the literature due

perhaps to the difficulties of this problem.3 Note that simply normalizing the optimal portfolios

derived in the case with a risk-free asset (e.g., the three-fund rule of Kan and Zhou (2007)) so

that weights on risky assets add up to one does not generate optimal portfolios for the no risk-free

asset case.4 The no risk-free asset case is, however, important. For example, most equity funds

are required to be fully invested in risky assets, which is a portfolio selection problem in the no

risk-free asset case.5

In this paper, we focus on the case without a risk-free asset, and make several contributions.

First, for the no risk-free asset case, there is a lack of studies on optimal portfolio rules that

2 For example, Jobson, Korkie and Ratti (1979), Jagannathan and Ma (2003), Kempf and Memmel (2006), Basak,
Jaganathan and Ma (2009), and Bodnar, Parolya and Schmid (2018).

3 In the case without a risk-free asset, the plug-in rule can also be expressed as a combining portfolio similar to Kan
and Zhou (2007) but with the combining coefficients involving random variables. For such case, the results in Kan
and Zhou (2007) are not enough to obtain the explicit expression of the expected out-of-sample utility.

4 In Section 3.5.3 and 4, we show, respectively, that the out-of-sample returns of the normalized three-fund rule of
Kan and Zhou (2007) do not have finite moments and its performance is generally very poor.

5 Many practitioners books, such as Michaud and Michaud (2008, p. 17), state that fully invested in risky assets is
the case of interest. Bodie, Kane, and Marcus (2011, p. 97) point out that equity funds invest primarily in stocks,
but may hold 4-5% in cash to meet redemption needs.
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explicitly take into account estimation risk, and we provide the first such a rule here. We develop

new analytical methods which enables us to obtain the exact distribution of the out-of-sample

returns as well as the explicit expression of the expected out-of-sample utility of the plug-in rule.

Given these, we are able to derive an optimal portfolio rule that minimizes the utility loss under

estimation risk, and the rule takes the form of optimally combining the sample GMV portfolio

with a sample zero-investment portfolio.

In addition to the plug-in rule and the newly developed optimal combining rule, we show that

other optimal portfolios such as the one based on the Bayes-Stein shrinkage estimator and the

three-fund rule of Kan and Zhou (2007) can also be expressed as a combination of the sample GMV

and the sample zero-investment portfolio. Our earlier analytical methods can be used to obtain

the exact distribution of all the portfolio rules in the group.6 For the rules more sophisticated than

the plug-in rule, additional analytical methods are developed to obtain the expected out-of-sample

utilities, which have remained intractable for a long time. The new analytical methods in the paper

provide a fast and accurate way of evaluating the portfolios and offer analytical insights in portfolio

construction and performance evaluation.

Both theoretically and empirically, we find that the newly developed optimal combining portfolio

performs the best in this group of estimated optimal portfolio rules. Theoretically, the optimal

combining portfolio has the highest expected out-of-sample utility. In all the empirical datasets

examined, our new portfolio generates the highest certainty equivalent returns (CER), the highest

Sharpe ratio, and the lowest turnover in the group.

Second, we extend the results of prior studies to the no risk-free asset case and show that the

newly derived optimal combining strategy can be readily combined with the shrinkage covariance

matrix estimators of Ledoit and Wolf (2004, 2017) or the single factor structure of MacKinlay and

Pástor (2000) to form new optimal portfolios. In both cases, the portfolios using the new optimal

combining coefficient outperform those not using the coefficient in terms of CER or Sharpe ratio,

and using the optimal combining coefficient also leads to lower portfolio turnover.

Relative to the portfolio using the optimal combining coefficient alone, we find that portfolios

adopting both the optimal coefficient and the shrinkage estimators perform better overall; and the

portfolio adopting both the optimal coefficient and the single factor structure tends to perform

better in datasets with relatively large number of risky assets (e.g., 100 individual stocks).

Third, we compare the newly obtained optimal combining portfolios with other portfolio strate-

gies proposed in the literature, including imposing no-short-sale constraints, ignoring sample mean

(GMV), and non-optimization based rules such as the 1/N rule and the two timing strategies of

6 Without such new analytical results, the only existing method is to use simulation, which is computationally
expensive and inaccurate (e.g., in the tails).
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Kirby and Ostdiek (2012). Without transaction costs, the optimal combining portfolios compare

favorably with other rules in general. However, it is noted that these alternative rules generally have

low turnover compared to the optimal combining portfolios. As a result, when transaction costs

are taken into account, the performance gaps become smaller, sometimes even negative. Assum-

ing transaction costs of 20 basis points, we notice that the portfolio using the optimal combining

coefficient alone is less likely to outperform these other rules; but the portfolios adopting both the

optimal coefficient and the shrinkage estimators continue to perform well against other rules. In

dataset with relatively large number of risky assets (e.g., 100 individual stocks), we continue to

observe the outperformance of the portfolio adopting both the optimal coefficient and the single

factor structure given transaction costs.

2. Theoretical Results

In this section, we present the theoretical results. In particular, the new optimal combining coeffi-

cient is derived, which facilitates the proposed optimal combining strategy.

2.1. The Setup

Consider a portfolio choice problem in which an investor chooses his optimal portfolio among N

risky assets. Denote the returns of the N risky assets at time t by rt, with mean µ and covariance

matrix Σ. Let w be the weights of a portfolio on the N risky assets.7 The investor chooses his

portfolio weights w to maximize the mean-variance utility function

U(w) =w′µ− γ
2
w′Σw, (1)

where γ is the risk aversion coefficient, with an additional constraint of 1′Nw= 1 where 1N stands

for the N × 1 vector of ones so that the investor has 100% weights invested in the risky assets.

When both µ and Σ are known, it is well known that the optimal portfolio p∗ must be on the

efficient frontier, and we can show that portfolio p∗ can be expressed as a combination of the GMV

portfolio and another efficient portfolio. Specifically, the weights of the optimal portfolio p∗ are

given by

w∗ =wg +
1

γ
wz, (2)

where

wg =
Σ−11N

1′NΣ−11N
, wz = Σ−1 (µ− 1Nµg) , (3)

and wg is the weights of the GMV portfolio, µg = 1′NΣ−1µ/(1′NΣ−11N) is the expected return of

the GMV portfolio, and wz is the weights of an efficient zero-investment portfolio (i.e., 1′Nwz = 0).

7 The analysis holds whether rt is defined as raw or excess returns. Our calibration and empirical tests are based on
the latter for easy comparison with those studies using excess returns.
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Equation (2) suggests that investors always hold 100% of the GMV portfolio, and depending on

their degrees of risk aversion, their exposures to the efficient zero-investment portfolio vary. As the

risk aversion varies, the optimal portfolio from (2) will trace out the upper half of the minimum-

variance frontier.

Let rp∗,t+1 =w∗′rt+1 be the return of portfolio p∗ at time t+ 1. The mean and variance of rp∗,t+1

are given by

µp∗ = µg +
ψ2

γ
, (4)

σ2
p∗ = σ2

g +
ψ2

γ2
, (5)

where σ2
g = 1/(1′NΣ−11N) is the variance of the GMV portfolio and ψ2 = µ′Σ−1µ− µ2

g/σ
2
g is the

squared slope of the asymptote to the ex ante minimum-variance frontier. It follows that the utility

from holding the optimal portfolio is

U(w∗) = µg −
γ

2
σ2
g +

ψ2

2γ
. (6)

This equation shows that w∗ outperforms wg by a certainty equivalent return of ψ2/(2γ), which is

coming from the exposure to wz. Its magnitude is determined by the slope of the asymptote to the

ex ante minimum-variance frontier (ψ) and the risk aversion coefficient (γ).

2.2. Estimation Risk

In practice, however, the optimal portfolio weights, w∗, are not computable because µ and Σ are

unknown, and they need to be estimated. We assume an investor estimates µ and Σ using an

estimation window of h periods of historical return data with h>N . For analytical tractability, we

make the usual assumption that rt is independent and identically distributed over time, and has a

multivariate normal distribution. Under this assumption, the maximum likelihood estimators of µ

and Σ at time t are given by

µ̂t =
1

h

t∑
s=t−h+1

rs, (7)

Σ̂t =
1

h

t∑
s=t−h+1

(rs− µ̂t)(rs− µ̂t)′. (8)

Replacing µ and Σ in (2) by µ̂t and Σ̂t, we can obtain an implementable portfolio p (which is

termed the plug-in rule hereafter)

ŵp,t = ŵg,t +
1

γ
ŵz,t, (9)

where

ŵg,t =
Σ̂−1t 1N

1′N Σ̂−1t 1N
, ŵz,t = Σ̂−1t (µ̂t− 1N µ̂g,t) (10)
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represent the weights of the sample GMV portfolio and those of the sample zero-investment port-

folio and µ̂g,t = (1′N Σ̂−1t µ̂t)/(1
′
N Σ̂−1t 1N).

When estimated parameters instead of true parameters are used, the plug-in portfolio p underper-

forms the true optimal portfolio p∗ due to estimation errors. In this paper, we focus on one strategy

to deal with the estimation risk, that is, to adjust the exposure to the sample zero-investment

portfolio ŵz,t. Specifically, we consider the class of portfolios with weights:

ŵt(c̃) = ŵg,t +
c̃

γ
ŵz,t, (11)

where c̃ is a scalar combining coefficient. Note that the weight on the sample GMV portfolio is

always 100% so that the investor remains fully invested in risky assets. When c̃= 1, we have the

plug-in portfolio p. When 0< c̃ < 1, the effect of estimation risk is reduced due to a smaller exposure

to ŵz,t. Note that ŵg,t involves smaller estimation errors than ŵz,t because ŵg,t depends only on

Σ̂t while ŵz,t depends on both µ̂t and Σ̂t, and it is well known that the sample mean µ̂t is a very

noisy estimator of µ. This motivates many practitioners and researchers to focus only on the GMV

portfolio (i.e., c̃= 0). This practice is appropriate only if the cost associated with the estimation

risk in ŵz,t outweighs the utility gain from the exposure to ŵz,t. This, however, is not typically the

case. Instead of completely ignoring ŵz,t, we show that optimally adjusting the exposure to ŵz,t is

a better strategy.

Let N (µ0, v0) stand for a random variable that is normally distributed with mean µ0 and variance

v0, and χ2
ν stand for a random variable that follows a chi-squared distribution with ν degrees of

freedom. The following Proposition expresses the exact distribution of the out-of-sample returns of

portfolios in the class specified in (11) in terms of a set of independent univariate random variables.

Proposition 1. Suppose N > 3. Let z2 ∼ N (
√
hψ,1), u0 ∼ χ2

N−2, v2 ∼ χ2
h−N+1, w1 ∼ χ2

h−N+3,

w2 ∼ χ2
h−N+2, s1 ∼ χ2

N−4, s2 ∼ χ2
N−3, x11 ∼ N (0,1), x21 ∼ N (0,1), a ∼ N (0,1), b ∼ N (0,1), c ∼

N (0,1), and they are independent of each other.8 Then, the distribution of ψ̂2
t is given by

ψ̂2
t = µ̂′tΣ̂

−1
t µ̂t−

(
1′N Σ̂−1t µ̂t

)2

(
1′N Σ̂−1t 1N

) =
z22 +u0

v2
. (12)

Define

y1 =
x11√
w1

+
bx21√
w1w2

+
ax21√
v2w2

, (13)

y2 =
c
√
w1

+
b
√
s2√

w1w2

+
a
√
s2√

v2w2

. (14)

8 If we set u0 = 0, x11 = 0, x21 = 0, s1 = 0, s2 = 0, and c= 0 when N = 2, and set s1 = 0, s2 = 0, and c= 0 when N = 3,
then the results in Proposition 1 also hold for the cases of N = 2 or N = 3.
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The out-of-sample return of portfolio ŵt(c̃), rt+1(c̃) = ŵt(c̃)
′rt+1, is conditionally normally dis-

tributed with conditional mean and variance given by

µt(c̃) = ŵt(c̃)
′µ= µg +

σgψ

ψ̂t

(√
u0y1√
v2

+
az2
v2

)
+
c̃
√
hψ

γv2

(
x21
√
u0√

w2

+ z2

)
, (15)

σ2
t (c̃) = ŵt(c̃)

′Σŵt(c̃) = σ2
g

(
y21 + y22 + 1 +

s1
w1

+
a2

v2

)
+
c̃2hψ̂2

t

γ2v2

(
1 +

x2
21 + s2
w2

)
+

2c̃
√
hσgψ̂t

γ
√
v2

(
a
√
v2

+
x21y1√
w2

+

√
s2y2√
w2

)
. (16)

Proposition 1 shows that the out-of-sample return of portfolio ŵt(c̃) depends only on three

unknown scalar parameters: µg, σg, and ψ. Therefore, any performance measures constructed based

on the out-of-sample portfolio returns (e.g., expected out-of-sample utility, out-of-sample Sharpe

ratio) also depend only on these three parameters.

In addition, Proposition 1 helps us better understand the effect of estimation risk. From (4) and

(5) in Subsection 2.1, we know that without estimation risk, the return distribution of the GMV

portfolio (wg) depends on µg and σg, the return distribution of the zero-investment portfolio (wz)

depends only on ψ, and the two portfolios are uncorrelated (i.e., w′gΣwz = 0). From (15) and (16)

in Proposition 1, we see that other than µg and σg, the out-of-sample return of ŵg,t (i.e., the terms

not involving c̃) also depends on ψ, and ψ influences the conditional mean but not the conditional

variance. The last term in (16) suggests that due to estimation errors, the returns of these two

portfolios (ŵg,t and ŵz,t) are no longer uncorrelated, and the conditional covariance depends on

both σg and ψ. The term involving c̃ in (15) and the term involving c̃2 in (16) indicate that the

return distribution of the zero-investment portfolio (ŵz,t) continues to just depend on ψ even when

there is estimation risk.

Other than offering analytical insights in the portfolio performance, results from Proposition 1, in

particular that expressing the out-of-sample returns of sample optimal portfolios in terms of a set of

independent univariate random variables, enable a much faster and accurate way of computing the

exact distribution. In addition, with the expressions in Proposition 1, we can easily obtain explicit

expressions of the expected out-of-sample utility and the unconditional moments of portfolio ŵt(c̃)

so that we can evaluate its performance. The next two lemmas present the results when c̃ is a

constant scalar.

Lemma 1. When h>N+3, the expected out-of-sample utility of portfolio ŵt(c̃) = ŵg,t+ c̃ŵz,t/γ,

where c̃ is a constant scalar, is given by

E[U(ŵt(c̃))] = µg −
γ(h− 2)σ2

g

2(h−N − 1)
+

h

γ(h−N − 1)

[
c̃ψ2− c̃

2(h− 2)(hψ2 +N − 1)

2(h−N)(h−N − 3)

]
. (17)
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Economically, the expected out-of-sample utility represents the utility level that an investor can

achieve on average by applying the portfolio rule repeatedly, and this is because the conditional

mean and variance of the portfolio, µ̂t(c̃) and σ2
t (c̃), are both random variables, so is U(ŵt(c̃)).

The expected out-of-sample utility is often used as a performance measure to evaluate portfolio

theoretically. Lemma 1 tells us what determines this performance measure. The first two terms in

(17) capture the expected out-of-sample utility of ŵg,t, which depends on two unknown parameters

µg and σ2
g . For given µg and σ2

g , the expected out-of-sample utility of ŵg,t increases with h and

decreases with N . The last term in (17) represents the expected out-of-sample utility due to the

exposure to ŵz,t (i.e., c̃ŵz,t/γ), and it depends only on one unknown parameter ψ2.

When there is no estimation risk, it is always beneficial to allocate weight to the zero-investment

portfolio as long as ψ2 > 0, as shown in (6). However, when there is estimation risk, we need a

sufficiently large ψ2 to realize the benefit of the allocation to the zero-investment portfolio. Notice

that when ψ2 = 0, the last term in (17) is negative. This suggests that when ψ2 is not large enough,

the cost associated with estimation risk can outweigh the benefit of a positive ψ2, and as a result,

the exposure to ŵz,t decreases, instead of increases, portfolio performance. We know that when the

expected returns of the risky assets are similar to each other, the ex ante minimum-variance frontier

tends to be flat (i.e., small ψ2). This explains why we typically see better performance for the

optimal portfolios when anomaly portfolios are used as test assets, and the portfolio performance

tends to be poor when industry portfolios are used as test assets, for example.

Also note that the coefficient associated with ψ2 in (17) is positive only if 0< c̃ < 2(h−N)(h−

N − 3)/h/(h− 2). That is, even for a large enough ψ2, the allocation to ŵz,t must be in this range

so that the allocation is beneficial. This range becomes narrow when N is large relative to h. For

example, when h = 120 and N = 100, we need 0 < c̃ < 0.048. This explains why the plug-in rule

(i.e., c̃= 1) typically performs poorly in datasets with a large number of risky assets.

Finally, note that the last term in (17) is a quadratic function of c̃. The term involving c̃ is

positive, representing the benefit of including ŵz,t in terms of increased expected portfolio return;

and the term involving c̃2 is negative, representing the cost of including ŵz,t in terms of increased

portfolio variance. The quadratic function suggests that there exists an optimal c̃, and therefore,

ignoring ŵz,t and focusing only on the GMV portfolio is not the best strategy.

Lemma 2. The unconditional mean and variance of a portfolio with weights ŵt(c̃) = ŵg,t +

c̃ŵz,t/γ, where c̃ is a constant scalar, are given by

µ(c̃) =E[µt(c̃)] = µg +
c̃hψ2

γ(h−N − 1)
for h>N + 1, (18)

σ2(c̃) =E[σ2
t (c̃)] +E[µ2

t (c̃)]−E[µt(c̃)]
2
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=
σ2
g(h− 2 +ψ2)

h−N − 1
+

c̃2h(h− 2)[N − 1 + (h+ 1)ψ2]

γ2(h−N)(h−N − 1)(h−N − 3)

+
2c̃2h2ψ4

γ2(h−N − 1)2(h−N − 3)
for h>N + 3. (19)

From (18), we can see that µ(c̃)> µp∗ when c̃= 1, suggesting that the plug-in rule ŵp,t is not

an unbiased estimator of w∗, i.e., E[ŵp,t] 6= w∗. The unbiased rule can be obtained by setting

c̃= (h−N − 1)/h so that E[ŵp,t] = w∗ and µ(c̃) = µp∗ . When c̃= 1 or c̃= (h−N − 1)/h, we can

show from (19) that σ2(c̃)> σ2
p∗ . This is expected because estimation risk leads to mean-variance

utility loss. Given the same or higher mean, the estimated optimal portfolios must have higher

variances compared to that of the true optimal portfolio. It can also be verified from (18) and (19)

that both µ(c̃) and σ2(c̃) are decreasing functions of h and increasing functions of N . As h→∞,

µ(c̃) converges to µp∗ and σ2(c̃) converges to σ2
p∗ if c̃→ 1.

2.3. Optimal Combining Coefficient

Given that (17) is a quadratic function in c̃, we can obtain the optimal value of c̃ that maximizes

the expected out-of-sample utility:

c̃∗ =
kψ2

ψ2 + N−1
h

, (20)

where

k=
(h−N)(h−N − 3)

h(h− 2)
. (21)

Note that c̃∗ is derived by explicitly taking into account the effect of estimation errors in ŵz,t. For

h > N + 3, it is easy to show that 0< c̃∗ < 1. That is, the optimal combining portfolio addresses

the estimation risk by lowering the exposure to ŵz,t.

Because c̃∗ depends on ψ2 which is unknown to investors in practice, ŵt(c̃
∗) is not implementable.

Adopting the adjusted estimator of ψ2 in Kan and Zhou (2007), an implementable version of c̃∗

can be obtained as

ĉt =
kψ̂2

a,t

ψ̂2
a,t + N−1

h

, (22)

where

ψ̂2
a,t =

(h−N − 1)ψ̂2
t − (N − 1)

h
+

2(ψ̂2
t )

N−1
2 (1 + ψ̂2

t )
−h−2

2

hBψ̂2
t /(1+ψ̂

2
t )

((N − 1)/2, (h−N + 1)/2)
(23)

and

Bx(a, b) =

∫ x

0

ya−1(1− y)b−1dy (24)
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is the incomplete beta function. Note that ĉt is a function of ψ̂2
t and we use g3 to denote it,

ĉt = g3(ψ̂
2
t ) =

kψ̂2
a,t

ψ̂2
a,t + N−1

h

. (25)

Given ĉt, we have an implementable optimal combining portfolio, denoted as portfolio q,

ŵq,t = ŵt(ĉt) = ŵg,t +
g3(ψ̂

2
t )

γ
ŵz,t. (26)

Because ĉt = g3(ψ̂
2
t ) is no longer a constant scalar, Lemmas 1 and 2 are not applicable. Propo-

sition 2 and Lemma 3 provide explicit expressions of the expected out-of-sample utility and the

unconditional mean and variance of a combining portfolio with the combining coefficient being a

function of ψ̂2
t . Let χ2

m(δ) stand for a random variable that follows a noncentral chi-squared distri-

bution with m degrees of freedom and a noncentrality parameter δ. To facilitate our presentation,

we use Gδm,n to stand for a random variable y= x1/x2 where x1 ∼ χ2
m(δ) and x2 ∼ χ2

n, independent

of each other.

Proposition 2. When h>N + 3, the expected out-of-sample utility of portfolio ŵt(ct) = ŵg,t +

ctŵz,t/γ where ct = g(ψ̂2
t ) is a function of ψ̂2

t , is given by

E[U(ŵt(ct))] = µg −
γ(h− 2)σ2

g

2(h−N − 1)
+
hψ2E[g(q3)]

γ(h−N − 1)
− h(h− 2)E[g2(q4)q4]

2γ(h−N)(h−N − 1)
, (27)

where q3 ∼Ghψ
2

N+1,h−N−1, and q4 ∼Ghψ
2

N−1,h−N−1.

Proposition 2 suggests that the expected out-of-sample utility of the implementable optimal

combining portfolio can be expressed in terms of a one-dimensional integral, which provides a

speedy and accurate way to obtain the expected out-of-sample utility. The first two terms in (27)

are the same as those in (17), reflecting the expected out-of-sample utility of ŵg,t. The remaining

two terms capture the utility due to the exposure to ŵz,t, with the first term being the benefit of

the exposure to ŵz,t in terms of increased portfolio expected return and the second term being the

cost of the exposure to ŵz,t in terms of higher portfolio variance.

Lemma 3. The unconditional mean and variance of portfolio ŵt(ct) = ŵg,t + ctŵz,t/γ where ct =

g(ψ̂2
t ) is a function of ψ̂2

t , are given by

µ(ct) =E[µt(ct)] = µg +
hψ2

γ(h−N − 1)
E[g(q3)] for h>N + 1, (28)

σ2(ct) =E[σ2
t (ct)] +E[µt(ct)

2]−E[µt(ct)]
2

=
σ2
g(h− 2 +ψ2)

h−N − 1
+
h(h− 2 +ψ2)E[g2(q4)q4]

γ2(h−N)(h−N − 1)
− h

2ψ4(E[g(q3)])
2

γ2(h−N − 1)2

+
hψ2 (E[g2(q5)] +hψ2E[g2(q6)])

γ2(h−N)(h−N − 3)
for h>N + 3, (29)

where q3 ∼Ghψ
2

N+1,h−N−1, q4 ∼Ghψ
2

N−1,h−N−1, q5 ∼Ghψ
2

N+1,h−N−3 and q6 ∼Ghψ
2

N+3,h−N−3.
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Lemma 3 presents results similar to those in Lemma 2, but allowing the combining coefficient

to be any function of ψ̂2
t . This results in slightly more complicated expressions of the first two

moments of the estimated optimal portfolios. Nevertheless, we can continue to show that as h→∞,

both µ(ct) and σ2(ct) converge to the mean and the variance of the true optimal portfolio if ct→ 1.

3. Portfolio Rules

This section introduces the portfolio rules that we will study in this paper. Subsection 3.1 presents

a set of portfolios in the class specified in (11), and the theoretical results obtained in the previous

section can be readily applied to these portfolios. Other than adjusting the exposure to the zero-

investment portfolio ŵz,t, Subsection 3.2 to 3.4 present some alternative strategies that can be used

to deal with the estimation risk when forming optimal portfolios, including the use of the shrinkage

covariance matrix estimators of Ledoit and Wolf (2004, 2017), imposing the single factor structure

of MacKinlay and Pástor (2000), and imposing no-short-sale constraints. In particular, we show

that our newly derived optimal combining strategy can be applied together with the use of the

shrinkage estimators or the single factor structure to form new optimal portfolios. Subsection 3.5

studies some other rules that are derived from the optimization framework but do not maximize

the expected out-of-sample utility. Subsection 3.6 introduces a set of ad hoc portfolio rules not

derived from the optimization framework.

3.1. Invariant Optimal Portfolio Rules

We consider four portfolio rules in this subsection, and they are all in the class specified in (11).

These portfolio rules have some nice properties. First, they are all invariant to asset repackaging.

That is, let A be an N ×N non-singular matrix with A′1N = 1N . Portfolio returns remain the

same whether constructing portfolios based on the original N assets with returns rt or on the N

linear combinations of the original assets with returns yt =A′rt. In addition, these portfolio rules

all converge to the true optimal rule p∗ as the estimation window goes to infinity (i.e., h→∞).

Because of these properties, we name this set of portfolios as invariant optimal portfolios. The

distribution, moments, and expected out-of-sample utility of these portfolios can be obtained using

the results derived in the previous section. Lemma 1 and Proposition 2 suggest that the relative

ranking of these portfolios in terms of expected out-of-sample utility is invariant to the value of

the risk aversion coefficient γ.

Following are the four portfolio rules considered, and they differ in their exposures to the zero-

investment portfolio ŵz,t.

• The first rule is the plug-in rule p as specified in (9), i.e.,

ŵp,t = ŵg,t +
1

γ
ŵz,t,

with the out-of-sample portfolio return rp,t+1 = ŵ′p,trt+1.
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• The second rule is the unbiased rule, obtained by setting c̃= (h−N − 1)/h

ŵu,t = ŵg,t +
(h−N − 1)

γh
ŵz,t. (30)

We denote this unbiased portfolio as portfolio u, and its out-of-sample portfolio return is ru,t+1 =

ŵ′u,trt+1.

• The third rule is the implementable optimal combining rule q as specified in (26), i.e.,

ŵq,t = ŵg,t +
g3(ψ̂

2
t )

γ
ŵz,t,

with the out-of-sample portfolio return rq,t+1 = ŵ′q,trt+1.

• The last portfolio rule is based on a Bayes-Stein estimator developed in Jorion (1986, 1991).

We term this portfolio rule as the BS rule9

ŵBS,t = ŵg,t +
g4(ψ̂

2
t )

γ
ŵz,t, (31)

where

g4(ψ̂
2
t ) =

(h−N − 2)2ψ̂2
t

(h+ 1)(h−N − 2)ψ̂2
t +h(N + 2)

. (32)

The out-of-sample portfolio return is rBS,t+1 = ŵ′BS,trt+1.

Note that relative to the plug-in rule ŵp,t, the other three rules (i.e., ŵu,t, ŵq,t and ŵBS,t) have

lower exposure to ŵz,t, suggesting that these three portfolios contain less estimation risk than the

plug-in rule. In addition, it is easy to verify that 0< g3(ψ̂
2
t )< (h−N − 1)/h < 1 and 0< g4(ψ̂

2
t )<

(h−N − 1)/h< 1 when h>N + 3. Thus, both the implementable optimal combining rule and the

BS rule have lower exposure to ŵz,t than the unbiased rule.

3.2. Rules with Shrinkage Covariance Matrix Estimators

To implement the mean-variance optimal portfolio, we need to invert the estimated covariance

matrix. When N is large relative to h, the sample covariance matrix is typically not well-

conditioned.10 To address the issue, Ledoit and Wolf (2004) introduce a shrinkage estimator which

is a linear combination of the sample covariance matrix and the identity matrix,

Σ̂LW2004
t = (1− ρt)Σ̂t + ρtνtIN , (33)

where IN is an N ×N identity matrix, νt is the shrinkage target which equals to the average of

the eigenvalues of Σ̂t, and ρt is the shrinkage intensity

ρt =
Min

[
1
h2

∑t

s=t−h+1 ||(rs− µ̂t)(rs− µ̂t)′− Σ̂t||2, ||Σ̂t− νtIN ||2
]

||Σ̂t− νtIN ||2
(34)

9 The derivation of this expression is provided in the Online Appendix.

10 In this paper, we assume h>N + 3, so the sample covariance matrix is invertible.
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with ||A|| =
√

tr(AA′)/N being the Frobenius norm. When Σ̂LW2004
t instead of Σ̂t is plug-in, we

obtain a plug-in portfolio with the shrinkage covariance matrix

ŵLW2004
p,t = ŵLW2004

g,t +
1

γ
ŵLW2004
z,t , (35)

where

ŵLW2004
g,t =

(Σ̂LW2004
t )−11N

1′N(Σ̂LW2004
t )−11N

, (36)

ŵLW2004
z,t = (Σ̂LW2004

t )−1
[
µ̂t− 1N

(
µ̂′tŵ

LW2004
g,t

)]
. (37)

In their recent paper, Ledoit and Wolf (2017) propose an improved nonlinear shrinkage estimator

of the covariance matrix which is more flexible than the previous shrinkage estimator. The new

estimator can be computed as

Σ̂LW2017
t = ÛtD̂tÛ

′
t , (38)

where Ût is the orthogonal matrix obtained from a spectral decomposition of Σ̂t, and D̂t is a

diagonal matrix D̂t = Diag(d̂1(λ1), · · · , d̂N(λN)) with λ1, · · · , λN being the eigenvalues of Σ̂t. For

i= 1, · · · ,N ,

d̂i(λi) =
1

λi|s(λi)|2
. (39)

where s(λi) is an estimator of the Stieltjes (1894) transform of the limiting empirical distribution

of sample eigenvalues. The plug-in portfolio with the nonlinear shrinkage covariance matrix can be

obtained as

ŵLW2017
p,t = ŵLW2017

g,t +
1

γ
ŵLW2017
z,t , (40)

where

ŵLW2017
g,t =

(Σ̂LW2017
t )−11N

1′N(Σ̂LW2017
t )−11N

, (41)

ŵLW2017
z,t = (Σ̂LW2017

t )−1
[
µ̂t− 1N

(
µ̂′tŵ

LW2017
g,t

)]
. (42)

Note that explicit expressions of the expected out-of-sample utilities of ŵLW2004
p,t or ŵLW2017

p,t are not

available, and we need to use simulation to evaluate them theoretically.

In addition to the use of the shrinkage covariance matrix estimators, we can further adjust

the exposure to the zero-investment portfolio when constructing the optimal portfolios. Without

explicit expressions of the expected out-of-sample utilities, we are unable to derive the exact forms

of the optimal combining coefficients when Σ̂LW2004
t or Σ̂LW2017

t are used. As an alternative, we
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directly apply the implementable optimal combining coefficient ĉt = g3(ψ̂
2
t ) from Subsection 2.3.

Specifically, we study the following two portfolios:

ŵLW2004
q,t = ŵLW2004

g,t +
g3(ψ̂

2
t )

γ
ŵLW2004
z,t , (43)

ŵLW2017
q,t = ŵLW2017

g,t +
g3(ψ̂

2
t )

γ
ŵLW2017
z,t . (44)

We want to examine whether adjusting the exposure to the zero-investment portfolio can further

improve portfolio performance when the shrinkage covariance matrix estimators are used.

3.3. Rules with MacKinlay-Pástor Single Factor Structure

MacKinlay and Pástor (2000) adopt a different strategy to deal with the estimation risk. They

exploit the implications of an asset pricing model with a single risk factor in estimation of expected

returns. Specifically, they assume the covariance matrix to take the following form:

Σ = σ2IN + aµµ′, (45)

where a and σ2 are positive scalars. By imposing such a single factor structure, the estimation risk

is reduced because fewer parameters need to be estimated (i.e., instead of µ and Σ, we only need

to estimate µ and two scalar parameters a and σ2).

Under the assumption of (45), we have

Σ−1 =
1

σ2

(
IN −

aµµ′

σ2 + aµ′µ

)
. (46)

Therefore, the weights of the optimal portfolio for the no risk-free asset case are given by

wMP =
(σ2 + aµ′µ)1N − a1′Nµµ

N(σ2 + aµ′µ)− a(1′Nµ)2
+

1

γ

Nµ− (1′Nµ)1N
N(σ2 + aµ′µ)− a(1′Nµ)2

. (47)

Note that the first term in the above equation is the GMV portfolio and the second term captures

the zero-investment portfolio in the setup of MacKinlay and Pástor (2000).

At time t, a, σ2, and µ are obtained by maximizing the log-likelihood function. The closed-form

solution is not available, and we use the semi-analytical solution in Tu and Zhou (2011). Plugging

the estimates âMP,t, σ̂
2
MP,t, and µ̂MP,t into (47), we obtain the implementable version of the optimal

portfolio rule based on the MacKinlay-Pástor estimators

ŵMP
p,t = ŵMP

g,t +
1

γ
ŵMP
z,t , (48)

where

ŵMP
g,t =

(σ̂2
MP,t + âMP,tµ̂

′
MP,tµ̂MP,t)1N − âMP,t1

′
N µ̂MP,tµ̂MP,t

N(σ̂2
MP,t + âMP,tµ̂′MP,tµ̂MP,t)− âMP,t(1′N µ̂MP,t)2

, (49)

ŵMP
z,t =

Nµ̂MP,t− (1′N µ̂MP,t)1N
N(σ̂2

MP,t + âMP,tµ̂′MP,tµ̂MP,t)− âMP,t(1′N µ̂MP,t)2
. (50)
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We term this rule as the MP rule. Note that the MP rule is not consistent (i.e., it does not converge

to w∗ when h→∞) unless the assumption of Σ in (45) is true. By imposing such a single factor

structure, the estimation risk is reduced, but at the same time, a bias is introduced into the optimal

portfolio. So the MP rule provides a tradeoff between estimation errors and bias.

The expression in (48) suggests that we can also adjust the exposure to the zero-investment

portfolio when the factor structure such as (45) is imposed. Therefore, we also examine whether

applying ĉt = g3(ψ̂
2
t ) can further improve the performance of the MP rule. Specifically, we study

the following portfolio

ŵMP
q,t = ŵMP

g,t +
g3(ψ̂

2
t )

γ
ŵMP
z,t . (51)

3.4. Rule with No-Short-Sale Constraints

Empirically, it has been documented that imposing nonnegative portfolio weights can improve

the out-of-sample performance of optimal portfolios (e.g., Frost and Savarino, 1988). Jagannathan

and Ma (2003) explain why constraining portfolio weights to be nonnegative can reduce the risk

in estimated optimal portfolios even when the constraints are wrong. They show that “with no-

short-sale constraints in place, the sample covariance matrix performs as well as covariance matrix

estimates based on factor models, shrinkage estimators, and daily data.”

Given the sample mean and the sample covariance matrix, the optimal portfolio with no-short-

sale constraints is the solution to the following optimization problem:

max
w

w′µ̂t−
γ

2
w′Σ̂tw

s.t. w′1N = 1, w≥ 0N

where 0N is an N × 1 vector of zeros. This optimization problem can be readily solved using

quadratic programming. We term this portfolio rule as the NS rule, and denote it as ŵNSp,t .

3.5. Other Rules from Portfolio Optimization

This subsection presents three portfolio rules that are also derived from the optimization framework

but do not maximize the expected out-of-sample utility.

3.5.1. Sample Global Minimum Variance (GMV) Portfolio It is known that the sample

mean is an imprecise estimator of the population mean. Some even argue that nothing much is lost

in ignoring the mean altogether because the estimation error in the sample mean is so large. As a

result, instead of the optimal portfolio, it might be better focusing on the sample GMV portfolio:

ŵg,t =
Σ̂−1t 1N

1′N Σ̂−1t 1N
.
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3.5.2. GMV with No-Short-Sale Constraints Jagannathan and Ma (2003) show that the

GMV portfolio, with the no-short-sale constraints in place, performs well. Such portfolio is the

solution to the following problem:

min
w

w′Σ̂tw

s.t. w′1N = 1, w≥ 0N .

Similarly, we can solve this problem using quadratic programming, and we denote the resulting

portfolio as ŵNSg,t .

3.5.3. Normalized Kan-Zhou (2007) Three-fund Rule In the case in which a risk-free

asset is available, Kan and Zhou (2007) derive an optimal three-fund rule under the assumption that

the returns of the risky assets are i.i.d. multivariate normally distributed. The portfolio optimally

combines the risk-free asset, the sample tangency portfolio, and the sample GMV portfolio.

In the case without a risk-free asset, one may think that we can obtain a similar optimal portfolio

by normalizing the weights such that the investor is fully invested in risky assets. It can be shown

that the normalized optimal three-fund rule takes the following form

ŵKZ3,t = ŵg,t +

(
1

1′N Σ̂−1t µ̂t

)(
ψ̂2
a,t

ψ̂2
a,t +N/h

)
ŵz,t, (52)

which is also a combination of ŵg,t and ŵz,t and belongs to the class as specified in (11). We

term this portfolio as the normalized KZ 3-fund rule. We can apply the results in Proposition 1

to obtain the distribution of its out-of-sample returns. However, the out-of-sample return of this

portfolio does not have finite moments, so its expected out-of-sample utility does not exist. The

problem is caused by the normalization process. The normalization induces the term 1′N Σ̂−1t µ̂t into

the denominator which has non-negligible density at zero, and a zero denominator will lead to

extreme positions in the risky assets.11 This explains why we often find that the normalized optimal

portfolios have poor out-of-sample performance empirically (e.g., DeMiguel, Garlappi, and Uppal,

2009). Therefore, an optimal portfolio derived in the risk-free asset case cannot be transformed

into an optimal portfolio in the case without a risk-free asset. Normalization typically generates a

portfolio that is no longer optimal.

11 Under the normality assumption, Okhrin and Schmid (2006) show that the expectation of the weights of the sample
tangency portfolio do not exist. Note that the normality assumption is not critical, and this is generally true based
on a Lemma of Sargan (1976).
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3.6. Non-Optimization Rules

To implement the optimal portfolio rules, we need to estimate the parameters based on historical

return data. Some argue that the impact of estimation errors can be so large that the optimization

may no longer have value. Following this argument, some alternative portfolio rules that are not

based on optimization are proposed in the literature. The alternative rules either completely ignore

the information contained in historical return data, or use only partial information from the sample

and in a way different from the optimization framework. This subsection presents some of these

alternative rules.

3.6.1. The 1/N Rule The 1/N rule refers to the portfolio strategy with equal weights in the

N risky assets, i.e., wew = 1N/N . DeMiguel, Garlappi, and Uppal (2009) compare the 1/N rule with

various optimal rules derived in the case where a risk-free asset is available, and find that the 1/N

rule outperforms the optimal rules in many empirical datasets. Note that when a risk-free asset is

not available, the 1/N rule is completely free of estimation errors. Under the i.i.d. assumption, the

mean and variance of the out-of-sample portfolio return of the 1/N rule are given by

µew =
1′Nµ

N
, σ2

ew =
1′NΣ1N
N 2

. (53)

The out-of-sample utility of the 1/N rule is therefore

Uew = µew−
γ

2
σ2
ew. (54)

3.6.2. Volatility Timing While the 1/N rule completely ignores the information contained

in historical return data, Kirby and Ostdiek (2012) propose two portfolio strategies that use partial

sample information and show that they outperform the 1/N rule.

The first strategy is the volatility timing strategy (denoted as KOV T ). Specifically, the weights

of this portfolio are given by

ŵit =
(1/σ̂2

it)∑N

j=1(1/σ̂
2
jt)
, i= 1,2, . . . ,N, (55)

where σ̂2
it is the estimated conditional variance on the ith risky asset at time t. Note that this

strategy uses only the information about the conditional variance from the sample and ignores the

means and the covariances.

Kirby and Ostdiek (2012) generalize the above volatility timing strategy to the following:

ŵit =
(1/σ̂2

it)
η∑N

j=1(1/σ̂
2
jt)

η
, i= 1,2, . . . ,N, (56)

where η ≥ 0 is a tuning parameter that measures the timing aggressiveness. Kirby and Ostdiek

(2012) do not specify how to choose η, but evaluate portfolio performance with different values of

η, i.e., η= 1, 2, and 4.
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3.6.3. Reward-to-risk Timing The second strategy proposed by Kirby and Ostdiek (2012)

is the reward-to-risk timing strategy. In addition to the conditional variances, this timing strategy

also incorporates the conditional means from the sample. The weights of this portfolio are given

by

ŵit =
(µ̂+

it/σ̂
2
it)∑N

j=1(µ̂
+
jt/σ̂

2
jt)
, i= 1,2, . . . ,N, (57)

where µ̂+
it = Max(µ̂i,t,0) with µ̂it being the maximum likelihood estimator of the conditional mean

of the ith asset at time t. Using only the positive value of the estimated conditional mean avoids

short sales. We denote this portfolio as KORT .

Similarly, Kirby and Ostdiek (2012) define a generalized version of the reward-to-risk timing

strategy:

ŵit =
(µ̂+

it/σ̂
2
it)

η∑N

j=1(µ̂
+
jt/σ̂

2
jt)

η
, i= 1,2, . . . ,N, (58)

where η≥ 0 is a tuning parameter. Again, they evaluate the portfolio performance for η= 1, 2, and

4.

In addition to the maximum likelihood estimator of the conditional mean, Kirby and Ostdiek

propose an alternative approach to estimate the conditional mean of risky assets. The second

estimator exploits the relation between the first and second moments of returns imposed by linear

asset pricing models. For a K-factor model, assuming the factors have identical risk premiums,

then the portfolio weights are given by

ŵit =
(β̄+
it/σ̂

2
it)

η∑N

j=1(β̄
+
jt/σ̂

2
jt)

η
, i= 1,2, . . . ,N, (59)

where β̄+
it = Max(β̄it,0) and β̄it = (1/K)

∑K

k=1 β̂ikt with β̂ikt being the estimated conditional beta

of asset i with respect to factor k at time t. We use KOBT to denote the reward-to-risk timing

strategy based on β̄+
it . In our empirical results, we evaluate the performance of KOBT with β̂ikt

obtained with respect to the Carhart four-factor model.

4. Empirical Results

In this section, we empirically compare the performance of various portfolio rules across eight

datasets containing monthly excess returns.12 The first four datasets are obtained from Ken

French’s website. They are: (i) 10 momentum portfolios (“Momentum”); (ii) Fama-French 5× 5

size and book-to-market ranked portfolios (“Size-B/M”); (iii) 25 portfolios formed on operating

12 The Online Appendix provides the comparison based on the expected out-of-sample utility using either the ana-
lytical results in Section 2 or simulations.
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profitability and investment (“OP-Inv”); (iv) 49 industry portfolios (“Industry”). The first two

datasets cover the period from January 1927 to December 2018, the third one covers the period

from July 1963 to December 2018, and the last one covers the period from July 1969 to December

2018. All portfolios are value-weighted.

The next two datasets are obtained from Robert Novy-Marx’s website. Novy-Marx and Velikov

(2016) analyze the performance of twenty-three of the best known, and strongest performing,

anomaly strategies. Each anomaly strategy involves a long-side and a short-side value-weighted

portfolio. Instead of focusing on the long-short zero-investment portfolios, we include both the long-

side and the short-side portfolios in our datasets because we are interested in portfolio strategies

with 100% invested in risky assets. Our first dataset involves the portfolios from the eight low

turnover anomaly strategies (“NM-V (LT)”) specified in Novy-Marx and Velikov (2016), and covers

the period from July 1963 to December 2013. The second dataset contains the portfolios from

all twenty-three anomaly strategies (“NM-V (All)”), and the sample period is from July 1973

to December 2013. These two datasets contain portfolios that are constructed based on different

anomaly findings, and the optimal portfolio rules provide a way to jointly realize the value of the

various findings.

The remaining two datasets are constructed using the CRSP data. The first one contains the

excess returns of 10 portfolios sorted by idiosyncratic volatility. At the beginning of each month

from January 1927 to December 2018, idiosyncratic volatility relative to the Fama-French three-

factor model is obtained for each stock using daily data in the previous three months. Stocks are

assigned to 10 portfolios based on the idiosyncratic volatility using the NYSE breakpoints. Value-

weighted portfolios are held for one month. Stocks with fewer than 20 non-missing daily data in

the three-month period are excluded from the portfolios.

The last dataset contains monthly excess returns of 100 individual stocks selected from the S&P

500 index over the period of March 1957 to December 2018. The investment universe is updated

annually. At the end of February of each year t, the largest 100 stocks (in terms of market value)

from the S&P 500 index with non-missing monthly returns in the previous h months constitute

the investment universe for the period from March of year t to February of year t+1. It is possible

that some of the selected stocks do not survive the whole year before updating the investment

universe. As a result, the number of assets used to construct portfolios can be smaller than 100 for

some months.

We use a rolling estimation window approach with h = 120 (The Online Appendix provides

results with h= 240). At the beginning of a given month t, we use the data in the most recent h

months (i.e., month t− h to month t− 1) to compute the weights of various portfolio rules, and

obtain the out-of-sample portfolio returns in month t. This practice generates T −h out-of-sample
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portfolio returns where T stands for the number of months in the sample period. Based on these

T −h returns, we compute the sample mean (µ̂) and the sample variance (σ̂2) for a given portfolio

rule. The certainty equivalent return (CER= µ̂− γ
2
σ̂2) is typically used as an empirical proxy for

the expected out-of-sample utility of a portfolio, and we use this as the first empirical measure

to evaluate portfolios. In this section, we assume γ = 3 (see the Online Appendix for results with

γ = 5). In addition to CER, we also report portfolio Sharpe ratio (SR = µ̂/σ̂), which is another

widely used measure to evaluate portfolio.

When implementing a portfolio rule in practice, portfolio turnover and the associated trading

costs can be a non-trivial aspect of portfolio performance (e.g., Novy-Marx and Velikov, 2016).

In this section, we also report the average turnover of a given portfolio, and examine portfolio

performance after transaction costs. Let wt = [w1,t, . . . ,wN,t]
′ denote the weights determined by a

given portfolio rule at the beginning of month t (i.e., using information over months t−h to t−1),

and Rt = [R1,t, . . . ,RN,t]
′ be the gross asset returns in month t. The turnover of this portfolio rule

in month t is computed as

Turnt =
N∑
i=1

∣∣∣∣∣wi,t− wi,t−1Ri,t−1∑N

i=1wi,t−1Ri,t−1

∣∣∣∣∣ . (60)

The average turnover across the T −h months in the sample period is reported.

Using live equity trading data from a large institutional money manager over the period 1998

to 2016, Frazzini, Isreal, and Moskowitz (2018) find that actual trading costs are much smaller

than previous studies suggest. The mean market impact of the trades in their sample is about 10

basis points. Based on orders executed by Mongan Stanley in 2004, Engle, Ferstenberg, and Russell

(2012) show similar level of transaction costs (i.e., 10 basis points) for large institutional investors.

Eaton, Irvine, and Liu (2020) examine order-level data provided by Abel Noser over the period

from 1999 to 2011, and show the mean price impact of institutional trades is 22 basis points. Given

the above findings, we set the transaction cost to be 20 basis points of the amount traded in our

base case calculation.13 We also report the results based on 10 or 50 basis points in the Online

Appendix.

4.1. Certainty Equivalent Return (CER)

Table 1 reports the CER results of the portfolios for h= 120 and γ = 3. The first row, w∗, is the

performance of the optimal portfolio based on the in-sample estimates of mean and covariance

matrix. This portfolio generates the highest CER; but it is not attainable to investors because it

13 Some studies (e.g., Gârleanu and Pedersen (2013), Olivares-Nadal and DeMiguel (2018)) use the quadratic trans-
action costs. As the weights are independent of the portfolio scale, it seems difficult to calibrate such costs in our
setting. This is an interesting problem for future research.
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requires look-ahead information. The rest of the portfolios are grouped into six categories, following

the same order as they are introduced in Section 3.

Note that the newly derived optimal combining coefficient ĉt can be used to generate four new

optimal combining portfolios: ŵq,t, ŵ
LW2004
q,t , ŵLW2017

q,t , and ŵMP
q,t ; and these four portfolios belong

to the first three categories, i.e., invariant optimal portfolio rules, rules with shrinkage covariance

matrix estimators, and rules with MacKinlay-Pástor single factor structure. Portfolios in the same

category adopt similar strategy to deal with estimation risk, and the only difference across portfolios

is the combining coefficient used. We compare the portfolios using ĉt with those not using ĉt in

each of the three categories, and report the one-sided p-value in italics. Such comparison offers

direct insight in the effect of adopting the optimal combining coefficient ĉt. The CER results of

the portfolios in the first three categories in Table 1 show that portfolios adopting the optimal

combining coefficient ĉt always outperform those not using ĉt, and the performance improvement

is mostly significant.

Comparing across the three categories, we see that ŵLW2004
p,t , ŵLW2017

p,t , and ŵMP
p,t all outperform

ŵp,t but underperform ŵq,t in general. This suggests that the use of shrinkage covariance matrix

estimators or imposing the MacKinlay-Pástor single factor structure are both effective ways to

address the estimation risk in the plug-in rule, but they are less effective than the optimal combining

strategy. In addition, we notice that ŵLW2004
q,t and ŵLW2017

q,t outperform ŵq,t, indicating that adopting

the optimal combining coefficient ĉt together with the shrinkage estimators generates a better

performing portfolio than using ĉt alone to deal with estimation risk. This is, however, not always

the case when the single factor structure is used together with ĉt: ŵ
MP
q,t only outperforms ŵq,t in

datasets with relatively large number of risky assets (e.g., 49 industry portfolios or 100 individual

stocks). This is because in most cases, the single factor structure is not true in population, and

imposing such a structure introduces a bias. When ĉt is used, the effect of estimation risk is already

reduced significantly, and it is only beneficial to further impose the factor structure if the gain

from further reduced estimation risk outweighs the cost coming from the introduced bias. When

more risky assets are involved, there are more estimation errors; and it is more likely for ŵMP
q,t to

outperform ŵq,t.

Next, we consider the portfolios in the remaining three categories in the table, i.e., rule with

no-short-sale constraints, other rules from portfolio optimization, and non-optimization rules.14

Note that the optimal combining coefficient ĉt is not applicable to these portfolios. Therefore,

instead of testing the effect of using ĉt, we compare the performance of the portfolios in these three

categories with the four newly obtained optimal portfolios, i.e., ŵq,t, ŵ
LW2004
q,t , ŵLW2017

q,t , and ŵMP
q,t .

14 We find that the performance of the timing strategies, i.e., KOV T , KORT , and KOBT , is generally better with
η= 4 than with η= 1 or 2. For brevity, only the results with η= 4 are reported in the table.
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The corresponding one-sided p-values are reported in italics in the four rows below the portfolio

CER.

Table 1 shows that ŵNSp,t outperforms ŵp,t in every case, suggesting that imposing no-short-sale

constraints effectively reduces the estimation risk in the plug-in rule. However, it is in general less

effective compared to the optimal combining strategy, noting that ŵq,t outperforms ŵNSp,t in all cases

except for the dataset containing the largest number of risky assets (i.e., 100 individual stocks).

For 100 individual stocks, when we apply the optimal combining coefficient ĉt together with the

shrinkage covariance matrix estimators or the single factor structure, the resulting portfolios (i.e.,

ŵLW2004
q,t , ŵLW2017

q,t , ŵMP
q,t ) all outperform ŵNSp,t .

In six out of the eight datasets examined, the sample GMV ŵg,t underperforms ŵq,t. For the

remaining two datasets (i.e., 49 industry portfolios and 100 individual stocks), when the optimal

combining coefficient ĉt is used together with the shrinkage covariance matrix estimators or the

single factor structure, the resulting portfolios (i.e., ŵLW2004
q,t , ŵLW2017

q,t , ŵMP
q,t ) outperform ŵg,t.

When no-short-sale constraints are imposed on the sample GMV, portfolio performance does not

always improve, unlike the case of the plug-in rule. Similar to ŵg,t, we see that ŵNSg,t underperforms

ŵq,t in the first six datasets. In dataset with 49 industry portfolios, ŵNSg,t performs similarly as

ŵLW2004
q,t , ŵLW2017

q,t , and ŵMP
q,t . In dataset with 100 individual stocks, ŵNSg,t performs similarly as

ŵLW2004
q,t and ŵLW2017

q,t but underperforms ŵMP
q,t . Together, these results indicate that completely

ignoring information in the sample mean and focusing only on GMV may not be an ideal strategy.

Next in the table, the performance of the normalized KZ 3-fund rule ŵKZ3,t is reported. As

discussed previously, normalizing an optimal portfolio derived in the case with a risk-free asset

does not generate an optimal portfolio for the case without a risk-free asset, and the returns of the

normalized portfolio do not have finite moments. Consistent with our prediction, ŵKZ3,t performs

poorly in general. In many cases, it even underperforms the plug-in rule ŵp,t.

Lastly, the performance of the non-optimization rules (i.e., the 1/N rule, and the two timing

strategies, KOV T , KORT , and KOBT ) are reported. We notice that among these four portfolios,

the 1/N rule never performs the best and often performs the worst. This is consistent with the con-

clusion in Kirby and Ostdiek (2012) that there are substantial benefits of using sample information

to guide portfolio selection. Comparing the non-optimization rules with the four newly obtained

optimal portfolios, we find that ŵq,t, ŵ
LW2004
q,t , and ŵLW2017

q,t perform well in the first six datasets.

For 49 industry portfolios, ŵLW2004
q,t , ŵLW2017

q,t , and ŵMP
q,t perform similarly as the non-optimization

rules. For the dataset including the most assets (i.e., 100 individual stocks), ŵMP
q,t performs the

best.

Across the eight datasets examined, we notice that adopting only the optimal combining coef-

ficient ĉt, ŵq,t performs well in the first six datasets but less so in the last two datasets (i.e., 49
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industry portfolios and 100 individual stocks) when relatively large number of risky assets are

involved. More risky assets result in a higher level of estimation risk. In addition, unlike the anomaly

portfolios, no significant spread in expected returns has been documented for e.g., industry port-

folios. A smaller spread indicates that the mean-variance frontier is flatter (i.e., smaller ψ2), which

suggests a lower value of using ĉt as discussed in Subsection 2.2. For those cases, Table 1 shows

that adopting ĉt together with other measures to address estimation risk (such as the shrinkage

covariance matrix or the single factor structure) can significantly improve portfolio performance.

4.2. Sharpe Ratio

Table 2 reports the Sharpe ratios of the portfolio rules using the same eight datasets for h= 120

and γ = 3. The results are presented in the same way as in Table 1.

For the portfolios in the first three categories, i.e., invariant optimal portfolio rules, rules with

shrinkage covariance matrix estimators, and rules with MacKinlay-Pástor single factor structure,

we see patterns similar to the CER results in Table 1. Even though the optimal combining coefficient

ĉt is derived to maximize the expected out-of-sample utility, we continue to observe the portfolios

using ĉt to outperform those not using ĉt in each of the three categories in terms of Sharpe ratio.

Adopting ĉt together with the shrinkage covariance matrix estimators generates better portfolio

Sharpe ratio than using ĉt alone (noticing that ŵLW2004
q,t and ŵLW2017

q,t outperform ŵq,t). However,

it is not always the case when ĉt is used together with the single factor structure: ŵMP
q,t is more

likely to outperform ŵq,t when more risky assets are involved (e.g., 49 industry portfolios and 100

individual stocks).

Unlike the CER results in Table 1, imposing no-short-sale constraints does not seem to be

effective in improving the Sharpe ratio of the plug-in rule. Table 2 shows that ŵNSp,t underperforms

ŵp,t in five out of the eight datasets examined. Relative to the optimal combining portfolio using

only ĉt (i.e., ŵq,t), ŵ
NS
p,t underperforms in all cases except for the dataset with 100 individual

stocks. For that dataset, when ĉt is used together with the shrinkage estimators or the single factor

structure, the optimal combining rules (i.e., ŵLW2004
q,t , ŵLW2017

q,t , ŵMP
q,t ) outperform ŵNSp,t .

Completely ignoring the information in sample mean, both ŵg,t and ŵNSg,t underperform ŵq,t in six

out of the eight datasets examined. When ĉt is applied together with the shrinkage estimators or the

single factor structure, the optimal combining portfolios (i.e., ŵLW2004
q,t , ŵLW2017

q,t , ŵMP
q,t ) outperform

ŵg,t in the remaining two datasets (i.e., 49 industry portfolios and 100 individual stocks), and

generate similar Sharpe ratios as ŵNSg,t in 49 industry portfolios. For 100 individual stocks, only

ŵMP
q,t outperforms ŵNSg,t .

Similar to the CER results in Table 1, the Sharpe ratio of the normalized KZ 3-fund rule is also

poor, further supporting the argument that normalizing an optimal portfolio obtained in the case

with a risk-free asset does not generate an optimal portfolio for the case without a risk-free asset.
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Finally, the Sharpe ratio results of the non-optimization rules are also similar to the CER results

in Table 1. The optimal combining portfolios ŵq,t, ŵ
LW2004
q,t , and ŵLW2017

q,t outperform the non-

optimization rules in the first six datasets. For 49 industry portfolios, ŵLW2004
q,t , ŵLW2017

q,t , and ŵMP
q,t

perform similarly as the non-optimization rules. For 100 individual stocks, ŵMP
q,t outperforms the

non-optimization rules.

4.3. Turnover and Performance Net of Trading Costs

Table 3 reports the average turnover of the portfolios with h= 120 and γ = 3 based on the same

eight datasets. Portfolios are grouped in the same way as in Tables 1 and 2.

For portfolios in the first three categories, i.e., invariant optimal portfolio rules, rules with shrink-

age covariance matrix estimators, and rules with MacKinlay-Pástor single factor structure, we have

some interesting observations. In each of the three categories, the portfolios using ĉt have lower

average turnover than those not using ĉt. Comparing across the three categories, we find that using

the shrinkage covariance matrix estimators further reduces portfolio turnover; and imposing the

single factor structure results in even lower turnover. As a result, among the four newly derived

optimal combining portfolios, ŵq,t has the highest turnover, and ŵMP
q,t has the lowest turnover.

For the portfolios in the remaining three categories, we can see that imposing no-short-sale

constraints or ignoring the sample mean both help to reduce portfolio turnover. The normalized

KZ 3-fund rule, on the other hand, has a high level of turnover. Finally, the non-optimization rules

involve low turnover in general.

Tables 4 and 5 report portfolio CER and Sharpe ratio with transaction cost of 20 basis points.

For portfolios in the first three categories, we continue to see the portfolios using ĉt outperform

those not using ĉt in each category after transaction costs. In addition, portfolios using both ĉt and

the shrinkage covariance matrix estimators continue to outperform the one using ĉt alone. Due to

the low turnover of ŵMP
q,t , the performance of ŵMP

q,t relative to other portfolios in the first three

categories improves after the transaction costs are considered. Note that in terms of CER, it is

more likely for ŵMP
q,t to outperform ŵq,t after transaction costs.

Except for the normalized KZ 3-fund rule, the turnover of the portfolios in the remaining three

categories are, in general, lower than those in the first three categories. As a result, we expect the

performance of the four newly derived optimal combining portfolios (i.e., ŵq,t, ŵ
LW2004
q,t , ŵLW2017

q,t ,

and ŵMP
q,t ) relative to the portfolios in the remaining three categories to decrease. Nevertheless,

we continue to observe that the optimal combining portfolios using both ĉt and the shrinkage

estimators to outperform in most cases after transaction costs, and ŵMP
q,t continues to perform well

in the dataset with the largest number of risky assets (i.e., 100 individual stocks).
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5. Conclusion

In this paper, we analyze optimal portfolio choice for the case without a risk-free asset under

estimation risk. We propose an optimal combining strategy to mitigate the impact of estimation

risk, which is the first such a rule in the no risk-free asset case. The new strategy can be directly

applied to the plug-in rule, or it can be applied together with some other estimated strategies,

including the use of the shrinkage covariance matrix estimators of Ledoit and Wolf (2004, 2017)

and the single factor structure of MacKinlay-Pástor (2000). We show that the portfolios adopting

the new combining strategy outperform those without using it in terms of higher CER, higher

Sharpe ratio, and lower turnover.

In addition, we compare the new strategy with other portfolio strategies from the literature, such

as the rule with no-short-sale constraints, the GMV, and the non-optimization based portfolio rules

(i.e., the 1/N rule and the two timing strategies of Kirby and Ostdiek (2012)). We show that the

optimal combining strategy, in particular the one applied together with the shrinkage estimators,

performs well against these alternative portfolio rules; and the optimal combining strategy applied

together with the single factor structure tends to perform well in dataset with relatively large

number of risky assets (e.g., 100 individual stocks).

Unlike earlier studies, such as Kan and Zhou (2007) and Tu and Zhou (2011), which rely on

simulations to compute the expected out-of-sample utility of the invariant optimal portfolios, we

develop new analytical methods which enable us to obtain the exact distribution of the out-of-

sample returns and to derive the explicit expressions of the expected out-of-sample utility of these

portfolios. Besides allowing for speedy computation, the explicit expressions provide analytical

insights into what drives the out-of-sample performance of the rules.

For future research, it will be of interest to examine the gains of our proposed strategy in other

asset markets, such as bonds, currencies and commodities. It will also be of interest to explore the

implications of estimation errors in some other settings such as the out-of-sample performance of

estimated stochastic discount factors (e.g., Kozak, Nagel, and Santosh, 2020).
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Appendix

This appendix contains an outline of the proof of Proposition 1 and all the other proofs. The detailed

proof of Proposition 1 is in the Online Appendix. We begin by citing two lemmas from Kan and Wang

(2017). Suppose z ∼ N (µ,1), w ∼ χ2
m−1, u ∼ χ2

n, and they are independent of each other. It follows that

v= z2 +w∼ χ2
m(δ), where δ = µ2.

Lemma A1: Let g(v) be a function of v. When the expectations exist, we have

E[g(v)z] = µE[g(v1)], (A1)

E[g(v)z2] =E[g(v1)] + δE[g(v2)], (A2)

where v1 ∼ χ2
m+2(δ) and v2 ∼ χ2

m+4(δ).

Lemma A2: Let g(y) be a function of y= v/u∼Gδm,n. When the expectation exists, we have

E

[
g(y)

uk

]
=

E[g(y1)]

2k
(
n
2
− k
)
k

for k < n
2
, (A3)

where y1 ∼Gδm,n−2k and (a)k = a(a+ 1) · · · (a+ k− 1).

Proof of Proposition 1: The key to the proof is to define two N × N orthonormal matrices P and

Q. With P , we can transform µ̂t and Σ̂t into z and W , which are independent of each other and their

distributions, instead of µ and Σ, depend only on the scalar parameters θg and ψ. With the definition of z and

W , we show that the exact distribution of rt+1(c̃) = ŵ′t(c̃)
′rt+1 are determined by eight univariate random

terms constructed based on z and W . Next, define A= (Q′W−1Q)−1. We show that the distributions of the

eight terms are closely linked to the distributions of different elements in A−1. Applying Theorem 3.2.10 of

Muirhead (1982), the results in Dickey (1967), and the Bartlett decomposition, we are able to obtain the

distributions of those elements. �

Proof of Lemma 1: From the detailed proof of Proposition 1, we obtain

µz,t =

√
hψ

v2

(
x21
√
u0√

w2

+ z2

)
, (A4)

µg,t = µg +
σgψ√
z22 +u0

(
y1
√
u0 +

az2√
v2

)
, (A5)

σ2
g,t = σ2

g

(
y21 + y22 + 1 +

s1
w1

+
a2

v2

)
, (A6)

σ2
z,t =

hψ̂2
t

v2

(
1 +

x2
21 + s2
w2

)
, (A7)

σgz,t =

√
hσgψ̂t√
v2

(
a
√
v2

+
x21√
w2

y1 +

√
s2√
w2

y2

)
. (A8)

Taking expectations and using the fact that E[y1] =E[y2] = 0, E[y21 ] = 1/(h−N − 1), and E[y22 ] = (h+N −

7)/[(h−N − 1)(h−N + 1)], we get

E[µg,t] = µg, (A9)



Kan, Wang, and Zhou: No Risk-free Asset Case
Management Science 00(0), pp. 000–000, © 0000 INFORMS 27

E[µz,t] =
hψ2

h−N − 1
, (A10)

E[σ2
g,t] =

(h− 2)σ2
g

h−N − 1
, (A11)

E[σ2
z,t] =

h(h− 2)(hψ2 +N − 1)

(h−N)(h−N − 1)(h−N − 3)
, (A12)

E[σgz,t] = 0. (A13)

With the above expressions, we obtain E[U(ŵt(c̃))]. �

Proof of Lemma 2: Using (A9) to (A13), it is easy to obtain µ(c̃) =E[µt(c̃)] and E[σ2
t (c̃)]. To obtain the

expression of σ2(c̃), the only term that needs to be derived is

E[µt(c̃)
2] =E

[
µ2
g,t +

c̃2

γ2
µ2
z,t +

2c̃

γ
µg,tµz,t

]
. (A14)

Using (A4) and (A5), we get

E[µ2
g,t] = µ2

g +
σ2
gψ

2

h−N − 1
, (A15)

E[µ2
z,t] =

hψ2

(h−N − 1)(h−N − 3)

(
h− 2

h−N
+hψ2

)
, (A16)

E[µg,tµz,t] =
hψ2µg

h−N − 1
. (A17)

With these expressions, we can obtain σ2(c̃). �

Proof of Proposition 2: The expressions of µt(ct) and σ2
t (ct) are given by

µt(ct) = µg +
σgψ

ψ̂t

(√
u0y1√
v2

+
az2
v2

)
+

√
hψg(ψ̂2

t )

γv2

(
x21
√
u0√

w2

+ z2

)
, (A18)

σ2
t (ct) = σ2

g

(
y21 + y22 + 1 +

s1
w1

+
a2

v2

)
+
hg2(ψ̂2

t )ψ̂2
t

γ2v2

(
1 +

x2
21 + s2
w2

)
+

2
√
hσgg(ψ̂2

t )ψ̂t
γ
√
v2

(
a
√
v2

+
x21y1√
w2

+

√
s2y2√
w2

)
. (A19)

Take expectations and applying Lemmas A1 and A2, we get

E[µt(ct)] = µg +

√
hψ

γ
E

[
g(ψ̂2

t )z2
v2

]
= µg +

hψ2

γ(h−N − 1)
E[g(q3)], (A20)

E[σ2
t (ct)] =

(h− 2)σ2
g

h−N − 1
+

h(h− 2)

γ2(h−N)
E

[
g2(ψ̂2

t )ψ̂2
t

v2

]
=

(h− 2)σ2
g

h−N − 1
+

h(h− 2)E[g2(q4)q4]

γ2(h−N)(h−N − 1)
, (A21)

where q3 ∼Ghψ
2

N+1,h−N−1 and q4 ∼Ghψ
2

N−1,h−N−1. Using these expressions, we obtain the expected out-of-sample

utility of portfolio ŵt(ct). �

Proof of Lemma 3: The expression for µ(ct) =E[µt(ct)] has already been derived in (A20). For σ2(ct) =

E[σ2
t (ct)]+E[µt(ct)

2]−E[µt(ct)]
2, the only term that we need to derive is E[µt(ct)

2], which can be expressed

as

E[µt(ct)
2] =E[µ2

g,t] +
E[g2(ψ̂2

t )µ2
z,t]

γ2
+

2E[g(ψ̂2
t )µg,tµz,t]

γ
. (A22)



Kan, Wang, and Zhou: No Risk-free Asset Case
28 Management Science 00(0), pp. 000–000, © 0000 INFORMS

Expression of E[µ2
g,t] is in (A15). Using (A4), (A5), and the fact that ψ̂2

t = (z22 + u0)/v2, take expectations

and apply Lemmas A1 and A2, we obtain

E[g2(ψ̂2
t )µ2

z,t] = hψ2E

[
g2(ψ̂2

t )

(
u0

(h−N)v22
+
z22
v22

)]
=

hψ2

h−N
E

[
g2(ψ̂2

t )ψ̂2
t

v2

]
+
hψ2(h−N − 1)

h−N
E

[
g2(ψ̂2

t )z22
v22

]

=
hψ2E[g2(q4)q4]

(h−N)(h−N − 1)
+
hψ2(E[g2(q5) +hψ2E[g2(q6)])

(h−N)(h−N − 3)
, (A23)

E[g(ψ̂2
t )µg,tµz,t] = µg

√
hψE

[
g(ψ̂t)

z2
v2

]
=
µghψ

2E[g(q3)]

h−N − 1
, (A24)

where q3 ∼ Ghψ
2

N+1,h−N−1, q4 ∼ Ghψ
2

N−1,h−N−1, q5 ∼ Ghψ
2

N+1,h−N−3 and q6 ∼ Ghψ
2

N+3,h−N−3. Using these expressions

and after simplification, we obtain (29). �
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Gârleanu, N., L. H. Pedersen. 2013. Dynamic trading with predictable returns and transaction costs. Journal

of Finance 68 2309–2340.

Grinold, R. C., R. N. Kahn. 1999. ActivePortfolio Management: Quantitative Theory and Applications.

McGraw-Hill, New York.

Jaganathan, R., T. Ma. 2003. Risk reduction in large portfolios: Why imposing the wrong constraints helps.

Journal of Finance 58 1651–1683.

Jobson, J. D., B. Korkie, V. Ratti. 1979. Improved estimation for Markowitz portfolios using James-Stein

type estimators. Proceedings of the American Statistical Association, Business and Economics Statistics

Section 41 279–284.

Jorion, P. 1991. Bayesian and CAPM estimators of the means: Implications for portfolio selection. Journal

of Banking and Finance 15 717–727.



Kan, Wang, and Zhou: No Risk-free Asset Case
30 Management Science 00(0), pp. 000–000, © 0000 INFORMS

Jorion, P. 1986. Bayes-Stein estimation for portfolio analysis. Journal of Financial and Quantitative Analysis

21 279–292.

Kan, R., X. Wang. 2017. On the economic value of alphas. Working paper, University of Toronto.

Kan, R., G. Zhou. 2007. Optimal portfolio choice with parameter uncertainty. Journal of Financial and

Quantitative Analysis 42 621–656.

Kempf, A., C. Memmel. 2006. Estimating the global minimum variance portfolio. Schmalenbach Business

Review 58 332–348.

Kirby, C., B. Ostdiek. 2012. It’s all in the timing: simple active portfolio strategies that outperform näıve
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Table 1 CER Comparison

This table reports the certainty equivalent returns of the portfolios studied in this paper with h = 120 and γ = 3,

based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios,

i.e., ŵq,t, ŵ
LW2004
q,t , ŵLW2017

q,t , and ŵMP
q,t , are highlighted with a box around. In the three categories to which the four

new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining

coefficient ĉt, and the p-values are reported in italics. For the portfolios in the remaining three categories, one-sided

tests are conducted to compare them with the four newly obtained portfolios, and the corresponding p-values are

reported in the four rows below the portfolio CER. We set η= 4 for the timing strategies KOV T , KORT , and KOBT .

Momentum Size-B/M IVOL OP-Inv NM-V (LT) NM-V (All) Industry Stocks
N = 10 N = 25 N = 10 N = 25 N = 16 N = 46 N = 49 N = 100

w∗ 0.0131 0.0195 0.0107 0.0245 0.0258 0.1167 0.0205 0.0293

Invariant Optimal Portfolio Rules

ŵq,t 0.0098 0.0102 0.0064 0.0060 0.0081 0.0259 0.0022 −0.0068

ŵp,t −0.0063 −0.0635 −0.0141 −0.0705 −0.0270 −1.2294 −0.3998 −27.0937
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ŵu,t −0.0013 −0.0284 −0.0075 −0.0361 −0.0147 −0.3039 −0.1278 −0.7464
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ŵBS,t 0.0088 0.0029 0.0048 −0.0017 0.0048 −0.1404 −0.0210 −0.1201
0.02 0.00 0.00 0.00 0.03 0.00 0.00 0.00

Rules with Shrinkage Covariance Matrix Estimators

ŵLW2004
q,t 0.0120 0.0112 0.0100 0.0083 0.0100 0.0695 0.0042 0.0020

ŵLW2004
p,t 0.0070 −0.0009 0.0048 −0.0219 0.0013 −0.0444 −0.1243 −0.5255

0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00

ŵLW2017
q,t 0.0113 0.0123 0.0082 0.0088 0.0093 0.0769 0.0045 0.0030

ŵLW2017
p,t −0.0006 −0.0204 −0.0066 −0.0275 −0.0135 −0.2046 −0.1205 −0.2643

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rules with MacKinlay-Pástor Single Factor Structure

ŵMP
q,t 0.0047 0.0036 0.0036 0.0063 0.0030 0.0066 0.0043 0.0050

ŵMP
p,t 0.0039 −0.0003 −0.0010 −0.0014 −0.0017 −0.0012 0.0013 −0.0028

0.15 0.02 0.00 0.00 0.00 0.00 0.09 0.00

Rule with No-Short-Sale Constraints

ŵNSp,t 0.0060 0.0050 0.0028 0.0045 0.0048 0.0090 0.0003 0.0000
0.11 0.04 0.18 0.31 0.20 0.21 0.24 0.97
0.00 0.00 0.00 0.05 0.02 0.00 0.05 0.19
0.03 0.00 0.07 0.04 0.09 0.00 0.04 0.09
0.85 0.83 0.22 0.14 0.86 0.86 0.08 0.03
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Momentum Size-B/M IVOL OP-Inv NM-V (LT) NM-V (All) Industry Stocks
N = 10 N = 25 N = 10 N = 25 N = 16 N = 46 N = 49 N = 100

Other Rules from Portfolio Optimization

ŵg,t 0.0051 0.0060 0.0020 0.0050 0.0050 0.0035 0.0025 −0.0056
0.07 0.06 0.15 0.35 0.19 0.15 0.59 0.98
0.00 0.00 0.00 0.03 0.01 0.00 0.05 0.00
0.02 0.00 0.05 0.03 0.07 0.00 0.04 0.00
0.66 0.99 0.04 0.07 0.96 0.05 0.11 0.00

ŵNSg,t 0.0035 0.0041 0.0041 0.0049 0.0025 0.0059 0.0042 0.0027
0.03 0.02 0.28 0.36 0.07 0.17 0.85 1.00
0.00 0.00 0.01 0.06 0.00 0.00 0.50 0.77
0.01 0.00 0.13 0.05 0.02 0.00 0.39 0.33
0.08 0.69 0.73 0.11 0.30 0.29 0.44 0.02

ŵKZ3,t −0.7926 −0.0174 −1.2156 −0.0387 −0.6193 −1.4438 −0.1179 −0.0426
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Non-Optimization Rules

1/N 0.0026 0.0036 0.0022 0.0034 0.0022 0.0013 0.0039 0.0024
0.02 0.02 0.16 0.21 0.08 0.13 0.75 1.00
0.00 0.00 0.00 0.02 0.00 0.00 0.43 0.61
0.00 0.00 0.06 0.02 0.02 0.00 0.37 0.32
0.04 0.51 0.16 0.03 0.31 0.01 0.40 0.05

KOV T 0.0036 0.0043 0.0041 0.0045 0.0030 0.0046 0.0049 0.0037
0.03 0.03 0.28 0.32 0.10 0.16 0.91 1.00
0.00 0.00 0.01 0.05 0.00 0.00 0.71 0.95
0.01 0.00 0.13 0.04 0.03 0.00 0.61 0.80
0.10 0.75 0.73 0.07 0.49 0.10 0.66 0.10

KORT 0.0047 0.0045 0.0034 0.0049 0.0046 0.0061 0.0038 0.0019
0.06 0.03 0.23 0.36 0.18 0.18 0.78 1.00
0.00 0.00 0.00 0.06 0.01 0.00 0.40 0.46
0.01 0.00 0.10 0.05 0.08 0.00 0.31 0.18
0.47 0.74 0.46 0.14 0.85 0.39 0.38 0.02

KOBT 0.0049 0.0046 0.0026 0.0046 0.0050 0.0053 0.0041 0.0027
0.07 0.04 0.18 0.34 0.21 0.17 0.78 1.00
0.00 0.00 0.00 0.06 0.02 0.00 0.48 0.69
0.02 0.00 0.07 0.05 0.10 0.00 0.41 0.42
0.59 0.75 0.22 0.11 0.91 0.23 0.45 0.07
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Table 2 Sharpe Ratio Comparison

This table reports the Sharpe ratio of the portfolios studied in this paper with h = 120 and γ = 3, based on the

eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., ŵq,t,

ŵLW2004
q,t , ŵLW2017

q,t , and ŵMP
q,t , are highlighted with a box around. In the three categories to which the four new

portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining

coefficient ĉt, and the p-values are reported in italics. For the portfolios in the remaining three categories, one-sided

tests are conducted to compare them with the four newly obtained portfolios, and the corresponding p-values are

reported in the four rows below the portfolio Sharpe ratio. We set η= 4 for the timing strategies KOV T , KORT , and

KOBT .

Momentum Size-B/M IVOL OP-Inv NM-V (LT) NM-V (All) Industry Stocks
N = 10 N = 25 N = 10 N = 25 N = 16 N = 46 N = 49 N = 100

w∗ 0.2827 0.3445 0.2547 0.3843 0.3947 0.8369 0.3519 0.4193

Invariant Optimal Portfolio Rules

ŵq,t 0.2521 0.2479 0.2452 0.1916 0.2238 0.5778 0.1194 0.0234

ŵp,t 0.2375 0.1999 0.2387 0.1470 0.1896 0.5614 0.0610 −0.0482
0.06 0.00 0.23 0.03 0.04 0.07 0.08 0.09

ŵu,t 0.2405 0.2069 0.2400 0.1534 0.1940 0.5648 0.0671 −0.0428
0.10 0.00 0.27 0.04 0.06 0.12 0.09 0.09

ŵBS,t 0.2511 0.2284 0.2453 0.1718 0.2135 0.5715 0.0809 −0.0434
0.36 0.01 0.51 0.07 0.14 0.11 0.11 0.06

Rules with Shrinkage Covariance Matrix Estimators

ŵLW2004
q,t 0.2693 0.2838 0.2456 0.2312 0.2591 0.6925 0.1661 0.1093

ŵLW2004
p,t 0.2545 0.2393 0.2383 0.1792 0.2118 0.6558 0.0728 −0.0138

0.07 0.01 0.23 0.02 0.03 0.01 0.02 0.01

ŵLW2017
q,t 0.2629 0.2784 0.2478 0.2357 0.2368 0.6866 0.1746 0.1382

ŵLW2017
p,t 0.2515 0.2350 0.2437 0.1885 0.1970 0.6618 0.0767 −0.0094

0.11 0.00 0.33 0.03 0.03 0.02 0.02 0.00

Rules with MacKinlay-Pástor Single Factor Structure

ŵMP
q,t 0.1701 0.1470 0.1480 0.2203 0.1347 0.2345 0.1700 0.1849

ŵMP
p,t 0.1535 0.0928 0.0705 0.0658 0.0519 0.0634 0.1001 0.0638

0.14 0.05 0.00 0.00 0.00 0.00 0.08 0.01

Rule with No-Short-Sale Constraints

ŵNSp,t 0.1905 0.1734 0.1299 0.1644 0.1700 0.2495 0.0996 0.0943
0.03 0.03 0.00 0.29 0.15 0.00 0.34 0.92
0.00 0.00 0.00 0.06 0.02 0.00 0.05 0.36
0.01 0.00 0.00 0.06 0.09 0.00 0.03 0.14
0.82 0.81 0.21 0.07 0.86 0.62 0.09 0.03
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Momentum Size-B/M IVOL OP-Inv NM-V (LT) NM-V (All) Industry Stocks
N = 10 N = 25 N = 10 N = 25 N = 16 N = 46 N = 49 N = 100

Other Rules from Portfolio Optimization

ŵg,t 0.1823 0.2085 0.1088 0.1813 0.1843 0.1478 0.1227 0.0369
0.03 0.13 0.00 0.40 0.21 0.00 0.54 0.96
0.00 0.00 0.00 0.07 0.03 0.00 0.05 0.01
0.01 0.01 0.00 0.06 0.13 0.00 0.03 0.00
0.75 1.00 0.04 0.04 0.96 0.04 0.11 0.00

ŵNSg,t 0.1450 0.1595 0.1639 0.1816 0.1236 0.2188 0.1717 0.1291
0.00 0.01 0.01 0.42 0.03 0.00 0.90 0.99
0.00 0.00 0.01 0.12 0.00 0.00 0.57 0.78
0.00 0.00 0.01 0.12 0.01 0.00 0.46 0.33
0.09 0.71 0.78 0.09 0.30 0.32 0.52 0.03

ŵKZ3,t 0.0640 0.1081 −0.0086 0.0361 −0.0292 −0.1277 0.0075 −0.0191
0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.14
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.01 0.17 0.00 0.00 0.00 0.00 0.00 0.00

Non-Optimization Rules

1/N 0.1276 0.1484 0.1224 0.1426 0.1209 0.1034 0.1527 0.1205
0.00 0.01 0.00 0.17 0.04 0.00 0.74 0.97
0.00 0.00 0.00 0.03 0.00 0.00 0.38 0.62
0.00 0.00 0.00 0.03 0.02 0.00 0.31 0.29
0.04 0.52 0.17 0.01 0.33 0.00 0.35 0.05

KOV T 0.1466 0.1636 0.1619 0.1704 0.1338 0.1751 0.1902 0.1584
0.00 0.02 0.01 0.34 0.05 0.00 0.95 1.00
0.00 0.00 0.01 0.09 0.00 0.00 0.76 0.95
0.00 0.00 0.01 0.08 0.03 0.00 0.68 0.80
0.12 0.75 0.74 0.05 0.49 0.07 0.72 0.16

KORT 0.1695 0.1651 0.1438 0.1768 0.1665 0.2046 0.1534 0.1078
0.01 0.02 0.00 0.38 0.14 0.00 0.78 0.96
0.00 0.00 0.00 0.10 0.02 0.00 0.35 0.48
0.00 0.00 0.00 0.09 0.08 0.00 0.27 0.16
0.49 0.72 0.43 0.08 0.85 0.23 0.34 0.02

KOBT 0.1747 0.1670 0.1274 0.1713 0.1737 0.1859 0.1585 0.1282
0.02 0.03 0.00 0.34 0.18 0.00 0.78 0.98
0.00 0.00 0.00 0.09 0.03 0.00 0.43 0.70
0.01 0.00 0.00 0.09 0.12 0.00 0.35 0.38
0.60 0.74 0.22 0.07 0.90 0.13 0.39 0.06
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Table 3 Turnover Comparison

This table reports the average turnover of the portfolios studied in this paper for h= 120 and γ = 3, based on the

eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., ŵq,t,

ŵLW2004
q,t , ŵLW2017

q,t , and ŵMP
q,t , are highlighted with a box around. We set η = 4 for the timing strategies KOV T ,

KORT , and KOBT .

Momentum Size-B/M IVOL OP-Inv NM-V (LT) NM-V (All) Industry Stocks
N = 10 N = 25 N = 10 N = 25 N = 16 N = 46 N = 49 N = 100

w∗ 0.5371 1.9138 0.6365 1.9061 2.3643 20.8989 1.6981 4.1385

Invariant Optimal Portfolio Rules

ŵq,t 2.0157 3.5212 2.9934 1.9283 2.8730 34.0907 1.2583 3.8888

ŵp,t 5.0765 54.3620 7.1199 16.3314 11.2294 434.8788 91.2610 1275.5124
ŵu,t 4.3229 14.5806 6.5314 9.7989 8.6225 152.8220 40.1044 224.0102
ŵBS,t 2.3762 6.6710 3.6017 4.1109 4.2856 79.9476 5.4557 25.7444

Rules with Shrinkage Covariance Matrix Estimators

ŵLW2004
q,t 1.0061 1.2745 1.0879 1.1136 0.9959 5.2506 0.5241 0.6093

ŵLW2004
p,t 2.4207 6.6031 2.6552 7.2740 3.5400 50.8673 15.2265 212.4453

ŵLW2017
q,t 1.6960 2.1229 2.3580 1.1987 2.0561 9.3306 0.4992 0.3830

ŵLW2017
p,t 4.2156 12.1936 5.5694 8.2761 7.5363 123.4904 23.6311 30.5442

Rules with MacKinlay-Pástor Single Factor Structure

ŵMP
q,t 0.1460 0.1661 0.1387 0.1931 0.1711 0.1984 0.1484 0.2159

ŵMP
p,t 0.2321 0.2869 0.2221 0.3277 0.2636 0.2861 0.1820 0.2850

Rule with No-Short-Sale Constraints

ŵNSp,t 0.1066 0.2393 0.1808 0.1945 0.1456 0.0558 0.2092 0.2648

Other Rules from Portfolio Optimization

ŵg,t 0.2770 0.7665 0.2640 0.5413 0.4911 1.5337 0.8227 3.7827

ŵNSg,t 0.0817 0.0691 0.0088 0.0774 0.0559 0.0375 0.0733 0.1440

ŵKZ3,t 30.5852 16.5565 55.9217 8.5546 28.0002 181.5043 8.4783 274.6183

Non-Optimization Rules

1/N 0.0176 0.0182 0.0172 0.0199 0.0197 0.0227 0.0341 0.0648
KOV T 0.0281 0.0309 0.0188 0.0353 0.0347 0.0373 0.0481 0.0706
KORT 0.0746 0.0767 0.0886 0.1086 0.0959 0.0832 0.1369 0.1591
KOBT 0.0346 0.0319 0.0383 0.0489 0.0373 0.0414 0.0710 0.1358
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Table 4 CER Comparison with 20 bps Transaction Costs

This table reports the CER of the portfolios studied in this paper with h= 120, γ = 3, and a transaction cost of 20 bps,

based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios,

i.e., ŵq,t, ŵ
LW2004
q,t , ŵLW2017

q,t , and ŵMP
q,t , are highlighted with a box around. In the three categories to which the four

new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining

coefficient ĉt, and the p-values are reported in italics. For the portfolios in the remaining three categories, one-sided

tests are conducted to compare them with the four newly obtained portfolios, and the corresponding p-values are

reported in the four rows below the portfolio CER. We set η= 4 for the timing strategies KOV T , KORT , and KOBT .

Momentum Size-B/M IVOL OP-Inv NM-V (LT) NM-V (All) Industry Stocks
N = 10 N = 25 N = 10 N = 25 N = 16 N = 46 N = 49 N = 100

w∗ 0.0119 0.0157 0.0094 0.0208 0.0212 0.0709 0.0171 0.0211

Invariant Optimal Portfolio Rules

ŵq,t 0.0058 0.0032 0.0006 0.0021 0.0025 −0.0324 −0.0003 −0.0147

ŵp,t −0.0165 −5.4065 −0.0288 −0.1110 −0.0483 −17.6764 −1.4196 −627.0316
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ŵu,t −0.0100 −0.0595 −0.0251 −0.0566 −0.0312 −5.9473 −0.8411 −8.2292
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ŵBS,t 0.0041 −0.0104 −0.0027 −0.0099 −0.0035 −0.4090 −0.0321 −0.2406
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rules with Shrinkage Covariance Matrix Estimators

ŵLW2004
q,t 0.0100 0.0087 0.0079 0.0061 0.0080 0.0607 0.0031 0.0008

ŵLW2004
p,t 0.0021 −0.0145 −0.0005 −0.0367 −0.0057 −0.3866 −0.1637 −17.9891

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ŵLW2017
q,t 0.0078 0.0081 0.0036 0.0064 0.0053 0.0620 0.0035 0.0022

ŵLW2017
p,t −0.0092 −0.0459 −0.0181 −0.0442 −0.0281 −2.7752 −0.4015 −0.4330

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rules with MacKinlay-Pástor Single Factor Structure

ŵMP
q,t 0.0044 0.0032 0.0033 0.0059 0.0027 0.0062 0.0040 0.0046

ŵMP
p,t 0.0034 −0.0008 −0.0014 −0.0021 −0.0022 −0.0018 0.0009 −0.0034

0.11 0.01 0.00 0.00 0.00 0.00 0.08 0.00

Rule with No-Short-Sale Constraints

ŵNSp,t 0.0057 0.0045 0.0024 0.0041 0.0045 0.0089 −0.0001 −0.0005
0.49 0.67 0.68 0.73 0.70 0.98 0.53 1.00
0.02 0.01 0.01 0.19 0.08 0.00 0.08 0.28
0.23 0.06 0.37 0.18 0.41 0.00 0.06 0.11
0.87 0.80 0.20 0.14 0.86 0.88 0.07 0.03
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Momentum Size-B/M IVOL OP-Inv NM-V (LT) NM-V (All) Industry Stocks
N = 10 N = 25 N = 10 N = 25 N = 16 N = 46 N = 49 N = 100

Other Rules from Portfolio Optimization

ŵg,t 0.0045 0.0044 0.0014 0.0039 0.0040 0.0004 0.0009 −0.0133
0.35 0.68 0.58 0.75 0.66 0.95 0.80 0.99
0.01 0.00 0.01 0.10 0.03 0.00 0.01 0.00
0.14 0.03 0.29 0.10 0.34 0.00 0.01 0.00
0.54 0.87 0.02 0.01 0.87 0.00 0.02 0.00

ŵNSg,t 0.0033 0.0039 0.0040 0.0048 0.0024 0.0058 0.0040 0.0024
0.23 0.60 0.80 0.81 0.49 0.97 0.99 1.00
0.00 0.00 0.06 0.27 0.01 0.00 0.79 0.96
0.08 0.03 0.55 0.25 0.20 0.00 0.67 0.58
0.10 0.75 0.82 0.16 0.39 0.39 0.49 0.03

ŵKZ3,t −0.7784 −0.1696 −3.5501 −0.1298 −1.4475 −5.3034 −0.1422 −242.7392
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Non-Optimization Rules

1/N 0.0026 0.0036 0.0022 0.0033 0.0022 0.0013 0.0038 0.0023
0.18 0.55 0.65 0.65 0.47 0.95 0.95 1.00
0.00 0.01 0.02 0.13 0.02 0.00 0.64 0.85
0.05 0.04 0.36 0.13 0.20 0.00 0.56 0.51
0.07 0.58 0.21 0.05 0.38 0.02 0.45 0.08

KOV T 0.0035 0.0043 0.0040 0.0044 0.0029 0.0046 0.0048 0.0036
0.25 0.64 0.80 0.77 0.54 0.96 1.00 1.00
0.00 0.00 0.06 0.23 0.02 0.00 0.91 1.00
0.08 0.05 0.55 0.22 0.24 0.00 0.84 0.94
0.16 0.82 0.81 0.11 0.59 0.14 0.71 0.16

KORT 0.0045 0.0044 0.0033 0.0047 0.0044 0.0059 0.0035 0.0015
0.35 0.65 0.75 0.80 0.69 0.97 0.97 1.00
0.01 0.01 0.03 0.26 0.07 0.00 0.62 0.71
0.13 0.06 0.47 0.24 0.40 0.00 0.51 0.28
0.54 0.78 0.50 0.17 0.87 0.44 0.38 0.03

KOBT 0.0049 0.0046 0.0025 0.0046 0.0049 0.0052 0.0040 0.0025
0.39 0.67 0.68 0.78 0.73 0.97 0.96 1.00
0.01 0.01 0.02 0.25 0.11 0.00 0.68 0.87
0.17 0.08 0.39 0.24 0.46 0.00 0.60 0.57
0.69 0.80 0.27 0.16 0.93 0.29 0.48 0.09
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Table 5 Sharpe Ratio Comparison with 20 bps Transaction Costs

This table reports the Sharpe ratio of the portfolios studied in this paper with h= 120, γ = 3, and a transaction cost

of 20 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining

portfolios, i.e., ŵq,t, ŵ
LW2004
q,t , ŵLW2017

q,t , and ŵMP
q,t , are highlighted with a box around. In the three categories to which

the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal

combining coefficient ĉt, and the p-values are reported in italics. For the portfolios in the remaining three categories,

one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding p-

values are reported in the four rows below the portfolio Sharpe ratio. We set η = 4 for the timing strategies KOV T ,

KORT , and KOBT .

Momentum Size-B/M IVOL OP-Inv NM-V (LT) NM-V (All) Industry Stocks
N = 10 N = 25 N = 10 N = 25 N = 16 N = 46 N = 49 N = 100

w∗ 0.2689 0.3070 0.2382 0.3531 0.3568 0.6713 0.3199 0.3586

Invariant Optimal Portfolio Rules

ŵq,t 0.2148 0.1707 0.1999 0.1392 0.1578 0.3848 0.0697 −0.0786

ŵp,t 0.1814 −0.0276 0.1685 0.0258 0.0841 −0.0721 −0.1628 −0.1350
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16

ŵu,t 0.1883 0.0751 0.1630 0.0616 0.1003 0.0380 −0.0818 −0.2101
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

ŵBS,t 0.2109 0.1321 0.1931 0.1052 0.1391 0.2527 0.0074 −0.1836
0.09 0.00 0.01 0.01 0.03 0.00 0.02 0.01

Rules with Shrinkage Covariance Matrix Estimators

ŵLW2004
q,t 0.2443 0.2384 0.2213 0.1925 0.2244 0.6381 0.1389 0.0765

ŵLW2004
p,t 0.2185 0.1575 0.1988 0.1043 0.1592 0.3511 −0.0237 −0.1266

0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

ŵLW2017
q,t 0.2292 0.2205 0.2086 0.1963 0.1826 0.6116 0.1488 0.1164

ŵLW2017
p,t 0.2014 0.1226 0.1831 0.1102 0.1143 0.1308 −0.0468 −0.1312

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rules with MacKinlay-Pástor Single Factor Structure

ŵMP
q,t 0.1641 0.1396 0.1413 0.2103 0.1266 0.2236 0.1623 0.1742

ŵMP
p,t 0.1453 0.0838 0.0628 0.0548 0.0424 0.0533 0.0926 0.0555

0.11 0.04 0.00 0.00 0.00 0.00 0.08 0.01

Rule with No-Short-Sale Constraints

ŵNSp,t 0.1867 0.1642 0.1223 0.1564 0.1648 0.2473 0.0930 0.0858
0.20 0.43 0.02 0.64 0.55 0.03 0.69 1.00
0.02 0.01 0.00 0.20 0.08 0.00 0.13 0.59
0.10 0.06 0.01 0.19 0.36 0.00 0.09 0.23
0.85 0.79 0.19 0.07 0.88 0.69 0.09 0.03
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Momentum Size-B/M IVOL OP-Inv NM-V (LT) NM-V (All) Industry Stocks
N = 10 N = 25 N = 10 N = 25 N = 16 N = 46 N = 49 N = 100

Other Rules from Portfolio Optimization

ŵg,t 0.1696 0.1702 0.0942 0.1554 0.1597 0.0681 0.0816 −0.0641
0.10 0.49 0.00 0.66 0.52 0.00 0.66 0.97
0.01 0.01 0.00 0.13 0.05 0.00 0.01 0.00
0.05 0.06 0.00 0.13 0.31 0.00 0.01 0.00
0.62 0.90 0.02 0.01 0.88 0.00 0.02 0.00

ŵNSg,t 0.1414 0.1563 0.1634 0.1778 0.1211 0.2167 0.1675 0.1209
0.03 0.36 0.16 0.79 0.25 0.01 0.99 1.00
0.00 0.01 0.04 0.37 0.01 0.00 0.82 0.96
0.01 0.04 0.11 0.34 0.12 0.00 0.73 0.58
0.11 0.77 0.86 0.13 0.40 0.42 0.56 0.04

ŵKZ3,t −0.0185 −0.0531 −0.0790 −0.0386 −0.0778 −0.2694 −0.0509 −0.0435
0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.74
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Non-Optimization Rules

1/N 0.1269 0.1477 0.1217 0.1418 0.1202 0.1026 0.1512 0.1175
0.01 0.29 0.02 0.52 0.25 0.00 0.95 1.00
0.00 0.01 0.00 0.14 0.02 0.00 0.61 0.87
0.00 0.03 0.01 0.14 0.13 0.00 0.52 0.51
0.07 0.60 0.23 0.02 0.42 0.01 0.40 0.07

KOV T 0.1453 0.1622 0.1610 0.1687 0.1323 0.1732 0.1875 0.1544
0.03 0.42 0.15 0.72 0.32 0.00 1.00 1.00
0.00 0.01 0.03 0.30 0.02 0.00 0.93 1.00
0.01 0.06 0.10 0.28 0.17 0.00 0.87 0.94
0.17 0.82 0.82 0.08 0.59 0.10 0.77 0.23

KORT 0.1664 0.1622 0.1402 0.1718 0.1629 0.2008 0.1469 0.1004
0.09 0.42 0.05 0.75 0.54 0.01 0.96 1.00
0.01 0.01 0.01 0.31 0.08 0.00 0.59 0.76
0.04 0.06 0.03 0.29 0.35 0.00 0.48 0.30
0.55 0.77 0.48 0.11 0.88 0.29 0.35 0.02

KOBT 0.1733 0.1658 0.1259 0.1691 0.1723 0.1840 0.1554 0.1221
0.13 0.45 0.03 0.72 0.60 0.00 0.96 1.00
0.02 0.02 0.00 0.30 0.13 0.00 0.65 0.90
0.06 0.08 0.02 0.28 0.42 0.00 0.56 0.57
0.70 0.80 0.28 0.10 0.93 0.18 0.44 0.08


