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Optimal Portfolio Choice with Unknown Benchmark
Efficiency

Abstract

When a benchmark model is inefficient, including test assets in addition to the benchmark

portfolios can improve the performance of the optimal portfolio. In reality, the efficiency of

a benchmark model relative to the test assets is ex ante unknown; moreover, the optimal

portfolio is constructed based on estimated parameters. Therefore, whether and how to

include the test assets becomes a critical question faced by real world investors. For such a

setting, we propose a combining portfolio strategy, optimally balancing the value of including

test assets and the effect of estimation errors. The proposed combining strategy can work

together with some existing estimation risk reduction strategies. In both empirical datasets

and simulations, we show that our proposed combining strategy performs well.



1. Introduction

Starting with the capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965),

many asset pricing models have been proposed by finance researchers. All these models are

now routinely used for performance evaluation, but none of them can completely explain

the cross-section of expected asset returns. As a result, a typical problem faced by real

world investors is a portfolio choice problem with a benchmark model of ex ante unknown

efficiency. In this paper, we focus on such a setting. Specifically, we consider a portfolio

choice problem for an investor with mean-variance preferences and in a universe with a set

of test assets as well as a set of tradable factors suggested by a benchmark model (which we

term as the benchmark portfolios). The efficiency of the benchmark model relative to the

given set of test assets is, however, unknown to the investor.

When the benchmark model is efficient with respect to the test assets, it is well known

that the optimal portfolio only consists of the benchmark portfolios. When the benchmark

model is inefficient, including additional test assets can increase the maximum Sharpe ratio

(e.g., Dybvig and Ross, 1985). In the case that the mean and the covariance matrix of

asset returns (including both the test assets and the benchmark portfolios) are known, there

is no need for the investor to explicitly decide whether to include the test assets into the

optimal portfolio, and he can simply construct the optimal portfolio according to the theory

regardless of the efficiency of the benchmark. This is because when the benchmark is efficient,

the constructed optimal portfolio automatically assigns zero weights to the test assets.

In reality, the mean and the covariance matrix of asset returns are unavailable and need

to be estimated from a sample of historical data. When estimated parameters are used to

construct the optimal portfolio, estimation errors are introduced, which lower the portfolio

performance, and the effect of estimation errors increases with the number of assets involved.1

In addition, even if the benchmark model is ex ante efficient, the estimated optimal portfolio

is unlikely to assign zero weights to the test assets. Therefore, the investor needs to decide

whether and how to include the additional test assets. It is only beneficial to include the

1For example, DeMiguel, Garlappi, and Uppal (2009) show that due to estimation errors, many opti-
mization based portfolio rules underperform the näıve equal-weighted portfolio which is free of estimation
errors.
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test assets when the value in terms of improved maximum Sharpe ratio outweighs the cost

associated with additional estimation errors.

We consider eight popular benchmark models and five sets of widely used test assets to

examine the value of including the additional test assets into the optimal portfolio when

there are estimation errors. If we ignore estimation errors and simply plug in the sample

mean and the sample covariance matrix (which we term as the sample optimal portfolio),

we find that the effect of estimation errors is so large that it is never beneficial to include

the test assets into the optimal portfolio, regardless of the efficiency of the benchmark model

relative to the test assets.

Adopting some strategies proposed in the literature to address the estimation errors, we

start to observe the value of including the additional test assets in some (but not all) of

the cases examined. Specifically, we consider the two-fund rule of Kan and Zhou (2007),

the portfolio rule that optimally combines the sample optimal portfolio and the 1/N rule

(which we term as portfolio PEW), and the use of the shrinkage covariance matrix of Ledoit

and Wolf (2004). All of these strategies successfully alleviate the effect of estimation errors

in the sample optimal portfolio; but after applying these strategies, whether the optimal

portfolio including all the assets outperforms the one with only benchmark portfolios can

only be figured out ex post. For a real world investor, such ex post performance results are

not particularly relevant. An investor needs to decide when and how to include the test

assets ex ante, i.e., using only the information available at the time of his portfolio decision.

Given historical return data, the popular Gibbons-Ross-Shanken (1989) test (hereafter

the GRS test) provides a means to understand the efficiency of the benchmark model relative

to the test assets. One plausible solution is to use the GRS test results to guide the portfolio

choice decision (which we term as the switching strategy). We examine the performance of

such strategy and find that its overall performance is mediocre. This suggests that using only

the efficiency information from the GRS test (without considering the effect of estimation

errors) is not enough to provide a good solution to the portfolio choice problem with unknown

benchmark efficiency.

Instead of the switching strategy, we propose a combining strategy. Specifically, in the
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mean-variance framework, we obtain a portfolio that optimally combines two component

portfolios, and prove theoretically that the combining strategy offers performance improve-

ment relative to using only one of the component portfolios. In this optimization process,

the estimation errors in the component portfolios are taken into account, and the optimal

combining coefficients are derived by balancing the effect of estimation errors and the value

of including the test assets. The proposed combining strategy can be directly applied to the

sample optimal portfolio or it can be applied together with some existing estimation risk

reduction strategies.

Under the assumption that the excess returns of the assets follow a multivariate normal

distribution and are independent and identically distributed (i.i.d.) over time, we derive the

explicit expressions of the combining coefficients when the combining strategy is applied to

the sample optimal portfolio and portfolio PEW. However, the obtained optimal combining

coefficients depend on some unknown parameters. To implement the combining strategy, the

combining coefficients must be constructed using estimated parameters, which introduces

another layer of estimation errors. We show that it is crucial to address the second layer

of estimation errors for these combining portfolios, and a cross-validation based shrinkage

approach is adopted to deal with the issue.

When the shrinkage covariance matrix of Ledoit and Wolf (2004) is used to address

the estimation errors in the sample optimal portfolio, explicit expressions of the optimal

combining coefficients are not available. We directly apply the coefficients derived from

combining the sample optimal portfolio and find that these coefficients work well with the

shrinkage covariance matrix. But the second layer of shrinkage is no longer necessary when

the shrinkage covariance matrix is used.2

In both empirical datasets and simulations, we evaluate the proposed combining strategy

and find that it performs well in general. The proposed combining strategy remains effective

after taking into account stock level portfolio turnover and transaction costs. Across the var-

ious combining portfolios considered, the one applied together with the shrinkage covariance

2This is because the use of the shrinkage covariance matrix helps reduce the effect of estimation errors in
the sample optimal portfolio, so the combining coefficients derived for the sample optimal portfolio tend to
shrink more than the coefficients derived for the case in which the shrinkage covariance matrix is used (that
are, however, not available analytically).
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matrix of Ledoit and Wolf (2004) tends to perform the best overall, both with and without

the transaction costs.

Portfolio choice problem with benchmark is a setting that is used in many of the existing

studies. For example, Black and Litterman (1992) suggest using the CAPM as a benchmark

toward which the investor shrinks his views about expected returns. Pástor (2000) ap-

proaches the portfolio selection problem in a Bayesian framework that incorporates a prior

degree of belief in an asset pricing model, and infers investors’ degree of confidence in the

asset pricing model by comparing the optimal asset allocation derived from the model and

the empirically observed asset allocation (i.e., the market portfolio). These papers do not

examine the out-of-sample performance of the portfolios, which is the focus of our paper.

Some other studies use the implications from an asset pricing model to reduce the di-

mensionality of the portfolio choice problem. For example, MacKinlay and Pástor (2000)

assume a risk factor is missing from an asset pricing model, and exploit the relation between

the mispricing and the residual covariance matrix to estimate expected returns for portfolio

selection. Extending the work of MacKinlay and Pástor (2000), a recent study by Raponi,

Uppal, and Zaffaroni (2021) develops a normative theory for constructing mean-variance

portfolios that are robust to model misspecification, allowing for both omitted risk factors

and asset-specific pricing errors. Brandt, Santa-Clara, and Valkanov (2009) illustrate the use

of characteristics based portfolios suggested by a given factor model in constructing the op-

timal portfolio.3 In addition, injecting the factor structure implied by an asset pricing model

can help estimate the covariance matrix in the high-dimensional case. De Nard, Ledoit, and

Wolf (2021) is a recent attempt along this direction. Under the assumption that only a small

subset of the test assets has non-zero alphas, Ao, Li, and Zheng (2019) propose a lasso based

approach to reduce the number of test assets to be included with the benchmark portfolios.

The above studies focus on reducing the dimensionality and do not address the estimation

risk explicitly. Our paper, on the other hand, explicitly takes into account the effect of esti-

mation risk in the optimization process and focuses on the expected out-of-sample portfolio

performance.

3In our empirical analysis, one of the benchmark models (i.e., DMNU-7) and one set of test assets (i.e.,
DMNU-48) are built on the characteristics based portfolios.
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Our paper also differs from most of the existing portfolio choice studies in that we treat

the benchmark portfolios and the test assets differently. Even though the portfolio choice

problem in a universe with a benchmark model of unknown efficiency is a typical situation

faced by the real world investors, most of the existing portfolio choice studies do not focus

on such a setting, and therefore, do not differentiate the benchmark portfolios from the test

assets and treat them equally. Given the extensive asset pricing studies, it is reasonable to

expect that the identified factors are different from the test assets. Our combining strategy

deals with such a difference explicitly, with one component portfolio using only the bench-

mark portfolios and the other using all available assets. We show that the combining strategy

outperforms the portfolio that includes all assets without drawing a distinction between the

benchmark portfolios and the test assets.

We adopt a similar theoretical framework as in Kan and Zhou (2007), Tu and Zhou

(2011), and Kan, Wang, and Zhou (2022), explicitly taking into account the effect of es-

timation risk in the optimization process with the assumption that the asset returns are

i.i.d. multivariate normally distributed. In theory, the obtained optimal portfolio will gener-

ate the best-performing portfolio in the examined setting. However, in practice, the obtained

optimal portfolio is not directly implementable because the combining coefficients must be

constructed using estimated parameters. None of the existing studies explicitly addresses

the estimation errors in the implementable combining coefficients. We show that for the

portfolio strategies derived in such theoretical framework (e.g., the two-fund rule of Kan and

Zhou (2007), portfolio PEW), explicitly addressing the second layer of estimation errors helps

improve portfolio performance; and the proposed combining strategy also generates robust

performance for the cases in which the i.i.d. normality assumption seems to be violated.4 In

addition, the obtained optimal combining coefficients can be readily applied together with

the shrinkage covariance matrix (Ledoit and Wolf, 2004).

The remainder of the paper is organized as follows. Section 2 introduces the portfolio

choice problem with unknown benchmark efficiency, discusses the effect of estimation errors,

4Both the two-fund rule and portfolio PEW are designed to address the estimation risk in the i.i.d. nor-
mality setting; and no consideration is given to the potential departure from such assumption. The proposed
cross-validation based second layer of shrinkage does not depend on the i.i.d. normality assumption. In
our empirical analysis, we find that the second layer shrinkage performs particularly well for the cases with
evidence of violation of the i.i.d. normality assumption.
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examines some existing strategies to deal with estimation risk, and evaluates the perfor-

mance of a plausible solution, i.e., the switching strategy. Section 3 introduces the proposed

combining strategy, illustrates how to apply it together with the existing estimation risk

reduction strategies, and evaluates the performance of the combining portfolios. Section 4

investigates the stock level turnover of various portfolios. Section 5 concludes and discusses

future research opportunities. The proofs are presented in the appendix. Some additional

results are reported in the Online Appendix.

2. Portfolio Choice with Unknown Benchmark Efficiency

2.1 The Setup

Consider a portfolio choice problem of an investor in a universe with a risk-free asset, K

benchmark portfolios, and N test assets. Let rt = [r′1,t, r′2,t]
′, where r1,t and r2,t are the

excess returns of the benchmark portfolios and the test assets at time t, respectively. The

mean and the covariance matrix of rt are given by

µ =

[
µ1

µ2

]
, V =

[
V11 V12

V21 V22

]
, (1)

where V is assumed to be non-singular.5 The investor is assumed to choose a portfolio q in

order to maximize the mean-variance utility function

Uq = µq −
γ

2
σ2
q , (2)

where γ is the investor’s risk aversion coefficient, and µq and σ2
q are the mean and the variance

of portfolio q. It is well known that the optimal portfolio, denoted as p∗, has weights

wp∗ =
1

γ
V −1µ (3)

on the M ≡ K+N assets. The utility of holding portfolio p∗ is Up∗ =
θ2

2γ
where θ2 = µ′V −1µ

is the maximum squared Sharpe ratio from using the M assets.

5We assume that none of the benchmark portfolios is linear combination of the test assets. However, if
k of the K benchmark portfolios are linear combinations of the test assets with k ≤ K and k < N , we can
simply delete k redundant assets from the N test assets and replace N by N −k, and the portfolio strategies
as well as the analytical results derived in this paper can be readily applied.
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When the benchmark is efficient, i.e., the N test assets have zero alphas, α = µ2 −
V21V

−1
11 µ1 = 0N with 0N being an N × 1 vector of zeros, it can be shown that portfolio p∗

has zero weights on the N test assets, and the weights on the K benchmark portfolios are

ws∗ =
1

γ
V −1
11 µ1. (4)

We call ws∗ the benchmark optimal portfolio and denote it as s∗. The utility of holding

portfolio s∗ is Us∗ =
θ21
2γ

where θ21 = µ′
1V

−1
11 µ1 is the maximum squared Sharpe ratio based on

the K benchmark portfolios, and θ2 = θ21 when the benchmark is efficient.

When the benchmark is inefficient, i.e., α ̸= 0N and θ2 > θ21, portfolio p∗ has non-zero

weights on the N test assets and it outperforms portfolio s∗. The utility improvement is given

by Up∗−Us∗ =
δ2

2γ
with δ2 = θ2−θ21 = µ′V −1µ−µ′

1V
−1
11 µ1 = α′Σ−1α and Σ = V22−V21V

−1
11 V12.

6

Note that portfolio p∗ is identical to portfolio s∗ when the benchmark is efficient, and it

outperforms portfolio s∗ when the benchmark is inefficient. Therefore, it is always optimal

for the investor to hold portfolio p∗ regardless of the efficiency of the benchmark.

2.2 Estimation Errors and Sample Optimal Portfolios

In practice, µ and V are unknown, and portfolios p∗ and s∗ are unattainable to the investor.

We assume that the investor estimates µ and V using a window of h months of historical

data of excess returns, and the estimates of µ and V at time t are given by

µ̂t =

[
µ̂1,t

µ̂2,t

]
=

1

h

t∑
τ=t−h+1

rτ , V̂t =

[
V̂11,t V̂12,t

V̂21,t V̂22,t

]
=

1

h

t∑
τ=t−h+1

(rτ − µ̂t)(rτ − µ̂t)
′. (5)

Natural estimators of wp∗ and ws∗ are the sample counterparts of (3) and (4):

ŵp,t =
1

γ
V̂ −1
t µ̂t, (6)

ŵs,t =
1

γ
V̂ −1
11,tµ̂1,t. (7)

We call these two portfolios the sample optimal portfolio and the benchmark sample optimal

portfolio, and denote them as portfolio p and portfolio s, respectively. The out-of-sample

6See Jobson and Korkie (1982) and Gibbons, Ross, and Shanken (1989).
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returns of these two portfolios at time t + 1 are denoted by rp,t+1 = ŵ′
p,trt+1 and rs,t+1 =

ŵ′
s,tr1,t+1. Note that when µ̂t and V̂t are used instead of the true parameter values, estimation

errors are introduced in portfolios p and s.

Without estimation errors, it is always optimal to hold portfolio p∗ regardless of the ef-

ficiency of the benchmark model. It is no longer the case when there are estimation errors.

With more assets involved, portfolio p contains more estimation errors than portfolio s does,

and estimation errors will lower out-of-sample portfolio performance ceteris paribus. There-

fore, it is only preferable to hold portfolio p over portfolio s when the benefit of including

the N test assets (in terms of θ2 > θ21) outweighs the cost associated with the additional

estimation errors.

Unlike wp∗ and ws∗ , ŵp,t and ŵs,t are random variables as they are functions of the data

in the estimation window. For a portfolio with random weights wt, we follow studies in the

existing literature and evaluate its performance based on its expected out-of-sample utility7

E[U(wt)] = E
[
w′

tµ− γ

2
w′

tV wt

]
, (8)

which is the utility level that the investor can achieve on average by applying the portfolio

rule repeatedly.

Empirically, the expected out-of-sample utility of a portfolio is typically proxied by the

certainty equivalent return (CER). We evaluate portfolios based on the CER using a rolling

estimation window approach. For each month t, we use data in the most recent h months (up

to month t) to compute the weights of a portfolio, and obtain the out-of-sample portfolio

return in month t + 1. This practice generates T − h out-of-sample returns for a given

portfolio where T stands for the number of months in the sample period. Based on the

T − h out-of-sample returns, we compute the sample mean and the sample variance of the

portfolio, µ̂ and σ̂2, and the CER of the portfolio is calculated as CER = µ̂− γ
2
σ̂2. The risk

aversion coefficient is assumed to be γ = 3.8

In our empirical analysis, we consider eight benchmark models, and they are: (1) CAPM

7For example, Brown (1976), Jorion (1986), Frost and Savarino (1986), Stambaugh (1997), Ter Horst, De
Roon, and Werker (2006), Kan and Zhou (2007), Kan, Wang, and Zhou (2022), Tu and Zhou (2011).

8The relative ranking of the portfolios studied in this paper is invariant to the value of γ. Nevertheless,
in Table OA.5 of the Online Appendix, we also report the CER results for γ = 5.
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using the CRSP value-weighted market portfolio, (2) Fama and French (1993) three-factor

model (FF-3), (3) Carhart (1997) four-factor model (Carhart-4), (4) Fama and French (2015)

five-factor model (FF-5), (5) Fama and French five-factor plus the momentum factor (FF5-

UMD), (6) Hou, Xue, and Zhang (2015) q-factor model (q-factor), (7) Daniel, Hirshleifer, and

Sun (2020) three-factor model (DHS), and (8) DeMiguel, Mart́ın-Utrera, Nogales, and Uppal

(2020) seven-factor model (DMNU-7). Monthly factor returns of the benchmark models

are computed using individual stock return data from the CRSP database. The factors

in the first five models are constructed following the approaches specified in Ken French’s

website. The factors in the remaining three models (i.e., q-factor, DHS, and DMNU-7) are

constructed following the approaches in the corresponding papers.9 For the first three models

(i.e., CAPM, FF-3, and Carhart-4), we use the data over the period of 1927/1–2018/12. For

FF-5 and FF5-UMD, data are available over the period of 1963/7–2018/12. For q-factor

model, DHS, and DMNU-7, the sample periods are 1972/1–2018/12, 1972/7–2018/12, and

1980/1–2018/12, respectively.

We consider five different sets of test assets. The monthly excess returns of the test

assets are computed from individual stock returns. The first two sets of test assets are each

constructed based on a given anomaly, and they are 10 value-weighted momentum portfolios

(MOM-10) and 10 value-weighted idiosyncratic volatility portfolios (IVOL-10). The sample

period of these two sets is 1927/1–2018/12. MOM-10 is constructed following the procedure

in Ken French’s website. To construct IVOL-10, at the beginning of each month from

January 1927 to December 2018, idiosyncratic volatility relative to the Fama-French three-

factor model is obtained for each stock in CRSP based on daily data in the previous three

months. Stocks are sorted into deciles based on the idiosyncratic volatility using the NYSE

breakpoints. Stocks with fewer than 20 non-missing daily data in the three-month period are

excluded from the portfolios. Value-weighted portfolios are formed and held for one month.

The next two sets of test assets are not based on any anomaly findings, and they are 10

value-weighted industry portfolios (IND-10) and 30 value-weighted industry portfolios (IND-

30) over the period of 1927/1–2018/12, constructed following the approach in Ken French’s

9We thank Alberto Mart́ın-Utrera for sharing with us the monthly firm characteristics data in DeMiguel,
Mart́ın-Utrera, Nogales, and Uppal (2020). Based on this dataset, we obtain the factor returns in DMNU-7
as well as the test asset returns in DMNU-48.
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website. Industry portfolios are often used as test assets in portfolio choice studies.

The last set of test assets is from DeMiguel, Mart́ın-Utrera, Nogales, and Uppal (2020),

containing zero-investment portfolios built on various firm characteristics over 1980/1–2018/12.

DeMiguel, Mart́ın-Utrera, Nogales, and Uppal (2020) consider 51 firm-specific characteris-

tics to explain the cross-section of stock returns, taking into account transaction costs.

Our last set includes 48 (DMNU-48) out of the 51 firm-characteristic based portfolios in

DeMiguel, Mart́ın-Utrera, Nogales, and Uppal (2020), with three portfolios (i.e., dolvol, lgr,

mom6m) removed due to potential multicollinearity concern following Green, Hand, and

Zhang (2017).10 This last set of test assets contains information from various anomalies,

and the recent findings (e.g., DeMiguel, Mart́ın-Utrera, Nogales, and Uppal (2020), and Li,

DeMiguel, and Mart́ın-Utrera (2020)) highlight the potential of using these test assets to

improve the performance of the benchmark models.

Table 1 reports the CER (in annualized percentage points) for portfolios s and p using the

eight benchmark models and the five sets of test assets with h = 120 and γ = 3. We see that

for every case in Table 1, ŵp,t greatly underperforms ŵs,t, and the underperformance is more

apparent when the number of test assets is large (e.g., IND-30, DMNU-48). For the test assets

built on the anomaly findings (i.e., MOM-10, IVOL-10, DMNU-48), the existing literature

documents that they have non-zero alphas relative to typical asset pricing models, but the

findings in Table 1 suggest that the cost associated with the additional estimation errors in

test assets greatly outweighs the potential benefit of improved Sharpe ratio. Therefore, if we

completely ignore estimation errors and simply plug in the estimated parameters, the effect

of estimation errors can be so severe that an investor is almost never better off by including

additional test assets in his portfolio, even those with non-zero alphas. At face value, these

results cast some doubts on the value of the findings from the anomaly literature.

In terms of the performance of the benchmark sample optimal portfolio s, Table 1 shows

that the model performance, in general, increases with the publication date of the model,

with the exception of DMNU-7.11 One main reason for the underperformance of DMNU-7

10Note that the six characteristic-based factors in the DMNU-7 model are also in DMNU-48. When
DMNU-7 is the benchmark model and DMNU-48 is the test set, the number of test assets becomes 42.

11With more studies devoted to identifying better asset pricing models, it is expected that the more
recently uncovered asset pricing models are more efficient, e.g., Kan, Wang, and Zheng (2022).
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is that among the benchmark models considered, DMNU-7 contains the largest number of

factors, and therefore, its portfolio s suffers the highest level of estimation risk.12

2.3 Estimation Risk Reduction Strategies

Various strategies have been proposed in the existing literature to deal with estimation risk.

In this subsection, we consider several such strategies and examine whether the value of

including test assets can be realized after applying these strategies to the sample optimal

portfolios.

2.3.1 Kan and Zhou (2007) Two-fund Rule.

Kan and Zhou (2007) propose a two-fund rule to deal with estimation risk,13 and the proposed

portfolio takes the following form:

ŵp2,t =
b̂t
γ
V̂ −1
t µ̂t = b̂tŵp,t, (9)

where b̂t is a newly introduced implementable scalar parameter,14

b̂t =
b1θ̂

2
a,t

θ̂2a,t +M/h
, (10)

with

b1 =
(h−M − 1)(h−M − 4)

h(h− 2)
, (11)

θ̂2a,t =
(h−M − 2)θ̂2t −M

h
+

2(θ̂2t )
M
2 (1 + θ̂2t )

−h−2
2

hBθ̂2t /(1+θ̂2t )
(M/2, (h−M)/2)

, (12)

12We also notice that during the out-of-sample period of DMNU-7 (i.e., 1990/1–2018/12), most of the
models tend to perform poorly. See the results of ŵs,t when DMNU-48 is used as the test assets. In this
period, all benchmark sample optimal portfolios have negative CER except for the DHS model.

13In addition to the two-fund rule, Kan and Zhou (2007) also propose a three-fund rule to deal with
estimation errors. The three-fund rule optimally combines the sample optimal portfolio, the sample global
minimum variance portfolio, and the risk-free asset to diversify the risk. We find that the performance of
the three-fund rule is similar to that of the two-fund rule. For brevity, we skip the three-fund rule in the
paper, but the results of the three-fund rule are available upon request.

14Under the assumption that rt is i.i.d. multivariate normally distributed, Kan and Zhou (2007) show that

the optimal value of the scalar parameter is b∗ = b1θ
2

θ2+M/h , and they recommend b̂t to implement b∗.
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where Bz(a, b) is the incomplete beta function and θ̂2t = µ̂′
tV̂

−1
t µ̂t. Note that the newly

introduced scalar parameter optimally allocates the weights between the sample optimal

portfolio ŵp,t and the risk-free asset, and therefore, this portfolio is called a two-fund rule

and we use p2 to denote it.

Similarly, we can apply the two-fund rule to the benchmark sample optimal portfolio,

ŵs2,t =
ĉt
γ
V̂ −1
11,tµ̂1,t = ĉtŵs,t, (13)

where

ĉt =
c1θ̂

2
1a,t

θ̂21a,t +K/h
, (14)

and

c1 =
(h−K − 1)(h−K − 4)

h(h− 2)
, (15)

θ̂21a,t =
(h−K − 2)θ̂21,t −K

h
+

2(θ̂21,t)
K
2 (1 + θ̂21,t)

−h−2
2

hBθ̂21,t/(1+θ̂21,t)
(K/2, (h−K)/2)

, (16)

with θ̂21,t = µ̂′
1,tV̂

−1
11,tµ̂1,t. We call ŵs2,t the benchmark two-fund portfolio and denote it as

portfolio s2.

2.3.2 Combining with the 1/N Rule (PEW).

DeMiguel, Garlappi, and Uppal (2009) show that due to estimation errors, many optimiza-

tion based portfolio rules underperform the näıve equal-weighted portfolio (i.e., the 1/N rule)

which is free of estimation errors. Tu and Zhou (2011) use the 1/N rule as the shrinkage

target and recommend optimally combining the estimated optimal portfolio with the 1/N

rule to address the estimation risk. We consider a similar portfolio strategy that optimally

combines the sample optimal portfolio and the 1/N rule,

ŵpew,t = κ̂1,tŵp,t + κ̂2,twew, (17)
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where wew = 1M/M is the equal-weighted portfolio, and κ̂1,t and κ̂2,t are the implementable

optimal combining coefficients,15

κ̂1,t =
τ̂ 2a,t

τ̂2a,t+θ̂2ew,t+M/h

b1
− hθ̂2ew

h−M−2

, κ̂2,t =
µ̂ew,t

γσ̂2
ew,t

(
1− hκ̂1,t

h−M − 2

)
, (18)

with µ̂ew,t = w′
ewµ̂t, σ̂

2
ew,t = w′

ewV̂twew, θ̂
2
ew,t = µ̂2

ew,t/σ̂
2
ew,t, and

τ̂ 2a,t =
(h−M − 2)τ̂ 2t − (M − 1)(1 + θ̂2ew,t)

h
+

2(1 + θ̂2ew,t)∆
M−1

2 (1 + ∆)−
h−3
2

hB∆/(1+∆)((M − 1)/2, (h−M)/2)
, (19)

where τ̂ 2t = θ̂2t − θ̂2ew,t and ∆ = τ̂ 2t /(1 + θ̂2ew,t). We denote this implementable portfolio as

PEW.

2.3.3 Shrinkage Covariance Matrix of Ledoit and Wolf (2004).

When the number of assets is large relative to the length of the estimation window, the

sample covariance matrix is typically not well-conditioned. To address this issue, Ledoit and

Wolf (2004) introduce a shrinkage estimator which is a linear combination of the sample

covariance matrix and the identity matrix,16

V̂ LW2004
t = (1− ρt)V̂t + ρtνtIM , (20)

where IM is an M×M identity matrix, νt is the shrinkage target which equals to the average

of the eigenvalues of V̂t, and ρt is the shrinkage intensity

ρt =
min

[
1
h2

∑t
s=t−h+1 ||(rs − µ̂t)(rs − µ̂t)

′ − V̂t||2, ||V̂t − νtIM ||2
]

||V̂t − νtIM ||2
(21)

15The optimal combining coefficients κ∗
1 and κ∗

2 are derived to maximize the expected out-of-sample utility
with the assumption that rt are i.i.d. multivariate normally distributed; κ̂1,t and κ̂2,t are the corresponding
implementable combining coefficients. The derivation of κ∗

1 and κ∗
2 is available in the appendix. Unlike Tu

and Zhou (2011), we do not require the two combining coefficients to sum up to one so that the expected out-
of-sample utility of the optimal portfolio is proportional to 1/γ and the performance ranking of this portfolio
relative to other portfolios studied in this paper is invariant to the value of γ. Under the i.i.d. normality
assumption, we can prove theoretically that the optimal portfolio without requiring the two combining
coefficients to sum up to one outperforms the one with the restriction. Empirically, we find that the two
optimal portfolios perform similarly, and the combining strategy proposed in Section 3 can improve the
performance of both portfolios.

16Ledoit and Wolf (2017) propose the use of a nonlinear shrinkage estimator of the covariance matrix, and
Ledoit and Wolf (2020) present an analytical formula for the nonlinear shrinkage estimator. Our empirical
analyses show that the optimal portfolio using the nonlinear shrinkage estimator tends to underperform
the one using the linear shrinkage estimator. For brevity, we skip the optimal portfolio with the nonlinear
shrinkage estimator in the paper, but the corresponding results are available upon request.
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with ||A|| =
√

tr(AA′)/M being the Frobenius norm. When V̂ LW2004
t instead of V̂t is used in

(6), we obtain the sample optimal portfolio with the shrinkage covariance matrix, and denote

it as ŵLW2004
p,t . Similar shrinkage covariance matrix can be applied in the benchmark sam-

ple optimal portfolio to obtain the benchmark sample optimal portfolio with the shrinkage

covariance matrix, ŵLW2004
s,t .

2.3.4 Portfolio Performance with Estimation Risk Reduction Strategies.

Table 2 reports the CER of the optimal portfolios after adopting various estimation risk

reduction strategies based on the same eight benchmark models and the five sets of test

assets for h = 120 and γ = 3. In Panel A, the two-fund rule is applied to both the benchmark

sample optimal portfolio and the sample optimal portfolio (i.e., ŵs2,t and ŵp2,t). In Panel B,

we only apply the PEW rule to the sample optimal portfolio (i.e., ŵpew,t), and continue to

use the two-fund rule for the benchmark sample optimal portfolio (i.e., ŵs2,t).
17 In Panel C,

the linear shrinkage covariance matrix of Ledoit and Wolf (2004) are adopted for both the

sample optimal portfolio p and the benchmark sample optimal portfolio s.

Relative to the performance of ŵp,t and ŵs,t in Table 1, the results in Table 2 suggest

that the strategies considered in the table are all effective to deal with estimation risk in

the sample optimal portfolios. Because ŵp,t contains more estimation errors than ŵs,t does,

the performance improvement for ŵp,t is larger than that for ŵs,t. As a result, we start to

observe the value of including additional test assets into the optimal portfolios for some cases

in Table 2.

Since the more recent models (e.g., q-factor, DHS, and DMNU-7) are likely to be more

efficient, it is harder to identify test assets that can further improve the performance of those

benchmark models. In Table 2, the value of including additional test assets is only shown

for the earlier models. When MOM-10 is included as test assets, the performance of the

CAPM, FF-3, and FF-5 are improved in Panels A and B, and that of the CAPM and FF-3

are improved in Panel C. The fact that including MOM-10 does not improve the performance

17Since the number of factors in the benchmark models is typically small and the estimation errors in the
benchmark sample optimal portfolio s are low, compared to the benchmark two-fund portfolio (i.e., ŵs2,t),
it makes small difference whether to apply the PEW rule to the benchmark sample optimal portfolio.
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of Carhart-4 and FF5-UMD is likely because momentum is one of the model factors. When

IVOL-10 is included as test assets, the performance of the CAPM, FF-3, and Carhart-4 are

improved in Panels A and B, and that of the CAPM, FF-3, Carhart-4, FF-5, and FF5-UMD

are improved in Panel C.

Including industry portfolios (i.e., IND-10 and IND-30), in general, does not improve

the performance of the benchmark models (except for IND-10 with FF-3 and Carhart-4 in

Panel B). This is likely because industry portfolios are not constructed based on anomaly

findings, and limited improvement is expected from including the industry portfolios.

DMNU-48 contains information from various anomaly findings. It is somewhat surprising

to notice that when DMNU-48 is used as test assets, the performance is not improved

even for the earlier models in Table 2. One major reason for the poor performance is the

high estimation risk due to the large number of test assets in DMNU-48. Another likely

reason for such results is that the underlying parameters (i.e., the mean and the covariance

matrix) of the anomaly portfolios are time varying, and therefore, the sample mean and the

sample covariance matrix from the estimation window do not provide a good estimate of the

underlying parameters out-of-sample.18

In summary, Table 2 presents evidence that when adopting some popular strategies to

reduce the impact of estimation errors, including the test assets into the optimal portfolio can

be beneficial in some cases. However, the results in Table 2 are ex post portfolio performance,

and such information is not available to the investors at the time of portfolio construction.

Whether and how to include the test assets into their optimal portfolios is a decision that

18Existing studies document time varying stock return predictability, e.g., McLean and Pontiff (2016) and
Green, Hand, and Zhang (2017). In Section OA.2 of the Online Appendix, we examine the results based
on simulated data using the stationary block bootstrap procedure of Politis and Romano (1994). When the
bootstrap procedure is applied, the underlying data generating process becomes stationary, and we start to
observe performance improvement in some cases.
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investors need to make ex ante.19

2.4 A Plausible Solution: the Switching Strategy

Whether to include the test assets into the optimal portfolio depends on the tradeoff between

the additional estimation errors and the potential efficiency improvement introduced by the

test assets. We do not have a readily available measure for the estimation errors. In terms

of efficiency improvement, Gibbons, Ross, and Shanken (1989) propose a widely used test

(the GRS test) for the efficiency of a benchmark model with respect to a given set of test

assets using sample data. We examine the performance of a switching portfolio strategy

that is guided by the GRS test results using the data in the estimation window. The

performance results and the corresponding discussion are reported in Section OA.1 of the

Online Appendix.

Overall, we find that the performance of the switching strategy is mediocre, suggesting

that using only the efficiency information from the GRS test (without considering the effect

of estimation risk) to guide the portfolio choice decision does not seem to be a good solution

to the portfolio choice problem with unknown benchmark efficiency.

3. The Combining Strategy

In this section, we propose a combining portfolio strategy, which takes into account both the

efficiency information and the effect of estimation errors. The proposed combining strategy

is a general one in the sense that it can be applied to different component portfolios (i.e., the

portfolios to be combined). The general combining framework is introduced in Section 3.1,

and we show theoretically the usefulness of the combining strategy. In Section 3.2, the

19Based on the results in Table 2, one may argue that the best strategy is to build optimal portfolios
based on those recently uncovered asset pricing models (e.g., q-factor, DHS, and DMNU-7). Given that
these models are recently uncovered and we do not have enough out-of-sample data, the empirical results
in Table 2 may not provide a full assessment of the performance of the models. In this paper, we take an
agnostic stand and assume that the efficiency of the model relative to the given set of test assets is unknown
to the investor. We admit that using the empirical findings from the existing literature to identify the best
set of assets (both the benchmark portfolios and the test assets) to form optimal portfolios is an interesting
question to explore, but it is not the focus of this paper. We will leave it for future study.
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combining strategy is applied to various component portfolios, and some implementation

issues are discussed. Section 3.3 reports the empirical performance of the combining strategy.

3.1 The General Framework

Let ŵ1,t and ŵ2,t be the weights on the M assets of two component portfolios, and the

weights are obtained by using information from the estimation window so that they can

contain estimation errors. Consider a portfolio strategy that combines ŵ1,t and ŵ2,t, i.e.,

ŵc,t = λ1ŵ1,t + λ2ŵ2,t, (22)

where λ1 and λ2 are two scalar combining coefficients. The optimal combining coefficients

are determined by maximizing the expected out-of-sample utility of the combining portfolio

E [Uc(λ1, λ2)] = E
[
ŵ′

c,tµ
]
− γ

2
E
[
ŵ′

c,tV ŵc,t

]
= λ1µ̄1 + λ2µ̄2 −

γ

2

(
λ2
1σ̄

2
1 + λ2

2σ̄
2
2 + 2λ1λ2σ̄12

)
,

(23)

where

µ̄1 = E [µ1,t] = E
[
ŵ′

1,tµ
]
, (24)

µ̄2 = E [µ2,t] = E
[
ŵ′

2,tµ
]
, (25)

σ̄2
1 = E

[
σ2
1,t

]
= E

[
ŵ′

1,tV ŵ1,t

]
, (26)

σ̄2
2 = E

[
σ2
2,t

]
= E

[
ŵ′

2,tV ŵ2,t

]
, (27)

σ̄12 = E [σ12,t] = E
[
ŵ′

1,tV ŵ2,t

]
, (28)

with µ1,t, µ2,t, σ2
1,t, σ2

2,t being the conditional mean and variance of portfolios ŵ1,t and

ŵ2,t and σ12,t being the conditional covariance between the two portfolios. Differentiat-

ing E [Uc(λ1, λ2)] with respect to λ1 and λ2 and setting them equal to zero, we obtain the

optimal values of λ1 and λ2 by solving the first order conditions. The following proposition

presents the results.

Proposition 1 The λ1 and λ2 that maximize E [Uc(λ1, λ2)] are given by

λ∗
1 =

µ̄1

γσ̄2
1

(
1−

(
θ̄2/θ̄1

)
ρ̄12

1− ρ̄212

)
, (29)
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λ∗
2 =

µ̄2

γσ̄2
2

(
1−

(
θ̄1/θ̄2

)
ρ̄12

1− ρ̄212

)
, (30)

where θ̄i = µ̄i/σ̄i and σ̄i =
√
σ̄2
i for i = 1, 2 and ρ̄12 = σ̄12/(σ̄1σ̄2). Plug (29) and (30) in

(23), we get the maximum expected out-of-sample utility

E [Uc(λ
∗
1, λ

∗
2)] =

θ̄21 + θ̄22 − 2θ̄1θ̄2ρ̄12
2γ (1− ρ̄212)

> max

[
θ̄21
2γ

,
θ̄22
2γ

]
. (31)

The term before the parentheses in (29) and (30), i.e., µ̄i/(γσ̄
2
i ) for i = 1, 2, represents

the optimal weight allocated to portfolio ŵi,t without combining the other portfolio. The

expected out-of-sample utility of this optimal portfolio is θ̄2i /(2γ). When the two com-

ponent portfolios are optimally combined, (31) shows that the combining strategy always

outperforms the optimal portfolio using only one component portfolio.20 (29), (30), and (31)

suggest that the optimal weights allocated to the component portfolios and the performance

improvement of the combining strategy depend on the relative efficiency (i.e., θ̄2/θ̄1) as well

as the potential diversification effect (captured by ρ̄12) between the two component portfo-

lios.21 It can be shown that E[Uc(λ
∗
1, λ

∗
2)] increases with θ̄2 if and only if θ̄2 > ρ̄12θ̄1, and it

increases with ρ̄12 if and only if ρ̄12 > min[θ̄1/θ̄2, θ̄2/θ̄1].

3.2 Applying the Combining Strategy

We now apply the combining strategy to various component portfolios. In Section 3.2.1, the

combining strategy is applied to the sample optimal portfolio. In Section 3.2.2 and 3.2.3, we

discuss how to apply the combining strategy when some estimation risk reduction strategies

are first applied to the sample optimal portfolio. Specifically, we consider the same set of

portfolios examined in Section 2.3.

20Using the Cauchy-Schwarz inequality, it can be shown that |ρ̄12| = |E[σ12,t]|√
E[σ2

1,t]E[σ2
2,t]

≤ E[σ1,tσ2,t]√
E[σ2

1,t]E[σ2
2,t]

≤ 1.

Unless the two component portfolios are perfectly positively or negatively conditionally correlated and σ1,t

is proportional to σ2,t, we have |ρ̄12| < 1.
21Note that θ̄i contains both the true efficiency (i.e., the Sharpe ratio without estimation errors) and the

effect of estimation errors in ŵi,t. Estimation errors also affect ρ̄12.
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3.2.1 The Sample Optimal Portfolio.

We first derive the optimal combining strategy based on the sample optimal portfolio and

the benchmark sample optimal portfolio,22

ŵc,t = λ1ŵp,t + λ2w̃s,t, (32)

where w̃s,t = [ŵ′
s,t, 0

′
N ]

′. Under the assumption that rt follows a multivariate normal distri-

bution and is i.i.d. over time, we get

µ̄p = E[µp,t] = E[ŵ′
p,tµ] =

hθ2

γ(h−M − 2)
, (33)

µ̄s = E[µs,t] = E[ŵ′
s,tµ1] =

hθ21
γ(h−K − 2)

, (34)

σ̄2
p = E[σ2

p,t] = E[ŵ′
p,tV ŵp,t] =

h(h− 2)(M + hθ2)

γ2(h−M − 1)(h−M − 2)(h−M − 4)
, (35)

σ̄2
s = E[σ2

s,t] = E[ŵ′
s,tV11ŵs,t] =

h(h− 2)(K + hθ21)

γ2(h−K − 1)(h−K − 2)(h−K − 4)
, (36)

σ̄ps = E[σps,t] = E[ŵ′
p,tV w̃s,t] =

h(h− 2)(K + hθ21)

γ2(h−K − 1)(h−K − 4)(h−M − 2)
. (37)

The proof of the above expressions is in the appendix. Applying (29) and (30) from Propo-

sition 1, we obtain

λ∗
1 =

(h−M − 2)δ2

B − C
, (38)

λ∗
2 = (h−K − 2)

(
θ21
C

− δ2

B − C

)
, (39)

where

B =
(h−M − 2)(θ2 + M

h
)

b1
, (40)

C =
(h−K − 2)(θ21 +

K
h
)

c1
. (41)

The expected out-of-sample utility of the optimal combining portfolio is given by

E[Uc(λ
∗
1, λ

∗
2)] =

hθ41
2γC

+
hδ4

2γ(B − C)
=

hθ4

2γB
+

h(B − C)

2γBC

(
θ2 − Bδ2

B − C

)2

. (42)

22Given that the two-fund rule scales up the sample optimal portfolio, optimally combining ŵp,t and ŵs,t

is equivalent to optimally combining the two-fund portfolios with the true optimal scaling parameters.
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When h > M + 4, it is easy to see that both B and C are positive. In addition, it can

be verified that θ̄2p = µ̄2
p/σ̄

2
p = hθ4/B, θ̄2s = µ̄2

s/σ̄
2
s = hθ41/C, and ρ̄2ps = σ̄2

ps/(σ̄
2
pσ̄

2
s) = C/B.

Because 0 < ρ̄2ps < 1, we have B > C. When the benchmark portfolios are not ex ante

efficient (i.e., δ > 0), (38) suggests that the optimal weight on the sample optimal portfolio

(i.e., λ∗
1) is positive, and λ∗

1 increases with δ but decreases with N = M −K. On the other

hand, the optimal weight on the benchmark sample optimal portfolio λ∗
2 is positive when

θ21/θ
2 > ρ̄2ps and it decreases with δ and increases with N .23

Implementable Combining Rule

Note that λ∗
1 and λ∗

2 in (38) and (39) depend on unknown parameters θ21 and δ2, so the

optimal combining portfolio using λ∗
1 and λ∗

2 is unattainable. Natural estimators of θ21 and

δ2 are their sample counterparts

θ̂21,t = µ̂′
1,tV̂

−1
11,tµ̂1,t, δ̂2t = µ̂′

tV̂
−1
t µ̂t − µ̂′

1,tV̂
−1
11,tµ̂1,t. (43)

However, it is known that these estimators can be heavily biased, especially when h is small,

so we adopt an adjusted estimator suggested by Kubokawa, Robert, and Saleh (1993) to

estimate θ21 and δ2. The adjusted estimator of θ21 is given in (16) and that of δ2 is24

δ̂2a,t =
(h−M − 2)δ̂2t −N(1 + θ̂21,t)

h
+

2(1 + θ̂21,t)Ξ
N
2 (1 + Ξ)−

h−K−2
2

hBΞ/(1+Ξ)(N/2, (h−M)/2)
, (44)

where Ξ = δ̂2t /(1 + θ̂21,t). With θ̂21a,t and δ̂2a,t available, we can obtain the adjusted estimators

of λ∗
1 and λ∗

2,

λ̂1a,t =
(h−M − 2)δ̂2a,t

B̂a,t − Ĉa,t

, (45)

λ̂2a,t = (h−K − 2)

(
θ̂21a,t

Ĉa,t

−
δ̂2a,t

B̂a,t − Ĉa,t

)
, (46)

where

B̂a,t =
(h−M − 2)

[
θ̂21a,t + δ̂2a,t +

M
h

]
b1

, Ĉa,t =
(h−K − 2)

(
θ̂21a,t +

K
h

)
c1

. (47)

23λ∗
2 > 0 ⇔ θ2

1

C − δ2

B−C =
Bθ2

1−Cθ2

C(B−C) > 0 ⇔ θ21/θ
2 > C/B = ρ̄2ps.

24We do not use the difference between θ̂2a,t and θ̂21a,t to estimate δ2 because this difference can be negative
but the true value of δ2 is always positive.
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We denote the combining portfolio that uses λ̂1a,t and λ̂2a,t as portfolio c̃ and its weight at

time t is

ŵc̃,t = λ̂1a,tŵp,t + λ̂2a,tw̃s,t, (48)

which is implementable.

Modified Combining Rule

The optimal value of λ1 and λ2 in (38) and (39) are obtained by explicitly taking into

account the estimation errors in ŵp,t and ŵs,t. When λ̂1a,t and λ̂2a,t, instead of λ∗
1 and λ∗

2,

are used to implement the combining rule, additional estimation errors are introduced. We

consider a modified combining portfolio to deal with this second layer of estimation errors.

The revised strategy is similar to the two-fund rule of Kan and Zhou (2007) in the sense

that an additional parameter is introduced to address the estimation errors by adjusting

the weights between portfolio c̃ and the risk-free asset. The modified portfolio takes the

following form,

ŵc2,t = ηŵc̃,t, (49)

where η is a scalar parameter. The optimal value of η is the one that maximizes the portfolio

expected out-of-sample utility,

E [Uc2(η)] = ηE
[
ŵ′

c̃,tµ
]
− γ

2
η2E

[
ŵ′

c̃,tV ŵc̃,t

]
, (50)

and it can be shown that

η∗ =
E
[
ŵ′

c̃,tµ
]

γE
[
ŵ′

c̃,tV ŵc̃,t

] . (51)

Instead of analytically deriving the expression of η∗, we adopt a three-fold cross-validation

approach.25 Specifically, we divide the h monthly data in the estimation window into three

folds. The data in two folds are used to compute portfolio weights ŵc̃,t. The obtained weights

25Existing theory does not provide a clear guide how to choose the number of folds for a given dataset. The
choice is basically a tradeoff between bias and variance. A larger number of folds means less bias but higher
variance and also longer running time. In unreported results, we also examine the portfolio performance
using five-fold or ten-fold cross-validation. The performance is similar in general; and in many cases, the
three-fold tends to perform slightly better.
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ŵc̃,t, together with the data in the remaining fold, are used to calculate the out-of-sample

returns of portfolio c̃. Rotating across folds, we obtain h out-of-sample returns of portfolio c̃.

The mean and the variance of these returns are used to estimate E
[
ŵ′

c̃,tµ
]
and E

[
ŵ′

c̃,tV ŵc̃,t

]
,

and the estimated value of η∗, i.e., η̃, is set according to (51). In addition, we require η̃ to

be in the range of [0, 1]. This is because to deal with the estimation errors in ŵc̃,t, we expect

further shrinkage of portfolio c̃ toward the risk-free asset. We call this revised combining

portfolio as the modified combining portfolio, and denote it as portfolio c̃2 and its weights

as ŵc̃2,t = η̃ŵc̃,t.

3.2.2 Portfolio PEW.

Now we use portfolio PEW as one of the component portfolios, and apply the proposed

combining strategy:

ŵpew
c,t = λpew

1 ŵ∗
pew,t + λpew

2 w̃s,t, (52)

where ŵ∗
pew,t = κ∗

1ŵp,t+κ∗
2wew, and the explicit expressions of κ∗

1 and κ∗
2 are derived in (A15)

and (A16). Under the assumption that rt follows a multivariate normal distribution and is

i.i.d. over time, we have

µ̄pew = E
[
ŵ∗

pew,t
′µ
]
=

1

γ

(
θ2ew +

hτ 2κ∗
1

h−M − 2

)
, (53)

σ̄2
pew = E

[
ŵ∗

pew,t
′V ŵ∗

pew,t

]
=

1

γ2

(
θ2ew +

hτ 2κ∗
1

h−M − 2

)
, (54)

σ̄pew,s = E
[
ŵ∗

pew,t
′V w̃s,t

]
=

κ∗
1h(K/h+ θ21)

γ2c1(h−M − 2)
+

κ∗
2h(µew − αew)

γ(h−K − 2)
, (55)

where µew = w′
ewµ, σ

2
ew = w′

ewV wew, θ
2
ew = µ2

ew/σ
2
ew, αew = 1′Nα/M and τ 2 = θ2 − θ2ew. The

proof of the above expressions are in the appendix. Based on the above expressions, together

with (34) and (36), we obtain the optimal values of the combining coefficients λpew
1 and λpew

2

using (29) and (30). Note that the optimal combining coefficients depend on the true values

of µew, σ
2
ew, θ

2
ew, τ

2, θ21, and α. The implementable combining coefficients λ̂pew
1a,t and λ̂pew

2a,t are

constructed using µ̂ew,t, σ̂
2
ew,t, θ̂

2
ew, τ̂

2
a,t, θ̂

2
1a,t, and α̂t = µ̂2,t− V̂21,tV̂

−1
11,tµ̂1,t. The implementable

combining strategy is given by

ŵpew
c̃,t = λ̂pew

1a,tŵpew,t + λ̂pew
2a,tw̃s,t. (56)
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Following a similar cross-validation procedure as in Section 3.2.1, we obtain the modified

combining portfolio based on portfolio PEW and the benchmark sample optimal portfolio,

and the weights of this portfolio are denoted as ŵpew
c̃2,t

= η̃pewŵpew
c̃,t .

3.2.3 Shrinkage Covariance Matrix of Ledoit and Wolf (2004).

Next, we consider the combining strategy using the sample optimal portfolios with shrinkage

covariance matrix of Ledoit and Wolf (2004):

ŵLW2004
c,t = λLW2004

1 ŵLW2004
p,t + λLW2004

2 w̃LW2004
s,t , (57)

where w̃LW2004
s,t = [ŵLW2004

s,t
′, 0′N ]

′. When the shrinkage covariance matrix estimator is used,

explicit expressions of the expected out-of-sample utility of the sample optimal portfolio are

not available. Therefore, we are unable to derive explicit expressions of the correspond-

ing optimal combining coefficients. As an alternative, we use the implementable optimal

combining coefficients in (45) and (46),

ŵLW2004
c̃,t = λ̂1a,tŵ

LW2004
p,t + λ̂2a,tw̃

LW2004
s,t . (58)

A similar cross-validation procedure as in Section 3.2.1 is applied to ŵLW2004
c̃,t to obtain

the modified combining portfolio based on the sample optimal portfolios with shrinkage

covariance matrix estimators, i.e., ŵLW2004
c̃2,t

= η̃LW2004ŵLW2004
c̃,t .

3.3 Empirical Performance of the Combining Strategy

Table 3 reports the CER of the combining portfolio c̃ and that of the modified combining

portfolio c̃2 using the same eight benchmark models and the five sets of test assets for h = 120

and γ = 3. Panels A, B, and C report the CER results of the combining strategy applied

to the sample optimal portfolio, to portfolio PEW, and to the optimal portfolio with Ledoit

and Wolf (2004) shrinkage covariance matrix, respectively.

For every case in Panels A and B, we notice that the modified combining portfolios (i.e.,

ŵc̃2,t and ŵpew
c̃2,t

) outperform the implementable combining portfolios (i.e., ŵc̃,t and ŵpew
c̃,t ),

suggesting that the second layer of shrinkage successfully addresses the estimation errors
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contained in the implementable combining coefficients, i.e., λ̂1a,t, λ̂2a,t, λ̂
pew
1a,t, λ̂

pew
2a,t. In ad-

dition, we find that the performance improvement is especially large when DMNU-48 is

used as the test assets or DMNU-7 is the benchmark model. As mentioned previously, the

underlying parameters of these anomaly portfolios are likely to be time varying, and the

results in Panels A and B suggest that the use of the non-parametric cross-validation ap-

proach helps improve portfolio performance in the cases with the potential departure from

the i.i.d. normality assumption.

Comparing the performance of the modified combining portfolios (i.e., ŵc̃2 and ŵpew
c̃2

)

in Panels A and B of Table 3 with the performance of the portfolios in Panels A and B

of Table 2, we find that the modified combining portfolio almost always outperforms the

portfolio including all assets (i.e., ŵp2,t and ŵpew,t) in Table 2. For the cases in which ŵs2,t

outperforms the portfolio including all assets in Table 2, the modified combining portfolio

either beats ŵs2,t or performs similarly.

In Panel C of Table 3, the optimal portfolios with the shrinkage covariance matrix are

used as the component portfolios in the combining strategy. Unlike the results in Panels A

and B, the modified combining portfolio c̃2 under-performs the combining portfolio c̃ for

most cases in Panel C, suggesting that when the shrinkage covariance matrix is used to

deal with the estimation risk in the sample optimal portfolios, the second layer of shrinkage

in the combining portfolio is of limited value. This is because the combining coefficients

derived for the sample optimal portfolios (i.e., λ̂1a,t and λ̂2a,t) tend to shrink more than the

combining coefficients derived for the sample optimal portfolios with shrinkage covariance

matrix (that are, however, not available analytically). As a result, further shrinkage is not

necessary when λ̂1a,t and λ̂2a,t are applied to the optimal portfolios with shrinkage covariance

matrix. Nevertheless, the combining portfolio itself remains useful. Note that ŵLW2004
c̃,t

outperforms both ŵLW2004
s,t and ŵLW2004

p,t for all the cases in Panel C of Table 2 except for

IND-10 or IND-30 with the CAPM or DHS as the benchmark model. For the four exceptions,

ŵLW2004
p,t greatly underperforms ŵLW2004

s,t ; and ŵLW2004
c̃,t generates a significant performance

improvement relative to ŵLW2004
p,t , providing a performance comparable to that of ŵLW2004

s,t .

Comparing the modified combining portfolio c̃2 in Panels A and B with the combining

portfolio c̃ in Panel C, we find that the combining portfolio with the shrinkage covariance
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matrix tends to perform better. Out of the 40 benchmark model/test assets combinations

considered in Table 3, the combining portfolio with the shrinkage covariance matrix performs

the best in 38 cases. For the remaining two cases (i.e., IND-10 with CAPM, IND-30 with

FF5-UMD), the performance of the combining portfolio with the shrinkage covariance matrix

is close to that of the best performing combining portfolio.

In sum, the results in Table 3 suggest that the proposed combining portfolio is an effective

strategy to deal with the portfolio choice problem of unknown benchmark efficiency. When

the two-fund rule or the PEW rule is first applied to address the estimation errors in the

sample optimal portfolio, addressing the second layer of estimation errors in the proposed

combining strategy is crucial to the portfolio performance. When the shrinkage covariance

matrix is used to address the estimation errors in the sample optimal portfolio, the second

layer of shrinkage is no longer necessary, but the proposed combining strategy remains ef-

fective. Overall, we find that the combining strategy with the shrinkage covariance matrix

(LW2004) tends to perform the best.26

To gain some additional insights, we examine the combining coefficients (of both the first

and second layer) in our proposed combining strategy from the empirical analysis and report

the results in Table 4. The cross-month average values are reported and the corresponding

standard deviations are shown in the parentheses. As the combination of the two-fund

portfolio is equivalent to the combination of the sample optimal portfolio, the coefficient in

the two-fund portfolio (i.e., b̂t) and that in the benchmark two-fund portfolio (i.e., ĉt) are

also presented for comparison. When the shrinkage covariance matrix is used, we use the

same combining coefficients derived for the sample optimal portfolio (i.e., λ̂1a,t and λ̂2a,t) for

the first layer. Therefore, only the results of the coefficient from the second layer of shrinkage

(i.e., η̃LW2004) are reported.

Table 4 shows that relative to the coefficients from the two-fund portfolio and the bench-

mark two-fund portfolio (i.e., b̂t, ĉt), the combining coefficients from our proposed strategy

(i.e. λ̂1a,t, λ̂2a,t) are smaller. For a given set of test assets, the coefficient associated with the

sample optimal portfolio (λ̂1a,t) tends to decrease with more recent models, and that of the

26In Section OA.2 of the Online Appendix, we also examine the usefulness of the proposed combining
strategy based on simulated data, and reach similar conclusion.
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benchmark sample optimal portfolio (λ̂2a,t) tends to increase with the more recent models.

This pattern is expected. As the benchmark model becomes more efficient, the value of

including the test assets is reduced and therefore, the weight of the sample optimal portfolio

decreases and that of the benchmark sample optimal portfolio increases. The second layer of

shrinkage, with η̃ < 1, shifts more weights to the risk-free asset to further reduce the estima-

tion risk. Comparing the results of η̃ and η̃LW2004, we find that the value of η̃LW2004 is larger

in general. This is consistent with the argument that the combining coefficients derived for

the sample optimal portfolio tends to shrink more than the combining coefficients derived

for the case when the shrinkage covariance matrix is used.

4. Portfolio Turnover

To evaluate the portfolio performance in practice, portfolio turnover needs to be considered.

A higher turnover suggests higher transaction costs, which lowers portfolio performance.

The test assets and the benchmark portfolios used to construct the optimal portfolios in this

paper are all stock portfolios, which means potential trading diversification as documented in

DeMiguel, Mart́ın-Utrera, Nogales, and Uppal (2020) is involved. Therefore, in this section,

we study the stock level turnover of the various optimal portfolios.

Let n be the number of stocks available to the investor, Bt be the n × M matrix that

captures the weights on individual stocks of the M assets at the end of month t and wt =

[w1,t, . . . , wM,t]
′ be the optimal weights on the M assets at the end of month t. The stock

level weights of the optimal portfolio at the end of month t are obtained as st = Bt × wt =

[s1,t, . . . , sn,t]
′, and the stock level turnover of the optimal portfolio at the end of month t is

computed as

Turnt =
n∑

i=1

|si,t − si,t−1Ri,t| , (59)

where Ri,t is the gross return of stock i in month t. In Table 5, we report the cross-month

average stock level turnover of various optimal portfolios using the same empirical data as

in Tables 1 to 3 for h = 120 and γ = 3.

Panel A of Table 5 presents the turnover results for the portfolios based on the sample

26



optimal portfolios and the KZ two-fund rule. Of the portfolios examined in Panel A, the sam-

ple optimal portfolio (ŵp,t) has the highest level of turnover. The turnover of the benchmark

sample optimal portfolio (ŵs,t) is much lower than that of ŵp,t due to the smaller number of

assets involved (i.e., only the benchmark portfolios but not the test assets). Across the test

assets examined, we notice that the turnover of ŵp,t is lower when the industry portfolios

(IND-10 and IND-30) are included as test assets. This is because the compositions of the

industry portfolios are relatively stable over time, which leads to lower stock level portfolio

turnover.27 Across the benchmark models, we notice that the turnover of ŵs,t increases with

the more recent models, and it does not necessarily increase with the number of factors in

the models.28

The two-fund rule of Kan and Zhou (2007) addresses the estimation risk in ŵp,t and

ŵs,t by shifting more portfolio weight to the risk-free asset, and such shift helps reduce the

portfolio turnover. With more estimation errors in ŵp,t than in ŵs,t, we expect a stronger

effect to portfolio turnover when applying the two-fund rule to ŵp,t than to ŵs,t. The results

in Panel A are consistent with our expectation, and we even observe the turnover of ŵp2,t to

be lower than that of ŵs2,t in some cases (e.g., IND-10 and IND-30 with DHS or DMNU-7

as the benchmark).

Due to a similar shifting effect, the turnover of the modified combining portfolio (ŵc̃2,t)

is always lower than that of the implementable combining portfolio (ŵc̃,t) in Panel A. Com-

paring the turnover of ŵc̃2 with that of ŵp2,t, we find that ŵc̃2 has lower turnover in all cases

considered expect for IND-30 with DHS as the benchmark.

Panel B reports the turnover results of the portfolios based on PEW, and we observe

similar patterns. The PEW rule (i.e., ŵpew,t), like the KZ two-fund rule in Panel A, helps

reduce the turnover of the sample optimal portfolio (i.e., ŵp,t). The modified combining

portfolio (ŵpew
c̃2,t

) always has lower turnover relative to that of the implementable combining

portfolio (ŵpew
c̃,t ); and the turnover of ŵpew

c̃2,t
is lower than that of ŵpew,t in all cases except for

27In unreported results, we also examine the turnover at the portfolio level (instead of the stock level),
and do not observe lower turnover when industry portfolios are included.

28For example, the turnover of DHS (a three-factor model) is much higher than that of FF5-UMD (a
six-factor model). This is because that DHS includes a monthly updated factor with many changing com-
positions, which contributes to the higher stock level turnover.
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IND-30 with DHS as the benchmark.

Comparing the results of ŵp,t and ŵs,t in Panel A with those of ŵLW2004
p,t and ŵLW2004

s,t in

Panel C, we find that the use of the shrinkage covariance matrix also helps reduce the portfolio

turnover. Applying the implementable combining rule (i.e., ŵLW2004
c̃,t ) can significantly further

reduce the turnover of ŵLW2004
p,t . Comparing the turnover of ŵLW2004

c̃,t with that of the modified

combining portfolio c̃2 in Panels A and B, we find that ŵLW2004
c̃,t has a lower turnover in

general. From Table 3, we know that ŵLW2004
c̃,t performs well without transaction costs. The

low turnover of ŵLW2004
c̃,t shown in Table 5 further supports the usefulness of such combining

strategy after transaction cost.29

5. Conclusion

In this paper, we examine the portfolio choice problem with a benchmark model of ex ante

unknown efficiency. The unknown efficiency, together with the estimation risk associated

with estimated parameters, makes the portfolio choice problem a challenge in practice. In

order to address this problem, we propose a combining portfolio strategy that optimally

balances the value of including test assets and the cost associated with the additional esti-

mation errors. The proposed combining strategy is a general one in the sense that it can be

readily applied together with some existing estimation risk reduction strategies. Specifically,

we discuss how to apply it to the sample optimal portfolio, the portfolio rule that optimally

combines the sample optimal portfolio and the 1/N rule (i.e., PEW), and the sample optimal

portfolio with the shrinkage covariance matrix of Ledoit and Wolf (2004). Both empirically

and in simulated data, we show that our proposed combining strategy performs well.

Estimation errors can significantly undermine the out-of-sample performance of the opti-

mal portfolio in practice. This raises a potential question on the value of existing empirical

asset pricing studies as well as the various anomaly findings because they mostly focus on

the in-sample results. From an investor’s perspective, the out-of-sample performance is more

relevant. How to evaluate and compare asset pricing models out-of-sample is a question that

deserves further study. In addition, instead of adopting an agnostic perspective as in the

29In Section OA.3 of the Online Appendix, we report the portfolio performance with transaction cost.
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current paper, how to select the benchmark model and/or the test assets ex ante for portfolio

construction is also an interesting question yet to be answered.

Appendix

Proof of (33) to (37):

Under the multivariate normality assumption, it is well known that µ̂t and V̂t are independent

of each other and have the following distributions:

µ̂t ∼ N (µ, V/h), V̂t ∼ WM(h− 1, V/h), (A1)

where WM(h−1, V/h) is a Wishart distribution with h−1 degrees of freedom and covariance

matrix V/h. Define an M ×M orthonormal matrix P = [P1, P2] with its first K columns

equal to

P1 = V
1
2

[
IK

0N×K

]
V

− 1
2

11 . (A2)

Transform µ̂t and V̂t to

z =

[
z1

z2

]
=

√
hP ′V − 1

2 µ̂t ∼ N (
√
hP ′V − 1

2µ, IM), (A3)

W =

[
W11 W12

W21 W22

]
= hP ′V − 1

2 V̂tV
− 1

2P ∼ WM(h− 1, IM), (A4)

where z1 is a K × 1 vector and W11 is the upper left K ×K submatrix of W , and z and W

are independent of each other.

We can write the weights of the sample optimal portfolio p as

ŵp,t =

√
h

γ
V − 1

2PW−1z, (A5)

and it follows that

µ̄p = E[µp,t] = E

[√
h

γ
µ′V − 1

2PW−1z

]
=

√
h

γ
µ′V − 1

2PE[W−1]E[z] =
hθ2

γ(h−M − 2)
, (A6)

σ̄2
p = E[σ2

p,t] =
h

γ2
E
[
z′W−2z

]
=

h(h− 2)(M + hθ2)

γ2(h−M − 1)(h−M − 2)(h−M − 4)
. (A7)

29



(A6) and (A7) are obtained by applying the expressions for the inverse moments of a Wishart

distribution from Haff (1979)

E[W−1] =
1

h−M − 2
IM , E[W−2] =

h− 2

(h−M − 1)(h−M − 2)(h−M − 4)
IM , (A8)

and the fact that z′z ∼ χ2
M(hθ2) and E[z′z] = M + hθ2.

Replacing M by K and θ2 by θ21 in (A6) and (A7), we get

µ̄s = E[µs,t] =
hθ21

γ(h−K − 2)
, (A9)

σ̄2
s = E[σ2

s,t] =
h(h− 2)(K + hθ21)

γ2(h−K − 1)(h−K − 2)(h−K − 4)
. (A10)

Finally, we can write

σ̄ps = E[σps,t] =
1

γ2
E
[
µ̂′
tV̂

−1
t V

[
IK

0N×K

]
V̂ −1
11,tµ̂1,t

]
=

h

γ2
E
[
z′W−1

[
IK

0N×K

]
W−1

11 z1

]
.

(A11)

Applying the partitioned matrix inverse formula, we have

σ̄ps =
h

γ2
E
[
z′1W

−2
11 z1 + (z′1W

−1
11 W12 − z′2)W

−1
22·1W21W

−2
11 z1

]
, (A12)

where W22·1 = W22 − W21W
−1
11 W12. Using Theorem 3.2.10 of Muirhead (1982), we have

W22·1 ∼ WN(h − K − 1, IN), vec
(
Z ≡ W21W

− 1
2

11

)
∼ N (0NK , INK), W11 ∼ WK(h − 1, IK),

and W22·1, W11, and Z are independent of each other. Therefore, E[z′2W−1
22·1W21W

−2
11 z1] =

E[z′2W−1
22·1ZW

− 3
2

11 z1] = 0 because E[Z] = 0N×K and Z is independent of W11, W22·1 and z.

The explicit expression of E[σps,t] can be written as

σ̄ps =
h

γ2

(
E[z′1W−2

11 z1] + E[z′1W−1
11 W12W

−1
22·1W21W

−2
11 z1]

)
=

h

γ2

(
E[z′1W−2

11 z1] +
E[z′1W−1

11 W12W21W
−2
11 z1]

h−M − 2

)
=

h

γ2

(
E[z′1W−2

11 z1] +
E[z′1W

− 1
2

11 Z ′ZW
− 3

2
11 z1]

h−M − 2

)

=
h

γ2

(
E[z′1W−2

11 z1] +
NE[z′1W−2

11 z1]

h−M − 2

)
=

h(h− 2)(K + hθ21)

γ2(h−K − 1)(h−K − 4)(h−M − 2)
. (A13)
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The fourth equality is obtained because Z ′Z ∼ WK(N, IK) and E[Z ′Z] = NIK . The last

equality is obtained using (A10). □

Derivation of κ∗
1 and κ∗

2 in the PEW rule:

We can apply the results in Proposition 1 to obtain κ∗
1 and κ∗

2. Specifically, plug µew = w′
ewµ,

σ2
ew = w′

ewV wew, (A6), (A7), and

E
[
ŵ′

p,tV wew

]
=

hµew

γ(h−M − 2)
(A14)

into (29) and (30), we obtain

κ∗
1 =

θ2 − θ2ew
θ2+M/h

b1
− hθ2ew

h−M−2

=
τ 2

θ2+M/h
b1

− hθ2ew
h−M−2

, (A15)

κ∗
2 =

µew

γσ2
ew

(
1− hκ∗

1

h−M − 2

)
. (A16)

The expected out-of-sample utility of ŵ∗
pew,t = κ∗

1ŵp,t + κ∗
2wew is

E
[
U(ŵ∗

pew,t)
]
=

θ2

2γ
−
(
θ2 +M/h

2γb1
− θ2

2γ

)
θ2/(2γ)− θ2ew/(2γ)

(θ2 +M/h)/(2γb1)− θ2ew/(2γ)
. (A17)

□

Proof of (53), (54), and (55):

For (53), we have

E[ŵ∗
pew,t

′µ] =
κ∗
1hθ

2

γ(h−M − 2)
+ κ∗

2µew

=
κ∗
1hθ

2

γ(h−M − 2)
+

θ2ew
γ

(
1− hκ∗

1

h−M − 2

)
=

1

γ

(
θ2ew +

hκ∗
1(θ

2 − θ2ew)

h−M − 2

)
. (A18)

The first equality is obtained using (A6), and the second equality is obtained using (A16).

For (54), we have

E[ŵ∗
pew,t

′V ŵ∗
pew,t]
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= κ∗2
1 E[σ2

p,t] + κ∗2
2 σ2

ew + 2κ∗
1κ

∗
2E[w′

ewV ŵp,t]

=
κ∗2
1 (M + hθ2)

γ2b1(h−M − 2)
+ κ∗2

2 σ2
ew +

2κ∗
1κ

∗
2hµew

γ(h−M − 2)

=
1

γ2

[
κ∗2
1 (M + hθ2)

b1(h−M − 2)
+ θ2ew

(
1− hκ∗

1

h−M − 2

)2

+
2κ∗

1hθ
2
ew

h−M − 2

(
1− hκ∗

1

h−M − 2

)]

=
1

γ2

[
θ2ew +

hκ∗2
1

h−M − 2

(
M/h+ θ2

b1
− hθ2ew

h−M − 2

)]
=

1

γ2

(
θ2ew +

hτ 2κ∗
1

h−M − 2

)
. (A19)

The second equality is obtained using (A7) and (A14). The third equality is obtained using

the expression of κ∗
2 in (A16). The last equality is obtained using the expression of κ∗

1 in

(A15).

For (55), we have

E[ŵ∗
pew,t

′V w̃s,t] = κ∗
1E[σps,t] + κ∗

2E[w′
ewV w̃s,t]

=
κ∗
1(K + hθ21)

γ2c1(h−M − 2)
+

κ∗
2h

γ(h−K − 2)
w′

ewV

[
V −1
11 µ1

0N×K

]
=

κ∗
1(K + hθ21)

γ2c1(h−M − 2)
+

κ∗
2h

γ(h−K − 2)

1

M

(
1′Kµ1 + 1′NV21V

−1
11 µ1

)
=

κ∗
1(K + hθ21)

γ2c1(h−M − 2)
+

κ∗
2h

γ(h−K − 2)

1

M

(
1′Mµ− 1′Nµ2 + 1′NV21V

−1
11 µ1

)
=

κ∗
1(K + hθ21)

γ2c1(h−M − 2)
+

κ∗
2h(µew − 1′Nα/M)

γ(h−K − 2)

=
κ∗
1h(K/h+ θ21)

γ2c1(h−M − 2)
+

κ∗
2h(µew − αew)

γ(h−K − 2)
. (A20)

The second equality is obtained using (A13). □
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Table 1: CER of Sample Optimal Portfolios

This table reports the certainty equivalent returns (in annualized percentage points) of the sample
optimal portfolio p and the benchmark sample optimal portfolio s with h = 120 and γ = 3. Five
sets of test assets are examined against eight benchmarks. At the end of a given month t, the
sample optimal portfolio p and the benchmark sample optimal portfolio s are constructed using
excess returns from month t− 119 to month t and are held for one month (i.e., month t+ 1). The
out-of-sample excess returns (i.e., month t+1) are used to compute the certainty equivalent returns
of the portfolios.

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

MOM-10:

ŵs,t 2.83 2.70 5.32 8.73 8.71 14.23 25.05 −34.22
ŵp,t −14.88 −27.74 −48.36 −43.02 −81.61 −62.10 −40.85 −247.20

IVOL-10:

ŵs,t 2.83 2.70 5.32 8.73 8.71 14.23 25.05 −34.22
ŵp,t −28.61 −48.20 −55.63 −112.39 −121.00 −103.60 −67.28 −312.96

IND-10:

ŵs,t 2.83 2.70 5.32 8.73 8.71 14.23 25.05 −34.22
ŵp,t −24.06 −27.87 −40.84 −59.51 −72.99 −57.10 −37.59 −224.00

IND-30:

ŵs,t 2.83 2.70 5.32 8.73 8.71 14.23 25.05 −34.22
ŵp,t −184.91 −233.40 −273.61 −396.08 −417.19 −369.99 −298.08 −1141.24

DMNU-48:

ŵs,t −0.45 −1.62 −4.41 −3.02 −8.40 −2.44 11.29 −34.22
ŵp,t −3424.82 −4384.52 −4679.40 −4934.98 −5387.40 −4588.02 −3800.61 −3424.82
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Table 2: CER of Portfolios with Estimation Risk Reduction Strategies

This table compares the certainty equivalent returns (in annualized percentage points) of the op-
timal portfolios using all assets (benchmark portfolios and test assets) with those of the optimal
portfolios using only the benchmark portfolios when various estimation risk reduction strategies
are adopted. In Panels A and B, the two-fund rule and the PEW rule are applied to the sample
optimal portfolio (i.e., ŵp2,t, ŵpew,t), and they are compared with the benchmark two-fund portfolio
(i.e., ŵs2,t). In Panel C, the Ledoit and Wolf (2004) shrinkage covariance matrix is used for both
the sample optimal portfolio and the benchmark sample optimal portfolio. Five sets of test assets
are examined against eight benchmarks. The estimation window is set to h = 120 and the risk
aversion coefficient is set to γ = 3. At the end of a given month t, various portfolios are constructed
using excess returns from month t− 119 to month t and are held for one month (i.e., month t+1).
The out-of-sample excess returns (i.e., month t + 1) are used to compute the certainty equivalent
returns of the portfolios.

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

A. KZ two-fund rule

MOM-10:

ŵs2,t 3.11 4.98 10.83 16.79 20.29 21.47 30.73 27.51
ŵp2,t 9.15 11.29 9.14 17.87 11.21 15.20 23.01 −1.87

IVOL-10:

ŵs2,t 3.11 4.98 10.83 16.79 20.29 21.47 30.73 27.51
ŵp2,t 6.81 10.20 18.25 8.00 14.08 4.51 20.17 −26.88

IND-10:

ŵs2,t 3.11 4.98 10.83 16.79 20.29 21.47 30.73 27.51
ŵp2,t −0.19 4.19 8.28 7.80 7.59 9.48 15.63 2.86

IND-30:

ŵs2,t 3.11 4.98 10.83 16.79 20.29 21.47 30.73 27.51
ŵp2,t −4.09 −1.42 4.07 −1.66 0.36 −0.72 3.36 −16.72

DMNU-48:

ŵs2,t −0.28 1.72 3.07 9.23 8.45 8.00 18.35 27.51
ŵp2,t −49.07 −77.67 −80.00 −73.90 −80.68 −77.39 −42.43 −49.07
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Table 2 CER of Portfolios with Estimation Risk Reduction Strategies (Cont’d)

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

B. Portfolio PEW

MOM-10:

ŵs2,t 3.11 4.98 10.83 16.79 20.29 21.47 30.73 27.51
ŵpew,t 9.84 12.03 10.63 19.42 14.14 18.12 24.20 0.64

IVOL-10:

ŵs2,t 3.11 4.98 10.83 16.79 20.29 21.47 30.73 27.51
ŵpew,t 8.05 11.37 20.29 8.98 16.03 5.87 21.51 −27.27

IND-10:

ŵs2,t 3.11 4.98 10.83 16.79 20.29 21.47 30.73 27.51
ŵpew,t 1.72 5.95 11.65 9.65 10.90 13.08 17.30 3.81

IND-30:

ŵs2,t 3.11 4.98 10.83 16.79 20.29 21.47 30.73 27.51
ŵpew,t −1.78 0.98 7.04 −0.05 2.49 1.72 5.70 −16.53

DMNU-48:

ŵs2,t −0.28 1.72 3.07 9.23 8.45 8.00 18.35 27.51
ŵpew,t −47.16 −76.25 −77.36 −71.03 −77.12 −72.33 −37.23 −47.16

C. LW2004 shrinkage covariance matrix

MOM-10:

ŵLW2004
s,t 2.83 4.19 10.28 15.60 17.69 25.11 36.97 54.61

ŵLW2004
p,t 7.87 6.32 5.95 14.79 13.01 23.66 29.56 29.46

IVOL-10:

ŵLW2004
s,t 2.83 4.19 10.28 15.60 17.69 25.11 36.97 54.61

ŵLW2004
p,t 6.49 16.31 20.51 23.50 22.89 16.17 25.22 23.66

IND-10:

ŵLW2004
s,t 2.83 4.19 10.28 15.60 17.69 25.11 36.97 54.61

ŵLW2004
p,t −11.50 −1.64 0.48 3.68 4.04 15.44 13.77 21.27

IND-30:

ŵLW2004
s,t 2.83 4.19 10.28 15.60 17.69 25.11 36.97 54.61

ŵLW2004
p,t −75.83 −60.75 −62.07 −52.99 −57.43 −36.55 −51.86 −57.99

DMNU-48:

ŵLW2004
s,t −0.45 0.39 0.96 8.49 7.80 14.24 26.85 54.61

ŵLW2004
p,t −327.45 −321.84 −247.96 −329.40 −267.88 −325.88 −375.69 −327.45
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Table 3: CER of the Combining Strategy

This table reports the certainty equivalent returns (in annualized percentage points) of the com-
bining portfolio c̃ and the modified combining portfolio c̃2 for h = 120 and γ = 3. Five sets of test
assets are examined against eight benchmarks. Panels A to C report the results of the combining
strategy applied to the sample optimal portfolio, to portfolio PEW, and to the optimal portfolio
with Ledoit and Wolf (2004) shrinkage covariance matrix, respectively. At the end of a given month
t, various portfolios are constructed using excess returns from month t − 119 to month t and are
held for one month (i.e., month t+1). The out-of-sample excess returns (i.e., month t+1) are used
to compute the certainty equivalent returns of the portfolios.

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

A. Sample optimal portfolio

MOM-10:

ŵc̃,t 9.55 10.62 8.64 19.70 13.65 17.81 25.83 3.30
ŵc̃2,t 10.50 11.78 9.45 22.50 17.66 28.84 32.76 35.54

IVOL-10:

ŵc̃,t 7.86 9.80 17.88 9.79 15.93 9.45 25.88 −7.04
ŵc̃2,t 12.40 14.77 25.72 26.02 33.74 25.92 38.26 25.57

IND-10:

ŵc̃,t 0.64 3.76 8.67 10.83 11.84 11.70 23.63 9.97
ŵc̃2,t 1.73 4.37 10.34 14.66 18.31 21.58 26.32 43.41

IND-30:

ŵc̃,t −2.51 0.37 8.26 5.49 11.04 7.65 22.80 −6.21
ŵc̃2,t 0.27 4.19 9.71 15.13 19.50 20.70 25.39 39.35

DMNU-48:

ŵc̃,t −46.81 −78.68 −88.46 −75.90 −92.72 −92.88 −45.85 −37.63
ŵc̃2,t 32.34 38.49 41.23 19.93 19.85 4.78 26.87 47.98
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Table 3 CER of the Combining Strategy (Cont’d)

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

B. Portfolio PEW

MOM-10:

ŵpew
c̃,t 9.39 10.82 8.88 20.99 16.60 20.84 26.05 3.25

ŵpew
c̃2,t

10.64 13.31 10.33 23.04 19.72 29.75 33.00 40.56

IVOL-10:

ŵpew
c̃,t 6.65 8.30 17.61 8.99 16.97 9.13 25.90 −6.25

ŵpew
c̃2,t

11.80 15.01 26.24 26.65 34.22 26.70 38.62 27.44

IND-10:

ŵpew
c̃,t −1.51 3.40 8.85 12.70 14.36 12.03 24.60 8.22

ŵpew
c̃2,t

2.03 4.47 10.20 15.89 19.05 21.68 27.17 43.95

IND-30:

ŵpew
c̃,t −3.59 −0.40 7.81 6.46 12.17 8.29 24.41 −9.13

ŵpew
c̃2,t

0.31 4.83 9.82 15.35 19.18 20.32 26.17 39.34

DMNU-48:

ŵpew
c̃,t −44.72 −76.98 −85.88 −72.07 −86.37 −84.06 −39.57 −38.16

ŵpew
c̃2,t

34.49 40.38 41.73 23.65 22.68 10.63 29.49 48.76

C. LW2004 shrinkage covariance matrix

MOM-10:

ŵLW2004
c̃,t 12.91 16.13 18.19 27.32 27.98 33.37 42.18 61.08

ŵLW2004
c̃2,t

12.77 15.02 15.73 27.08 26.88 32.36 40.38 57.67

IVOL-10:

ŵLW2004
c̃,t 13.32 23.32 31.27 38.92 42.56 35.98 44.44 56.49

ŵLW2004
c̃2,t

13.05 21.51 26.97 38.07 41.60 34.87 40.45 55.90

IND-10:

ŵLW2004
c̃,t 1.06 6.85 13.54 17.43 20.64 26.03 34.76 57.27

ŵLW2004
c̃2,t

1.74 4.16 9.73 14.21 15.93 23.42 31.10 56.80

IND-30:

ŵLW2004
c̃,t 0.85 5.93 12.29 15.87 18.76 25.19 35.39 58.29

ŵLW2004
c̃2,t

1.71 4.16 8.69 13.60 13.38 22.81 30.94 57.71

DMNU-48:

ŵLW2004
c̃,t 89.27 82.43 70.17 79.12 67.44 76.33 83.29 87.70

ŵLW2004
c̃2,t

89.27 82.31 66.09 78.93 63.66 72.63 79.22 87.38
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Table 4: The Combining Coefficients

Based on similar empirical exercises as in Table 3, this table reports the cross-month average
combining coefficients and the corresponding standard deviations (in parentheses) for the various
combining portfolios. λ̂1a,t and λ̂2a,t are the implementable combining coefficients in (45) and (46)
when the combining strategy is applied to the sample optimal portfolio; η̃ is the estimated parameter
of the second layer shrinkage specified in Section 3.2.1. λ̂pew

1a,t, λ̂
pew
2a,t, and η̃pew are the corresponding

estimated parameters specified in Section 3.2.2 when the combining strategy is applied to portfolio
PEW. When the combining strategy is applied to the optimal portfolios with Ledoit and Wolf
(2004) shrinkage covariance estimator, the same combining coefficients (i.e, λ̂1a,t and λ̂2a,t) are
used; and the coefficient from the second layer (i.e., η̃LW2004) is reported in the last row of each
panel in the table. For comparison, the coefficients from the two-fund portfolio and the benchmark
two-fund portfolio (i.e., b̂t and ĉt) as specified in (10) and (14) are also reported in the table.

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

MOM-10:

b̂t 0.43 0.44 0.44 0.47 0.46 0.50 0.54 0.59
(0.15) (0.15) (0.16) (0.12) (0.13) (0.17) (0.16) (0.06)

ĉt 0.54 0.58 0.61 0.68 0.67 0.73 0.79 0.78
(0.29) (0.19) (0.20) (0.11) (0.09) (0.15) (0.13) (0.04)

λ̂1a,t 0.40 0.40 0.35 0.35 0.34 0.36 0.35 0.30
(0.15) (0.16) (0.16) (0.16) (0.17) (0.18) (0.15) (0.11)

λ̂2a,t 0.11 0.14 0.23 0.29 0.30 0.33 0.40 0.45
(0.30) (0.21) (0.21) (0.18) (0.14) (0.19) (0.16) (0.12)

η̃ 0.63 0.54 0.51 0.67 0.65 0.62 0.61 0.80
(0.35) (0.30) (0.32) (0.25) (0.28) (0.34) (0.30) (0.14)

λ̂pew
1a,t 1.20 1.01 0.85 0.57 0.55 0.58 0.61 0.38

(0.32) (0.37) (0.37) (0.65) (0.61) (0.51) (0.30) (0.40)

λ̂pew
2a,t −0.41 −0.09 0.11 0.31 0.32 0.33 0.38 0.53

(0.30) (0.31) (0.31) (0.30) (0.25) (0.31) (0.25) (0.25)
η̃pew 0.60 0.56 0.53 0.66 0.64 0.64 0.63 0.80

(0.33) (0.29) (0.31) (0.24) (0.26) (0.30) (0.28) (0.13)

η̃LW2004 0.79 0.73 0.69 0.88 0.81 0.76 0.76 0.94
(0.36) (0.33) (0.36) (0.25) (0.30) (0.36) (0.36) (0.14)
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Table 4 The Combining Coefficients (Cont’d)

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

IVOL-10:

b̂t 0.44 0.46 0.49 0.54 0.54 0.54 0.57 0.60
(0.18) (0.17) (0.17) (0.11) (0.11) (0.14) (0.15) (0.05)

ĉt 0.54 0.58 0.61 0.68 0.67 0.73 0.79 0.78
(0.29) (0.19) (0.20) (0.11) (0.09) (0.15) (0.13) 0.04

λ̂1a,t 0.41 0.43 0.45 0.49 0.49 0.46 0.46 0.33
(0.19) (0.18) (0.16) (0.15) (0.14) (0.15) (0.14) (0.08)

λ̂2a,t 0.10 0.11 0.12 0.14 0.14 0.22 0.28 0.42
(0.36) (0.23) (0.18) (0.16) (0.11) (0.12) (0.10) (0.10)

η̃ 0.55 0.50 0.52 0.72 0.65 0.60 0.59 0.82
(0.33) (0.32) (0.31) (0.20) (0.23) (0.32) (0.30) (0.11)

λ̂pew
1a,t 1.22 1.06 1.01 0.88 0.90 0.86 0.83 0.53

(0.36) (0.29) (0.21) (0.16) (0.12) (0.18) (0.12) (0.18)

λ̂pew
2a,t −0.43 −0.12 −0.02 0.12 0.11 0.17 0.23 0.44

(0.35) (0.30) (0.24) (0.16) (0.10) (0.17) (0.13) (0.13)
η̃pew 0.51 0.51 0.53 0.70 0.63 0.60 0.58 0.80

(0.33) (0.31) (0.31) (0.21) (0.24) (0.31) (0.29) (0.11)

η̃LW2004 0.69 0.65 0.64 0.92 0.84 0.76 0.75 0.99
(0.37) (0.36) (0.37) (0.15) (0.26) (0.33) (0.33) (0.03)

IND-10:

b̂t 0.38 0.43 0.46 0.49 0.48 0.53 0.53 0.59
(0.15) (0.10) (0.11) (0.06) (0.07) (0.11) (0.10) (0.05)

ĉt 0.54 0.58 0.61 0.68 0.67 0.73 0.79 0.78
(0.29) (0.19) (0.20) (0.11) (0.09) (0.15) (0.13) (0.04)

λ̂1a,t 0.35 0.38 0.39 0.33 0.32 0.34 0.22 0.27
(0.14) (0.11) (0.11) (0.14) (0.13) (0.12) (0.13) (0.10)

λ̂2a,t 0.16 0.16 0.19 0.31 0.33 0.35 0.54 0.49
(0.30) (0.22) (0.23) (0.22) (0.19) (0.22) (0.26) (0.14)

η̃ 0.48 0.46 0.42 0.66 0.53 0.61 0.63 0.79
(0.38) (0.30) (0.26) (0.25) (0.24) (0.33) (0.24) (0.15)

λ̂pew
1a,t 1.46 1.01 0.90 0.52 0.50 0.64 0.08 0.34

(0.90) (0.26) (0.27) (0.81) (0.78) (0.36) (0.83) (0.31)

λ̂pew
2a,t −0.72 −0.09 0.06 0.37 0.38 0.32 0.73 0.57

(0.88) (0.33) (0.33) (0.51) (0.47) (0.34) (0.61) (0.23)
η̃pew 0.46 0.48 0.44 0.64 0.52 0.62 0.65 0.79

(0.37) (0.30) (0.26) (0.24) (0.23) (0.31) (0.21) (0.16)

η̃LW2004 0.31 0.44 0.42 0.78 0.62 0.67 0.73 0.99
(0.35) (0.36) (0.36) (0.26) (0.32) (0.36) (0.32) (0.03)

42



Table 4 The Combining Coefficients (Cont’d)

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

IND-30:

b̂t 0.19 0.23 0.24 0.26 0.25 0.27 0.25 0.33
(0.08) (0.07) (0.07) (0.05) (0.05) (0.08) (0.07) (0.05)

ĉt 0.54 0.58 0.61 0.68 0.67 0.73 0.79 0.78
(0.29) (0.19) (0.20) (0.11) (0.09) (0.15) (0.13) (0.04)

λ̂1a,t 0.18 0.20 0.20 0.19 0.17 0.17 0.11 0.15
(0.08) (0.07) (0.06) (0.08) (0.08) (0.07) (0.06) (0.06)

λ̂2a,t 0.30 0.31 0.35 0.42 0.44 0.50 0.64 0.57
(0.28) (0.20) (0.21) (0.19) (0.16) (0.19) (0.19) (0.09)

η̃ 0.35 0.32 0.34 0.61 0.51 0.58 0.55 0.78
(0.35) (0.29) (0.27) (0.26) (0.26) (0.37) (0.29) (0.13)

λ̂pew
1a,t 1.19 0.94 0.81 0.58 0.55 0.56 0.19 0.37

(0.25) (0.22) (0.26) (0.44) (0.43) (0.35) (0.54) (0.28)

λ̂pew
2a,t −0.41 0.06 0.22 0.41 0.44 0.47 0.69 0.61

(0.30) (0.30) (0.32) (0.26) (0.23) (0.28) (0.34) (0.14)
η̃pew 0.33 0.33 0.36 0.60 0.50 0.59 0.56 0.78

(0.33) (0.27) (0.26) (0.24) (0.24) (0.35) (0.26) (0.13)

η̃LW2004 0.29 0.34 0.39 0.76 0.59 0.69 0.71 0.99
(0.33) (0.34) (0.36) (0.26) (0.33) (0.37) (0.35) (0.03)

DMNU-48:

b̂t 0.25 0.23 0.23 0.22 0.21 0.23 0.23 0.25
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

ĉt 0.57 0.58 0.57 0.70 0.67 0.70 0.76 0.78
(0.22) (0.16) (0.21) (0.08) (0.09) (0.16) (0.14) (0.04)

λ̂1a,t 0.25 0.23 0.22 0.21 0.20 0.21 0.22 0.17
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

λ̂2a,t 0.14 0.18 0.19 0.34 0.32 0.33 0.39 0.50
(0.21) (0.13) (0.16) (0.04) (0.04) (0.12) (0.10) (0.05)

η̃ 0.61 0.54 0.47 0.58 0.51 0.57 0.61 0.69
(0.26) (0.25) (0.23) (0.24) (0.24) (0.25) (0.27) (0.19)

λ̂pew
1a,t 1.00 0.99 0.98 0.94 0.94 0.95 0.93 0.68

(0.01) (0.01) (0.02) (0.03) (0.03) (0.03) (0.04) (0.12)

λ̂pew
2a,t 0.15 0.17 0.16 0.32 0.29 0.31 0.37 0.51

(0.21) (0.14) (0.15) (0.05) (0.04) (0.12) (0.10) (0.05)
η̃pew 0.61 0.54 0.46 0.58 0.50 0.57 0.61 0.68

(0.26) (0.24) (0.24) (0.24) (0.24) (0.25) (0.27) (0.19)

η̃LW2004 1.00 1.00 0.86 1.00 0.87 0.92 0.91 1.00
(0.00) (0.02) (0.28) (0.02) (0.26) (0.20) (0.22) (0.02)
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Table 5: Stock Level Portfolio Turnover

This table reports the stock level turnover of the portfolios examined in Tables 1 to 3 for h = 120
and γ = 3 using the same empirical data. At the end of a given month t, various portfolios are
constructed using excess returns from month t− 119 to month t and are held for one month (i.e.,
month t+1). Average stock level portfolio turnovers across the T −h months in the sample period
are reported in the table.

A. Sample optimal portfolio and KZ two-fund rule

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

MOM-10:
ŵs,t 0.07 0.84 3.62 3.58 4.85 7.45 11.40 21.02
ŵp,t 25.72 29.15 32.12 31.95 34.50 38.68 41.65 54.66
ŵs2,t 0.06 0.57 2.63 2.61 3.43 5.92 9.68 16.90
ŵp2,t 12.20 14.18 15.91 16.60 17.96 22.19 24.69 33.74
ŵc̃,t 11.55 13.30 13.59 13.86 15.11 18.98 20.84 26.70
ŵc̃2,t 8.25 8.68 8.98 9.89 11.23 14.57 15.52 21.71

IVOL-10:
ŵs,t 0.07 0.84 3.62 3.58 4.85 7.45 11.40 21.02
ŵp,t 27.55 32.49 35.71 45.02 45.89 45.88 47.07 59.55
ŵs2,t 0.06 0.57 2.63 2.61 3.43 5.92 9.68 16.90
ŵp2,t 14.15 17.58 19.79 26.26 26.35 27.51 29.37 36.86
ŵc̃,t 13.43 16.90 18.80 24.80 24.91 25.39 27.07 29.48
ŵc̃2,t 9.54 12.02 12.80 19.95 18.69 19.61 19.67 24.83

IND-10:
ŵs,t 0.07 0.84 3.62 3.58 4.85 7.45 11.40 21.02
ŵp,t 2.29 3.57 6.99 6.83 8.04 11.99 13.99 26.73
ŵs2,t 0.06 0.57 2.63 2.61 3.43 5.92 9.68 16.90
ŵp2,t 1.03 1.71 3.65 3.55 4.10 6.93 8.20 16.50
ŵc̃,t 0.97 1.70 3.93 3.65 4.33 7.39 10.07 18.02
ŵc̃2,t 0.70 1.13 2.27 2.84 2.75 5.85 7.40 14.89

IND-30:
ŵs,t 0.07 0.84 3.62 3.58 4.85 7.45 11.40 21.02
ŵp,t 8.71 11.16 15.17 16.49 17.74 23.00 23.03 45.05
ŵs2,t 0.06 0.57 2.63 2.61 3.43 5.92 9.68 16.90
ŵp2,t 2.01 2.85 4.16 4.64 4.85 7.00 6.61 16.09
ŵc̃,t 1.90 2.76 4.72 4.83 5.27 8.27 10.59 19.63
ŵc̃2,t 1.17 1.39 2.31 3.67 3.29 6.31 7.21 16.04

DMNU-48:
ŵs,t 0.07 0.84 2.60 3.70 4.67 6.84 11.01 21.02
ŵp,t 115.93 127.37 132.54 135.16 141.08 132.96 128.99 115.93
ŵs2,t 0.07 0.57 1.81 2.75 3.35 5.34 9.29 16.90
ŵp2,t 30.77 31.90 32.11 31.69 32.01 32.06 32.10 30.77
ŵc̃,t 30.67 31.64 31.38 30.50 30.45 31.18 32.96 28.17
ŵc̃2,t 20.89 19.44 17.74 20.34 19.02 20.84 22.43 20.76
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Table 5 Stock Level Portfolio Turnover (Cont’d)

B. Portfolio PEW

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

MOM-10:

ŵpew,t 11.30 13.29 14.92 16.30 17.61 21.84 24.29 33.62

ŵpew
c̃,t 12.52 13.77 13.47 13.87 15.01 18.67 20.38 26.54

ŵpew
c̃2,t

8.55 9.08 9.00 9.59 10.90 14.42 15.24 21.36

IVOL-10:

ŵpew,t 13.34 16.85 19.13 25.97 26.03 27.19 29.04 36.74

ŵpew
c̃,t 14.16 17.29 18.89 24.74 24.88 25.27 26.95 29.09

ŵpew
c̃2,t

9.58 12.21 12.87 19.45 18.30 19.46 19.30 24.00

IND-10:

ŵpew,t 0.91 1.58 3.45 3.47 4.01 6.80 7.99 16.39

ŵpew
c̃,t 1.10 1.69 3.71 3.79 4.42 7.26 10.37 18.10

ŵpew
c̃2,t

0.74 1.12 2.22 2.90 2.80 5.80 7.62 14.79

IND-30:

ŵpew,t 1.86 2.68 3.95 4.56 4.76 6.86 6.44 15.96

ŵpew
c̃,t 2.03 2.72 4.43 4.81 5.24 8.08 10.72 19.59

ŵpew
c̃2,t

1.17 1.38 2.27 3.57 3.23 6.24 7.30 15.86

DMNU-48:

ŵpew,t 30.78 31.93 32.07 31.68 31.85 32.04 32.14 30.78

ŵpew
c̃,t 30.67 31.65 31.39 30.51 30.38 31.15 32.84 28.14

ŵpew
c̃2,t

20.73 19.24 17.66 20.16 18.82 20.74 22.29 20.58

45



Table 5 Stock Level Portfolio Turnover (Cont’d)

C. LW2004 shrinkage covariance matrix

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

MOM-10:

ŵLW2004
s,t 0.07 0.71 3.14 2.25 3.44 5.58 8.24 13.04

ŵLW2004
p,t 14.30 16.14 16.71 17.22 17.22 19.19 21.69 22.68

ŵLW2004
c̃,t 6.42 7.36 7.08 7.28 7.19 9.59 11.59 12.47

ŵLW2004
c̃2,t

5.86 6.42 5.93 6.94 6.59 8.92 10.54 12.20

IVOL-10:

ŵLW2004
s,t 0.07 0.71 3.14 2.25 3.44 5.58 8.24 13.04

ŵLW2004
p,t 12.31 14.42 15.86 18.72 18.89 19.30 21.19 21.26

ŵLW2004
c̃,t 5.65 7.17 8.38 9.98 10.10 10.64 12.56 12.06

ŵLW2004
c̃2,t

4.89 6.07 6.85 9.64 9.30 9.52 11.12 12.02

IND-10:

ŵLW2004
s,t 0.07 0.71 3.14 2.25 3.44 5.58 8.24 13.04

ŵLW2004
p,t 1.31 2.19 4.26 3.26 4.47 6.39 8.50 7.91

ŵLW2004
c̃,t 0.56 1.10 2.65 1.95 2.69 4.55 6.89 8.82

ŵLW2004
c̃2,t

0.35 0.81 1.70 1.84 2.11 3.95 6.08 8.79

IND-30:

ŵLW2004
s,t 0.07 0.71 3.14 2.25 3.44 5.58 8.24 13.04

ŵLW2004
p,t 4.39 5.26 6.86 5.79 6.72 8.14 9.81 7.60

ŵLW2004
c̃,t 0.97 1.41 2.76 2.13 2.73 4.50 6.86 8.70

ŵLW2004
c̃2,t

0.57 0.90 1.70 2.04 2.13 3.98 5.95 8.68

DMNU-48:

ŵLW2004
s,t 0.07 0.68 2.18 2.34 3.17 5.01 7.68 13.04

ŵLW2004
p,t 34.24 32.79 28.95 33.51 30.08 35.25 41.24 34.24

ŵLW2004
c̃,t 9.23 8.31 7.14 8.02 6.98 9.52 12.51 12.03

ŵLW2004
c̃2,t

9.23 8.30 6.87 8.02 6.72 9.27 12.25 12.03
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Online Appendix:

“Optimal Portfolio Choice with Unknown Benchmark
Efficiency”

May 2023

This online appendix presents some additional results. Section OA.1. discusses the performance

of the switching strategy, and the corresponding results are reported in Table OA.1. Section OA.2.

presents the simulation results. Table OA.2 and Table OA.3 report, respectively, the average CER

and the standard error of the CER of various portfolios based on simulated data. Section OA.3.

presents the portfolio performance with transaction costs, and the corresponding results are in

Table OA.4. Finally, Table OA.5 shows the certainty equivalent returns of the portfolios examined

in Tables 1 to 3 of the paper based on the same empirical datasets with h = 120 and γ = 5.



OA.1. The Switching Strategy

In this section, we study whether the efficiency information provided by the GRS test can lead to

an improved portfolio strategy. Specifically, we examine a portfolio strategy that uses the GRS test

result to determine when to include the test assets. At the end of each month t, we assume that the

investor uses the data in the estimation window (i.e., the most recent h months) to conduct the GRS

test. If the efficiency of the benchmark model is rejected at the pre-selected significance level, then

the investor will hold the portfolio that also includes the test assets in month t +1. Otherwise, he

will hold the portfolio using only the benchmark portfolios in month t+1. The GRS test result can

change from month to month, and so does the portfolio that the investor holds. Therefore, we call

this portfolio strategy the switching strategy, and denote it as ŵsw,t . Table OA.1 reports the results

of the switching strategy based on the same empirical data as in the paper with h = 120 and γ = 3.

Three typical significance levels, i.e., α = 1%, 5%, and 10%, are examined. Panel A of the table

reports the proportion of the T −h months (in percentage points) in which the null of the GRS test

is rejected at various significance levels. Panels B to D report the CER results of the switching

strategy with various estimation risk reduction strategies adopted.1

Table OA.1 about here

Panel A shows that across the test assets considered, the rejection proportions tend to be low

for the industry portfolios (IND-10 and IND-30) but are very high for DMNU-48. Across the

asset pricing models, we notice relatively low rejection proportions for the more recent models,

especially for α = 1%. Results in Panel A are, in general, consistent with our expectations about

the efficiency of the asset pricing models and the test assets. The CER results in Panels B to D,

however, suggest that the switching strategy based on the efficiency information from the GRS test

does not perform well in general. In many cases, the GRS test results do not seem to effectively

guide when to include the additional test assets. For example, when DMNU-48 is the test assets,

the rejection proportion is 100% for many of the asset pricing models (as shown in Panel A), and

thus the switching strategy always chooses the optimal portfolio that also includes the test assets.

1The switching strategy is applied to the two portfolios in the corresponding panels of Table 2 in the paper. For
example, when portfolio PEW is adopted (i.e., Panel B), the switching strategy is applied to ŵs2,t and ŵpew,t .
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The ex post results in Table 2 of the paper, however, suggest that for these cases, the portfolio

including the test assets underperforms the one using only the benchmark portfolios.

Comparing the CER results in Table OA.1 with those in Table 2 of the paper, we see that in

many cases, the performance of the switching strategy is between that of the two portfolios (i.e.,

the portfolio with and without the test assets) in Table 2 of the paper. This suggests that the switch-

ing strategy, to some extent, helps to balance between the two portfolios so that the investor can

avoid the poorer one. But we also notice that in some cases, the switching strategy can under-

perform both portfolios, likely due to the ineffective switching. Another issue with the switching

strategy is that, ex ante, it is not clear which significance level should be used. Comparing the

portfolio performance across the three significance levels in Table OA.1, we cannot identify a con-

sistent winner; and in some cases, the change in portfolio performance is not monotonic across the

significance level.

In sum, the results of the switching strategy in Table OA.1 indicate that using only the efficiency

information from the GRS test to guide the portfolio choice decision does not seem to be a good

solution to the portfolio choice problem with unknown benchmark efficiency.

OA.2. Simulation Results

When empirical data are used to evaluate portfolio performance, the results are subject to potential

sampling issues. To address this concern, we assess the usefulness of the proposed combining

strategy based on simulated data in this section.

We apply the stationary block bootstrap procedure proposed in Politis and Romano (1994) to

simulate the data, with an expected length of the block set to 10 months. The data generated from

such procedure keep the stationary property of the original data. Specifically, for an empirical

dataset (including both the benchmark portfolios and the test assets) containing T months, we

generate T monthly data using the bootstrap procedure, and apply various portfolio rules on the

simulated data using the rolling window approach with h = 120 and γ = 3. The CER of the

portfolios are calculated accordingly.2 We conduct 1000 simulations in total, and report the average

2Though the combining strategy is derived under the assumption that asset returns are i.i.d. normally distributed,
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CER of the portfolios across simulations in Table OA.2 and the corresponding standard errors in

Table OA.3. In general, the simulation results are consistent with the empirical findings, confirming

the usefulness of the proposed combining strategy.

Table OA.2 about here

Table OA.3 about here

Panel A of Table OA.2 reports the results based on the sample optimal portfolio and the two-

fund rule. The CER results of ŵp,t and ŵs,t in Panel A present a similar pattern as observed in

Table 1 of the paper: due to the large estimation errors, the sample optimal portfolio p always

underperforms the benchmark sample optimal portfolio s, never realizing the value of including

additional test assets. When the two-fund rule is applied to the sample optimal portfolio and the

benchmark sample optimal portfolio, the estimation risk is alleviated and the portfolio performance

improves. We start to observe the value of including the additional test assets in some cases. The

relative performance of ŵp2,t and ŵs2,t based on simulated data is however, not always consistent

with the empirical results shown in Panel A of Table 2 in the paper.3 Nevertheless, the proposed

combining strategy remains effective with the simulated data. The modified combining portfolio

ŵc̃2,t outperforms the two-fund portfolio ŵp2,t . In the cases in which ŵs2,t outperforms ŵp2,t , the

modified combining portfolio provides a significant performance improvement relative to ŵp2,t ,

generating a performance level better than or similar to that of ŵs2,t . In Panel B, the results based

on PEW are reported, and we observe similar patterns as those in Panel A. The simulation results in

Panel C confirm the previous empirical findings in that the combining strategy works well with the

shrinkage covariance matrix (i.e., ŵLW2004
c̃,t performs well against other portfolios) but the second

layer of shrinkage is not necessary when the shrinkage covariance matrix is used.

we do not assume normality in our simulation because many evidence from the existing literature suggests that the
data generating process underlying actual asset returns departs from i.i.d. normality. With the bootstrap procedure, we
can evaluate the portfolios in a setting that is closer to what the investor will experience in reality.

3Most noticeable with simulated data is that when IVOL-10 is included as test assets, ŵp2,t no longer outperforms
ŵs2,t for the CAPM, FF-3 or Carhart-4. When IVOL-10 is included as test assets, we find that the potential efficiency
improvement relative to the CAPM, FF-3, and Carhart-4 is only apparent in the period after 1963/7, i.e., the starting
point of the sample period used in Ang, Hodrick, Xing, and Zhang (2006); and the efficiency improvement is much
weaker in the period before 1963/7. A similar finding is documented in Detzel, Duarte, Kamara, Siegel, and Sun
(2019). If instead of the entire sample period, we bootstrap using data from the two sub-periods (i.e., 1927/1–1963/6
and 1963/7–2018/12) separately, then the relative performance of ŵp2,t and ŵs2,t from simulation is similar to what is
observed empirically.
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The standard error results in Table OA.3 present a pattern similar to the observations from

Table OA.2. The sample optimal portfolio (ŵp,t) has the highest level of standard error. Applying

the various estimation risk reduction strategies helps reduce the standard errors. Relative to the

portfolios with all assets (i.e., ŵp2,t , ŵpew,t , ŵLW2004
p,t ), the proposed combining portfolios (i.e.,

ŵc̃2,t , ŵpew
c̃2,t , ŵLW2004

c̃,t ) always have lower standard errors. Relative to the portfolio with only the

benchmark portfolios (i.e., ŵs2,t , ŵLW2004
s,t ), the proposed combining portfolios have similar level of

standard errors in many cases (and even lower in some cases).

OA.3. Portfolio CER with Transaction Cost

In Table OA.4, we examine the portfolio performance assuming a transaction cost of 10 basis

points.4 With transaction costs, the performance of all the portfolios decreases. Because the mod-

ified combining portfolios (ŵc̃2,t and ŵpew
c̃2,t ) have lower turnover than the portfolios involving all

assets (i.e., ŵp2,t and ŵpew,t) as shown in Table 5 of the paper, in Panels A and B of Table OA.4, we

continue to observe the modified combining portfolios to beat the portfolios involving all assets

after transaction costs.

Table OA.4 about here

Given the low turnover of the portfolio involving only the benchmark portfolios (i.e., ŵs2,t),

it is more difficult for the proposed modified combining portfolio to beat ŵs2,t when transaction

costs are considered. When the industry portfolios (IND-10 and IND-30) are included as test

assets, the relative performance of the modified combining portfolio and ŵs2,t remains similar

with and without transaction costs due to the fact that industry portfolios have low turnovers.

When DMNU-48 is included as test assets or DMNU-7 is the benchmark, because the potential

performance improvement is large as shown in Table 3 of the paper, we continue to observe the

modified combining portfolio to outperform ŵs2,t in most cases after the transaction costs.

4There is no consensus as to how to incorporate transaction cost and what value of transaction cost to be used
in the portfolio choice problem. However, the belief that the average transaction cost is decreasing over time is well
accepted. Frazzini et al. (2018) show that the mean market impact of the trades in their sample is about 10 basis points.
Based on orders executed by Morgan Stanley in 2004, Engle et al. (2012) find similar level of transaction costs. We,
therefore, adopt a linear transaction cost of 10 basis points to illustrate portfolio performance after transaction cost.
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The use of the shrinkage covariance matrix and the combining strategy both help reduce portfo-

lio turnover as shown in Panel C of Table 5 of the paper. With transaction costs, the proposed com-

bining portfolio with shrinkage covariance matrix (i.e., ŵLW2004
c̃,t ) continues to perform well against

the other portfolios. Panel C of Table OA.4 shows that ŵLW2004
c̃,t always outperforms ŵLW2004

p,t ; and it

beats ŵLW2004
s,t in 37 out of the total 40 cases. Because ŵLW2004

c̃2,t has a lower turnover than ŵLW2004
c̃,t ,

the relative performance of ŵLW2004
c̃2,t to ŵLW2004

c̃,t improves with transaction costs; but the magnitude

of improvement is limited and therefore, we continue to observe that ŵLW2004
c̃,t outperforms in most

cases.

Table 3 of the paper shows that the combining strategy with LW2004 (ŵLW2004
c̃,t ), in general,

performs the best without transaction costs. Table 5 presents evidence that across the proposed

combining strategies, ŵLW2004
c̃,t has the lowest level of turnover. As a result, it is not surprising to

observe in Table OA.4 that with transaction costs, ŵLW2004
c̃,t continues to be the best performing

combining portfolio overall.
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Table OA.1: GRS Test Results and CER of the Switching Strategy

This table reports the GRS test results and the certainty equivalent returns (in annualized percentage points)
of the switching strategy with h = 120 and γ = 3. Five sets of test assets are examined against eight bench-
marks. At the end of a given month t, excess returns from month t − 119 to month t are used to conduct
the GRS test, and three significance levels (i.e., 1%, 5%, 10%) are examined. When the null is rejected, the
optimal portfolio using all assets (benchmark portfolios and test assets) is held in month t + 1. Otherwise,
the optimal portfolio using only benchmark portfolios is held in month t +1. Panel A reports the proportion
(in percentage points) of the months in which the null of the GRS test is rejected. Panels B to D report
the certainty equivalent returns of the switching strategy applied to the two portfolios in Panels A to C of
Table 2 in the paper.

A. Rejection proportion of the GRS test (in percentage points)

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

MOM-10:

α = 1% 38.21 41.97 26.12 33.88 33.33 39.41 30.59 11.49
α = 5% 56.50 60.57 41.77 49.45 36.81 54.50 47.26 40.23
α = 10% 62.70 67.68 53.96 59.34 47.07 59.23 54.11 59.20

IVOL-10:

α = 1% 33.03 41.06 47.97 64.29 67.40 54.95 50.46 16.67
α = 5% 54.57 56.81 64.84 68.32 75.09 66.89 67.81 41.95
α = 10% 63.62 66.57 76.32 74.36 84.25 75.90 78.77 61.78

IND-10:

α = 1% 26.73 25.30 35.37 23.99 17.22 28.15 9.59 9.20
α = 5% 41.46 54.07 58.13 48.72 42.67 43.69 16.89 21.26
α = 10% 54.07 65.85 69.21 64.10 58.61 57.21 22.37 30.46

IND-30:

α = 1% 19.51 29.17 33.94 34.43 26.56 21.40 0.91 12.93
α = 5% 39.13 57.42 63.21 59.34 55.31 45.27 13.70 46.84
α = 10% 51.52 73.07 74.70 67.58 63.00 59.91 22.83 54.60

DMNU-48:

α = 1% 100.00 100.00 100.00 95.40 94.83 100.00 100.00 72.70
α = 5% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 83.33
α = 10% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 91.67
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Table OA.1: GRS Test Results and CER of the Switching Strategy (Cont’d)

B. KZ two-fund rule

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

MOM-10:

α = 1% 6.12 6.58 7.15 14.95 12.69 11.03 19.27 1.56
α = 5% 8.40 9.51 6.69 15.17 12.38 13.00 17.87 1.34
α = 10% 8.42 10.14 7.17 18.35 11.75 11.43 18.26 −2.48

IVOL-10:

α = 1% 5.18 7.81 13.38 10.12 16.07 3.62 12.78 2.65
α = 5% 5.65 7.83 12.92 8.43 14.33 3.00 18.05 −0.96
α = 10% 6.87 8.89 16.43 6.81 14.23 2.40 18.32 −39.15

IND-10:

α = 1% 0.33 3.23 8.89 8.21 8.28 10.69 28.15 24.98
α = 5% 0.26 1.59 7.03 7.62 9.79 8.64 27.39 10.93
α = 10% −0.18 1.09 7.33 10.85 10.42 7.21 24.42 4.97

IND-30:

α = 1% −1.85 −0.34 4.03 5.50 7.60 7.92 29.99 0.34
α = 5% −2.79 −2.46 2.78 1.22 4.39 −0.86 25.61 −8.27
α = 10% −2.26 −2.86 3.29 5.11 5.05 −0.24 22.04 −12.62

DMNU-48:

α = 1% −49.07 −77.67 −80.00 −80.09 −86.40 −77.39 −42.43 −39.27
α = 5% −49.07 −77.67 −80.00 −73.90 −80.68 −77.39 −42.43 −43.01
α = 10% −49.07 −77.67 −80.00 −73.90 −80.68 −77.39 −42.43 −48.42
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Table OA.1: GRS Test Results and CER of the Switching Strategy (Cont’d)

C. Portfolio PEW

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

MOM-10:

α = 1% 5.79 5.97 7.82 17.00 15.45 13.62 20.11 3.74
α = 5% 8.04 9.01 7.38 15.99 15.35 16.65 19.07 4.63
α = 10% 8.08 10.17 7.79 19.58 14.79 15.20 19.26 1.84

IVOL-10:

α = 1% 5.68 8.30 14.28 11.04 18.38 4.80 13.62 1.67
α = 5% 6.48 9.28 14.94 9.40 16.66 5.77 19.24 −1.11
α = 10% 7.51 9.83 17.77 8.55 17.26 5.00 20.20 −38.75

IND-10:

α = 1% 0.56 3.28 9.98 9.05 9.56 12.62 29.18 25.72
α = 5% 0.98 3.12 10.39 9.89 13.55 11.26 28.86 10.57
α = 10% 1.07 2.67 10.62 12.59 14.32 9.92 25.65 4.62

IND-30:

α = 1% −2.33 −0.26 4.09 5.02 6.72 8.52 29.66 0.64
α = 5% −1.44 −0.81 5.47 2.97 6.50 0.59 26.21 −10.25
α = 10% −0.67 −0.50 6.71 7.47 7.68 1.27 23.62 −13.93

DMNU-48:

α = 1% −47.16 −76.25 −77.36 −77.07 −82.80 −72.33 −37.23 −37.14
α = 5% −47.16 −76.25 −77.36 −71.03 −77.12 −72.33 −37.23 −41.55
α = 10% −47.16 −76.25 −77.36 −71.03 −77.12 −72.33 −37.23 −46.49
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Table OA.1: GRS Test Results and CER of the Switching Strategy (Cont’d)

D. LW2004 shrinkage covariance matrix

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

MOM-10:

α = 1% 4.12 2.04 9.22 11.38 16.29 19.87 28.14 44.86
α = 5% 6.43 4.31 5.02 9.79 15.59 23.39 28.35 40.02
α = 10% 6.02 5.20 5.86 14.30 15.08 20.98 28.83 38.33

IVOL-10:

α = 1% 6.91 16.48 19.86 27.60 28.48 21.02 23.98 42.30
α = 5% 6.70 15.60 15.82 25.06 23.72 20.58 24.41 35.90
α = 10% 7.88 15.67 21.06 24.83 24.46 17.62 24.15 27.51

IND-10:

α = 1% −7.27 −2.13 4.62 6.90 6.44 21.06 32.98 48.53
α = 5% −7.43 −3.90 0.70 7.79 7.97 19.09 32.23 44.64
α = 10% −8.54 −4.93 −0.28 8.16 6.82 16.04 30.65 42.27

IND-30:

α = 1% −32.89 −31.46 −27.89 −11.70 −9.15 5.00 33.87 39.28
α = 5% −42.21 −47.73 −41.47 −28.46 −25.76 −9.44 31.50 15.32
α = 10% −49.27 −51.27 −48.73 −28.83 −31.39 −19.30 20.94 −3.69

DMNU-48:

α = 1% −327.45 −321.84 −247.96 −348.68 −282.18 −325.88 −375.69 −359.90
α = 5% −327.45 −321.84 −247.96 −329.40 −267.88 −325.88 −375.69 −354.42
α = 10% −327.45 −321.84 −247.96 −329.40 −267.88 −325.88 −375.69 −349.03
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Table OA.2: Average Portfolio CER based on Simulated Data

This table reports the average certainty equivalent returns of various portfolios across 1000 simulations with
h = 120 and γ = 3. For a given empirical datasets (test assets and benchmark portfolios) containing T
months, we bootstrap T monthly data using the stationary block bootstrap approach of Politis and Romano
(1994) with the expected block length set to 10 months. Various portfolio rules are applied to the boot-
strapped data, and the certainty equivalent returns are computed based on the T −h out-of-sample portfolio
returns.

A. Sample optimal portfolio and KZ two-fund rule

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

MOM-10:

ŵs,t 0.48 −3.37 0.40 3.18 1.77 15.43 33.91 68.26
ŵp,t −27.89 −38.89 −51.71 −46.38 −59.99 −37.27 −10.01 −43.98
ŵs2,t 1.14 1.34 6.91 11.27 14.12 20.78 36.37 89.55
ŵp2,t 2.96 4.16 3.32 11.70 11.65 13.89 28.32 67.38
ŵc̃,t 2.54 3.04 3.87 12.24 12.40 18.21 35.31 82.22
ŵc̃2,t 3.01 4.16 5.72 13.84 14.57 18.93 34.46 84.70

IVOL-10:

ŵs,t 0.48 −3.37 0.40 3.18 1.77 15.43 33.91 68.26
ŵp,t −46.56 −64.28 −72.55 −68.93 −82.77 −55.62 −26.59 −47.09
ŵs2,t 1.14 1.34 6.91 11.27 14.12 20.78 36.37 89.55
ŵp2,t −3.04 −3.72 −1.66 7.78 8.67 12.52 26.43 72.57
ŵc̃,t −3.07 −4.46 −0.03 7.76 8.94 15.55 33.14 84.69
ŵc̃2,t −0.36 0.16 4.06 11.96 13.76 18.26 33.62 87.73

IND-10:

ŵs,t 0.48 −3.37 0.40 3.18 1.77 15.43 33.91 68.26
ŵp,t −29.81 −38.40 −41.80 −35.51 −45.59 −28.16 −9.44 −33.08
ŵs2,t 1.14 1.34 6.91 11.27 14.12 20.78 36.37 89.55
ŵp2,t 0.09 2.30 6.25 13.72 14.47 18.06 25.92 71.45
ŵc̃,t −0.03 1.36 6.24 13.57 14.52 20.73 34.16 83.98
ŵc̃2,t 0.72 2.29 6.89 13.92 15.12 20.42 33.05 85.89
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Table OA.2: Average Portfolio CER based on Simulated Data (Cont’d)

A. Sample optimal portfolio and KZ two-fund rule (cont’d)

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

IND-30:

ŵs,t 0.48 −3.37 0.40 3.18 1.77 15.43 33.91 68.26
ŵp,t −218.61 −265.68 −298.17 −318.03 −353.79 −306.08 −270.48 −663.49
ŵs2,t 1.14 1.34 6.91 11.27 14.12 20.78 36.37 89.55
ŵp2,t −1.61 0.21 2.94 8.70 9.62 10.33 16.81 38.52
ŵc̃,t −1.25 −0.10 4.96 11.55 13.05 18.27 33.15 73.78
ŵc̃2,t 0.67 2.22 6.82 13.74 15.66 19.42 32.85 82.24

DMNU-48:

ŵs,t 1.42 −0.07 0.25 5.96 2.34 15.38 30.09 68.26
ŵp,t −2672.67 −3211.10 −3504.54 −3906.74 −4293.39 −3543.12 −3261.40 −2672.67
ŵs2,t 1.74 3.47 6.50 14.40 15.20 20.52 32.67 89.55
ŵp2,t 11.59 0.27 −5.45 −13.73 −21.12 −6.05 1.70 11.59
ŵc̃,t 12.48 0.45 −6.32 −11.14 −20.05 −1.82 12.65 52.92
ŵc̃2,t 57.83 54.42 51.78 51.80 48.22 54.84 64.13 89.31
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Table OA.2: Average Portfolio CER based on Simulated Data (Cont’d)

B. Portfolio PEW

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

MOM-10:

ŵs2,t 1.14 1.34 6.91 11.27 14.12 20.78 36.37 89.55
ŵpew,t 2.24 3.46 3.06 11.41 11.75 13.71 27.66 67.32

ŵpew
c̃,t 1.78 2.11 2.50 11.10 11.50 16.99 33.73 80.64

ŵpew
c̃2,t 2.94 4.10 5.19 13.05 14.00 17.91 33.05 83.62

IVOL-10:

ŵs2,t 1.14 1.34 6.91 11.27 14.12 20.78 36.37 89.55
ŵpew,t −3.41 −4.08 −1.53 7.88 9.08 12.59 25.96 72.29

ŵpew
c̃,t −4.67 −6.00 −1.53 6.91 8.23 14.33 31.73 82.57

ŵpew
c̃2,t −0.55 0.09 3.57 11.62 13.43 17.46 32.34 86.06

IND-10:

ŵs2,t 1.14 1.34 6.91 11.27 14.12 20.78 36.37 89.55
ŵpew,t −0.10 1.71 6.07 13.66 14.77 18.10 25.39 71.35

ŵpew
c̃,t −1.07 0.12 4.68 12.46 13.48 19.31 32.66 82.03

ŵpew
c̃2,t 1.28 2.55 6.39 13.21 14.48 19.34 31.67 84.53

IND-30:

ŵs2,t 1.14 1.34 6.91 11.27 14.12 20.78 36.37 89.55
ŵpew,t −1.38 0.08 3.23 8.91 9.99 10.58 16.42 38.92

ŵpew
c̃,t −2.02 −1.12 3.68 10.16 11.77 16.81 31.37 72.19

ŵpew
c̃2,t 1.08 2.43 6.34 12.82 14.77 18.28 31.33 81.15

DMNU-48:

ŵs2,t 1.74 3.47 6.50 14.40 15.20 20.52 32.67 89.55
ŵpew,t 10.90 −0.31 −5.77 −13.67 −20.83 −5.89 2.69 10.90

ŵpew
c̃,t 11.90 −0.29 −7.00 −11.43 −20.32 −1.99 12.60 51.88

ŵpew
c̃2,t 57.51 54.05 51.34 51.70 48.08 54.65 63.89 88.66
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Table OA.2: Average Portfolio CER based on Simulated Data (Cont’d)

C. LW 2004 shrinkage covariance matrix

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

MOM-10:

ŵLW2004
s,t 0.48 −2.06 4.26 9.24 10.38 20.41 36.14 79.61

ŵLW2004
p,t −1.72 −2.35 −2.58 3.73 4.37 8.63 27.75 47.16

ŵLW2004
c̃,t 5.99 8.04 9.60 18.56 19.29 23.28 37.85 73.32

ŵLW2004
c̃2,t 5.11 7.04 8.47 17.32 17.72 21.69 36.56 72.34

IVOL-10:

ŵLW2004
s,t 0.48 −2.06 4.26 9.24 10.38 20.41 36.14 79.61

ŵLW2004
p,t −8.64 −12.09 −9.34 5.06 2.27 12.13 31.15 56.99

ŵLW2004
c̃,t 1.99 3.17 8.51 19.36 21.49 25.71 40.18 75.49

ŵLW2004
c̃2,t 1.75 2.91 7.43 18.18 19.85 23.97 38.65 74.68

IND-10:

ŵLW2004
s,t 0.48 −2.06 4.26 9.24 10.38 20.41 36.14 79.61

ŵLW2004
p,t −12.28 −11.42 −9.04 3.28 0.02 9.38 20.62 38.83

ŵLW2004
c̃,t 1.23 3.67 8.80 16.10 17.73 23.58 35.85 71.05

ŵLW2004
c̃2,t 1.12 3.11 7.47 14.56 15.54 21.55 34.33 70.03

IND-30:

ŵLW2004
s,t 0.48 −2.06 4.26 9.24 10.38 20.41 36.14 79.61

ŵLW2004
p,t −69.10 −67.60 −70.54 −55.68 −62.19 −49.34 −37.71 −39.97

ŵLW2004
c̃,t 2.29 4.48 9.36 16.04 18.01 23.34 36.40 71.87

ŵLW2004
c̃2,t 1.80 3.65 7.83 14.56 15.84 21.23 34.89 71.09

DMNU-48:

ŵLW2004
s,t 1.42 1.61 3.85 12.39 12.03 20.01 32.54 79.61

ŵLW2004
p,t −59.23 −43.37 −15.03 −55.97 −26.86 −55.38 −63.08 −59.23

ŵLW2004
c̃,t 91.79 84.34 74.62 80.93 72.11 84.09 95.43 106.50

ŵLW2004
c̃2,t 91.53 83.91 72.70 80.36 70.26 83.26 94.73 105.89

13



Table OA.3: Standard Errors of Portfolio CER based on Simulated Data

This table reports the standard errors of the certainty equivalent returns of various portfolios across 1000
simulations with h = 120 and γ = 3. For a given empirical datasets (test assets and benchmark portfolios)
containing T months, we bootstrap T monthly data using the stationary block bootstrap approach of Politis
and Romano (1994) with the expected block length set to 10 months. Various portfolio rules are applied to
the bootstrapped data, and the certainty equivalent returns are computed based on the T − h out-of-sample
portfolio returns.

A. Sample optimal portfolio and KZ two-fund rule

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

MOM-10:

ŵs,t 2.46 3.91 6.13 8.69 10.11 10.44 12.58 32.55
ŵp,t 7.95 10.34 14.09 22.59 27.32 24.18 19.73 64.80
ŵs2,t 2.12 2.78 4.78 6.74 7.43 9.25 11.95 27.40
ŵp2,t 3.73 4.41 5.60 9.14 10.81 10.98 12.10 30.85
ŵc̃,t 3.91 4.72 6.18 9.18 10.95 11.29 12.94 30.72
ŵc̃2,t 3.39 3.91 5.13 7.68 9.12 10.01 12.13 28.34

IVOL-10:

ŵs,t 2.46 3.91 6.13 8.69 10.11 10.44 12.58 32.55
ŵp,t 16.59 23.23 25.31 42.27 46.62 40.77 36.79 77.63
ŵs2,t 2.12 2.78 4.78 6.74 7.43 9.25 11.95 27.40
ŵp2,t 5.35 7.51 8.74 16.53 17.26 17.33 18.88 35.63
ŵc̃,t 5.55 7.78 8.74 16.37 17.07 16.92 18.10 33.64
ŵc̃2,t 4.04 5.32 6.50 12.96 13.63 14.52 16.46 29.27

IND-10:

ŵs,t 2.46 3.91 6.13 8.69 10.11 10.44 12.58 32.55
ŵp,t 7.08 10.27 11.76 17.40 19.93 19.61 17.67 58.95
ŵs2,t 2.12 2.78 4.78 6.74 7.43 9.25 11.95 27.40
ŵp2,t 2.78 3.79 4.95 7.63 8.22 9.75 10.78 29.71
ŵc̃,t 3.13 4.17 5.64 8.18 8.88 10.22 12.23 30.25
ŵc̃2,t 2.63 3.48 4.87 7.26 7.83 9.60 11.79 27.96
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Table OA.3: Standard Errors of Portfolio CER based on Simulated Data (Cont’d)

A. Sample optimal portfolio and KZ two-fund rule (cont’d)

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

IND-30:

ŵs,t 2.46 3.91 6.13 8.69 10.11 10.44 12.58 32.55
ŵp,t 32.89 40.94 48.49 68.97 77.27 82.47 69.83 257.14
ŵs2,t 2.12 2.78 4.78 6.74 7.43 9.25 11.95 27.40
ŵp2,t 3.61 4.27 5.15 8.98 9.43 10.78 11.54 36.11
ŵc̃,t 4.12 4.88 6.46 9.95 10.67 11.93 13.95 37.27
ŵc̃2,t 3.12 3.71 5.00 8.01 8.29 9.85 12.54 30.50

DMNU-48:

ŵs,t 3.97 7.52 10.61 13.34 14.66 12.45 14.00 32.55
ŵp,t 1086.24 1406.32 1586.78 1783.56 2038.10 1606.83 1414.73 1086.24
ŵs2,t 3.42 5.93 8.23 10.32 10.82 10.94 13.18 27.40
ŵp2,t 73.05 88.92 96.76 101.72 111.93 95.85 89.47 73.05
ŵc̃,t 72.44 88.19 96.37 101.59 111.80 94.68 88.53 70.22
ŵc̃2,t 33.35 32.58 34.15 39.43 47.64 38.59 36.86 37.91
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Table OA.3: Standard Errors of Portfolio CER based on Simulated Data (Cont’d)

B. Portfolio PEW

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

MOM-10:

ŵs2,t 2.12 2.78 4.78 6.74 7.43 9.25 11.95 27.40
ŵpew,t 4.02 4.68 5.82 9.21 10.82 10.94 12.10 30.50
ŵpew

c̃,t 4.09 4.87 6.20 9.24 10.91 11.25 12.91 30.67
ŵpew

c̃2,t 3.37 3.86 5.00 7.57 8.91 9.88 12.03 27.90

IVOL-10:

ŵs2,t 2.12 2.78 4.78 6.74 7.43 9.25 11.95 27.40
ŵpew,t 5.63 7.71 8.86 16.37 17.06 17.17 18.83 35.28
ŵpew

c̃,t 5.86 8.03 8.93 16.25 16.96 16.89 18.13 33.51
ŵpew

c̃2,t 4.07 5.31 6.41 12.63 13.30 14.25 16.30 28.77

IND-10:

ŵs2,t 2.12 2.78 4.78 6.74 7.43 9.25 11.95 27.40
ŵpew,t 3.46 4.30 5.28 7.73 8.33 9.69 10.83 29.33
ŵpew

c̃,t 3.69 4.50 5.70 8.17 8.88 10.25 12.26 30.17
ŵpew

c̃2,t 2.82 3.57 4.75 7.10 7.65 9.41 11.67 27.57

IND-30:

ŵs2,t 2.12 2.78 4.78 6.74 7.43 9.25 11.95 27.40
ŵpew,t 4.33 4.87 5.58 9.19 9.63 10.73 11.68 35.40
ŵpew

c̃,t 4.32 5.10 6.43 9.88 10.60 11.76 14.01 36.74
ŵpew

c̃2,t 3.12 3.71 4.87 7.74 8.06 9.60 12.39 29.96

DMNU-48:

ŵs2,t 3.42 5.93 8.23 10.32 10.82 10.94 13.18 27.40
ŵpew,t 72.93 88.52 96.13 101.03 111.05 95.27 88.84 72.93
ŵpew

c̃,t 72.39 87.87 95.95 100.71 110.60 93.90 87.72 70.17
ŵpew

c̃2,t 33.19 32.22 33.68 38.83 46.84 38.05 36.36 37.64
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Table OA.3: Standard Errors of Portfolio CER based on Simulated Data (Cont’d)

C. LW 2004 shrinkage covariance matrix

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

MOM-10:

ŵLW2004
s,t 2.46 3.85 5.42 7.60 8.48 9.43 11.58 24.34

ŵLW2004
p,t 5.37 6.49 7.21 12.76 14.13 13.78 14.44 25.55

ŵLW2004
c̃,t 3.54 4.06 4.85 7.43 8.29 9.43 11.72 20.89

ŵLW2004
c̃2,t 3.40 3.95 4.64 7.44 8.18 9.53 11.79 21.10

IVOL-10:

ŵLW2004
s,t 2.46 3.85 5.42 7.60 8.48 9.43 11.58 24.34

ŵLW2004
p,t 5.67 8.45 9.27 14.59 15.75 15.94 16.67 23.51

ŵLW2004
c̃,t 3.16 4.38 5.50 9.05 9.49 11.17 13.20 20.25

ŵLW2004
c̃2,t 2.89 4.09 5.19 9.06 9.42 11.37 13.33 20.42

IND-10:

ŵLW2004
s,t 2.46 3.85 5.42 7.60 8.48 9.43 11.58 24.34

ŵLW2004
p,t 4.48 6.05 7.10 9.34 11.22 11.25 12.71 23.15

ŵLW2004
c̃,t 2.71 3.50 4.80 6.52 7.24 8.67 11.02 20.20

ŵLW2004
c̃2,t 2.44 3.21 4.59 6.52 7.16 8.91 11.21 20.41

IND-30:

ŵLW2004
s,t 2.46 3.85 5.42 7.60 8.48 9.43 11.58 24.34

ŵLW2004
p,t 12.84 13.58 15.39 17.80 20.07 19.96 21.39 31.95

ŵLW2004
c̃,t 3.05 3.48 4.80 6.77 7.34 8.69 11.30 20.10

ŵLW2004
c̃2,t 2.80 3.32 4.67 6.78 7.30 8.95 11.52 20.33

DMNU-48:

ŵLW2004
s,t 3.97 7.08 9.42 11.30 11.80 11.43 12.96 24.34

ŵLW2004
p,t 116.35 106.00 90.77 110.72 94.92 110.82 118.73 116.35

ŵLW2004
c̃,t 24.70 23.46 22.87 22.81 22.34 24.25 26.49 27.70

ŵLW2004
c̃2,t 24.77 23.57 23.33 22.90 22.70 24.49 26.61 27.86
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Table OA.4: Portfolio CER with Transaction Cost

This table reports the certainty equivalent returns (in annualized percentage points) of the portfolios exam-
ined in Tables 1 to 3 of the paper for h = 120 and γ = 3 using the same empirical data and assuming a
transaction cost of 10 bps. At the end of a given month t, various portfolios are constructed using excess
returns from month t − 119 to month t and are held for one month (i.e., month t + 1). The out-of-sample
excess returns (i.e., month t +1) are used to compute the certainty equivalent returns of the portfolios.

A. Sample optimal portfolio and KZ two-fund rule

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

MOM-10:

ŵs,t 2.74 1.70 1.32 4.37 3.02 6.10 12.72 −53.46
ŵp,t −44.79 −61.00 −83.69 −78.22 −116.81 −101.56 −84.55 −292.60
ŵs2,t 3.03 4.31 7.93 13.65 16.28 15.03 20.27 11.66
ŵp2,t −4.96 −4.82 −8.28 −0.41 −7.30 −7.58 −2.94 −32.42
ŵc̃,t −3.88 −4.48 −6.12 4.50 −1.68 −1.40 4.03 −20.42
ŵc̃2,t 0.81 1.97 −0.15 11.47 6.07 14.12 16.61 15.34

IVOL-10:

ŵs,t 2.74 1.70 1.32 4.37 3.02 6.10 12.72 −53.46
ŵp,t −59.82 −82.37 −93.92 −160.06 −169.90 −150.27 −115.68 −363.43
ŵs2,t 3.03 4.31 7.93 13.65 16.28 15.03 20.27 11.66
ŵp2,t −8.96 −8.01 −2.75 −19.86 −14.12 −23.48 −10.00 −60.48
ŵc̃,t −7.05 −7.54 −1.97 −16.25 −10.54 −16.09 −1.71 −33.94
ŵc̃2,t 1.89 3.31 12.91 5.62 14.49 7.14 18.63 2.91

IND-10:

ŵs,t 2.74 1.70 1.32 4.37 3.02 6.10 12.72 −53.46
ŵp,t −26.79 −32.14 −48.51 −68.01 −82.48 −70.43 −52.93 −247.68
ŵs2,t 3.03 4.31 7.93 13.65 16.28 15.03 20.27 11.66
ŵp2,t −1.41 2.15 4.23 3.50 2.78 1.70 6.48 −12.87
ŵc̃,t −0.51 1.74 4.32 6.38 6.75 3.54 12.68 −7.00
ŵc̃2,t 0.89 3.03 7.89 11.22 15.10 15.32 18.24 29.43
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Table OA.4: Portfolio CER with Transaction Cost (Cont’d)

A. Sample optimal portfolio and KZ two-fund rule (cont’d)

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

IND-30:

ŵs,t 2.74 1.70 1.32 4.37 3.02 6.10 12.72 −53.46
ŵp,t −195.48 −247.20 −290.96 −418.47 −440.57 −396.34 −324.36 −1176.74
ŵs2,t 3.03 4.31 7.93 13.65 16.28 15.03 20.27 11.66
ŵp2,t −6.50 −4.86 −0.76 −7.43 −5.61 −8.83 −4.35 −32.32
ŵc̃,t −4.80 −2.95 2.90 −0.58 4.60 −1.61 11.12 −24.55
ŵc̃2,t −1.13 2.53 7.18 10.68 15.58 14.09 17.54 24.54

DMNU-48:

ŵs,t −0.54 −2.67 −7.39 −7.62 −13.84 −9.78 −0.42 −53.46
ŵp,t −3445.27 −4373.05 −4660.12 −4907.76 −5347.07 −4574.43 −3819.13 −3445.27
ŵs2,t −0.35 1.01 0.99 5.83 4.54 2.31 8.50 11.66
ŵp2,t −73.41 −100.42 −102.64 −96.23 −102.75 −100.48 −68.21 −73.41
ŵc̃,t −71.07 −101.35 −110.58 −97.43 −113.48 −114.95 −71.49 −58.49
ŵc̃2,t 15.90 23.06 27.54 4.29 6.54 −10.27 9.11 32.73

19



Table OA.4: Portfolio CER with Transaction Cost (Cont’d)

B. Portfolio PEW

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

MOM-10:

ŵs2,t 3.03 4.31 7.93 13.65 16.28 15.03 20.27 11.66
ŵpew,t −3.28 −3.10 −5.72 1.47 −4.01 −4.31 −1.31 −29.81

ŵpew
c̃,t −5.18 −4.86 −5.78 5.76 1.35 1.99 4.86 −20.43

ŵpew
c̃2,t 0.61 3.00 0.63 12.31 8.44 15.18 17.08 20.55

IVOL-10:

ŵs2,t 3.03 4.31 7.93 13.65 16.28 15.03 20.27 11.66
ŵpew,t −6.78 −5.96 0.06 −18.55 −11.82 −21.73 −8.29 −60.74

ŵpew
c̃,t −9.16 −9.51 −2.37 −16.93 −9.47 −16.22 −1.54 −32.69

ŵpew
c̃2,t 1.26 3.24 13.26 6.86 15.40 8.03 19.35 5.57

IND-10:

ŵs2,t 3.03 4.31 7.93 13.65 16.28 15.03 20.27 11.66
ŵpew,t 0.63 4.06 7.81 5.42 6.18 5.42 8.37 −11.81

ŵpew
c̃,t −2.82 1.37 4.73 8.06 9.14 4.06 13.49 −8.73

ŵpew
c̃2,t 1.14 3.13 7.79 12.40 15.78 15.48 18.94 30.22

IND-30:

ŵs2,t 3.03 4.31 7.93 13.65 16.28 15.03 20.27 11.66
ŵpew,t −4.01 −2.27 2.43 −5.74 −3.38 −6.25 −1.80 −32.03

ŵpew
c̃,t −6.03 −3.69 2.74 0.38 5.72 −0.72 12.65 −27.41

ŵpew
c̃2,t −1.08 3.20 7.32 11.00 15.32 13.76 18.17 24.58

DMNU-48:

ŵs2,t −0.35 1.01 0.99 5.83 4.54 2.31 8.50 11.66
ŵpew,t −71.52 −99.05 −99.93 −93.33 −98.93 −95.41 −62.92 −71.52

ŵpew
c̃,t −69.02 −99.67 −107.94 −93.58 −107.01 −106.15 −65.18 −58.89

ŵpew
c̃2,t 18.12 25.00 28.33 8.08 9.82 −4.38 11.79 33.66
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Table OA.4: Portfolio CER with Transaction Cost (Cont’d)

C. LW2004 shrinkage covariance matrix

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

MOM-10:

ŵLW2004
s,t 2.74 3.35 6.77 12.91 13.71 18.83 27.90 41.25

ŵLW2004
p,t −8.89 −12.18 −12.90 −5.19 −6.66 2.01 5.72 5.05

ŵLW2004
c̃,t 5.35 7.67 10.23 18.91 19.89 22.68 29.47 47.82

ŵLW2004
c̃2,t 5.90 7.70 9.16 19.14 19.60 22.60 29.14 44.88

IVOL-10:

ŵLW2004
s,t 2.74 3.35 6.77 12.91 13.71 18.83 27.90 41.25

ŵLW2004
p,t −8.05 −0.21 2.72 1.92 1.36 −5.56 1.83 −0.36

ŵLW2004
c̃,t 6.73 15.24 21.90 27.62 31.16 24.30 30.81 43.22

ŵLW2004
c̃2,t 7.42 14.83 19.58 27.25 31.34 24.80 28.83 42.69

IND-10:

ŵLW2004
s,t 2.74 3.35 6.77 12.91 13.71 18.83 27.90 41.25

ŵLW2004
p,t −13.06 −4.23 −4.25 −0.37 −1.32 8.16 4.39 12.47

ŵLW2004
c̃,t 0.39 5.56 10.58 15.06 17.48 20.90 27.18 47.94

ŵLW2004
c̃2,t 1.33 3.20 7.87 12.00 13.45 19.08 24.53 47.52

IND-30:

ŵLW2004
s,t 2.74 3.35 6.77 12.91 13.71 18.83 27.90 41.25

ŵLW2004
p,t −80.99 −67.03 −69.85 −60.47 −65.92 −46.12 −62.83 −66.85

ŵLW2004
c̃,t −0.30 4.24 9.16 13.25 15.51 20.09 27.80 48.94

ŵLW2004
c̃2,t 1.05 3.10 6.81 11.13 10.88 18.43 24.50 48.41

DMNU-48:

ŵLW2004
s,t −0.54 −0.45 −1.54 5.66 4.20 8.65 18.42 41.25

ŵLW2004
p,t −343.97 −337.31 −260.10 −345.95 −280.51 −342.95 −391.27 −343.97

ŵLW2004
c̃,t 80.68 74.59 63.50 71.43 60.88 67.54 72.02 76.63

ŵLW2004
c̃2,t 80.68 74.48 59.90 71.25 57.55 64.31 68.51 76.33
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Table OA.5: Portfolio CER with γ = 5

This table reports the certainty equivalent returns of the portfolios examined in Tables 1 to 3 of the paper
bases on the same empirical datasets with h = 120 and γ = 5.

A. Sample optimal portfolio and KZ two-fund rule

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

MOM-10:

ŵs,t 1.70 1.62 3.19 5.24 5.22 8.54 15.03 −20.53
ŵp,t −8.93 −16.64 −29.02 −25.81 −48.96 −37.26 −24.51 −148.32
ŵs2,t 1.87 2.99 6.50 10.07 12.18 12.88 18.44 16.50
ŵp2,t 5.49 6.77 5.48 10.72 6.72 9.12 13.81 −1.12
ŵc̃,t 5.73 6.37 5.19 11.82 8.19 10.69 15.50 1.98
ŵc̃2,t 6.30 7.07 5.67 13.50 10.59 17.30 19.65 21.32

IVOL-10:

ŵs,t 1.70 1.62 3.19 5.24 5.22 8.54 15.03 −20.53
ŵp,t −17.16 −28.92 −33.38 −67.44 −72.60 −62.16 −40.37 −187.77
ŵs2,t 1.87 2.99 6.50 10.07 12.18 12.88 18.44 16.50
ŵp2,t 4.08 6.12 10.95 4.80 8.45 2.70 12.10 −16.13
ŵc̃,t 4.72 5.88 10.73 5.88 9.56 5.67 15.53 −4.22
ŵc̃2,t 7.44 8.86 15.43 15.61 20.25 15.55 22.96 15.34

IND-10:

ŵs,t 1.70 1.62 3.19 5.24 5.22 8.54 15.03 −20.53
ŵp,t −14.43 −16.72 −24.50 −35.71 −43.79 −34.26 −22.56 −134.40
ŵs2,t 1.87 2.99 6.50 10.07 12.18 12.88 18.44 16.50
ŵp2,t −0.12 2.51 4.97 4.68 4.55 5.69 9.38 1.72
ŵc̃,t 0.39 2.26 5.20 6.50 7.10 7.02 14.18 5.98
ŵc̃2,t 1.04 2.62 6.21 8.79 10.99 12.95 15.79 26.05
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Table OA.5: Portfolio CER with γ = 5 (Cont’d)

A. Sample optimal portfolio and KZ two-fund rule (cont’d)

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

IND-30:

ŵs,t 1.70 1.62 3.19 5.24 5.22 8.54 15.03 −20.53
ŵp,t −110.94 −140.04 −164.17 −237.65 −250.31 −221.99 −178.85 −684.74
ŵs2,t 1.87 2.99 6.50 10.07 12.18 12.88 18.44 16.50
ŵp2,t −2.45 −0.85 2.44 −0.99 0.21 −0.43 2.01 −10.03
ŵc̃,t −1.51 0.22 4.96 3.29 6.63 4.59 13.68 −3.72
ŵc̃2,t 0.16 2.51 5.83 9.08 11.70 12.42 15.24 23.61

DMNU-48:

ŵs,t −0.27 −0.97 −2.65 −1.81 −5.04 −1.46 6.78 −20.53
ŵp,t −2054.89 −2630.71 −2807.64 −2960.99 −3232.44 −2752.81 −2280.36 −2054.89
ŵs2,t −0.17 1.03 1.84 5.54 5.07 4.80 11.01 16.50
ŵp2,t −29.44 −46.60 −48.00 −44.34 −48.41 −46.43 −25.46 −29.44
ŵc̃,t −28.09 −47.21 −53.08 −45.54 −55.63 −55.73 −27.51 −22.58
ŵc̃2,t 19.40 23.09 24.74 11.96 11.91 2.87 16.12 28.79
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Table OA.5: Portfolio CER with γ = 5 (Cont’d)

B. Portfolio PEW

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

MOM-10:

ŵpew,t 5.90 7.22 6.38 11.65 8.49 10.87 14.52 0.39

ŵpew
c̃,t 5.63 6.49 5.33 12.60 9.96 12.50 15.63 1.95

ŵpew
c̃2,t 6.38 7.99 6.20 13.82 11.83 17.85 19.80 24.33

IVOL-10:

ŵpew,t 4.83 6.82 12.17 5.39 9.62 3.52 12.91 −16.36

ŵpew
c̃,t 3.99 4.98 10.57 5.39 10.18 5.48 15.54 −3.75

ŵpew
c̃2,t 7.08 9.01 15.75 15.99 20.53 16.02 23.17 16.47

IND-10:

ŵpew,t 1.03 3.57 6.99 5.79 6.54 7.85 10.38 2.28

ŵpew
c̃,t −0.91 2.04 5.31 7.62 8.61 7.22 14.76 4.93

ŵpew
c̃2,t 1.22 2.68 6.12 9.54 11.43 13.01 16.30 26.37

IND-30:

ŵpew,t −1.07 0.59 4.22 −0.03 1.49 1.03 3.42 −9.92

ŵpew
c̃,t −2.15 −0.24 4.69 3.87 7.30 4.97 14.65 −5.48

ŵpew
c̃2,t 0.19 2.90 5.89 9.21 11.51 12.19 15.70 23.60

DMNU-48:

ŵpew,t −28.30 −45.75 −46.42 −42.62 −46.27 −43.40 −22.34 −28.30

ŵpew
c̃,t −26.83 −46.19 −51.53 −43.24 −51.82 −50.43 −23.74 −22.90

ŵpew
c̃2,t 20.69 24.23 25.04 14.19 13.61 6.38 17.69 29.25
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Table OA.5: Portfolio CER with γ = 5 (Cont’d)

C. LW 2004 shrinkage covariance matrix

CAPM FF-3 Carhart-4 FF-5 FF5-UMD q-factor DHS DMNU-7

MOM-10:

ŵLW2004
s,t 1.70 2.51 6.17 9.36 10.61 15.07 22.18 32.77

ŵLW2004
p,t 4.72 3.79 3.57 8.88 7.81 14.19 17.74 17.68

ŵLW2004
c̃,t 7.74 9.68 10.91 16.39 16.79 20.02 25.31 36.65

ŵLW2004
c̃2,t 7.66 9.01 9.44 16.25 16.13 19.41 24.23 34.60

IVOL-10:

ŵLW2004
s,t 1.70 2.51 6.17 9.36 10.61 15.07 22.18 32.77

ŵLW2004
p,t 3.89 9.79 12.30 14.10 13.74 9.70 15.13 14.19

ŵLW2004
c̃,t 7.99 13.99 18.76 23.35 25.53 21.59 26.67 33.90

ŵLW2004
c̃2,t 7.83 12.91 16.18 22.84 24.96 20.92 24.27 33.54

IND-10:

ŵLW2004
s,t 1.70 2.51 6.17 9.36 10.61 15.07 22.18 32.77

ŵLW2004
p,t −6.90 −0.99 0.29 2.21 2.43 9.26 8.26 12.76

ŵLW2004
c̃,t 0.64 4.11 8.12 10.46 12.39 15.62 20.85 34.36

ŵLW2004
c̃2,t 1.04 2.50 5.84 8.53 9.56 14.05 18.66 34.08

IND-30:

ŵLW2004
s,t 1.70 2.51 6.17 9.36 10.61 15.07 22.18 32.77

ŵLW2004
p,t −45.50 −36.45 −37.24 −31.79 −34.46 −21.93 −31.11 −34.80

ŵLW2004
c̃,t 0.51 3.56 7.37 9.52 11.26 15.11 21.24 34.97

ŵLW2004
c̃2,t 1.03 2.50 5.22 8.16 8.03 13.69 18.57 34.63

DMNU-48:

ŵLW2004
s,t −0.27 0.23 0.57 5.10 4.68 8.54 16.11 32.77

ŵLW2004
p,t −196.47 −193.10 −148.78 −197.64 −160.73 −195.53 −225.41 −196.47

ŵLW2004
c̃,t 53.56 49.46 42.10 47.47 40.46 45.80 49.97 52.62

ŵLW2004
c̃2,t 53.56 49.39 39.65 47.36 38.19 43.58 47.53 52.43

25


	benchmark_202305
	Introduction
	Portfolio Choice with Unknown Benchmark Efficiency
	The Setup
	Estimation Errors and Sample Optimal Portfolios
	Estimation Risk Reduction Strategies
	Kan and Zhou (2007) Two-fund Rule.
	Combining with the 1/N Rule (PEW).
	Shrinkage Covariance Matrix of Ledoit and Wolf (2004).
	Portfolio Performance with Estimation Risk Reduction Strategies.

	A Plausible Solution: the Switching Strategy

	The Combining Strategy
	The General Framework
	Applying the Combining Strategy
	The Sample Optimal Portfolio.
	Portfolio PEW.
	Shrinkage Covariance Matrix of Ledoit and Wolf (2004).

	Empirical Performance of the Combining Strategy

	Portfolio Turnover
	Conclusion

	online_appendix

