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A Critique of the Use of t-ratios in Model Selection

ABSTRACT

In this paper, we expose a subtle but serious problem of selecting models using

t-ratios in multivariate regression methodologies. We illustrate the problem in the con-

text of selecting empirical asset pricing models. Using a simple version of the widely

used cross-sectional regression methodology, we show analytically that variables with

the highest t-ratios may not be highly correlated with expected returns. Contrary to

common belief, a high t-ratio may in fact be evidence of low explanatory power. The

results in this study cast doubt on the economic significance of variables selected only

on the basis of high t-ratios in multivariate regression methodologies and suggest that

we should include other diagnostics in addition to t-ratios for model selection.



A central issue in finance is the determination of expected returns across different

assets. This is the main focus of many well known theoretical asset pricing models

including the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965),

the Intertemporal Capital Asset Pricing Model of Merton (1973), the Arbitrage Pricing

Theory of Ross (1976), and the Consumption Capital Asset Pricing Model of Breeden

(1979). At the same time, there are many empirically motivated models that propose

some firm-specific variables as explanations of the cross-sectional differences of expected

returns. Some notable examples in this category are Basu (1977), Banz (1981), Bhandari

(1988), Chan, Hamao, and Lakonishok (1991), and Fama and French (1992). A common

feature in all these models is that the expected returns are linear in some firm-specific

variables (they can be betas corresponding to some common factors or they can be some

accounting ratios). In the face of so many competing models, one of the important tasks

of empirical researchers is to find out which model does the best job in describing the

cross-sectional differences of expected returns.

In practice, this question is often addressed using multivariate regression methodolo-

gies such as cross-sectional regressions (CSR), seemingly unrelated regressions (SUR), or

generalized method of moments (GMM). A generally accepted practice is to test whether

a variable is “priced” by itself (i.e., its slope coefficient has a “significant” t-ratio) and

whether it is “priced” when combined with other competing variables. For example, in

the recent debate of the validity of the CAPM, the focal point is whether the CAPM

betas and other competing variables are statistically significantly priced.

In univariate regression methodologies like the ordinary least squares (OLS) regres-

sions, the square of the t-ratio is an increasing function of the goodness-of-fit measure

R2 for simple regressions (or partial R2 in the case of multiple regressions). Therefore,

it is not surprising that researchers consider variables that have high t-ratios (in absolute

value) to be the ones that possess good explanatory power on the dependent variable.

While there are still situations in which using t-ratios to select variables in univariate
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regressions could be problematic, one would be tempted to favor explanatory variables

with high t-ratios over those with low t-ratios, especially when the results are robust

with respect to different samples.1

However, since we are interested in how well an asset pricing model explains the

cross-sectional differences of expected returns, the regression methodologies used by

most empirical asset pricing studies are multivariate regressions that involve data with

both time series and cross-sectional dimensions. In this paper, we point out that the

monotonic relation between the measure of goodness-of-fit (i.e., cross-sectional explana-

tory power of an asset pricing model on expected returns) and the square of the t-ratio

does not necessarily hold in multivariate regressions. Therefore, the t-ratio in multivari-

ate regression methodologies is, in general, not an indicator of how good a variable is in

explaining the cross-sectional differences of expected returns and, therefore, should not

be the only criterion for model selection.

To make our argument more concrete, we focus on the case of the CSR methodology

in this paper because it is most commonly used for the purpose of model selection, even

though our argument is also relevant to other methodologies such as SUR and GMM.

We derive the properties of the t-ratios in the CSR methodology under potentially

misspecified models and show analytically that variables with better explanatory power

may not have higher t-ratios. A firm-specific variable that provides little explanatory

power on the cross-sectional differences of expected returns can be found significantly

priced by itself and in the presence of other competing firm-specific variables, whereas a

firm-specific variable that provides much explanatory power on the expected returns may

not be significantly priced by itself or with other variables. More surprisingly, in many

situations, the high t-ratio attained by a candidate variable may in fact be an indication

that such a variable is not very useful in explaining the cross-sectional differences of

1Well known problems with the use of t-ratios in univariate regressions include multicollinearity
and data-mining. The multicollinearity problem is relatively easy to resolve. One just has to examine
whether or not a variable has high t-ratio by itself. The data-mining problem can also be mitigated if
one can do out-of-sample tests.
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expected returns. As a result, variables that are chosen purely on the basis of their high

t-ratios could very well be variables that are not very useful.

The rest of the paper is organized as follows. Section 1 provides analytical results of

the t-ratios in the OLS CSR with a single firm-specific variable. Section 2 discusses the

same problem but in the OLS CSR with multiple firm-specific variables. Section 3 dis-

cusses the corresponding results for the generalized least squares (GLS) CSR. Section 4

provides analytical results of the sample R2. The final section concludes our findings

and the Appendix contains proofs of all propositions.

1. The OLS Cross-Sectional Regressions with a Sin-

gle Firm-Specific Variable

Since Fama and MacBeth (1973), the CSR methodology has been widely used in the

accounting and finance literature. The CSR can be run by ordinary least squares (OLS),

generalized least squares (GLS), or weighted least squares (WLS). Since the OLS version

is easy to implement and it is feasible even with a large number of assets, it has been

the most popular version of the CSR methodology. Despite the popularity of the CSR

methodology, little is known about its properties under misspecified models. In this

section, we first discuss the property of the t-ratio in the OLS CSR methodology when

the model contains a single, constant firm-specific variable. Models with multiple firm-

specific variables and the GLS CSR are discussed in subsequent sections.

Suppose we observe returns R� on the N assets for time t = 1, . . . , T and they

are independently distributed as N(µ, V ), where µ is the expected returns on the N

assets, and V is the variance-covariance matrix of the N assets. Suppose the model

being tested is

µ = γ01� + γ1x, (1)

for some constants γ0 and γ1, where 1� is the N -vector of ones and x is a firm-specific
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variable, not proportional to 1� .2 The OLS CSR is performed by first running an OLS

regression of the return at time t, R�, on X = [1� , x] for every period to obtain

estimate

γ̂���
� ≡

[
γ̂���

0�

γ̂���
1�

]
= (X �X)�1(X �R�), t = 1, . . . , T. (2)

The sample averages of γ̂���
0� and γ̂���

1� are then reported as the point estimate of

γ0 and γ1, respectively. In finding out whether or not a firm-specific variable x helps

to explain the cross-sectional differences of expected returns, researchers often test the

hypothesis H0 : γ1 = 0 using

t��� =
¯̂γ���
1

s(γ̂���
1 )/

√
T

, (3)

where ¯̂γ���
1 and s(γ̂���

1 ) are, respectively, the sample average and standard deviation

of γ̂���
1� .

Since it is unlikely that any firm-specific variable x is totally uncorrelated with µ,

testing whether or not a given firm-specific variable is priced is somewhat meaningless.

Therefore, in many empirical studies, the t-ratio is used not only for testing whether or

not a firm-specific variable is priced, but also for comparing different models, i.e., models

with different xs. It is this use of the t-ratio that we will focus on. With different firm-

specific variable xs, the model µ = γ01� + γ1x cannot be all true, and it is even

more likely that none of the models being compared is the true model. We call a model

misspecified if there do not exist γ0 and γ1 such that (1) holds.

For a misspecified model, the first step toward understanding the property of the

t-test is to identify the parameter that the OLS estimator in (2) estimates. Define

γ��� ≡
[

γ���
0

γ���
1

]
= argmin�(µ − Xγ)�(µ − Xγ)

= (X �X)�1(X �µ), (4)

δ2
���(x) =

T (x�Mµ)2

x�MV Mx
, (5)

2Although the problem that we discuss applies also to the case of time-varying x, µ and V , we
present the simplest case of constant parameters in this paper to illustrate the main point.
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where M = I� −1�(1��1�)�11�� . The properties of the OLS estimate γ̂���
� and the

OLS t-test are summarized in the following proposition.

Proposition 1 For a possibly misspecified model, (i) the OLS estimator γ̂���
� is an

unbiased estimator of γ���, and (ii) t��� is distributed as a noncentral t-distribution

with degrees of freedom T − 1 and the square of noncentrality parameter δ2
���(x).

The proposition shows that when the OLS CSR is used, the model is estimated at

the parameter that minimizes the sum of squares of the pricing errors of the N assets.

If γ���
1 = 0, then δ2

���(x) = 0, so the t-test is still valid for hypothesis γ���
1 = 0,

whether or not the model is correctly specified. The question is how good the t-test is

when it comes to model selection. To answer this question, we have to understand the

magnitude of the t-ratio in various misspecified models. It turns out that the absolute

expected value of the t-ratio as well as the probability of rejecting H0 : γ���
1 = 0

in a two-tailed t-test are both positively related to δ2
���(x) (see Johnson, Kotz, and

Balakrishnan (1995, Ch. 31)). Therefore, variables with higher δ2
���(x) will tend to

have higher t-ratios and they are more likely to be accepted. The question then becomes

whether or not a good model necessarily has a high δ2
���(x).

The best model, of course, is a correctly specified model, i.e., an x such that it is

perfectly correlated with µ. For such an x, it is easy to see that δ2
���(x) = δ2

���(µ).

Will δ2
���(x) reach maximum at x = µ? The following proposition gives us the first

hint that δ2
���(x), and hence the t-test, is not good for model selection because there

is no guarantee that the δ2
���(x) of a misspecified model is less than the δ2

���(µ) of a

correct model.

Proposition 2 For the noncentrality parameters of the OLS t-ratios as functions of x,

δ2
���(µ) ≤ max

�
δ2
���(x), (6)

with the equality holding if and only if Mµ = cMV Mµ for some constant c �= 0.

5



In general, there is no reason why µ and V should be related by Mµ = cMV Mµ

and so one would not expect the equality between δ2
���(µ) and max� δ2

���(x) to hold.

In that case, a true model may lose to an inferior model if the t-ratio is used as the

criterion of model selection.

To compare potentially misspecified models, we would like to use a measure, or

an inverse measure, of model misspecification. To this end, we consider a population

measure of the goodness-of-fit of a model under the OLS CSR,

ρ2
���(x) = 1 − (µ − Xγ���)�(µ − Xγ���)

µ�Mµ
=

(x�Mµ)2

(x�Mx)(µ�Mµ)
. (7)

ρ2
���(x) measures the percentage of the variation of µ explained by the firm-specific

variable x. Under the OLS CSR, this is a natural choice because it is inversely related

to the sum of squares of pricing errors of the model. We refer to ρ2
���(x) as the

explanatory power of the model with firm-specific variable x. Although Proposition 2

suggests that the t-ratio in OLS CSR is not a proper measure of goodness-of-fit, we

would like to find out if there is any linkage between δ2
���(x) and ρ2

���(x).

Let PΛP � be the spectral decomposition of MV M , where Λ = Diag(λ1, . . . , λ��1)

is a diagonal matrix of the nonzero eigenvalues of MV M listed in descending order,

and P is an N × (N − 1) orthonormal matrix with its columns equal to the eigen-

vectors of MV M associated with Λ. Suppose λ1 > λ��1. It can be shown that the

mapping from ρ2
��� to δ2

��� is not single valued. Instead, for firm-specific variables

with the same explanatory power on the expected returns, ρ2
���, there could be a wide

range of statistical significance for their t-ratios, δ2
���. We state this in the following

proposition.

Proposition 3 Suppose Mµ �= cMV Mµ for any constant c. Then, if ρ2
���(x) = 0,

then δ2
���(x) = 0; if ρ2

���(x) = 1, then δ2
���(x) = T (µ�Mµ)2/(µ�MV Mµ);

and for any given number ρ2
0 ∈ (0, 1), the set {δ2

���(x) : ρ2
���(x) = ρ2

0} contains

more than one element; and max�:�2
���

(�)=�2
0
δ2
���(x) is not a monotonically increasing
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function of ρ2
0.

The range of δ2
��� for a given value of ρ2

��� is determined by both µ and V . Analytical

expressions of this range are given in the proof of Proposition 3. For real world data, this

range is typically very wide. For illustration, we use 10 size-ranked, equally weighted

portfolios of the combined NYSE-AMEX as an example. Since we do not know the true

µ and V of these 10 portfolios, we set µ and V equal to their sample moments (i.e.,

R̄ = 1
	

∑	
�=1 R� and V̂ = 1

	�1

∑	
�=1(R� − R̄)(R� − R̄)�, respectively) computed

based on 330 monthly returns from the period July 1963 to December 1990 (the same

period used in many recent studies).3

Table 1 about here

In Panel A of Table 1, we report the expected returns (µ) for these 10 size-ranked

portfolios, measured in percentage per month. We also report the vector of firm-specific

variable (x�) that maximizes δ2
���(x). In Panel B, we report the nonzero eigenvalues of

MV M . The nonzero eigenvalues of MV M are closely related to those of V as stated

in the following lemma.

Lemma 1 Let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂� > 0 be the eigenvalues of V . Then,

λ̂1 ≥ λ1 ≥ λ̂2 ≥ λ2 ≥ · · · ≥ λ��1 ≥ λ̂� . (8)

When the returns on the N assets are heteroskedastic and correlated with each other,

there will be a dispersion in the nonzero eigenvalues of MV M in general.4

3Monthly returns on the 10 size-ranked portfolios are constructed based the 100 size-beta-ranked
portfolios data set used by Jagannathan and Wang (1996). We are grateful to Ravi Jagannathan and
Zhenyu Wang for sharing the data set with us.

4Correlations between the returns of the assets do not necessarily give rise to dispersion of the nonzero
eigenvalues of MV M . For example, suppose returns are homoskedastic and the correlation between
returns of any pair of assets is a constant, i.e., V = σ2[(1−a)IN +a1N1N

′], where −1/N < a < 1
is the common correlation coefficient. In this case, it is easy to show that the nonzero eigenvalues of
MV M are all equal to σ2(1 − a).
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It turns out that the extent to which the statistical significance of the t-ratio (δ2
���)

and the explanatory power of the model (ρ2
���) are misaligned depends on, among other

things, how small the ratio λ��1/λ1 is. In Panel B, we can see that for the 10 size-

ranked portfolios, we have λ��1/λ1 = 0.0173. The following two examples help us

gain some additional insight into why λ��1/λ1 is often very small for the return data

typically used in empirical tests of asset pricing models.

Example 1. Suppose returns follow a one-factor structure with homoskedastic and

independent idiosyncratic risk, V = ββ�+ σ2I� , where β �= k1� for any scalar k. In

this case, λ̂1 = σ2 + β�β and λ̂2 = · · · = λ̂� = σ2, whereas λ1 = σ2 + β�Mβ and

λ2 = · · · = λ��1 = σ2. When β�Mβ is relatively large compared with σ2, then V

and MV M has one large eigenvalue and the rest of the eigenvalues are small. In this

case, the ratio λ��1/λ1 can be very small. In empirical tests of asset pricing models,

well diversified portfolios are often used as test assets to improve the power of the tests

and, in many cases, the variance-covariance matrix of the returns of the portfolios often

has one large eigenvalue relative to others.

Example 2. Suppose returns follow a K-factor (K < N ) structure with homoskedastic

and independent idiosyncratic risk, V = BB� + σ2I� , where B is N × K and it has

full column rank. In addition, we assume 1� is not in the span of B. In this case,

λ̂
 = σ2 + d̂
 for i = 1, . . . , K and λ̂�+1 = · · · = λ̂� = σ2, where d̂1 ≥ · · · ≥ d̂�

are the nonzero eigenvalues of BB�. For the nonzero eigenvalues of MV M , we have

λ
 = σ2 + d
 for i = 1, . . . , K, and λ�+1 = · · · = λ��1 = σ2, where d1 ≥
· · · ≥ d� are the nonzero eigenvalues of MBB�M . Therefore, even if returns follow

a K-factor model, but if just one linear combination of factors can explain a lot of the

variance of the returns of the assets or if the portfolios are well diversified, then the ratio

λ��1/λ1 is still very small.

With this in mind, we then investigate the magnitude of the problem of using OLS

t-ratios for the 10 size-ranked portfolios case. If a researcher proposes a firm-specific
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variable x = µ (or some linear combinations of 1� and µ), such a firm-specific variable

should be the best one in explaining the cross-sectional differences of the expected returns

of the 10 portfolios. However, Panel C of Table 1 shows that in the OLS CSR, we can

only reject the null hypothesis that our perfect firm-specific variable (x = µ) is priced at

the 5% level in less than half of the times when the number of time series observations is

330.5 On the other hand, we find x� (= arg max� δ2
���(x))6 to be significantly priced

at the 5% level with a probability of 0.965 (with 330 time series observations), despite

the fact that x� has very low correlation with µ and its ρ2
���(x) is only 0.114. Thus,

the poor model is more significantly priced than the true model. The magnitude of the

problem that we have shown in this example is not unusual. For the case when the

parameters are determined by the 100 size-beta ranked portfolios, the problem is even

more severe. These results suggest that the OLS t-ratio is a poor indicator of how good

a model is.

While our analysis focuses on the noncentrality parameter, it should be noted that

by replacing µ with R̄ and V with V̂ , Propositions 2 and 3 also apply to the sample

OLS t-ratio. This is because t2��� is just a sample version of δ2
���. A case of special

interest is when N > T . One of the reasons for the popularity of the OLS CSR is

because the OLS CSR is feasible even when N > T . However, when N > T , V̂ is

singular and one can always find poor firm-specific variables that have arbitrary high

sample OLS t-ratios.7 Thus, variables with high OLS t-ratios, whether ex ante or ex

5Affleck-Graves and Bradfield (1993) and Chan and Lakonishok (1993) suggest that with the typical
number of time series observations, the two-pass OLS CSR methodology does not possess enough power
to determine if the risk premium of market betas is significantly different from zero because the returns
are too noisy.

6Any linear combinations of 1N and x∗ will do exactly the same job. The one that we report is
chosen such that it has the same cross-sectional mean and standard deviation as µ.

7To see that, we rewrite

t2OLS =
T (x′MR̄)2

x′MV̂ Mx
=

T (T − 1)(x′MR̄)2

x′M
[∑T

t=1(Rt − R̄)(Rt − R̄)′
]
Mx

=
T (T − 1)(x′MR̄)2∑T
t=1

[
x′M(Rt − R̄)

]2 .
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post, do not have to be good variables in explaining the expected returns, and one should

be extremely cautious in choosing variables based on their OLS t-ratios.

Let us now return to the 10 size-ranked portfolios case and examine the general

relation between ρ2
��� and δ2

���. Figure 1 presents the lower bound and upper bound

of δ2
��� for 0 ≤ ρ2

��� ≤ 1 (330 time series observations). The lower bound of δ2
��� is

monotonic in ρ2
��� but the upper bound of δ2

��� is not. The upper bound of δ2
��� goes

up very quickly with ρ2
���. Even with ρ2

��� = 0.05, there are firm-specific variables

that will be on average more significantly priced than the “true” model that provides

perfect explanatory power. As shown in Table 1, the maximum δ2
��� is reached when

ρ2
��� = 0.114. While such a variable is not very powerful in explaining the cross-

sectional differences of expected returns, it is, in fact, the most significantly priced

among all the firm-specific variables. Figure 1 shows that the problem we report in

Table 1 is very widespread and it is not just a special case. In Figure 2, we present

a plot similar to Figure 1 but with µ and V determined by the sample estimates of

100 size-beta-ranked portfolios. The pattern is similar, i.e., there are many misspecified

models that are more significantly priced than the true model and the one that is most

significantly priced has a low ρ2
��� of 0.272.

While Figures 1 and 2 show a clear picture that the OLS t-ratio is an ambiguous

indicator of how good a firm-specific variable is, there is a stronger message behind

these figures. It suggests that firm-specific variables with very high expected value of

OLS t-ratios are in fact very bad in explaining the cross-sectional differences of expected

returns. To see this more clearly, we exchange the x-axis and y-axis in Figure 1 and

replot it in Figure 3. Instead of labelling the x-axis as δ2
���, we transform it into its

If N > T , we can choose x to be uncorrelated with Rt − R̄ for t = 1, . . . , T , and the denominator
of the t-ratio is zero. To the extent that such an x is correlated with R̄ (i.e., R̄ is not in the span of
[1N , R1−R̄, . . . , RT −R̄]), its OLS t-ratio is infinity. If R̄ is not proportional to µ and N > T +1, we
can even choose x to be uncorrelated with µ and Rt − R̄ for t = 1, . . . , T . Such firm-specific variables
will have infinite sample OLS t-ratios but zero explanatory power on expected returns, i.e., ρ2

OLS = 0.
Since both tOLS and ρ2

OLS are continuous in x, the sample OLS t-ratios can be arbitrarily large for
those firm-specific variables that are close enough to the x which has tOLS = ∞ and ρ2

OLS = 0.
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corresponding absolute expected value of OLS t-ratio. With the change of axes and

rescaling, Figure 3 shows the lower bound and upper bound of ρ2
��� for a firm-specific

variable which has a particular absolute expected value of OLS t-ratio. It shows, for

example, a firm-specific variable that has an expected t-ratio of 3.5 in the OLS CSR,

cannot explain more than 20% of the cross-sectional variation of the expected returns

on the 10 size-ranked portfolios. These results suggest that if a researcher should do

pre-test screening by picking variables based on high OLS t-ratios in the univariate OLS

CSR, it would likely give him a bunch of variables that are not very useful.

Note that the shapes of the graphs in Figures 1–3 and the relative ranking of δ2
���

of firm-specific variables do not depend on T . If an inferior firm-specific variable has

a higher δ2
��� than a superior firm-specific variable, then we can expect the inferior

variable to have a higher OLS t-ratio than the superior variable for every sample pe-

riod, regardless of its length. Therefore, looking at subperiod results or out-of-sample

period results is not going to help with this problem. The inferior variable is indeed

priced consistently in a statistical sense. The problem is that the measure of statistical

significance of the t-ratio (δ2
���) does not always coincide with the explanatory power

of the variable (ρ2
���).

The misalignment between the statistical significance of the t-ratio and the measure

of goodness-of-fit in the OLS CSR comes from the fact that the measure of goodness-of-fit

depends only on x and µ, but not on V . However, in assessing the statistical significance

of the estimated risk premium associated with x, we look at x, µ, as well as V . That

V plays a role in determining the statistical significance of a test statistic is common in

all statistical tests. Therefore, using other methodologies such as Seemingly Unrelated

Regressions or the Generalized Methods of Moments will face the same problem.

The fact that there is a misalignment between the measure of goodness-of-fit and the

statistical significance of the t-ratio of a firm-specific variable does not explain why poor

firm-specific variables can have high OLS t-ratios. To gain more intuition about this
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problem, we consider the OLS CSR estimate of the risk premium at time t with the firm-

specific variable scaled such that x�Mx = 1. Now, since γ̂���
1� = ���
�

����
= x�MR�

when x�Mx = 1, its expected value and variance are given by

E[γ̂���
1� ] = x�Mµ = (µ�Mµ)

1
2ρ���(x), (9)

Var[γ̂���
1� ] = x�MV Mx =

��1∑

=1

λ
(p
�

x)2, (10)

where p
 is the eigenvector of MV M associated with the eigenvalue λ
.

From these two expressions, we can see that if we choose x close to µ, then ρ2
���(x)

is very high and naturally the absolute value of the numerator of its OLS t-ratio is also

going to be very high. However, the denominator of the OLS t-ratio is determined by

the variance of γ̂���
1� . If p1 is also highly correlated with µ,8 Var[γ̂���

1� ] will be large

(i.e., λ1), and the resulting OLS t-ratio can be easily insignificant. On the other hand,

if we pick x close to p��1, Var[γ̂���
1� ] will be small (i.e., λ��1) and the resulting OLS

t-ratio can be very high even though x has very little correlation with µ.

As an illustration, consider the case when returns follow a one-factor structure as

discussed in Example 1 of the last section (i.e., V = ββ� + σ2I�). If expected returns

follow an approximate one-factor pricing model, i.e., µ ≈ γ01�+γ1β for some constants

γ0 and γ1 �= 0, and if we choose x (normalized to x�Mx = 1) to be proportional

to β, then such a firm-specific variable obviously explains a lot of the cross-sectional

differences of the expected returns. However, V is also mostly determined by β (p1

is Mβ/(β�Mβ)
1
2 ), so the risk premium for the firm-specific variable proportional to

β has the largest possible variance (λ1 = β�Mβ + σ2) among all the firm-specific

variables with x�Mx = 1.9 As a result, the OLS t-ratio of the firm-specific variable

proportional to β may not be very high.

8Since pi is orthonormal and orthogonal to 1N , p′
ix is the correlation coefficient of x with pi.

9When V = ββ′ + σ2IN , we have Var[γ̂OLS
1t ] = x′M [ββ′ + σ2IN ]Mx = (x′Mβ)2 + σ2 for

firm-specific variables normalized to x′Mx = 1. From this expression, it is obvious that if we choose
x to be proportional to β (i.e., x = β/(β′Mβ)

1
2 ), the variance of its estimated risk premium will be

the largest.
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On the other hand, as long as µ is not completely explained by β, we can find a

firm-specific variable x that is proportional to the part of µ that is uncorrelated with β.

Such a firm-specific variable has low but still nonzero correlation with µ. However, since

it does not account for much of the structure of V , the variance of γ̂���
1� is only equal

to σ2, the unsystematic risk of the test assets. For test assets that are well diversified

portfolios, σ2 is small and hence the OLS t-ratios of such poor variables can be large.

It is quite ironic that when the CAPM is almost true and when we use well diversified

portfolios as the test assets, we are still susceptible to the problems of finding anomalies

to the CAPM and finding the betas not to be statistically significantly priced. More

generally, if returns of the test assets are driven by a small number of factors and their

expected returns are approximately linear in the betas with respect to those factors,

we can find variables with little explanatory power on µ to be statistically significantly

priced.

We now turn our attention to ρ2
���(x�) where x� = arg max� δ2

���(x). This

measure tells us whether the statistically most significant models in the OLS CSR are

good or bad models. If ρ2
���(x�) is high, then although statistical significance of the

t-ratio does not align exactly with the measure of goodness-of-fit in the OLS CSR, we

can still assume that models with high absolute value of t-ratios are good models. Since

this measure depends on µ and V , it is difficult to make a general statement about

its magnitude without knowing µ and V . The following lemma gives the worst case

scenario for a given V .

Lemma 2 For the firm-specific variable that is most significantly priced in the OLS

cross-sectional regression, x� = arg max� δ2
���(x), we have

ρ2
���(x�) ≥

4
(
���1

�1

)
[
1 +

(
���1

�1

)2
], (11)

with equality holds when η2
1 = �1

�1+���1
, η
 = 0 for 1 < i < N − 1, and η2

��1 =

13



���1

�1+���1
, where λ1 ≥ · · · ≥ λ��1 > 0 are the nonzero eigenvalues of MV M and η


is the correlation coefficient between µ and the eigenvector of MV M associated with

λ
.

From Lemma 2, we can see that a necessary condition for the statistically most significant

model in the OLS CSR to be a bad model is λ1 
 λ��1, which is a common property

of V found in real world data. However, λ1 
 λ��1 is only a necessary condition

for ρ2
���(x�) to be low. For example, when µ is perfectly correlated with one of the

columns of P , then even though λ1 
 λ��1, we still have ρ2
���(x�) = 1. In order for

ρ2
���(x�) to be very small, we also need η2

1 to be very close but not equal to one, i.e.,

µ to be close but not exactly proportional to the eigenvector associated with the largest

eigenvalue of MV M . In Panel B of Table 1, we can see that λ��1/λ1 = 0.0173 and

η1 = 0.9235 for the 10 size-ranked portfolios, and hence ρ2
���(x�) is very small. This

is a case in point that if the returns of the test assets are driven by a small number of

common factors and if the expected returns of the test assets are approximately linear

in the betas with respect to these factors, then ρ2
���(x�) will be small.

Three recent studies suggest problems of using the OLS CSR in evaluating the

CAPM. Roll and Ross (1994) show that the closeness of a market index to the effi-

cient frontier does not always tell us what the cross-sectional covariance is between

expected returns and betas (with respect to the inefficient market index). For example,

a market portfolio that is very close to the efficient frontier can produce zero covariance

between expected returns and betas. Kandel and Stambaugh (1995) show that a market

portfolio that has very minor inefficiency (as measured by how close it is to the frontier)

could produce a ρ2
��� that is almost indistinguishable from zero but yet for a market

portfolio far away from the frontier, the risk premium and ρ2
��� of its betas could be

very large. Grauer (1999) constructs examples to show that whether expected returns

are correlated with betas tells us very little about the validity of the CAPM, and the

difference between the intercept in the OLS CSR and riskless rate has little to do with

14



how close the market portfolio is to the efficient frontier. The common point in these

papers is that ρ2
��� is not always an appropriate measure of how close a market port-

folio is to the mean-variance efficient frontier. The point in our paper is fundamentally

different. What we suggest is that even if ρ2
��� is an appropriate measure to compare

models, the t-ratios in the OLS CSR do not provide reliable information about ρ2
���.

While the results of this study can also be specialized to the case of testing the CAPM,

our main concern is on the inference derived from t-ratios in the OLS CSR with general

firm-specific variables. In our case, the incorrect inferences from using OLS t-ratios

arise not from the wrong choice of measure of goodness-of-fit, but from the misalign-

ment of statistical significance of the t-ratio and the measure of goodness-of-fit in model

comparison.

2. The OLS Cross-Sectional Regressions with Mul-

tiple Firm-Specific Variables

The previous section suggests serious problems of using the OLS t-ratio as a device

for pre-test screening and for selecting models with a single firm-specific variable. We

now turn to the case of models with multiple firm-specific variables. The most common

practice is to put a number of firm-specific variables in a multiple CSR and choose the

ones with significant t-ratios and drop the ones with insignificant t-ratios. One of the

myths in using the CSR methodology is that when two or more firm-specific variables

are included in the model, the good variables will drive out the bad variables. In other

words, superior firm-specific variables will be more significantly priced than the inferior

firm-specific variables in a multiple CSR. In this section, we show that such a belief

cannot be justified.

To simplify our argument, we assume the researcher has two firm-specific variables,

x1 and x2, and he would like to use them to explain µ.10 Denote X = [1� , x1, x2].

10The analysis of the case with more than two firm-specific variables can be easily generalized from
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The γ that minimizes the sums of squares of the pricing errors (µ − Xγ)�(µ − Xγ) is

given by

γ��� ≡




γ���
0

γ���
1

γ���
2


 = (X �X)�1(X �µ). (12)

If (µ − Xγ)�(µ − Xγ) is the relevant measure of model misspecification, the marginal

explanatory power of x1 and x2 can be measured by the partial coefficients of determi-

nation:

ρ2
���(x1|x2) = 1 − (µ − Xγ���)�(µ − Xγ���)

µ�M2µ
=

(x�1M2µ)2

(x�1M2x1)(µ�M2µ)
, (13)

ρ2
���(x2|x1) = 1 − (µ − Xγ���)�(µ − Xγ���)

µ�M1µ
=

(x�2M1µ)2

(x�2M1x2)(µ�M1µ)
, (14)

where

M1 = I� − X1(X
�
1X1)

�1X �
1, (15)

M2 = I� − X2(X
�
2X2)

�1X �
2 (16)

are the projection matrices onto the space orthogonal to X1 = [1� , x1] and X2 =

[1� , x2], respectively. The partial coefficient of determination is a measure of the

fraction of the cross-sectional variance of the expected returns that is explained by

one firm-specific variable, conditioned on that the other firm-specific variable and the

constant term are included in the model.11

To estimate γ���, we can run a multiple OLS CSR of R� on X every period. The

OLS CSR estimate of γ��� at time t is

γ̂���
� =




γ̂���
0�

γ̂���
1�

γ̂���
2�


 = (X �X)�1(X �R�). (17)

the results here.
11From the identity

1 − ρ2
OLS(x1)

1 − ρ2
OLS(x2)

=
1 − ρ2

OLS(x1|x2)

1 − ρ2
OLS(x2|x1)

,

we can see that the ranking of the partial coefficients of determination gives us the same information
about the ranking of simple coefficients of determination. If ρ2

OLS(x1|x2) > ρ2
OLS(x2|x1), it tells us

that ρ2
OLS(x1) > ρ2

OLS(x2) and x1 alone is also a better firm-specific variable than x2 alone.
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The OLS t-ratios for testing H0 : γ���
1 = 0 and H0 : γ���

2 = 0 are computed using

the time series of γ̂���
1� and γ̂���

2� just like in the case of a single firm-specific variable.

The OLS t-ratios of x1 and x2 have noncentral t-distribution with T − 1 degrees of

freedom and their noncentrality parameters are given by

δ2
���(x1|x2) =

T (x�1M2µ)2

x�1M2V M2x1

, (18)

δ2
���(x2|x1) =

T (x�2M1µ)2

x�2M1V M1x2

. (19)

In running the multiple OLS CSR with both firm-specific variables x1 and x2, the

statistical significance of the t-ratios of the two variables are represented by δ2
���(x1|x2)

and δ2
���(x2|x1).

It is important to realize that whether a firm-specific variable is priced or not in

a multiple OLS CSR depends on what other variables are included in the model. If

one of the variables, say x2, fully explains the cross-sectional variance of the expected

returns (i.e., µ = γ01� + γ2x2 for some constants γ0 and γ2), then x�1M2µ = 0 and

any other variable x1 would not be priced. Therefore, if we have the correct model, it

will subsume the explanatory power of any other imperfect firm-specific variables, and

the traditional t-test is well justified in this case.12 However, as discussed in the last

section, x2 = µ may not be significantly priced by itself, and hence it may not even

be included in the multiple CSR to compete with other firm-specific variables. When

x2 does not fully explain µ, then almost any variable x1 will be priced, and therefore

testing H0 : γ���
1 = 0 in the multiple OLS CSR is just as meaningless as in the simple

OLS CSR case.

While the marginal explanatory power of the variables can be judged by their partial

12For a given imperfect firm-specific variable x1, it does not take the true model to subsume the
explanatory power of x1 in a multiple CSR. In fact, there exist many imperfect firm-specific variables
x2 that can completely subsume the explanatory power of x1. For example, if ρ2

OLS(x1) = ρ2
0 where

0 < ρ2
0 < 1, then by including in the multiple OLS CSR another firm-specific variable

x2 = Mµ − ρ2
0M1µ + ρ0(1 − ρ2

0)
1
2 (µ′M1µ)

1
2 u, (20)

where u ∈ [1N , x1, µ]⊥ and u′u = 1, we have x′
1M2µ = 0 and x1 will not be priced.
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coefficients of determination, the ranking of the statistical significance of t-ratios in the

multiple OLS CSR does not convey any reliable information about the ranking of the

partial coefficients of determination. Just like in the case of single firm-specific variable,

the expressions for statistical significance (18) and (19) are in general not proportional

to the expressions for marginal explanatory power (13) and (14). Hence, comparing

t-ratios in a multiple OLS CSR is also misleading. In general, there is no guarantee that

superior variables are priced more significantly than inferior variables in the multiple OLS

CSR. The following proposition is a direct extension of Proposition 2 to the multiple

firm-specific variables case.

Proposition 4 Conditioned on that x2 is included in a multiple cross-sectional regres-

sion of regressing returns on both x1 and x2 (and a constant term), the noncentrality

parameters of the t-ratios of the estimated risk premium of x1 satisfy

δ2
���(µ|x2) ≤ max

�1

δ2
���(x1|x2), (21)

with the equality holding if and only if M2µ = cM2V M2µ for some constant c �= 0.

By the iterated projection theorem, it is easy to show that

max
�1

δ2
���(x1|x2) ≤ δ2

���(x�), (22)

where x� = arg max δ2
���(x), with the equality holding if x2 is uncorrelated with

x�. Therefore, the statistically most significant firm-specific variable in a multiple OLS

CSR cannot be more significantly priced than the x� in a simple OLS CSR. This re-

sult by no means suggests that the problems of using OLS t-ratios are mitigated in

the multiple OLS CSR. For example, it is possible that ρ2
���(x�1) < ρ2

���(x�) for

x�1 = arg max δ2
���(x1|x2), so the statistically most significant firm-specific variable

in the multiple OLS CSR can be even worse than the one in the simple OLS CSR. There-

fore, unless one of the variables perfectly explains µ, the problems of using t-ratios in

selecting variables still exist in the multiple OLS CSR. In addition, it is also likely that
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δ2
���(µ|x2) < δ2

���(µ), so the true model can be less significantly priced in the multi-

ple OLS CSR than in the simple OLS CSR,13 which makes it even more difficult to find

support of the true model in the multiple OLS CSR.

Table 2 about here

As an illustration, in the 10 size ranked portfolios case that we discussed earlier, we

find that x� = arg max δ2
���(x) is the most significantly priced firm-specific variable

in the simple OLS CSR. In Table 2, we put such a variable against some competition

in a multiple OLS CSR. Besides x�, we also include another variable x1 (reported in

Panel A) in the OLS CSR. The variable x1 is chosen to be proportional to the residuals

from regressing µ on x�, so the constant term 1� together with x1 and x� fully explain

µ. Although ρ2
���(x1) = 0.886 and x1 explains a lot more of the cross-sectional

differences of the expected returns than x�, we still find x� to be more significantly

priced than x1. For example, in the multiple OLS CSR, we find x1 to be priced at the

5% level with a probability of only 0.415 but x� is found to be priced at the 5% level

with a probability of 0.965. Therefore, it does not appear that the good variable could

come close to driving out the bad variable, even in a multiple OLS CSR.

It should be noted that we choose x1 to be uncorrelated with x� in our example;

multicollinearity is thus not a reason for the low statistical significance of x1. On the

other hand, if we allow x1 to be correlated with x�, then the statistical significance of

x� will be reduced. In this case, it is important to realize that it is not because x1 is

close to µ that drives out x�; it is only because x1 is close to x�.

With a simple modification of Proposition 3, we can also derive the lower bound and

upper bound of δ2
���(x1|x�) as a function of ρ2

���(x1|x�). In Figure 4, we present a

plot of the lower bound and upper bound of δ2
���(x1|x�) as a function of ρ2

���(x1|x�)
13The inequality δ2

OLS(µ|x2) ≤ δ2
OLS(µ) does not always hold. For some choice of x2, it is possible

that the true model can be more significantly priced in a multiple OLS CSR than in a simple OLS CSR.

19



for the 10 size-ranked portfolios case.14 It shows that once x� is included in the model, no

other firm-specific variables can have δ2
���(x1|x�) greater than 3.640, so it is virtually

impossible for a researcher to drive out x� by putting other firm-specific variables in

the model, unless the other variables are correlated with x�. Ironically, the one that

puts up the best competition against x� is a variable with only ρ2
���(x1|x�) = 0.189.

Choosing variables based on the t-ratios in the multiple OLS CSR does not help us

drive out bad variables obtained from the simple OLS CSR. Instead, this practice often

proposes more bad variables to be included in the model.

3. The GLS Cross-Sectional Regressions

For models with a single firm-specific variable, the GLS CSR estimate of the model (with

the true variance-covariance matrix V known) at time t is

γ̂���
� ≡

[
γ̂���

0�

γ̂���
1�

]
= (X �V �1X)�1(X �V �1R�). (23)

It is easy to verify that it is an unbiased estimator of γ��� ≡ (X �V �1X)�1X �V �1µ.

The t-test of H0 : γ���
1 is given by

t��� =
¯̂γ���
1

s(γ̂���
1 )/

√
T

, (24)

where ¯̂γ���
1 and s(γ̂���

1 ) are the sample average and standard deviation of γ̂���
1� . Un-

der the assumption that R�s are independently distributed as N(µ, V ), t��� has a

noncentral t-distribution with T − 1 degrees of freedom and the square of its noncen-

trality parameter is given by

δ2
���(x) =

T (x̃�M̃µ̃)2

x̃�M̃x̃
, (25)

where x̃ = V �1
2 x, µ̃ = V �1

2 µ, and M̃ = I� − 1̃�(1̃�� 1̃�)�11̃�� with 1̃� = V �1
21� .

14Note that the lower bound and upper bound of δ2(x1|x∗) is the same whether x1 is correlated
with x∗ or not.
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For GLS CSR with true V , it is easy to show that δ2
���(x) is an increasing and

linear function of ρ2
���(x), defined as

ρ2
���(x) = 1 − (µ − Xγ���)�V �1(µ − Xγ���)

µ̃�M̃µ̃
=

(x̃�M̃µ̃)2

(x̃�M̃x̃)(µ̃�M̃µ̃)
. (26)

Therefore, if one can justify using ρ2
���(x) as a measure of the explanatory power of

the model, then the misalignment of the statistical significance of the t-ratio and the

explanatory power of the model does not occur in GLS CSR. This fact also carries over

to the multiple firm-specific variables case.15 Coupled with the fact that under the true

model, the GLS t-test (with V known) is more powerful than the OLS t-test, this seems

to suggest that we should use the GLS CSR instead of OLS CSR and the t-ratios in the

GLS CSR can be used for model selection.

However, it is important to note the following caveats. First, while δ2
���(x) and

ρ2
���(x) are positively related, ρ2

���(x) as a measure of explanatory power of the model

lacks justification. Unlike parameter estimation where efficiency is gained through the

use of V �1, weighting pricing errors by V �1 is not natural. Second, when a model

is misspecified, the GLS t-test may not be always more powerful than the OLS t-test.

Third, the V matrix is typically unknown. The properties of the GLS with known V do

not necessarily carry over to the GLS with estimated V in a finite sample. Consequently,

we do not advocate the use of the t-ratio in GLS CSR for model selection. In fact, when

the number of assets N is greater than the number of time series observations T , the

estimated GLS is not feasible anyway.

As an illustration, we report in Panel C of Table 1 the results of running the GLS

CSR (with the true V ) with a single firm-specific variable. For true GLS CSR, we find

that the true model, µ, performs just as well as x� in the case of OLS CSR, and it will

be found to be priced very often. However, the x� which is statistically most significant

for the simple OLS CSR still fares very well in the simple GLS CSR. It is found to be

priced almost as often as the true model. In Panel B of Table 2, we also report the

15Details are available upon request.
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results of running a multiple GLS CSR with both x1 and x�. x�, in this case, is just

as significantly priced in the multiple GLS CSR as in the multiple OLS CSR, and x1 is

only marginally more significant. Therefore, without having the true model, it is very

difficult to detect that x� is a poor variable (in terms of ρ2
���) because in both simple

and multiple OLS and GLS CSR, such a firm-specific variable x� is likely to be found

significantly priced.

4. The Sample Coefficient of Determination

Since the OLS t-ratio has such undesirable properties for the purpose of model compar-

isons, a natural question to ask is whether there are other sample test statistics that

would allow us to do a better job in model comparisons. In particular, we would like

to infer how much the model can explain the expected returns of the test assets. If the

appropriate measure of goodness-of-fit is ρ2
���, then a natural candidate is its sample

counterpart, i.e., the sample coefficient of determination.16

In the OLS CSR of R� on X = [1� , x], we can compute the sample coefficient of

determination on a period-by-period basis, measured as17

R2
�����(x) =

(x�MR�)
2

(x�Mx)(R�
�MR�)

, (27)

and the average of this time series of R2
����� can be reported as a sample measure of

goodness-of-fit, denoted as

R2
���(x) =

1

T

	∑
�=1

R2
�����(x). (28)

Although many studies using the OLS CSR do not report R2
���, some authors do report

this average R2
��� along with the t-ratios in the OLS CSR.

16To avoid possible confusion, it should be noted that Kandel and Stambaugh (1995) use R2
OLS to

denote the coefficient of determination based on true expected returns. In our notation, coefficient of
determination based on true expected returns is denoted as ρ2

OLS.
17The analysis is the same for the case of multiple firm-specific variables. The only change is we need

to replace x with the fitted returns R̂OLS
t ≡ XγOLS

t in the definition of R2
OLS,t(x).
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If x is constant over time, it is probably more logical to report another sample

measure of goodness-of-fit, measured by the OLS coefficient of determination between

x and the average returns, R̄, as

R̄2
���(x) =

(x�MR̄)2

(x�Mx)(R̄�MR̄)
. (29)

Few authors report this measure because it is only feasible if the firm-specific variable

does not change over time.

Similar to δ2
���, the following proposition suggests that the mappings from ρ2

��� to

both E[R2
���] and E[R̄2

���] are in general not single valued.

Proposition 5 Denote H = E
[
���

���

]
where v ∼ N(P �µ, Λ) with P and Λ defined

before Proposition 3. Suppose Mµ �= cPHP �µ for any constant c. Then, for any given

number ρ2
0 ∈ [0, 1), the sets {E[R2

���(x)] : ρ2
���(x) = ρ2

0} and {E[R̄2
���(x)] :

ρ2
���(x) = ρ2

0} contain more than one element.

In Figure 5, we plot the lower bound and upper bound of E[R2
���] for 0 ≤ ρ2

��� ≤ 1

for the case of 10 size-ranked portfolios. A number of interesting observations can be

made about Figure 5. First, although the lower bound and upper bound of E[R2
���] are

mostly increasing in ρ2
���, the maximal value of E[R2

���] is 0.5597 and it is attained

by a firm-specific variable with ρ2
��� = 0.925. Second, even when ρ2

��� = 0, the

E[R2
���] is not equal to zero.18 Similarly, for the correctly specified model with ρ2

��� =

1, we only have E[R2
���] = 0.521 and it is nowhere near its population value. Note

that increasing the length of the time series only makes the realized value of R2
���

closer to its expected value but it will not change its expected value. Third, there is

a wide range between the lower bound and upper bound of E[R2
���]. For example, a

firm-specific variable with ρ2
��� = 0 can have E[R2

���] = 0.1449 but, for some firm-

specific variable with ρ2
��� = 0.456, its E[R2

���] can be as low as 0.1446. Therefore,

like the OLS t-ratio, using R2
��� to select models could also be seriously questionable.

18We rule out the case of x = k1N for some scalar k. When x = k1N , then R2
OLS = R2

GLS = 0.
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While for the 10 size-ranked portfolios case, the firm-specific variable with the highest

E[R2
���] is a good model, this is not always the case for other test assets. In Figure 6,

we do a similar plot for the 100 size-beta-ranked portfolios. As we can see, for some

firm-specific variable with ρ2
��� = 0, it can have E[R2

���] as high as 0.232 whereas for

the correctly specified model, its E[R2
���] is only 0.0822. In addition, the maximum

E[R2
���] is attained for a variable with only ρ2

��� = 0.078. Therefore, picking models

based on R2
��� will also give us very bad models in the case of 100 size-beta-ranked

portfolios.

On the other hand, although the mapping between ρ2
��� and E[R̄2

���] is not single

valued when T is finite, R̄2
��� has a more desirable asymptotic property than R2

���(x)

because as T → ∞, R̄ → µ and R̄2
���(x) → ρ2

���(x). In Figures 7 and 8, we present

the lower bound and upper bound of E[R̄2
���] for 0 ≤ ρ2

��� ≤ 1 for the cases of 10

size-ranked portfolios and 100 size-beta ranked portfolios, respectively. When T = 330,

although there is still a range of E[R̄2
���] for a given value of ρ2

���, the range is

much narrower than the ones for E[R2
���] and hence good models are more likely to

have higher E[R̄2
���]. Therefore, for models with constant firm-specific variables, it is

advisable to use R̄2
���, instead of R2

���, to rank models.

For the case of GLS CSR of R� on X, we can compute the sample coefficient of

determination on a period-by-period basis, measured as

R2
�����(x) =

(x̃�M̃R̃�)
2

(x̃�M̃x̃)(R̃�
�M̃R̃�)

, (30)

where R̃� = V �1
2R�. The average of this time series of R2

����� can be reported as a

sample measure of goodness-of-fit for the GLS CSR, denoted as

R2
���(x) =

1

T

	∑
�=1

R2
�����(x). (31)

When x is constant over time, we can also compute the GLS coefficient of determination

between x and R̄ as

R̄2
���(x) =

(x̃�M̃ ˜̄R)2

(x̃�M̃x̃)( ˜̄R�M̃ ˜̄R)
, (32)
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where ˜̄R = V �1
2 R̄.

Similar to the case of δ2
���, the following proposition shows that both E[R2

���] and

E[R̄2
���] are linear functions of ρ2

���.

Proposition 6 For a firm-specific variable x, we have

E[R2
���(x)] = h + [1 − (N − 1)h]ρ2

���(x), (33)

E[R̄2
���(x)] = k + [1 − (N − 1)k]ρ2

���(x), (34)

where

h =
e��

2

∫ 1

0

e��u
��3

2 du, (35)

k =
e��	

2

∫ 1

0

e�	�u
��3

2 du, (36)

with a = (µ̃�M̃µ̃)/2.

Therefore, to the extent that we can justify using ρ2
��� as a measure of goodness-of-fit,

we can also use either R2
��� or R̄2

��� to rank models. In practice, since h 
 k when

T is large, it is a lot easier to distinguish good models from bad models by using R̄2
���

than by using R2
���.

5. Concluding Remarks

Since asset pricing models are at best approximations, testing whether or not an asset

pricing model is literally true is not very interesting by itself. For most practical pur-

poses, the most interesting part of empirical analysis of asset pricing models rests in

the evaluation and comparison of models. In this paper, we advocate that such a task

can only be accomplished by making it clear about what we mean by a better model.

When the purpose of an asset pricing model is to explain the cross-sectional differences

of expected returns, the goodness of a should depend only on how many of the variations
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in the expected returns of the test assets are explained by the explanatory variables in

the model. Test statistics invariably depend also on the variance-covariance matrix of

the returns on the test assets, and hence statistical significance of a variable does not

always tell us about its explanatory power. This misalignment is not surprising since

test statistics are designed for the purpose of testing a model but not for the purpose of

comparison and ranking of models.

Instead of merely pointing out that statistical significance does not always imply

good explanatory power, we establish a linkage between the two in the sense that the

statistical significance of the t-ratio of a variable allows us to determine the lower bound

and upper bound for its explanatory power (and vice versa). This linkage allows us to

understand better when misalignment of statistical significance and explanatory power

occurs. For the case of the commonly used OLS CSR, we show that the t-ratios are

grossly inappropriate for model selection because (i) good models or even the true model

do not always have high expected value of OLS t-ratios and (ii) in many situations, a

high OLS t-ratio attained by a candidate variable often suggests that the variable does

not explain the expected returns of the test assets very well. For the case of true GLS

CSR, the t-ratio is more desirable because the true model will be found priced more

often than the wrong models. However, for the purpose of model comparison, there is

still a misalignment of statistical significance with explanatory power in general. Based

on these results, we suggest that model selection based exclusively on t-ratios can lead

to acceptance of many poor variables. Therefore, it is extremely important to include

other diagnostics, such as the sample counterparts of the measure of goodness-of-fit, in

model comparison.
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Appendix

Proof of Proposition 1: (i) From (2) and the assumption that E[R�] = µ, it is easy to

verify that

E[γ̂���
� ] = (X �X)�1(X �µ) = γ���. (A1)

Thus, γ̂���
� is an unbiased estimator of γ���.

(ii) It is easy to verify that

γ̂���
1� =

x�MR�

x�Mx
. (A2)

Therefore, from the independence and normality assumption of R�, we have

γ̂���
1�

i�i�d�∼ N

(
γ���

1 ,
x�MV Mx

(x�Mx)2

)
. (A3)

Using results in Johnson, Kotz and Balakrishnan (1995, Ch. 31), t��� has a noncentral

t-distribution with its square of noncentrality parameter equal to δ2
���(x).

Proof of Proposition 2: We begin by citing a well known result here for later use. By

the Cauchy-Schwarz inequality, for a fixed vector a and a square matrix B,

(z�a)2 = [(z�B
1
2 )(B�1

2 a)]2 ≤ (z�Bz)(a�B�1a)

with equality holds if and only if z is proportional to B�1a. Therefore,

max
�

(z�a)2

z�Bz
= a�B�1a, (A4)

and the maximum is attained if and only if cz = B�1a for some constant c �= 0.

Since MV M = PΛP � where P and Λ are defined in the main text before Propo-

sition 3, we have PP � = M 19 and

δ2
���(x) =

T (x�Mµ)2

x�MV Mx
=

T (x�PP �µ)2

x�PΛP �x
=

T (z�a)2

z�Λz
(A5)

19Since 1′
NPΛP ′1N = 1′

NMV M1N = 0, P ′1N must be a zero vector, 0N−1, because Λ is
positive definite. Therefore, the columns of P are orthogonal to 1N and P is a basis for [1N ]⊥. The
projection matrix onto [1N ]⊥ is M = P (P ′P )−1P ′ = PP ′.
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by writing z = P �x and a = P �µ. Invoking our earlier results, µ is one of the xs

which maximize δ2
���(x) if and only if cP �µ = Λ�1P �µ, or cPΛP �µ = PP �µ, or

cMV Mµ = Mµ for some constant c �= 0. This completes the proof. Q.E.D.

Proof of Proposition 3: The cases ρ2
��� = 0 and 1 are easy to prove. For the case ρ2

0 ∈
(0, 1), we will provide a constructive proof for calculating the maximal and minimal

δ2
���(x) for ρ2

���(x) = ρ2
0, after we introduce some notations. When µ �= k1� for

any scalar k, µ�Mµ �= 0 and we can define

η =
P �µ

(µ�Mµ)
1
2

≡ (η1, . . . , η��1)
�, (A6)

where P is defined in the main text before Proposition 3. Since η�η = 1, η2

 measures

the fraction of the cross-sectional variance of µ that is explained by the i-th column of

P .20 Denote the set of i such that η
 �= 0 as S, i.e.,

S = {i : η
 �= 0, 1 ≤ i ≤ N − 1}. (A7)

For each nonzero eigenvalue of MV M , λ
, we denote the set of j such that λ� = λ


as S
, i.e.,

S
 = {j : λ� = λ
, 1 ≤ j ≤ N − 1}. (A8)

That Mµ �= cMV Mµ is equivalent to η �= cΛη where Λ is defined in the proof of

Proposition 2. It follows that there are at least two elements i and j from S such that

λ
 �= λ�. For 0 < ρ2
0 < 1, we define two sets21

Φ�
1 = {φ : f�(φ) = ρ2

0},

Φ�
2 = {φ : φ = λ
 for some i if f�(λ
) > ρ2

0, and

η
(λ
 − λ�) = 0 for at least one j �= i},

where

f�(φ) =




[
�
���

�2
�
(����)�1]

2

�
���

�2
�
(����)�2 , if φ �= λ
, i ∈ S;∑

���� η2
� , if φ = λ
, i ∈ S.

(A9)

20This is because the columns of P are orthogonal to each other and to 1N (i.e., their mean is 0),
and their norm is 1, elements of η are the correlation coefficients between µ and the columns of P .

21In the usual case that ηi �= 0 for all i and λis are distinct, Φλ
2 is empty.
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Note both Φ�
1 and Φ�

2 depend on ρ2
0.

22 We begin by listing some properties of f�.

(i) f�(φ) is continuous on (−∞, ∞).

(ii) 0 ≤ f�(φ) ≤ 1; lim���� f�(φ) = lim��� f�(φ) = 1.

(iii) For 0 < ρ2
0 < 1, Φ�

1 contains at least two elements.

These properties can be easily verified as follows:

(i) The continuity needs to be verified only at φ = λ
, i ∈ S. By L’Hôpital’s rule,

lim���� f�(φ) =
∑

���� η2
� , so f�(φ) is continuous.

(ii) Let

g�(φ) =
∑

��

η2



λ
 − φ
, φ �= λ
, i ∈ S, (A10)

h�(φ) =
∑

��

η2



(λ
 − φ)2
, φ �= λ
, i ∈ S. (A11)

Then by the Cauchy-Schwarz inequality and
∑


�� η2

 = η�η = 1,

g�(φ)2 =

(∑

��

η
[η
(λ
 − φ)�1]

)2

≤
(∑


��
η2



)(∑

��

η2

 (λ
 − φ)�2

)
= h�(φ).

Therefore 0 ≤ f�(φ) = g�(φ)2/h�(φ) ≤ 1. The proof for the limit as φ → ±∞ is

elementary.

(iii) It is easy to check that for all i ∈ S, lim���
�

�

g�(φ) = ∞, and lim���
+
�

g�(φ) =

−∞. Since S contains at least two elements for which the eigenvalues are distinct, take

i and j from S such that λ
 < λ� are closest to each other. Since g�(φ) is continuous

on any closed interval contained in (λ
, λ�), there exists a φ� in between such that

g�(φ
�) = 0. Since h�(φ

�) > 0, we also have f�(φ
�) = 0. From (i) and (ii), there exist

at least two φ’s, one less than φ� and the other greater than φ�, such that f�(φ) = ρ2
0

for 0 < ρ2
0 < 1.

22By multiplying the numerator and denominator of fλ(φ) by
∏

i∈S(λi − φ)2, we can see that the
solutions to fλ(φ) = ρ2

0 are in fact solutions to a polynomial, which are easy to obtain numerically.
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Now we are ready to prove the rest of Proposition 3. For 0 < ρ2
0 < 1, the solution

to the minimal and maximal δ2
��� given ρ2

���(x) = ρ2
0 are given by

min
�:�2

���
(�)=�2

0

δ2
���(x) =

T (µ�Mµ)ρ2
0

φ�� +
�2
0�

���
�2
�
(������)�1

, (A12)

max
�:�2

���
(�)=�2

0

δ2
���(x) =

T (µ�Mµ)ρ2
0

φ� +
�2
0�

���
�2
�
(�����)�1

, (A13)

where φ� = min Φ�
1 ∪ Φ�

2 and φ�� = max Φ�
1 ∪ Φ�

2 . The proof for maximal δ2
��� is

given here. The proof for minimal is similar. First, the scale of x does not change δ2
���

and ρ2
���, so we can normalize x such that x�Mx = 1. Let y = P �x. Then

ρ2
��� = (η�y)2, (A14)

δ2
��� =

T (µ�Mµ)(η�y)2

y�Λy
. (A15)

Therefore, the maximization of δ2
��� for a given ρ2

��� = ρ2
0 is the solution to the

following problem.

min
�

y�Λy, s.t. η�y = ρ0, y�y = 1.

The Lagrange function of the problem is,

L(y, τ, φ) =
1

2
y�Λy − τ(η�y − ρ0) − 1

2
φ(y�y − 1). (A16)

The first order condition is

(Λ − φI��1)y = τη. (A17)

Let us consider φ �= λ
, i = 1, . . . , N − 1. Then, y = τ(Λ − φI��1)
�1η. From the

linear constraint,

τ =
ρ0

η�(Λ − φI��1)�1η
=

ρ0∑

�� η2


 (λ
 − φ)�1
. (A18)

Combined with the quadratic constraint,

[
η�(Λ − φI��1)

�1η
]2

= ρ2
0η
�(Λ − φI��1)

�2η, (A19)
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which can be rewritten as f�(φ) = ρ2
0.

There are possibly other solutions to the first order condition for which φ = λ


for some i. There are two cases to consider. (a) If S
 ∩ S is not empty, then there is

at least one j ∈ S
 such that η� �= 0. For the first order condition to hold, τ must

be zero, y� = 0 for all j /∈ S
,
∑

���� y�η� = ρ0, and
∑

���� y2
� = 1. From the

Cauchy-Schwarz inequality, f�(λ
) =
∑

���� η2
� ≥ (

∑
���� y�η�)

2/
∑

���� y2
� = ρ2

0. If

the equality holds, then λ
 ∈ Φ�
1 . Otherwise, λ
 ∈ Φ�

2 .23 (b) If S
 ∩ S is empty, then

η� = 0 for all j ∈ S
. The first order condition requires y� = τη�/(λ� − λ
) for

j /∈ S
. The linear constraint implies

τ =
ρ0∑

� ���� η2
� (λ� − λ
)�1

=
ρ0∑

��� η2
� (λ� − λ
)�1

.

Summing up y2
� for j /∈ S
, we have

∑
� ����

y2
� = τ 2

∑
� ����

η2
�

(λ� − λ
)2
=

ρ2
0

∑
��� η2

� (λ� − λ
)
�2[∑

��� η2
� (λ� − λ
)�1

]2 =
ρ2

0

f�(λ
)
.

If
∑

� ���� y2
� = 1, we have f�(λ
) = ρ2

0 and λ
 ∈ Φ�
1 . If

∑
� ���� y2

� < 1, then λ
 ∈ Φ�
2 .

On the other hand, it is easy to see that all φ ∈ Φ�
1 ∪ Φ�

2 with corresponding τ s and

ys are indeed solutions to the first order condition.

Now for φ ∈ Φ�
1 ∪ Φ�

2 , premultiplying y� to the first order condition gives,24

y�Λy = φ + τρ0 = φ +
ρ2

0∑

�� η2


 (λ
 − φ)�1
. (A20)

We now show that the minimum of y�Λy is attained at the minimum in Φ�
1 ∪ Φ�

2 . By

23In the case when λi has multiplicity of one and i ∈ S, we can only have fλ(λi) = ρ2
0 but not

fλ(λi) > ρ2
0, and λi cannot be in Φλ

2 . This requirement is reflected in the definition of Φλ
2 .

24If φ = λj, j ∈ S, then τ = 0 but (A20) still holds since limφ→λj

ρ2
0�

i∈S η2
i (λi−φ)−1 = 0.
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(iii) we can choose φ1 and φ2, with φ1 < φ2, either from Φ�
1 or from Φ�

2 . By definition,

ρ4
0 ≤ f�(φ1)f�(φ2) =

[∑

��

�2
�

(����1)

]2 [∑

��

�2
�

(����2)

]2
[∑


��
�2
�

(����1)2

] [∑

��

�2
�

(����2)2

]

<

[∑

��

�2
�

(����1)

]2 [∑

��

�2
�

(����2)

]2
[∑


��
�2
�

(����1)(����2)

]2 , (A21)

with the last inequality being the Cauchy-Schwarz inequality. Note that the Cauchy-

Schwarz inequality is strict because there are at least two distinct λ
s, for which i ∈ S.

Therefore,

y(φ2)
�Λy(φ2) − y(φ1)

�Λy(φ1)

= (φ2 − φ1)


1 −

ρ2
0

∑

��

�2
�

(����1)(����2)∑

��

�2
�

(����1)

∑

��

�2
�

(����2)


 > 0.

This inequality also shows that the set of {δ2
���(x) : ρ2

���(x) = ρ2
0} for a given

ρ2
0 ∈ (0, 1) is more than a singleton.

Finally, that max�:�2
���

(�)=�2
0
δ2
���(x) is not a monotonically increasing function of

ρ2
0 follows from Proposition 2 and the fact that max�:�2

���
(�)=�2

0
δ2
���(x) is continuous

in ρ2
0. This completes the proof. Q.E.D.

Proof of Lemma 1: Let H = (P, 1��
�

) where P is defined in the main text before

Proposition 3. H is orthonormal and hence the eigenvalues of H �V H are the same as

the eigenvalues of V . But since

H �V H =

(
P �V P � �� 1��

�
1�
�
� ��
�

1�
�
� 1�
�

)
=

(
Λ � �� 1��

�
1�
�
� ��
�

1�
�
� 1�
�

)
,

then by the Sturmian interlacing inequalities (see for example, Horn and Johnson (1990,

p.185)), (8) holds. Q.E.D.

Proof of Lemma 2: Define P and Λ as in the proof of Proposition 2. By the Kantorovich’s

inequality (see for example, Horn and Johnson (1990, p.444)), for any (N − 1)-vector
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y, we have

(y�y)2 ≥ 4λ1λ��1

(λ1 + λ��1)2
(y�Λy)(y�Λ�1y), (A22)

with the equality holds when y = [k, 0, . . . , 0, k]� for some constant k �= 0.25 From

the proof of Proposition 2, we have cP �x� = Λ�1P �µ. Then by writing y = Λ�
1
2 P �µ,

we have

ρ2
���(x�) =

(x��Mµ)2

(x��Mx�)(µ�Mµ)
=

(µ�P �Λ�1P �µ)2

(µ�PΛ�2P �µ)(µ�PP �µ)

=
(y�y)2

(y�Λ�1y)(y�Λy)
≥ 4λ1λ��1

(λ1 + λ��1)2
,

with equality holds when y = [k, 0, . . . , 0, k]� for some constant k �= 0. Since y�Λy =

µ�Mµ, this implies k2 = ����
�1+���1

and hence

η2

 =

λ
y
2



µ�Mµ
=

{
��

�1+���1
if i = 1 or N − 1;

0 otherwise.

where η
 is defined in (A6). Q.E.D.

Proof of Proposition 4: The proof is almost identical to the proof of Proposition 2, so

we only sketch out the beginning of it. Define Λ2 as a diagonal matrix with its diagonal

elements equal to the N − 2 nonzero eigenvalues of M2V M2 and P2 an N × (N − 2)

orthonormal matrix with its columns equal to the eigenvectors of M2V M2 associated

with Λ2. We have M2V M2 = P2Λ2P
�
2 and M2 = P2P

�
2. The rest of the proof follows

exactly like the proof of Proposition 2 by replacing P with P2, Q with Q2, and Λ with

Λ2. Q.E.D.

Proof of Proposition 5: Since the proof of E[R̄2
���] is almost identical to that of

E[R2
���], we will only prove the case of E[R2

���] here. To obtain the analytical expres-

sion of H , we define ν = Λ�
1
2 P �µ ≡ (ν1, . . . , ν��1)

� and z = Λ�
1
2 v ∼ N(ν, I��1),

we can write

H = E

[
vv�

v�v

]
= Λ

1
2 E

[
zz�

z�Λz

]
Λ

1
2 . (A23)

25When there are multiple smallest or largest eigenvalues of Λ, the equality can hold for other values
of y.
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Using results of Sawa (1978) and Hoque (1985), the (i, j)th element of H is given by

√
λ
λ�

∫ �

0

exp

(
��[(���1+2�Λ)�1����1]�

2

)
|I��1 + 2tΛ|1

2

[
δ
�

1 + 2tλ


+
ν
ν�

(1 + 2tλ
)(1 + 2tλ�)

]
dt,

(A24)

where δ
� is the Kronecker delta function which equals one when i = j and zero

otherwise. It is easy to compute H numerically to any desirable precision.26 Let

ξ1 ≥ · · · ≥ ξ��1 > 0 be the eigenvalues of H and denote Ξ = Diag(ξ1, . . . , ξ��1).

Also let U be an orthonormal matrix with its columns equal to the eigenvectors of H

so that H = UΞU �. When µ �= k1� for any scalar k, µ�Mµ �= 0 and we can define

η as

η =
U �P �µ

(µ�Mµ)
1
2

≡ (η1, . . . , η��1)
�, (A25)

S and S
 as in (A7) and (A8). Also define f similar to f� as in (A9), we have

f (φ) =




[
�
���

�2
�
( ���)�1]

2

�
���

�2
�
( ���)�2 , if φ �= ξ
, i ∈ S;∑

���� η2
� , if φ = ξ
, i ∈ S.

(A26)

Since the scale of x does not change E[R2
���] and ρ2

���, we can normalize x such

that x�Mx = 1. Defining v = P �R�, we have

E[R2
���(x)] = E[R2

�����(x)] = E

[
(x�MR�)

2

(x�Mx)(R�
�MR�)

]

= (x�P )E

[
vv�

v�v

]
(P �x) = (x�P )H(P �x) = x�PUΞU �P �x.

Let y = U �P �x. Then ρ2
��� = (η�y)2, and E[R2

���] = y�Ξy. Therefore, the

maximization of E[R2
���] for a given ρ2

��� = ρ2
0 is the solution to the following

problem.

max
�

y�Ξy, s.t. η�y = ρ0, y�y = 1.

It is easy to see that Mµ �= cPHP �µ for any constant c implies there exist at least

two elements i and j from S such that ξ
 �= ξ�. With Φ 
1 and Φ 

2 defined similarly to

26To facilitate numerical integration, we can use a change of variable of u = 1/(1 + 2tλ1) and the
integral can be evaluated over u from 0 to 1.
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Φ�
1 and Φ�

2 in the proof of Proposition 3 and following the proof there, we have when

x �= k1� for any scalar k,

min
�:�2

���
(�)=�2

0

E[R2
���(x)] = φ� +

ρ2
0∑


�� η2

 (ξ
 − φ�)�1

, (A27)

max
�:�2

���
(�)=�2

0

E[R2
���(x)] = φ�� +

ρ2
0∑


�� η2

 (ξ
 − φ��)�1

, (A28)

where φ� = min Φ 
1 ∪ Φ 

2 and φ�� = max Φ 
1 ∪ Φ 

2. Q.E.D.

Proof of Proposition 6: Since the proof of E[R̄2
���] is almost identical to that of

E[R2
���], we will only prove the case of E[R2

���] here. We first define z = Q�R̃� ∼
N(Q�µ̃, I��1) where Q = V

1
2PΛ�

1
2 , we have QQ� = M̃ and

E[R2
���(x)] = E[R2

�����(x)] = E

[
(x̃�M̃R̃�)

2

(x̃�M̃x̃)(R̃�
�M̃R̃�)

]

=
(x̃�Q)

(x̃�M̃x̃)
1
2

E

[
zz�

z�z

]
(Q�x̃)

(x̃�M̃x̃)
1
2

. (A29)

Define ν = Q�µ̃, then from (A24), the (i, j)th element of E
[
���

���

]
is equal to

e�
�
�
�

2

∫ �

0

exp
(

���
2(1+2�)

)
(1 + 2t)

��1
2

[
δ
�

1 + 2t
+

ν
ν�

(1 + 2t)2

]
dt. (A30)

With a change of variable of u = 1/(1 + 2t) and define a = (ν�ν)/2 = (µ̃�M̃µ̃)/2,

we have

E

[
zz�

z�z

]
=

(
e��

2

∫ 1

0

e��u
��3

2 du

)
I��1 +

(
e��

2

∫ 1

0

e��u
��1

2 du

)
νν�

= hI��1 +

[
1 − (N − 1)h

2a

]
νν�, (A31)

with the last equality obtained from integration by parts. Therefore,

E[R2
���(x)] =

h(x̃�M̃x̃)

x̃�M̃x̃
+

[
1 − (N − 1)h

µ̃�M̃µ̃

]
(x̃�M̃µ̃)2

x̃�M̃x̃

= h + [1 − (N − 1)h]ρ2
���(x). (A32)

This completes the proof. Q.E.D.
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Figure 1
Lower Bound and Upper Bound of δ2

��� as a Function of ρ2
��� for 10 Size Ranked

Portfolios when T = 330
The figure presents the lower bound and upper bound of the square of noncentrality parameter
(δ2

���(x)) of the t-ratio of the slope coefficient obtained in OLS cross-sectional regression of
regressing returns on 10 test assets on firm-specific variables with different explanatory power
on the expected returns using 330 observations. The explanatory power of a firm-specific
variable x is measured as ρ2

���(x) = (����)2

(����)(����)
. The parameters of the 10 test assets

are given in Table 1. The maximum δ2
���(x) is reached when ρ2

���(x) = 0.114.
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Figure 2
Lower Bound and Upper Bound of δ2

��� as a Function of ρ2
��� for 100 Size-Beta

Ranked Portfolios when T = 330
The figure presents the lower bound and upper bound of the square of noncentrality parameter
(δ2

���(x)) of the t-ratio of the slope coefficient obtained in OLS cross-sectional regression of
regressing returns on 100 size-beta ranked portfolios on firm-specific variables with different
explanatory power on the expected returns using 330 observations. The explanatory power of a
firm-specific variable x is measured as ρ2

���(x) = (����)2

(����)(����)
. The parameters of the 100

size-beta ranked portfolios are determined based on the sample estimates of the data used by
Jagannathan and Wang (1996). The maximum δ2

���(x) is reached when ρ2
���(x) = 0.272.
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Figure 3
Lower Bound and Upper Bound of ρ2

��� for Firm-specific Variables with Different
Absolute Values of Expected t-ratio for 10 Size Ranked Portfolios when T = 330
The figure presents the lower bound and upper bound of the explanatory power of a firm-specific
variable x on the expected return when the variable has a given absolute value of expected
t-ratio of the slope coefficient in the OLS cross-sectional regression of regressing returns on 10
test assets on the firm-specific variable using 330 observations. The explanatory power of a
firm-specific variable x is measured as ρ2

���(x) = (����)2

(����)(����)
. The parameters of the 10

test assets are given in Table 1.
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Figure 4
Lower Bound and Upper Bound of δ2

���(x1|x�) as a Function of ρ2
���(x1|x�) for

10 Size Ranked Portfolios when T = 330
The figure presents the lower bound and upper bound of the square of noncentrality parameter
(δ2

���(x1|x�)) of the t-ratio of the slope coefficient of a firm-specific variable with different
marginal explanatory power on the expected returns using 330 observations. The t-ratio of the
firm-specific variable x1 is obtained in a multiple OLS cross-sectional regression of regressing
returns on 10 test assets on this firm-specific variable together with another firm-specific vari-
able x� as described in Table 1. The marginal explanatory power of a firm-specific variable
x1 is measured as ρ2

���(x1|x�) = (��1�2�)2

(��1�2�1)(���2�)
where M2 is the projection matrix onto

the space orthogonal to [1� , x�]. The parameters of the 10 test assets are given in Table 1.
The maximum δ2

���(x1|x�) = 3.640 is reached when ρ2
���(x1|x�) = 0.189.
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Figure 5
Lower Bound and Upper Bound of E[R2

���] as a Function of ρ2
��� for 10 Size

Ranked Portfolios
The figure presents the lower bound and upper bound of the expected value of the average
sample coefficient of determination in an OLS cross-sectional regression of regressing returns on
10 assets on firm-specific variables with different explanatory power on the expected returns.
The explanatory power of a firm-specific variable x is measured as ρ2

���(x) = (����)2

(����)(����)
.

The parameters of the 10 test assets are given in Table 1. The maximum E[R2
���(x)] is

reached when ρ2
���(x) = 0.925.
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Figure 6
Lower Bound and Upper Bound of E[R2

���] as a Function of ρ2
��� for 100 Size-

Beta Ranked Portfolios
The figure presents the lower bound and upper bound of the expected value of the average
sample coefficient of determination in an OLS cross-sectional regression of regressing returns
on 100 size-beta ranked portfolios on firm-specific variables with different explanatory power
on the expected returns. The explanatory power of a firm-specific variable x is measured
as ρ2

���(x) = (����)2

(����)(����)
. The parameters of the 100 size-beta ranked portfolios are

determined based on the sample estimates of the data used by Jagannathan and Wang (1996).
The maximum E[R2

���(x)] is reached when ρ2
���(x) = 0.078.
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Figure 7
Lower Bound and Upper Bound of E[R̄2

���] as a Function of ρ2
��� for 10 Size

Ranked Portfolios when T = 330
The figure presents the lower bound and upper bound of the expected value of the sample
coefficient of determination in an OLS cross-sectional regression of regressing average returns
on 10 assets on firm-specific variables with different explanatory power on the expected returns.
The average returns are computed using 330 observations and the explanatory power of a firm-
specific variable x is measured as ρ2

���(x) = (����)2

(����)(����)
. The parameters of the 10 test

assets are given in Table 1.
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Figure 8
Lower Bound and Upper Bound of E[R̄2

���] as a Function of ρ2
��� for 100 Size-

Beta Ranked Portfolios when T = 330
The figure presents the lower bound and upper bound of the expected value of the sample
coefficient of determination in an OLS cross-sectional regression of regressing average returns
on 100 size-beta ranked portfolios on firm-specific variables with different explanatory power
on the expected returns. The average returns are computed using 330 observations and the
explanatory power of a firm-specific variable x is measured as ρ2

���(x) = (����)2

(����)(����)
.

The parameters of the 100 size-beta ranked portfolios are determined based on the sample
estimates of the data used by Jagannathan and Wang (1996).
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Table 1
Distribution of t-ratios and Rejection Rates of H0 : γ1 = 0 for Two Choices of
Firm-specific Variables in a Simple Cross-sectional Regression

Panel A: Firm-specific variables for 10 size portfolios
1 2 3 4 5 6 7 8 9 10

µ 1.454 1.215 1.200 1.239 1.158 1.088 1.017 1.090 0.944 0.872
x� 1.241 0.939 1.058 1.282 1.206 1.078 0.957 1.459 0.989 1.069

ρ2
���(x�) = 0.114

Panel B: Nonzero eigenvalues (λ) of MV M and correlation coefficients
of corresponding eigenvectors with expected returns (η)

1 2 3 4 5 6 7 8 9
λ 23.862 2.819 0.913 0.816 0.698 0.590 0.519 0.456 0.415
η 0.961 0.022 −0.105 0.122 −0.049 −0.014 0.115 0.132 −0.128

Panel C: Characteristics of t-ratios for T = 330
Distribution of t-ratios

OLS GLS
µ x� µ x�

δ2 3.689 14.334 14.334 10.694
|Mean| 1.925 3.795 3.795 3.278

Variance 1.012 1.028 1.028 1.023

Probability of rejecting H0 : γ1 = 0

Significance OLS GLS
Level µ x� µ x�

0.01 0.253 0.883 0.883 0.751
0.05 0.482 0.965 0.965 0.903
0.10 0.607 0.984 0.984 0.947

Panel A of the table presents two different choices of firm-specific variables used in explaining
the cross-sectional differences of expected returns of 10 portfolios. The 10 portfolio returns
are assumed to be independently distributed as N(µ, V ), where µ and V (not reported) are
set equal to the average and the estimated variance-covariance matrix of the equally weighted
monthly returns on 10 size portfolios of combined NYSE-AMEX stocks over the period July
1963 to December 1990. The first choice of firm-specific variable is µ and the second choice is
x� which maximizes δ2

���(x). Panel B presents the nonzero eigenvalues (λ) of MV M and
the correlation coefficients (η) of the corresponding eigenvectors with µ. Panel C reports the
characteristics of the t-ratios in OLS CSR and GLS CSR using µ or x� as the explanatory
variable on 330 monthly returns that are generated independently from N(µ, V ). The prob-
abilities of rejecting H0 : γ1 = 0 using the two-tailed t-test at various significance levels are
also reported.
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Table 2
Distribution of t-ratios and Rejection Rates of H0 : γ1 = 0 and H0 : γ2 = 0 for
Two Firm-specific Variables in a Multiple Cross-sectional Regression

Panel A: Firm-specific variables for 10 size portfolios

1 2 3 4 5 6 7 8 9 10
µ 1.454 1.215 1.200 1.239 1.158 1.088 1.017 1.090 0.944 0.872
x1 1.434 1.288 1.230 1.191 1.131 1.103 1.072 0.969 0.982 0.877
x� 1.241 0.939 1.058 1.282 1.206 1.078 0.957 1.459 0.989 1.069

ρ2
���(x1) = 0.886 ρ2

���(x�) = 0.114

Panel B: Characteristics of t-ratios for T = 330

Distribution of t-ratios

OLS GLS
x1 x� x1 x�

δ2 3.063 14.334 3.640 14.334
|Mean| 1.754 3.795 1.912 3.795

Variance 1.011 1.028 1.012 1.028

Probability of rejecting H0 : γ1 = 0 and H0 : γ2 = 0

Significance OLS GLS
Level x1 x� x1 x�

0.01 0.202 0.883 0.249 0.883
0.05 0.415 0.965 0.477 0.965
0.10 0.541 0.984 0.602 0.984

Panel A of the table presents the expected returns of 10 portfolios and two different firm-specific
variables used in explaining the cross-sectional differences of expected returns of the 10 portfo-
lios. The 10 portfolio returns are assumed to be independently distributed as N(µ, V ), where
µ and V (not reported) are set equal to the average and the estimated variance-covariance
matrix of the equally weighted monthly returns on 10 size portfolios of combined NYSE-AMEX
stocks over the period July 1963 to December 1990. The first firm-specific variable is x1 and
the second one is x�. The two firm-specific variables are uncorrelated with each other and they
together fully explain the cross-sectional differences of µ. Panel B reports the characteristics
of the t-ratios in multiple OLS CSR and GLS CSR using both x1 and x� as the explanatory
variables on 330 monthly returns that are generated independently from N(µ, V ). The prob-
abilities of rejecting H0 : γ1 = 0 and H0 : γ2 = 0 using the two-tailed t-test at various
significance levels are also reported.
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