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Abstract

This paper presents a general statistical framework for estimation, testing and comparison of as-

set pricing models using the unconstrained distance measure of Hansen and Jagannathan (1997).

The limiting results cover both linear and nonlinear models that could be correctly specified or

misspecified. We propose modified versions of the existing model selection tests and new pivotal

specification and model comparison tests with improved finite-sample properties. In addition, we

provide formal tests of multiple model comparison. The excellent size and power properties of

the proposed tests are demonstrated using simulated data from linear and nonlinear asset pricing

models.
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1. Introduction

It is common for financial economists to view all asset pricing models only as approximations to

reality. Although these models are likely to be misspecified, it is still useful to empirically eval-

uate the degree of misspecification and their relative pricing performance using actual data. In

their seminal paper, Hansen and Jagannathan (1997, HJ hereafter) propose measures of model

misspecification that are now routinely used for parameter estimation, specification testing and

comparison of competing asset pricing models. The unconstrained (constrained) HJ-distance mea-

sures the distance between the stochastic discount factor (SDF) of a proposed model and the set of

(nonnegative) admissible stochastic discount factors. But despite the recent advances in developing

the appropriate econometric theory for comparing asset pricing models based on the HJ-distance,

a general statistical procedure for model selection in this context is still incomplete. As a result,

many researchers are still ranking alternative models by comparing their corresponding sample HJ-

distances without any use of a formal statistical criterion that takes into account the sampling and

model misspecification uncertainty. In this paper, we provide a comprehensive statistical frame-

work for estimation, evaluation and comparison of linear and nonlinear (potentially misspecified)

asset pricing models based on the unconstrained HJ-distance. Given some unappealing theoretical

properties of the constrained HJ-distance (Gospodinov, Kan and Robotti, 2011), we do not consider

explicitly the sample constrained HJ-distance but the generality of our analytical framework allows

us to easily extend the main results for the unconstrained HJ-distance that we derive in this paper

to its constrained analog (a detailed econometric analysis of the sample constrained HJ-distance is

available from the authors upon request). Our framework could also be used to study the statistical

properties of other measures of model misspecification.

The econometric methodology for using the unconstrained HJ-distance as a specification test

for linear and nonlinear models is developed by Hansen, Heaton and Luttmer (1995), Jagannathan

and Wang (1996) and Parker and Julliard (2005). Kan and Robotti (2009) provide a statistical

procedure for comparing linear asset pricing models based on the unconstrained HJ-distance. Fur-

thermore, Kan and Robotti (2009) propose standard errors for the SDF parameter estimates that

are valid for misspecified models. Almeida and Garcia (2012) consider estimation and inference in

SDF models based on more general minimum discrepancy measures of model misspecification. The

objective of this paper is to provide a unifying framework for improved statistical inference, spec-
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ification testing and (pairwise and multiple) model comparison based on the sample HJ-distances

of competing linear and nonlinear asset pricing models.

Our main contributions can be summarized as follows. First, we propose a new Lagrange

multiplier test for correct model specification. This new specification test is asymptotically chi-

squared distributed and enjoys improved finite-sample properties compared to the specification test

based on the HJ-distance. Second, we derive the non-degenerate joint asymptotic distribution of the

parameters and the Lagrange multipliers which are not always asymptotically normally distributed.1

Third, we improve upon the model selection testing procedures in the existing literature. This is

achieved by incorporating the appropriate null hypotheses which leads to simpler model comparison

tests that require the estimation of far fewer parameters than the existing testing procedures.

While the practice of not imposing the null hypotheses in constructing the test statistics can be

justified based on asymptotic arguments, it produces the undesirable outcome of comparing test

statistics that are positive by construction (as in the nested model case discussed in Section 3)

to distributions that can take on negative values. Our modifications are new to the literature

on model selection tests and lead to substantial power improvements in situations with many

test assets (moment conditions). Importantly, the proposed tests can be easily adapted to other

setups including the quasi-likelihood framework of Vuong (1989). Fourth, we propose pivotal

(asymptotically chi-squared distributed) versions of the model comparison tests that are easier to

implement and analyze than their weighted chi-squared counterparts. The chi-squared tests appear

to possess excellent finite-sample properties and their improved power proves to be particularly

important in situations where they are used as pre-tests in sequential testing procedures for non-

nested models. Fifth, we develop tests for multiple model comparison as well as fast numerical

algorithms for computing their asymptotic p-values.2 Finally, we investigate the finite-sample

performance of the proposed inference procedures using simulated data from some popular linear

and nonlinear asset pricing models.

The rest of the paper is organized as follows. Section 2 introduces the population and sample

HJ-distance problems. It also presents the basic assumptions and the asymptotic properties of

the sample HJ-distance and its corresponding estimators. Section 3 develops our pairwise and

1A more complete analysis of this problem is presented in Gospodinov, Kan and Robotti (2012).
2The Matlab codes for implementing all the statistical tests and procedures discussed in the paper are available

upon request.
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multiple model comparison tests based on the sample HJ-distances. Section 4 studies the finite-

sample properties of our testing procedures using Monte Carlo simulation experiments. Section 5

concludes. Proofs are collected in the Appendix and some additional theoretical and simulation

results are provided in an online appendix available on the authors’ websites.

The paper adopts the following notation. Let
A∼ stand for “asymptotically distributed as,”

χ2
p signify a chi-squared random variable with p degrees of freedom, |w| = (w′w)

1
2 denote the

Euclidean norm of a vector w and ||A|| =
√

tr(A′A) be the Euclidean or Frobenius norm of

a matrix A, where tr(·) is the trace operator. Finally, let Z = (Z1, . . . , Zs)
′ be a vector of s

independent standard normal random variables, and let ξ = (ξ1, . . . , ξs)
′ be a vector of s real

numbers. Then, Fs(ξ) =
∑s

i=1 ξiZ
2
i denotes a random variable which is distributed as a weighted

sum of s independent chi-squared random variables with one degree of freedom.

2. Estimation and model evaluation based on the HJ-distance

2.1. Population HJ-distance

Let xt denote a vector of payoffs of n test assets at the end of period t and qt−1 be the corresponding

costs of these n assets at the end of period t− 1 with E[qt−1] 6= 0n.3 This setup can accommodate

both gross and excess returns on test assets as well as payoffs of trading strategies that are based

on time-varying information. In addition, we assume that U = E[xtx
′
t] is nonsingular so that none

of the test assets is redundant.

Let mt represent an admissible SDF at time t and letM be the set of all admissible SDFs. An

SDF mt is admissible if it prices the test assets correctly, i.e.,4

E[xtmt] = E[qt−1]. (1)

Suppose that yt(γ) is a candidate SDF at time t that depends on a k-vector of unknown parameters

γ ∈ Γ, where Γ is the parameter space of γ. An asset pricing model is correctly specified if there

exists a γ ∈ Γ such that yt(γ) ∈ M. The model is misspecified if yt(γ) 6∈ M for all γ ∈ Γ.

3When E[qt−1] = 0n, the mean of the SDF cannot be identified and researchers have to choose some normalization
of the SDF (see, for example, Kan and Robotti, 2008).

4Strictly speaking, the set of admissible SDFs should be defined in terms of conditional expectations. In this
paper, we use an unconditional version of the fundamental pricing equation. This, in principle, could be justified by
incorporating conditioning information through scaled payoffs (see, for example, Section 8.1 in Cochrane, 2005).
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When the asset pricing model is misspecified, we are interested in measuring the degree of model

misspecification. HJ suggest using

δ = min
γ∈Γ

min
mt∈M

(
E[(yt(γ)−mt)

2]
) 1

2 (2)

as a misspecification measure of yt(γ). We refer to δ as the HJ-distance measure.

Instead of solving the above primal problem to obtain δ, HJ suggest that it is sometimes more

convenient to solve the following dual problem:

δ2 = min
γ∈Γ

max
λ∈<n

E[yt(γ)2 − (yt(γ)− λ′xt)2 − 2λ′qt−1], (3)

where λ is an n-vector of Lagrange multipliers.

Let θ = [γ′ , λ′]′ and denote by θ∗ = [γ∗′ , λ∗′]′ the pseudo-true value that solves the population

dual problem in (3):

θ∗ = arg min
γ∈Γ

max
λ∈<n

E[φt(θ)], (4)

where φt(θ) ≡ yt(γ)2 −mt(θ)
2 − 2λ′qt−1 and mt(θ) ≡ yt(γ) − λ′xt. Note that yt(γ

∗) prices the n

test assets correctly if the vector of pricing errors is zero, i.e.,

e(γ∗) = E[xtyt(γ
∗)− qt−1] = 0n. (5)

In this case, yt(γ
∗) ∈M, λ∗ = 0n and we refer to γ∗ as the true value.5

By rearranging the dual problem in (3), it is easy to show that λ∗ = U−1e(γ∗) and

δ2 = e(γ∗)′U−1e(γ∗). (6)

While the quadratic form in the pricing errors in (6) has been widely used in the empirical finance

literature for parameter estimation, model evaluation and comparison, the potential usefulness of

the information regarding model specification contained in the Lagrange multipliers has been largely

ignored. In this paper, we explicitly exploit this information to develop a Lagrange multiplier model

specification test.

5The optimization problem in (4) bears strong resemblance to the structure of the Euclidean likelihood problem
defined as minγ maxλ E[h(λ′e(γ))] with h(ς) = − 1

2
ς2− ς. Other choices of h(ς) give rise to some popular members of

the class of generalized empirical likelihood (GEL) estimators. See Almeida and Garcia (2012) for further discussion
of the class of GEL estimators in the context of asset pricing models. While the analysis in this paper can be easily
extended to GEL estimators, we choose to present our main results for the HJ-distance measure given its popularity in
empirical asset pricing, nice economic (maximum pricing error) interpretation and computational simplicity (closed-
form solution for the Lagrange multipliers).
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2.2. Sample estimators and assumptions

Since the population HJ-distance of a model and its associated parameters are unobservable, they

have to be estimated from the data. The estimator of θ∗ in (4) is obtained as the solution to the

sample dual problem

θ̂ =

[
γ̂

λ̂

]
= arg min

γ∈Γ
max
λ∈<n

1

T

T∑
t=1

φt(θ). (7)

Alternatively, let et(γ) = xtyt(γ) − qt−1, eT (γ) = 1
T

∑T
t=1 et(γ) and Û = 1

T

∑T
t=1 xtx

′
t. Then, the

estimator θ̂ = (γ̂′, λ̂
′
)′ can be obtained sequentially as

γ̂ = arg min
γ∈Γ

eT (γ)′Û−1eT (γ), (8)

and λ̂ = Û−1eT (γ̂).

In the following analysis, we appeal to the empirical process theory to derive the limiting

behavior of the estimators and test statistics under correctly specified and misspecified models.

The main regularity conditions for the consistency and the asymptotic distribution theory are

listed below. They include restrictions on the dependence of the data, identification conditions for

the pseudo-true values and some standard assumptions for deriving the limiting distributions.

Assumption A. Assume that (i) φt(θ) is m-dependent, (ii) the parameter space Θ is compact, (iii)

φt (θ) is continuous in θ ∈ Θ almost surely, (iv) |φt (θ1)− φt(θ2)| ≤ At |θ1 − θ2| ∀ θ1, θ2 ∈ Θ, where

At is a bounded random variable that satisfies limT→∞
1
T

∑T
t=1E[|At|2+ω] < ∞ for some ω > 0,

(v) sup θ∈ΘE[|φt(θ)|2+ω] < ∞ for some ω > 0, (vi) the population dual problem (4) has a unique

solution θ∗ which is in the interior of Θ.

Assumptions A(i)–A(v) ensure the stochastic equicontinuity of φt (θ) (see Andrews, 1994 and

Stock and Wright, 2000) and imply that

sup θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

φt(θ)− E[φt(θ)]

∣∣∣∣∣ p→ 0. (9)

The m-dependence can be relaxed although results for empirical processes with more general de-

pendence structure are still limited (see, for instance, Andrews, 1993). Assumption A(vi) is an

identification condition that ensures the uniqueness of the pseudo-true value θ∗. The uniform

convergence in (9) and Assumption A(vi) are sufficient for establishing the consistency of θ̂.
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Let

H ≡

[
Hγγ H ′λγ

Hλγ Hλλ

]
=
∂2E[φt(θ

∗)]

∂θ∂θ′
(10)

and

M ≡

[
Mγγ M ′λγ

Mλγ Mλλ

]
= lim

T→∞
Var

[
1√
T

T∑
t=1

∂φt(θ
∗)

∂θ

]
. (11)

The next assumption provides conditions for the existence and uniform convergence of the limiting

matrices in (10) and (11).

Assumption B. Let N (θ∗) be a neighborhood of θ∗. Assume that (i) E[φt(θ)] is twice continuously

differentiable in θ for θ ∈ N (θ∗), (ii) supθ∈N (θ∗)

∥∥∥∂2E[φt(θ)]
∂θ∂θ′

∥∥∥ <∞ and H is of full rank, (iii) M is

a finite positive definite matrix when δ > 0, or Mλλ is a finite positive definite matrix when δ = 0.

Following Andrews (1994), let ht(θ) = ∂φt(θ)/∂θ and define the empirical process
√
T v̄T (θ),

where

v̄T (θ) =
1

T

T∑
t=1

vt(θ) ≡
1

T

T∑
t=1

(ht(θ)− E[ht(θ)]). (12)

Assumption C below ensures that
√
T v̄T (θ) obeys the central limit theorem.

Assumption C. Assume that vt(θ) satisfies the conditions: (i) |vt (θ1)− vt (θ2)| ≤ Bt |θ1 − θ2| ∀

θ1, θ2 ∈ Θ, where Bt is a bounded random variable that satisfies limT→∞
1
T

∑T
t=1E[|Bt|2+ω] <∞

for some ω > 0, (ii) sup θ∈ΘE[|vt (θ) |2+ω] <∞ for some ω > 0.

It proves useful for our subsequent analysis to provide explicit expressions for the partitioned

matrices in (10) and (11). Let

C = E

[
ut
∂2yt(γ

∗)

∂γ∂γ′

]
, (13)

D = E

[
xt
∂yt(γ

∗)

∂γ′

]
, (14)

S =

∞∑
j=−∞

E
[
et(γ

∗)et+j(γ
∗)′
]
, (15)

where ut = e(γ∗)′U−1xt. Using the fact that

∂φt(θ
∗)

∂γ
= 2[yt(γ

∗)−mt(θ
∗)]
∂yt(γ

∗)

∂γ
, (16)

∂φt(θ
∗)

∂λ
= 2[xtmt(θ

∗)− qt−1], (17)
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and under Assumptions A, B and C, we can write

Hγγ = 2E

[
(yt(γ

∗)−mt(θ
∗))

∂2yt(γ
∗)

∂γ∂γ′

]
= 2C, (18)

Hλγ = 2E

[
xt
∂yt(γ

∗)

∂γ′

]
= 2D, (19)

Hλλ = −2E
[
xtx
′
t

]
≡ −2U, (20)

and

Mλλ = 4

∞∑
j=−∞

E
[
(xtmt(θ

∗)− qt−1)(xt+jmt+j(θ
∗)− qt+j−1)′

]
. (21)

If the model is correctly specified, we have λ∗ = 0n and yt(γ
∗) = mt(θ

∗). Then, it follows that

Hγγ = 0k×k and Mλλ = 4S. Furthermore, we have ∂φt(θ
∗)/∂γ = 0k which yields Mγγ = 0k×k

and Mλγ = 0n×k. This is the reason why Assumption B(iii) requires only Mλλ, and not M, to be

positive definite when δ = 0.

2.3. Asymptotic results

Let P denote an n× (n− k) orthonormal matrix whose columns are orthogonal to U−
1
2D and

Π =

[
Ik 0k×n

0(n−k)×k P ′U
1
2

]
. (22)

The following lemma establishes the asymptotic normality of the estimates of the SDF parameters

and of the Lagrange multipliers for misspecified and correctly specified models.

Lemma 1. Under Assumptions A, B and C,

(a) if δ > 0,
√
T (θ̂ − θ∗) A∼ N(0n+k,Σ), (23)

where Σ =
∑∞

j=−∞E[ltl
′
t+j ] with lt = [l′1t, l

′
2t]
′ given by

l1t = (C +D′U−1D)−1

[
D′U−1et(γ

∗) +

{
∂yt(γ

∗)

∂γ
−D′U−1xt

}
ut

]
, (24)

l2t = U−1[Dl1t − et(γ∗) + xtut]. (25)

(b) if δ = 0,
√
TΠ(θ̂ − θ∗) A∼ N(0n, Σ̃), (26)
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where Σ̃ =
∑∞

j=−∞E[l̃t l̃
′
t+j ] with l̃t = [l̃′1t, l̃

′
2t]
′ given by

l̃1t = (D′U−1D)−1D′U−1et(γ
∗), (27)

l̃2t = −P ′U−
1
2 et(γ

∗). (28)

The covariance matrices Σ and Σ̃ in Lemma 1 can be consistently estimated using a nonpara-

metric heteroskedasticity and autocorrelation consistent (HAC) estimator (see, for example, Newey

and West, 1987) based on the sample analogs of (24)–(25) and (27)–(28). Tests of parameter re-

strictions based on the Wald or distance metric statistics can be easily developed from the results

in Lemma 1.

While the estimator γ̂ is asymptotically normally distributed under both the null and alternative

hypotheses, the asymptotic distribution of some linear combinations of λ̂ is not always normal when

δ = 0. To illustrate this, note that when δ = 0, the expression for l2t in (25) simplifies to

l2t = [U−1D(D′U−1D)−1D′ − In]U−1et(γ
∗). (29)

Since D′l2t = 0k, the asymptotic covariance matrix of
√
T λ̂ is singular when δ = 0. This implies

that for a nonzero vector α in the span of the column space of D,
√
Tα′λ̂ is not asymptotically

normal because α′l2t = 0.6 More generally, Gospodinov, Kan and Robotti (2012) show that when

α is in the span of the column space of D, then

Tα′λ̂
d→ −z′1z2, (30)

where z1 and z2 are jointly normally distributed vectors of random variables.

The possible breakdown in the asymptotic normality of
√
T λ̂ is the reason why in Lemma 1

we report the asymptotic distribution of
√
TP ′U

1
2 λ̂ which always has a non-degenerate asymptotic

normal distribution. It is also interesting to note that premultiplying λ̂ by P ′U
1
2 is similar in spirit

to the decomposition of Sowell (1996) in which the n-vector of normalized population moment

conditions U−
1
2 et(γ

∗) is decomposed into k identifying restrictions used for the estimation of γ

that characterize the space of identifying restrictions and (n− k) over-identifying restrictions that

characterize the space of over-identifying restrictions. This type of decomposition provides the

6Hansen, Heaton and Luttmer (1995, Proposition 4.1) present the asymptotic distribution of the estimated La-
grange multipliers when the SDF does not have parameters. In this case,

√
T λ̂ has a non-degenerate asymptotic

normal distribution even when δ = 0.
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basis for establishing the limiting distribution of the test for over-identifying restrictions. Next, we

use the asymptotic result for
√
TP ′U

1
2 λ̂ in part (b) of Lemma 1 to develop a Lagrange multiplier

(LM) test for model specification.

Theorem 1. Let Ŝ be a nonparametric HAC estimator of S and P̂ be an orthonormal matrix

whose columns are orthogonal to Û−
1
2 D̂ with D̂ = 1

T

∑T
t=1

[
xt
∂yt(γ̂)
∂γ′

]
. Define the LM statistic as

LMλ̂ ≡ T λ̂
′
Û

1
2 P̂
(
P̂ ′Û−

1
2 ŜÛ−

1
2 P̂
)−1

P̂ ′Û
1
2 λ̂. (31)

Then, under H0 : δ = 0 and Assumptions A, B and C,

LMλ̂

A∼ χ2
n−k. (32)

Since δ = 0 if and only if λ = 0n, the LM test in Theorem 1 provides an alternative model

specification test that is based on the distance of the Lagrange multipliers from zero.7 Similar ar-

guments can be used for developing an asymptotically equivalent specification test on the model’s

pricing errors. The existing specification test in the literature is based on measuring the distance of

the sample squared HJ-distance, δ̂
2

= eT (γ̂)′Û−1eT (γ̂), from zero and is asymptotically distributed

as a weighted sum of independent chi-squared random variables with one degree of freedom (Ja-

gannathan and Wang, 1996; Parker and Julliard, 2005). Unlike the LM test in Theorem 1, the

HJ-distance test is asymptotically non-pivotal and it tends to overreject substantially under the

null when the number of test assets n is large relative to the number of time series observations T

(see Ahn and Gadarowski, 2004).

3. Model selection tests

In this section, we first present model selection tests of two competing models. Our analysis is

similar in spirit to the model selection methodology of Vuong (1989), Rivers and Vuong (2002),

Golden (2003), Marcellino and Rossi (2008), and Li, Xu and Zhang (2010), but we provide several

improvements upon the results available in the literature.8 First, since for nested models the

7A similar test is used by Newey (1985) for generic GMM problems and by Smith (1997) and Imbens, Spady and
Johnson (1998) in the context of GEL estimation of moment condition models.

8Kitamura (2000) and Chen, Hong and Shum (2007), among others, develop test procedures for comparing misspec-
ified models within the generalized empirical likelihood framework. Almeida and Garcia (2012) provide a discussion
on how these tests can be adapted to asset pricing model selection.
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HJ-distance of the nesting model is always smaller than the HJ-distance of the nested model,

the difference between the sample HJ-distances of two nested models should be compared with

a distribution that only takes on positive values. However, the existing tests do not impose this

restriction and are expected to exhibit finite-sample distortions and loss of power. In contrast,

we take into account the nested model structure and develop model comparison tests with this

desirable property. Second, we develop chi-squared versions of the model comparison tests for

nested and non-nested models that are easier to implement than the weighted chi-squared tests. In

addition to model selection tests of two competing models, we provide multiple model comparison

tests that allow us to compare a benchmark model with a set of alternative models in terms of their

HJ-distances.

3.1. Pairwise model comparison

Define models F = {yFt (γF ); γF ∈ ΓF} and G = {yGt (γG); γG ∈ ΓG}, where γF and γG are k1 and

k2 parameter vectors, respectively, and ΓF and ΓG denote their corresponding parameter spaces.

The population squared HJ-distances for models F and G are given by

δ2
F = min

γF
max
λF

E[φFt (θF )], (33)

δ2
G = min

γG
max
λG

E[φGt (θG)], (34)

where λF and λG are the vectors of Lagrange multipliers for models F and G, respectively,

θF = [γ′F , λ
′
F ]′, θG = [γ′G , λ

′
G ]′, φFt (θF ) ≡ yFt (γF )2 − [mFt (θF )]2 − 2λ′Fqt−1, φGt (θG) ≡ yGt (γG)2 −

[mGt (θG)]2 − 2λ′Gqt−1, mFt (θF ) ≡ yFt (γF ) − λ′Fxt, and mGt (θG) ≡ yGt (γG) − λ′Gxt. Denote by

θ∗F = [γ∗′F , λ
∗′
F ]′ and θ∗G = [γ∗′G , λ

∗′
G ]′ the pseudo-true parameters of models F and G, respec-

tively. For nested models, we have F ⊂ G or G ⊂ F . On the other hand, if F 6⊂ G, and G 6⊂ F , we

refer to F and G as non-nested models. Non-nested models can be further decomposed into strictly

non-nested (if F ∩ G = ∅) and overlapping (if F ∩ G 6= ∅).

A simple way of testing H0 : δ2
F = δ2

G is suggested by Hansen, Heaton and Luttmer (1995,

pp. 255–256) who establish that the difference between the sample squared HJ-distances of models

F and G under H0 : δ2
F = δ2

G is asymptotically normally distributed:

√
T (δ̂

2

F − δ̂
2

G)
A∼ N(0, σ2

d), (35)

where σ2
d =

∑∞
j=−∞E[dtdt+j ] and dt = φFt (θ∗F )− φGt (θ∗G).
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It is important to emphasize that the result in (35) holds only if σ2
d 6= 0. To determine whether

the use of the normal test in (35) is appropriate, one could do a pre-test of H0 : σ2
d = 0 (see, for

example, Rivers and Vuong, 2002, Golden, 2003 and Marcellino and Rossi, 2008). Alternatively,

since σ2
d = 0 if and only if φFt (θ∗F ) = φGt (θ∗G), one could do a pre-test of H0 : φFt (θ∗F ) = φGt (θ∗G). This

is the approach that we pursue in this paper.9 There are two possible reasons for φFt (θ∗F ) = φGt (θ∗G):

(i) the two SDFs are equal, i.e., yFt (γ∗F ) = yGt (γ∗G), or (ii) the two SDFs are different but correctly

specified, so that δ2
F = δ2

G = 0, which implies φFt (θ∗F ) = φGt (θ∗G) = 0.

For nested models, the test in (35) should not be performed because under H0 : δ2
F = δ2

G ,

we must have yFt (γ∗F ) = yGt (γ∗G). The reason is that, in general, the larger model has a smaller

HJ-distance and the only case in which the two models can have the same HJ-distance is when

yFt (γ∗F ) = yGt (γ∗G). Therefore, we should only perform a test of H0 : yFt (γ∗F ) = yGt (γ∗G) for nested

models. For overlapping models, it is possible that either yFt (γ∗F ) = yGt (γ∗G) or δ2
F = δ2

G = 0, so we

need to conduct two pre-tests before using the test in (35). Finally, for strictly non-nested models,

we cannot have yFt (γ∗F ) = yGt (γ∗G) and, as a result, we only have to test H0 : δ2
F = δ2

G = 0 before

using the test in (35). We discuss the nested and non-nested cases in the following two subsections.

3.1.1. Nested models

For nested models, σ2
d is zero by construction under the null of equal HJ-distances. Therefore,

the normal test in (35) cannot be used. In addition, for nested models, δ2
F = δ2

G if and only if

yFt (γ∗F ) = yGt (γ∗G), so we can simply test H0 : yFt (γ∗F ) = yGt (γ∗G).

Without loss of generality, we assume F ⊂ G. Suppose that the null hypothesis H0 : yFt (γ∗F ) =

yGt (γ∗G) can be written as a parametric restriction of the form H0 : ψG(γ∗G) = 0k2−k1 for model G

against H1 : ψG(γ∗G) 6= 0k2−k1 , where ψ(·) is a twice continuously differentiable function in its

argument. Define

ΨG(γG) =
∂ψG(γG)

∂γ′G
(36)

as a (k2−k1)×k2 derivative matrix of the parametric restrictions ψG . For many models of interest,

9Other inference procedures such as subsampling and m-out-of-n (m < n) bootstrap could potentially deal with
the degeneracy of the asymptotic distribution that occurs at σ2

d = 0 and provide correct inference. To the best of
our knowledge, the asymptotic validity of these procedures in our context has not been established in the literature.
Also, since both of these resampling procedures reduce the number of effective time series observations per moment
condition, it is not clear whether they can provide any finite-sample size and power improvements given the excellent
finite-sample properties of our asymptotic tests reported in Section 4 below.
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yFt (γF ) = yGt (γG) when a subset of the parameters of model G is equal to zero (or a constant vector

c). In this case, we can rearrange the parameters such that ψG(γG) = [0(k2−k1)×k1 , Ik2−k1 ]γG − c.

Then, ΨG(γG) = [0(k2−k1)×k1 , Ik2−k1 ] is a selector matrix that picks only the part of the parameter

vector γG that is not contained in model F . Also, let Σγ̂G be the asymptotic covariance matrix

of γ̂G given by the upper left block of Σ in part (a) of Lemma 1, ΨG∗ ≡ ΨG(γ∗G), and H̃G =

(CG +DG′U−1DG)−1, where the matrices C, D, and U are defined in Section 2. Finally, define the

Wald test statistic

Waldψ̂G
= T ψ̂

′
G(Ψ̂GΣ̂γ̂G Ψ̂G′)−1ψ̂G , (37)

where ψ̂G = ψG(γ̂G), Ψ̂G = ΨG(γ̂G), and Σ̂γ̂G is a consistent estimator of Σγ̂G .

Theorem 2 below presents the asymptotic distribution of T (δ̂
2

F − δ̂
2

G) and the Wald test under

H0 : ψG(γ∗G) = 0k2−k1 .

Theorem 2. Suppose that Assumptions A, B and C hold and F ⊂ G. Then, under H0 : ψG(γ∗G) =

0k2−k1 ,

(a)

T (δ̂
2

F − δ̂
2

G)
A∼ Fk2−k1(ξ), (38)

where the ξi’s are the eigenvalues of the matrix

(ΨG∗ H̃GΨG∗
′)−1ΨG∗Σγ̂GΨG∗

′, (39)

(b)

Waldψ̂G
A∼ χ2

k2−k1 . (40)

Part (a) of Theorem 2 shows that, under H0 : yFt (γ∗F ) = yGt (γ∗G), the limiting distribution of

T (δ̂
2

F − δ̂
2

G) is a linear combination of k2 − k1 chi-squared random variables with one degree of

freedom and weights (estimated from the sample version of the matrix (39)) that are guaranteed to

be positive. The Wald test in part (b) of Theorem 2 offers an alternative way of testing the equality

of two nested SDFs by testing directly H0 : ψG(γ∗G) = 0k2−k1 . This Wald test is asymptotically

pivotal and is easier to implement than the test in part (a).

12



3.1.2. Non-nested models

We first consider the test of H0 : yFt (γ∗F ) = yGt (γ∗G). Since for strictly non-nested models yFt (γ∗F )

cannot be equal to yGt (γ∗G) by definition (F ∩ G = ∅), we focus only on overlapping models. It

is well known that for linear models, the equality of the SDFs implies some restrictions on the

parameter vectors (see, for example, Lien and Vuong, 1987 and Kan and Robotti, 2009). Similar

restrictions can also be obtained for nonlinear models. Let yHt (γH) be the SDF of model H, where

H = F ∩ G and γH is a k3-vector. Therefore, yFt (γ∗F ) = yGt (γ∗G) implies yFt (γ∗F ) = yHt (γ∗H) and

yGt (γ∗G) = yHt (γ∗H). Suppose that H0 : yFt (γ∗F ) = yHt (γ∗H) and yGt (γ∗G) = yHt (γ∗H) can be written as

a parametric restriction of the form H0 : ψF (γ∗F ) = 0k1−k3 and ψG(γ∗G) = 0k2−k3 , where ψF (·) and

ψG(·) are some twice continuously differentiable functions of their arguments. Let

ΨF (γF ) =
∂ψF (γF )

∂γ′F
(41)

and

ΨG(γG) =
∂ψG(γG)

∂γ′G
(42)

be (k1 − k3) × k1 and (k2 − k3) × k2 derivative matrices of the parametric restrictions ψF and

ψG , respectively. In many situations, H0 : yFt (γ∗F ) = yHt (γ∗H) and yFt (γ∗G) = yHt (γ∗H) implies that

a subset of parameters of models F and G are equal to zero. For such cases, we can arrange

the parameters so that ΨF (γF ) = [0(k1−k3)×k3 , Ik1−k3 ] and ΨG(γG) = [0(k2−k3)×k3 , Ik2−k3 ]. Let

Σγ̂FG be the asymptotic covariance matrix of γ̂FG = [γ̂′F , γ̂
′
G ]′, H̃F = (CF + DF ′U−1DF )−1,

H̃G = (CG +DG′U−1DG)−1, ΨF∗ = ΨF (γ∗F ), ΨG∗ = ΨG(γ∗G) and

ΨFG∗ ≡

[
ΨF∗ 0(k1−k3)×k2

0(k2−k3)×k1 ΨG∗

]
. (43)

Define the Wald test statistic

Waldψ̂FG
= T ψ̂

′
FG(Ψ̂FGΣ̂γ̂FG Ψ̂FG′)−1ψ̂FG , (44)

where ψ̂FG = [ψF (γ̂F )′, ψG(γ̂G)′]′,

Ψ̂FG =

[
ΨF (γ̂F ) 0(k1−k3)×k2

0(k2−k3)×k1 ΨG(γ̂G)

]
, (45)

and Σ̂γ̂FG is a consistent estimator of Σγ̂FG .

13



The next theorem establishes the asymptotic distribution of T (δ̂
2

F− δ̂
2

G) and the Wald test under

the null hypothesis H0 : ψF (γ∗F ) = 0k1−k3 and ψG(γ∗G) = 0k2−k3 .

Theorem 3. Suppose that F ∩ G 6= ∅, F 6⊂ G, G 6⊂ F , and Assumptions A, B and C hold. Then,

under H0 : ψF (γ∗F ) = 0k1−k3 and ψG(γ∗G) = 0k2−k3,

(a)

T (δ̂
2

F − δ̂
2

G)
A∼ Fk1+k2−2k3(ξ), (46)

where the ξi’s are the eigenvalues of the matrix[
−(ΨF∗ H̃FΨF∗

′)−1 0(k1−k3)×(k2−k3)

0(k2−k3)×(k1−k3) (ΨG∗ H̃GΨG∗
′)−1

]
ΨFG∗ Σγ̂FGΨFG∗

′, (47)

(b)

Waldψ̂FG
A∼ χ2

k1+k2−2k3 . (48)

Unlike the case of nested models, the eigenvalues in part (a) of Theorem 3 are not always

positive because δ̂
2

F − δ̂
2

G can take on both positive and negative values. As a result, we need to

perform a two-sided test of H0 : yFt (γ∗F ) = yGt (γ∗G). Similarly to the nested case, an alternative way

of testing the equality of two overlapping SDFs is to directly test the constraints ψF (γ∗F ) = 0k1−k3

and ψG(γ∗G) = 0k2−k3 using the asymptotically pivotal Wald test in part (b) of Theorem 3.

For overlapping and strictly non-nested models, the variance σ2
d can be zero when both models

are correctly specified.10 Asymptotic weighted chi-squared and joint LM specification tests of

H0 : δ2
F = δ2

G = 0 are proposed by Kan and Robotti (2009) for linear models. The extension of

these tests to nonlinear models is provided in an online appendix (see also Hall and Pelletier, 2011).

In summary, our proposed sequential testing procedure of equality of the squared HJ-distances

of two overlapping models is the following. First, we need to test whether the SDFs of the two

models are equal using the tests in Theorem 3. Since the test in part (a) of Theorem 3 will not be

consistent against the alternative H1 : yFt (γ∗F ) 6= yHt (γ∗H) when both models are correctly specified,

10In a likelihood framework (see Vuong, 1989), two strictly non-nested models cannot be both correctly specified.
However, in our context, a correctly specified model is defined in terms of moment conditions and it is possible for two
strictly non-nested models to be both correctly specified. See Kan and Robotti (2009) and Hall and Pelletier (2011)
for further discussion of this point. Similarly, two overlapping SDFs can also be both correctly specified. Examples
for these situations are available from the authors upon request.
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our recommendation is to use the Wald test of H0 : yFt (γ∗F ) = yGt (γ∗G). If the null is rejected, we

need to proceed with testing if the two models are both correctly specified. Finally, if we still reject,

we can then perform the normal test in (35). The significance level of this procedure, as a test of

H0 : δ2
F = δ2

G , is asymptotically bounded above by max[α1, α2, α3], where α1, α2, and α3 are the

asymptotic significance levels used in these three tests.11

The results in Theorems 2 and 3 offer substantial advantages over the inference procedures

available in the literature. Imposing the parametric restrictions that directly arise from the struc-

ture of the models and the appropriate null hypotheses results in a drastic reduction of the number

of weights that are used to compute the critical values of the tests. More specifically, the number

of eigenvalues in the weighted chi-squared distribution is reduced from 2n+ k1 + k2 to k2 − k1 for

nested and to k1 + k2 − 2k3 for overlapping models. This proves to be particularly advantageous

when the number of test assets n is large. The reduced dimensions of the matrices in part (a) of

Theorems 2 and 3 are expected to lead to improved finite-sample behavior of the model selection

tests.

3.2. Multiple model comparison

Thus far, we have considered pairwise model comparison. However, when multiple models are

involved, pairwise model comparison may not determine unambiguously the best performing model.

In this subsection, we develop formal multiple model comparison tests for non-nested and nested

models. Our non-nested model comparison test is a multivariate inequality test based on the

results of Wolak (1987, 1989).12 Suppose we have p + 1 models. We are interested in testing the

null hypothesis that the benchmark model, model 1 (we could think of model 1 as model F in the

pairwise model comparison subsection), performs at least as well as the other p models. Let δ2
i

denote the population squared HJ-distance of model i and let ρ ≡ (ρ2, . . . , ρp+1), where ρi ≡ δ2
1−δ2

i .

Therefore, the null hypothesis is H0 : ρ ≤ 0p while the alternative is H1 : ρ ∈ <p.

The test is based on the sample counterpart, ρ̂ ≡ (ρ̂2, . . . , ρ̂p+1), where ρ̂i ≡ δ̂
2

1 − δ̂
2

i . Assume

11In an online appendix, we also provide unrestricted and restricted (as in Theorems 2 and 3) versions of the test
of H0 : σ2

d = 0.
12Kan, Robotti and Shanken (2012) adapt the multivariate inequality test of Wolak (1987, 1989) to compare the

performance of alternative asset pricing models in a two-pass cross-sectional regression framework.
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that
√
T (ρ̂− ρ)

A∼ N(0p,Ωρ̂). (49)

As in Section 3.1, sufficient conditions for asymptotic normality are: i) δ2
i > 0, and ii) the SDFs

of the different models are distinct.13 Let ρ̃ be the optimal solution in the following quadratic

programming problem:

min
ρ

(ρ̂− ρ)′Ω̂−1
ρ̂ (ρ̂− ρ) s.t. ρ ≤ 0p, (50)

where Ω̂ρ̂ is a consistent estimator of Ωρ̂. The likelihood ratio-type test of the null hypothesis is

LR = T (ρ̂− ρ̃)′Ω̂−1
ρ̂ (ρ̂− ρ̃). (51)

Since the null hypothesis is composite, to construct a test with the desired size, we require the

distribution of LR under the least favorable value of ρ, which is ρ = 0p. Under this value, LR

follows a “chi-bar-squared distribution,”

LR
A∼

p∑
i=0

wp−i(Ωρ̂)Xi, (52)

where the Xi’s are independent χ2 random variables with i degrees of freedom, χ2
0 is simply de-

fined as the constant zero and the weights wi sum up to one.14 We use this procedure to obtain

asymptotically valid p-values.15

Before using the multivariate inequality test to compare a benchmark model with a set of

alternative models, we remove those alternative models that are nested by the benchmark model

since, by construction, ρi ≤ 0 in this case. If any of the remaining alternatives is nested by another

alternative model, we remove the “nested” model since the δ2 of the nesting model will be at

least as small. Finally, we also eliminate from consideration any alternative models that nest the

13Note that a pre-test of equality of SDFs can be easily developed also for multiple models by generalizing the
chi-squared test in (48) to the p > 1 case.

14An explicit formula for the weights wi(Ωρ̂) is given in Kudo (1963) and the computational details are provided in
the Appendix. Although the Monte Carlo simulations in the next section show that our asymptotic approximation
works well in experiments with realistic sample sizes, researchers could also use bootstrap methods to obtain the
p-value for the proposed test statistic. See also Andrews and Soares (2010), among others, for various subsampling,
m-out-of-n bootstrap and “plug-in-asymptotic” procedures for parameter inference in models defined by moment
inequalities.

15There are alternatives to the multivariate inequality test described above. Under the assumption in (49), White
(2000) and Hansen (2005) provide reality check tests that can be used to compare the performance of multiple models.
Computing p-values for their tests, however, requires either Monte Carlo simulation or bootstrap methods and can
be very time consuming. See Chen and Ludvigson (2009) for an application of the tests of White (2000) and Hansen
(2005) to the study of the HJ-distances of competing asset pricing models.
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benchmark because the asymptotic normality assumption on ρ̂i does not hold under the null of

ρi = 0.

Since the multivariate inequality test described above is not applicable when the benchmark

is nested by some alternative models, a different multiple model comparison test is needed in this

situation. When the alternative models nesting the benchmark are nested within each other, we

remove the “nested” models since the δ2 of the nesting model will be at least as small. In this sce-

nario, one could simply use the pairwise model comparison techniques developed in Section 3.1. The

situation, however, becomes more complicated when the alternative models exhibit an overlapping

structure.

Suppose that the benchmark (with k1 parameter vector γ1) is nested by model i (with ki

parameter vector γi, i = 2, . . . , p + 1). Similar to the setup of Section 3.1, suppose that y1
t (γ
∗
1) =

yit(γ
∗
i ) can be written as a parametric restriction of the form ψi(γ

∗
i ) = 0ki−k1 , where ψi(·) is a

twice continuously differentiable function in its argument. The null hypothesis for multiple model

comparison can therefore be formulated as H0 : ψ2(γ∗2) = 0k2−k1 , . . . , ψp+1(γ∗p+1) = 0kp+1−k1 .

Having derived the asymptotic distribution of γ̂i in Lemma 1, we can use the delta method to

obtain the asymptotic distribution of ψ̂i = ψi(γ̂i). Specifically, let

ψ =

 ψ2(γ∗2)
...

ψp+1(γ∗p+1)

 (53)

and denote by ψ̂ a consistent estimator of ψ. Also, let Σψ̂ be the asymptotic covariance matrix of

ψ̂ with rank l under the null hypothesis and Σ̂ψ̂ denote its consistent estimator. Then, we have

Waldψ̂ = T ψ̂
′
Σ̂+

ψ̂
ψ̂

A∼ χ2
l , (54)

where Σ̂+

ψ̂
is the generalized inverse of Σ̂ψ̂. To perform this test, we need to determine the rank of

Σψ̂ under the null hypothesis. For linear SDFs, l is simply the number of distinct factors in the

set of alternative models minus the number of factors in the benchmark model.16 For nonlinear

SDFs, determining the rank of Σψ̂ under H0 depends on the particular overlapping structure of the

nesting models which needs to be analyzed on a case-by-case basis.

16For example, suppose we have three linear models with factors [1, f1t]
′, [1, f1t, f2t, f3t]

′ and [1, f1t, f2t, f4t]
′,

respectively. Note that the first model is the nested (benchmark) model and the last two models are the alternative
models nesting the benchmark. The number of distinct factors in the set of alternative models is five (1, f1t, f2t, f3t
and f4t) and l = 3 is obtained by subtracting the number of factors in the benchmark model (1 and f1t). This
procedure is used in Section 4.2 below.
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To summarize, if the benchmark model is nested by some competing models, one should separate

the set of competing models into two subsets. The first subset includes competing models that nest

the benchmark. To test whether the benchmark performs as well as the models in this subset, one

can use the chi-squared nested multiple model comparison test described above. The second subset

includes competing models that do not nest the benchmark. For this second subset, we can use

the test in (52). If we perform each test at a significance level of α/2 and fail to reject the null

hypothesis in both tests, then, by the Bonferroni inequality, the size of the joint test will be less

than or equal to α.

4. Monte Carlo simulations

In this section, we undertake a Monte Carlo experiment to explore the small-sample properties

of the test statistics discussed in the theoretical part of the paper.17 We consider both linear and

nonlinear asset pricing models. To make our simulations more realistic, we calibrate the parameters

by using almost 50 years, 1952:2–2000:4, of U.S. quarterly gross returns on the three-month T-bill

and the well-known 25 Fama-French size and book-to-market portfolios (n = 26). The time-series

sample size is T = 120, 240, 360, 480 and 600. These choices of T reflect sample sizes that are

typically encountered in empirical work. We compare actual rejection rates over 100,000 iterations

to the nominal 10%, 5% and 1% levels of our tests. A detailed description of the various simulation

designs can be found in the Appendix.

In the linear case, the SDF takes the form yt(γ) = γ′f̃t with γ = [γ0, γ
′
1]′ and f̃t = [1, f ′t ]

′,

where ft is a (k − 1)-vector of risk factors at time t. In our simulations, we consider the following

linear models: the consumption capital asset pricing model (CCAPM) with the log consumption

growth rate of non-durable goods (4cndur) as a risk factor; the durable consumption CAPM of

Yogo (YOGO, 2006) with the excess market return (rmkt), 4cndur and the log consumption growth

rate of durable goods (4cdur) as risk factors; the three-factor model of Fama and French (FF3,

1993) with rmkt, the return difference between portfolios of small and large stocks (rsmb) and the

return difference between portfolios of high and low book-to-market ratios (rhml) as risk factors;

the conditional consumption CAPM of Lettau and Ludvigson (LL, 2001) with 4cndur, the lagged

17In an online appendix available on the authors’ websites, we also analyze the size and power properties of the
model selection tests for nested and non-nested models that have been proposed in the literature. This investigation
suggests that our tests are more powerful than the existing ones in realistic simulation settings.

18



consumption-wealth ratio (cay) and the interaction term between 4cndur and cay as risk factors.

In the nonlinear case, we assume that the SDF takes the form yt(γ) = exp(γ′f̃t). Many popular

asset pricing models can be cast in this log-linear framework. More specifically, we consider the

nonlinear version of Yogo’s (2006) model and the external habit model (EHM) of Abel (1990), both

of which nest the nonlinear CCAPM model. Let Cndur denote consumption of non-durable goods,

Cdur be consumption of durable goods and U(Cndur, Cdur) = C1−φ
ndurC

φ
dur denote the Cobb-Douglas

intraperiod utility function, where φ ∈ [0, 1] is the budget share of durable consumption. For Yogo’s

(2006) model, the SDF is given by

yY OGOt (α, β, ρ, φ) = β
1−ρ
1−α

(
Cndur,t
Cndur,t−1

)−α( 1−ρ
1−α)( Cdur,t/Cndur,t

Cdur,t−1/Cndur,t−1

)φ(1−ρ)

Rmkt,t
α−ρ
1−α , (55)

where Rmkt is the gross market return, β is the discount rate, ρ > 0 is the coefficient of relative

risk aversion and 1/α ≥ 0 is the elasticity of intertemporal substitution. Taking logarithms yields

ln(yY OGOt (α, β, ρ, φ)) =
1− ρ
1− α

ln(β)− (1− ρ)(α(1− φ) + φ)

1− α
4 cndur,t

+φ(1− ρ)4 cdur,t +
α− ρ
1− α

ln(Rmkt,t), (56)

where 4cndur and 4cdur are defined above. When φ = 0, we have the classical non-expected

(Epstein-Zin) utility model. By imposing the additional restriction α = ρ, we obtain the standard

expected utility model (nonlinear CCAPM). Similarly, the SDF for EHM with time-separability

parameter τ ≥ 0 is given by

yEHMt (β, ρ, τ) = β

(
Cndur,t
Cndur,t−1

)−ρ(Cndur,t−1

Cndur,t−2

)τ(ρ−1)

(57)

or

ln(yEHMt (β, ρ, τ)) = ln(β)− ρ4 cndur,t + τ(ρ− 1)4 cndur,t−1. (58)

When τ = 0, EHM reduces to the nonlinear CCAPM. Also note that nonlinear YOGO and EHM

are overlapping models with the restrictions [φ, α−ρ, τ ]′ = 03 rendering the two SDFs equal. The

last log-linear SDF considered in our simulations is the nonlinear CAPM of Brown and Gibbons

(1985) with ln(Rmkt) as a risk factor, which is nested by nonlinear YOGO.

In our simulations, we make the following joint distributional assumption on the factors and

returns. For linear models, we assume that the factors and the gross returns on the test assets are
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i.i.d. multivariate normally distributed.18 For nonlinear models, we assume that the factors and the

continuously compounded returns on the test assets are i.i.d. multivariate normally distributed.19

4.1. Parameter estimates and model specification tests

In this subsection, we investigate the size properties of the SDF parameter estimates and the size

and power properties of the model specification tests. The data are simulated using the linear and

nonlinear specifications of Yogo’s (2006) model.

We start by analyzing the finite-sample properties of the SDF parameter estimates under model

misspecification. One way to summarize the sampling behavior of the SDF parameter estimates

and their corresponding asymptotic approximations is to focus on the rejection rates of the t-tests

of H0 : γi = 0. In the simulations, the expected returns are chosen such that the SDF parameter

associated with a given factor is equal to zero.20 The t-tests are constructed using the asymptotic

covariance matrices in Lemma 1 and are compared against the critical values from a standard

normal distribution. We refer to the t-tests based on (23) and (24) as t-tests under potentially

misspecified models. For comparison, we also report results using the traditional standard errors

derived under correctly specified models based on the asymptotic covariance matrix in (26) and

(27). We refer to the corresponding t-tests as t-tests under correctly specified models. The reason

for investigating the finite-sample performances of the t-tests under correctly specified models in

a simulation setup where the model fails to hold exactly is that researchers typically rely on these

t-tests in drawing inferences on the SDF parameters even when a model is strongly rejected by the

data.

Panels A and B of Table 1 present the empirical size of both t-tests of the null hypothesis

18Since asset return distributions often exhibit fat tails, we also draw factors and returns from a multivariate t-
distribution with 8 degrees of freedom. The t-distribution results are very similar to the ones under normality and
can be found in an online appendix on the authors’ websites. The only noteworthy difference is a slight increase in
the empirical size of the tests in the t-distribution case.

19As pointed out by a referee, endogenously derived returns from many equilibrium models are often not normally
distributed. This is a scenario in which our simulation results may not provide a very accurate assessment of the
properties of the proposed tests.

20For nonlinear YOGO, the implied HJ-distances from choosing the expected returns such that γi = 0 are equal
to 0.6403 (when setting the SDF parameter associated with ln(Rmkt) equal to zero), 0.5892 (when setting the SDF
parameter associated with ∆cndur equal to zero) and 0.5877 (when setting the SDF parameter associated with ∆cdur
equal to zero). As a basis for comparison, note that the HJ-distance for the nonlinear YOGO model when no
parameter restrictions are imposed is 0.6357. For linear YOGO, the implied HJ-distances from choosing the expected
returns such that γi = 0 are always equal to 0.6514 which is also the value of the HJ-distance for the unrestricted
linear YOGO model.
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H0 : γi = 0 for linear YOGO, while Panels C and D of the same table report the empirical size of

both t-tests of the null hypothesis H0 : γi = 0 for nonlinear YOGO (to preserve space, we do not

report simulation results for the t-ratios associated with the SDF intercept terms). Panels A and C

are for the t -tests under potentially misspecified models, while Panels B and D are for the t-tests

under correctly specified models.

Table 1 about here

The results in Table 1 reveal that the finite-sample performance of these two tests differs con-

siderably. The t-test under potentially misspecified models is well-behaved and its empirical size is

always close to the nominal level.21 On the other hand, the t-test under correctly specified models

tends to overreject substantially. For example, the t-test on the durable consumption parameter in

nonlinear YOGO rejects the null hypothesis 33% of the time at the 5% nominal level for T = 600.

Interestingly, the presence of non-traded factors in the YOGO specifications also leads to signifi-

cant size distortions of the t-test on the traded factor. Finally, the performance of the t-tests under

correctly specified models deteriorates as T increases.

This difference in behavior between the two t-tests warrants some explanation. In the case

of linear SDFs, Kan and Robotti (2009) prove that when factors and returns are multivariate

elliptically distributed, the standard errors under potentially misspecified models are always bigger

than the standard errors constructed under the assumption that the model is correctly specified.

They show that the magnitude of the misspecification adjustment term, that reflects the difference

between the asymptotic variances of the SDF parameter estimates under correctly specified and

misspecified models, depends on, among other things, the degree of model misspecification (as

measured by the HJ-distance measure) and the correlations of the factors with the returns. The

misspecification adjustment term can be huge when the underlying factor is poorly mimicked by

asset returns – a situation that typically arises when some of the factors are macroeconomic variables

as, for example, in linear YOGO. Therefore, when the model is misspecified and the factors are

poorly spanned by the returns, the t-test under correctly specified models can lead to the erroneous

conclusion that certain factors are priced. Our simulation evidence further demonstrates that the

t-test under correctly specified models can be seriously oversized for both linear and log-linear SDFs

21We should note that the t-test under potentially misspecified models maintains its good size properties even when
the data are generated under correctly specified models (results are not reported to conserve space).
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and that researchers should exercise caution when using it to determine whether a risk factor is

priced. Another related issue is the deterioration in the size properties of the t-test under correctly

specified models as T increases. This is likely to be a symptom of the fact that some non-traded

factors such as 4cndur and 4cdur are almost uncorrelated with the returns. For further discussion,

we refer the reader to Kan and Zhang (1999) who show that when the model is misspecified and

a factor is “useless,” i.e., independent of the returns, increasing the sample size also increases the

severity of the overrejection problem. For these reasons, we strongly recommend using the t-test

under potentially misspecified models in factor pricing.

We now turn our attention to the model specification tests. In particular, we assess the finite-

sample performance of the conventional HJ-distance test and LM test in Theorem 1. To examine

size, the return means are set such that the model holds exactly, i.e., δ = 0. To examine power,

the return means are chosen based on the means estimated from the data, which implies that the

HJ-distances for linear and nonlinear YOGO are 0.6514 and 0.6357, respectively. The empirical

size and power of the two tests are presented in Panels A and B of Table 2.

Table 2 about here

The overrejections of the HJ-distance test have already been documented in the literature (see,

for example, Ahn and Gadarowski, 2004). The overrejection problem is particularly severe when

the number of assets is large relative to the number of time series observations. Our results confirm

the overrejections of the HJ-distance test across the linear and nonlinear YOGO specifications.

For example, for nonlinear YOGO, the empirical size of the HJ-distance test is 17.3% at the 5%

significance level for T = 120 and approaches the nominal level of the test as T increases (6.5% at

the 5% significance level for T = 600). The LM test in Theorem 1 has excellent size properties,

being only slightly oversized for T = 120. The improved size of the LM test is accompanied by a

power performance that is very similar to the one of the HJ-distance test which overrejects under

the null.22

22All tables in this section report actual power since computing size-adjusted power seems infeasible for several of
our tests. Their null distributions depend on many nuisance parameters and the simulation of their exact distributions
is complicated by the fact that those nuisance parameters are in general not known.
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4.2. Model selection tests for nested models

In Table 3, we investigate the size and power properties of pairwise and multiple nested model

comparison tests. Panels A and B are for linear SDFs, while Panels C and D are for log-linear

SDFs.

Table 3 about here

For linear SDFs, CCAPM represents our benchmark model. For pairwise model comparison,

we consider CCAPM nested by YOGO, while for multiple model comparison we consider CCAPM

nested by YOGO and LL. In the log-linear SDF case, nonlinear CCAPM represents our benchmark

model. For pairwise model comparison, we consider nonlinear CCAPM nested by nonlinear YOGO,

while for multiple model comparison we consider nonlinear CCAPM nested by nonlinear YOGO

and EHM.

The tests under investigation are the weighted chi-squared test and the Wald test in Theorem 2,

as well as the chi-squared multiple model comparison test in (54). To analyze the finite-sample

behavior of the pairwise model comparison tests under the null of equality of squared HJ-distances,

we choose the return means such that the SDF parameters associated with factors that are not

in the benchmark model are zero and all the models are misspecified. The implied HJ-distances

are 0.6514 and 0.6414 in the linear and log-linear cases, respectively. To analyze power, the return

means are chosen based on the means estimated from the data, which implies that the population

HJ-distances for linear (nonlinear) CCAPM and linear (nonlinear) YOGO are 0.6768 (0.6630) and

0.6514 (0.6357), respectively. Turning to multiple model comparison, the size of the chi-squared test

is evaluated by choosing the return means such that the SDF parameters associated with factors

that are not in the benchmark model are zero and all the models are misspecified. The implied

HJ-distances are 0.6410 and 0.6251 in the linear and log-linear cases, respectively. To evaluate

power, the return means are chosen based on the means estimated from the data, which implies

that the population HJ-distances for linear (nonlinear) CCAPM, linear (nonlinear) YOGO, LL and

EHM are 0.6768 (0.6630), 0.6514 (0.6357), 0.6561 and 0.6363, respectively.

Panels A and C of Table 3 show that the Wald test in Theorem 2 has very good size properties

and high power (despite the small differences in HJ-distances between models). The weighted chi-
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squared tests in Theorem 2 is a bit conservative under the null (especially in the nonlinear case)

and overall exhibits lower power than the Wald test.

For multiple model comparison, the size and power of the chi-squared test in Panels B and D

of Table 3 are impressive. This simulation evidence is very encouraging for the use of this new test

in empirical work.

4.3. Model selection tests for non-nested models

The case of non-nested (overlapping) models is arguably the most important case in practice since

many empirical asset pricing specifications contain a constant term and different systematic factors.

Starting with pairwise model comparison, we evaluate the finite-sample behavior of the pre-

tests of equality of SDFs in Theorem 3. In the linear SDF case (Table 4.A), the simulated data

are generated using FF3 and YOGO. To evaluate size, we choose the return means such that the

SDF parameters associated with the non-overlapping factors in FF3 and YOGO are zero and the

two models are misspecified, which implies that the population HJ-distance is 0.5733. To analyze

power, the return means are chosen based on the means estimated from the data which implies

that the population HJ-distances for FF3 and YOGO are 0.5822 and 0.6514, respectively. For log-

linear SDFs (Table 4.C), we consider EHM and nonlinear YOGO. Similarly to the linear case, we

study size by setting the SDF parameters associated with the non-overlapping factors in EHM and

nonlinear YOGO equal to zero, while keeping both models misspecified (the implied HJ-distance

is 0.6251 in this scenario). In the power experiments, the return means are again chosen based on

the means estimated from the data which implies that the population HJ-distances for EHM and

nonlinear YOGO are 0.6363 and 0.6357, respectively.

Table 4 about here

Panels A and C show that the Wald test in Theorem 3 has excellent size. The weighted chi-

squared test also enjoys good size properties but is a bit conservative under the null in the nonlinear

SDF case. Both tests exhibit very good power in the linear setting, but the Wald test outperforms

the weighted chi-squared test when it comes to log-linear SDFs. The high power of the Wald test

appears to be particularly important given the fact that this test serves only as a preliminary step

in establishing whether two (or more) models have equal pricing performance.

24



If the null hypotheses of SDF equality and correct specification of the two models are rejected,

then the researcher can proceed with the normal test in (35). In the size computations for linear

SDFs (Panel B), the data are simulated from two misspecified three-factor models. The two models

have rsmb and rhml as common factors. The third factor in each model is created by adding a

normally distributed error to rmkt. The error term in each model has a mean of zero and a variance

of 20% of the variance of rmkt. The two error terms are independent of each other as well as of

the returns and the factors. This implies that the population HJ-distances of the two models are

both equal to 0.5822. For power evaluation, the two overlapping models are FF3 and YOGO with

population HJ-distances of 0.5822 and 0.6514, respectively. For log-linear SDFs (Panel D), the data

are simulated from two misspecified one-factor models, where the factor in each model is equal to

ln(Rmkt) plus a normally distributed error generated as in the linear case (the only difference being

that the error term has a variance of 20% of the variance of ln(Rmkt)). This implies that the

population HJ-distances of the two models are both equal to 0.6377. For power evaluation, the

two non-nested models are nonlinear CCAPM and FF3 with population HJ-distances of 0.6630 and

0.5822, respectively. Panels B and D (p = 1 case) show that the size properties of the normal test

are very good even for small T and that the empirical power quickly approaches 1 as T increases.

Finally, we extend the simulation setup described in the previous paragraph to multiple model

comparison and employ the LR test in (52). In the linear SDF case, we consider 3 three-factor

models. In the size comparison, we add another model with rsmb and rhml as common factors and

a non-overlapping part given by rmkt plus a normally distributed error generated as in the pairwise

model comparison case. This guarantees that the population HJ-distances of the three models are

all equal to 0.5822. For power evaluation, we consider LL (the benchmark model) in addition to

YOGO and FF3 (the population HJ-distances of the three models are 0.6561, 0.6514 and 0.5822,

respectively). In the log-linear SDF case, we study size by adding another one-factor model, where

the factor is equal to ln(Rmkt) plus a normally distributed error generated as in pairwise model

comparison case (the population HJ-distances of the three models are all equal to 0.6377). To study

power, we consider nonlinear CCAPM (the benchmark model) in addition to nonlinear CAPM and

FF3 (the population HJ-distances of the three models are 0.6630, 0.6377 and 0.5822, respectively).

Panels B and D (p = 2 case) reveal the very good finite-sample properties of the LR test for

comparing multiple asset pricing models.
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Overall, our simulation results suggest that the tests developed in this paper should be fairly

reliable for the sample sizes typically encountered in empirical work. In addition, the proposed

Wald tests exhibit higher power than their weighted chi-squared counterparts.

5. Concluding remarks

This paper develops a general statistical framework for evaluation and comparison of possibly

misspecified asset pricing models using the unconstrained HJ-distance. We derive new versions of

the weighted chi-squared specification and model comparison tests that are computationally efficient

and possess improved finite-sample properties compared to the existing tests in the literature. We

also propose new pivotal (asymptotically chi-squared distributed) specification and model selection

tests. Finally, we develop computationally attractive tests for multiple model comparison. The

excellent size and power properties of the proposed tests are demonstrated using simulated data

from popular linear and nonlinear asset pricing models. The simulation results clearly suggest that

the standard tests for model specification and selection as well as the typical practice of conducting

inference on the SDF parameters under the assumption of correctly specified models could be highly

misleading in various realistic setups. One of the main findings that emerges from our analysis is

that properly incorporating the uncertainty arising from model misspecification, as well as imposing

the additional restrictions implied by the structure of the models, leads to substantially improved

inference.

Although our simulation results are encouraging, the small-sample properties of the test statis-

tics proposed in this paper should be explored further. In addition, it is of interest to compare the

empirical performance of various linear and nonlinear asset pricing models using the testing pro-

cedures developed in this paper. Finally, some recent research (for example, Nagel and Singleton,

2011) has emphasized the importance of incorporating conditioning information in the estimation

and testing of asset pricing models. Extending the results on model comparison to conditional

moment restrictions is a promising area for future research.
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Appendix

A. Preliminary lemma

We first present a preliminary lemma that develops an expansion of the sample HJ-distance which

will be used in the proofs of the subsequent lemmas and theorems.

Lemma A.1. Under Assumptions A, B and C,

δ̂
2 − δ2 =

1

T

T∑
t=1

(φt(θ
∗)− E[φt(θ

∗)])− 1

2
v̄T (θ∗)′H−1v̄T (θ∗) + op

(
1

T

)
. (A.1)

Proof. We start by expanding E[φt(θ̂)] about θ∗. Rearranging and noting that ∂E[φt(θ
∗)]/∂θ =

E[∂φt(θ
∗)/∂θ] = 0n+k (using Assumption C and the definition of θ∗), we obtain

1

T

T∑
t=1

φt(θ̂) = E[φt(θ
∗)] +

1

T

T∑
t=1

(
φt(θ̂)− E[φt(θ̂)]

)
+

1

2
(θ̂ − θ∗)′∂

2E[φt(θ̃)]

∂θ∂θ′
(θ̂ − θ∗), (A.2)

where θ̃ is an intermediate point between θ̂ and θ∗. Furthermore, a mean value expansion of

1
T

∑T
t=1

(
φt(θ̂)− E[φt(θ̂)]

)
about θ∗ yields (Pollard, 1982)

1

T

∑T

t=1

(
φt(θ̂)− E[φt(θ̂)]

)
=

1

T

T∑
t=1

(φt(θ
∗)− E[φt(θ

∗)]) + v̄T (θ∗)′(θ̂ − θ∗) + op

(
1

T

)
(A.3)

using the definition of v̄T (θ) in (12). Plugging (A.3) into (A.2) and from the consistency of θ̂ and

Assumption B(ii), we obtain

δ̂
2 − δ2 =

1

T

T∑
t=1

(φt(θ
∗)− E[φt(θ

∗)]) + v̄T (θ∗)′(θ̂ − θ∗) +
1

2
(θ̂ − θ∗)′H(θ̂ − θ∗) + op

(
1

T

)
. (A.4)

Let h̄∗T (θ) = 1
T

∑T
t=1E[ht(θ)]. A mean value expansion of h̄∗T (θ∗) about θ̂ gives

0n+k =
√
T h̄∗T (θ∗) =

√
T h̄∗T (θ̂)−

∂h̄∗T (θ̌)

∂θ

√
T (θ̂ − θ∗), (A.5)

where θ̌ is another intermediate point on the line segment joining θ̂ and θ∗. From Assumption B(ii)

and the consistency of θ̂, we have

√
T (θ̂ − θ∗) = H−1

√
T h̄∗T (θ̂) + op(1). (A.6)
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From the first order condition of 1
T

∑T
t=1 ht(θ̂) = 0n+k, it follows that

√
T v̄T (θ̂) =

1√
T

T∑
t=1

(
ht(θ̂)− E[ht(θ̂)]

)
= − 1√

T

T∑
t=1

E[ht(θ̂)] = −
√
T h̄∗T (θ̂). (A.7)

This allows us to rewrite
√
T h̄∗T (θ̂) as

√
T h̄∗T (θ̂) = −

√
T v̄T (θ̂) =

√
T [v̄T (θ∗)− v̄T (θ̂)]−

√
T v̄T (θ∗). (A.8)

By the consistency of θ̂, P [|θ̂ − θ∗| > ω]→ 0 for any arbitrarily small ω > 0. Then,

√
T |v̄T (θ∗)− v̄T (θ̂)| ≤ sup

θ∈Θ:|θ−θ∗|≤ω

√
T |v̄T (θ∗)− v̄T (θ)| . (A.9)

From the stochastic equicontinuity of the empirical process
√
T v̄T (·),

sup
θ∈Θ:|θ−θ∗|≤ω

√
T |v̄T (θ∗)− v̄T (θ)| p→ 0. (A.10)

Therefore, we have
√
T [v̄T (θ∗)− v̄T (θ̂)] = op(1) and

√
T h̄∗T (θ̂) = −

√
T v̄T (θ∗) + op(1). (A.11)

Substituting (A.11) into (A.6) yields

√
T (θ̂ − θ∗) = −H−1

√
T v̄T (θ∗) + op(1). (A.12)

Thus, after plugging (A.12) in (A.4), we obtain

δ̂
2 − δ2 =

1

T

T∑
t=1

(φt(θ
∗)− E[φt(θ

∗)])− 1

2
v̄T (θ∗)′H−1v̄T (θ∗) + op

(
1

T

)
. (A.13)

This completes the proof.

B. Proofs

Proof of Lemma 1. (a) For δ > 0 and under Assumptions A, B and C,

√
T v̄T (θ∗)

A∼ N(0n+k,M). (A.14)

Then, combining (A.12) and (A.14), we obtain

√
T (θ̂ − θ∗) A∼ N(0n+k, H

−1MH−1). (A.15)
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To derive an explicit expression for the asymptotic covariance matrix of θ̂, we write

H−1MH−1 =
∞∑

j=−∞
E[ltl

′
t+j ], (A.16)

where

lt ≡

[
l1t

l2t

]
= H−1∂φt(θ

∗)

∂θ
. (A.17)

From the definition of H in (10), we can use the partitioned matrix inverse formula to obtain

H−1 =

[
2C 2D′

2D −2U

]−1

=
1

2

[
H̃ H̃D′U−1

U−1DH̃ −U−1 + U−1DH̃D′U−1

]
, (A.18)

where H̃ = (C +D′U−1D)−1. Using (A.18), (16) and (17), we can express l1t and l2t as

l1t = (C +D′U−1D)−1

[
(yt(γ

∗)−mt(θ
∗))

∂yt(γ
∗)

∂γ
+D′U−1[xtmt(θ

∗)− qt−1]

]
, (A.19)

l2t = U−1[Dl1t − xtmt(θ
∗) + qt−1]. (A.20)

Using the definition of mt(θ
∗) and rearranging the terms delivers the desired result. This completes

the proof of part (a).

(b) When δ = 0, C = 0k×k and mt(θ
∗) = yt(γ

∗). Therefore, l1t and l2t simplify to

l1t = l̃1t = (D′U−1D)−1D′U−1et(γ
∗), (A.21)

l2t = U−1[Dl1t − et(γ∗)]. (A.22)

Premultiplying l2t by P ′U
1
2 yields l̃2t = −P ′U−

1
2 et(γ

∗). This completes the proof of part (b).

Proof of Theorem 1. From part (b) of Lemma 1, we have

√
TP ′U

1
2 λ̂

A∼ N(0n−k, P
′U−

1
2SU−

1
2P ) (A.23)

when δ = 0, or equivalently

√
T (P ′U−

1
2SU−

1
2P )−

1
2P ′U

1
2 λ̂

A∼ N(0n−k, In−k). (A.24)

Then, under Assumptions A, B and C,

LMλ̂ = T λ̂
′
Û

1
2 P̂
(
P̂ ′Û−

1
2 ŜÛ−

1
2 P̂
)−1

P̂ ′Û
1
2 λ̂

= T λ̂
′
U

1
2P
(
P ′U−

1
2SU−

1
2P
)−1

P ′U
1
2 λ̂+ op(1)

A∼ χ2
n−k. (A.25)
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This completes the proof.

Proof of Theorem 2. (a) Since yFt (γ∗F ) = yGt (γ∗G) under the null, it follows that λ∗F = λ∗G and

mFt (θ∗F ) = mGt (θ∗G) which implies that φFt (θ∗F ) = φGt (θ∗G). Using these identities, we have

∂φFt (θ∗F )

∂λF
= 2[xtm

F
t (θ∗F )− qt−1] = 2[xtm

G
t (θ∗G)− qt−1] =

∂φGt (θ∗G)

∂λG
(A.26)

and

v̄F2,T (θ∗F ) = v̄G2,T (θ∗G). (A.27)

It is convenient to express the null hypothesis H0 : ψG(γ∗G) = 0k2−k1 as a functional dependence

H0 : γ∗G = g(γ∗F ), (A.28)

where g(·) is a twice continuously differentiable function from ΓF to ΓG (see Gallant, 1987 and

Vuong, 1989).23 Denote by

G(γF ) =
∂g(γF )

∂γ′F
(A.29)

the k2 × k1 matrix of derivatives of g(γF ) with respect to γF . Gallant (1987, p. 241) shows that

ΨG(γ∗G)G(γ∗F ) = ΨG(g(γ∗F ))G(γ∗F ) = 0(k2−k1)×k1 . (A.30)

Define the matrices

S = [ΨG∗ , 0(k2−k1)×n], Q =

[
G(γ∗F ) 0k2×n

0n×k1 In

]
(A.31)

and note that SQ = 0(k2−k1)×(n+k1). Then, using (A.27) and (A.28), it follows that (see Lemma B

in Vuong, 1989)

v̄FT (θ∗F ) = Q′v̄GT (θ∗G) (A.32)

and

HF = Q′HGQ. (A.33)

By Lemma A.1 and the fact that φFt (θ∗F ) = φGt (θ∗G) under the null, we obtain

T (δ̂
2

F − δ̂
2

G)

= −1

2

√
T v̄FT (θ∗F )′H−1

F
√
T v̄FT (θ∗F ) +

1

2

√
T v̄GT (θ∗G)′H−1

G
√
T v̄GT (θ∗G) + op(1)

= −1

2

√
T v̄GT (θ∗G)′Q(Q′HGQ)−1Q′

√
T v̄GT (θ∗G) +

1

2

√
T v̄GT (θ∗G)′H−1

G
√
T v̄GT (θ∗G) + op(1)

=
1

2

√
T v̄GT (θ∗G)′H

− 1
2

G

[
In+k2 −H

1
2
G Q(Q′HGQ)−1Q′H

1
2
G

]
H
− 1

2
G
√
T v̄GT (θ∗G) + op(1). (A.34)

23Gallant (1987, Section 3.6) provides a discussion of these two alternative representations of the null hypothesis.
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Using SQ = 0(k2−k1)×(n+k1), it can be shown that (see pp. 241–242 in Gallant, 1987)

In+k2 −H
1
2
GQ(Q′HGQ)−1Q′H

1
2
G = H

− 1
2

G S′(SH−1
G S′)−1SH−

1
2

G . (A.35)

Substituting (A.35) into (A.34) yields

T (δ̂
2

F − δ̂
2

G) =
1

2

√
T v̄GT (θ∗G)′H

− 1
2

G [H
− 1

2
G S′(SH−1

G S′)−1SH−
1
2

G ]H
− 1

2
G
√
T v̄GT (θ∗G) + op(1)

=
1

2

√
T v̄GT (θ∗G)′H−1

G S′(SH−1
G S′)−1SH−1

G
√
T v̄GT (θ∗G) + op(1). (A.36)

Furthermore, invoking
√
T v̄GT (θ∗G)

A∼ N (0n+k2 ,MG) , (A.37)

we have

T (δ̂
2

F − δ̂
2

G)
A∼ 1

2
z′
[
M

1
2
GH

−1
G S′(SH−1

G S′)−1SH−1
G M

1
2
G

]
z, (A.38)

where z ∼ N(0n+k2 , In+k2). Denote by Σθ̂G
the asymptotic covariance matrix of θ̂G given in part (a)

of Lemma 1. Since the eigenvalues of the matrix 1
2M

1
2
GH

−1
G S′(SH−1

G S′)−1SH−1
G M

1
2
G are the same as

the eigenvalues of the matrix

1

2
(SH−1

G S′)−1SH−1
G MGH

−1
G S′ =

1

2
(SH−1

G S′)−1SΣθ̂G
S′ = (ΨG∗ H̃GΨG∗

′)−1ΨG∗Σγ̂GΨG∗
′, (A.39)

we conclude that

T (δ̂
2

F − δ̂
2

G)
A∼ Fk2−k1(ξ), (A.40)

where the ξi’s are the eigenvalues of the matrix in (A.39). Since A = ΨG∗ H̃GΨG∗
′ and B = ΨG∗Σγ̂GΨG∗

′

are two symmetric positive definite matrices, A−
1
2BA−

1
2 is also symmetric positive definite with

positive eigenvalues. Furthermore, because A−1B and A−
1
2BA−

1
2 share the same eigenvalues, the

eigenvalues of A−1B are also positive. This completes the proof of part (a).

(b) Note that, under the null and using the delta method,

√
T ψ̂G

A∼ N(0k2−k1 ,Ψ
G
∗Σγ̂GΨG∗

′). (A.41)

Substituting consistent estimators for ΨG∗ and Σγ̂G and constructing the Wald test delivers the

desired result. This completes the proof of part (b).

Proof of Theorem 3. (a) Define the following matrices

SF =
[
ΨF∗ , 0(k1−k3)×n

]
, SG =

[
ΨG∗ , 0(k2−k3)×n

]
. (A.42)
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Since H ⊂ F and H ⊂ G, we can use the results from the proof of part (a) of Theorem 2 to obtain

T (δ̂
2

H − δ̂
2

F ) =
1

2

√
T v̄FT (θ∗F )′AF

√
T v̄FT (θ∗F ) + op(1) (A.43)

and

T (δ̂
2

H − δ̂
2

G) =
1

2

√
T v̄GT (θ∗G)′AG

√
T v̄GT (θ∗G) + op(1), (A.44)

where AF = H−1
F S′F (SFH

−1
F S′F )−1SFH−1

F and AG = H−1
G S′G(SGH

−1
G S′G)−1SGH−1

G . Taking the

difference yields

T (δ̂
2

F − δ̂
2

G) = −1

2

√
T v̄FT (θ∗F )′AF

√
T v̄FT (θ∗F ) +

1

2

√
T v̄GT (θ∗G)′AG

√
T v̄GT (θ∗G) + op(1). (A.45)

From Assumptions A, B and C, the joint empirical process
√
T [v̄FT (θ∗F )′ , v̄GT (θ∗G)′]′ converges to

a Gaussian process: [ √
T v̄FT (θ∗F )
√
T v̄GT (θ∗G)

]
A∼ N (02n+k1+k2 ,M) , (A.46)

where

M =

[
MF MFG
MGF MG

]
= lim

T→∞
Var

 1√
T

∑T
t=1

∂φFt (θ∗F )
∂θF

1√
T

∑T
t=1

∂φGt (θ∗G)

∂θG

 . (A.47)

Hence,

T (δ̂
2

F − δ̂
2

G)
A∼ 1

2
z′

[
M

1
2

(
−AF 0(n+k1)×(n+k2)

0(n+k2)×(n+k1) AG

)
M

1
2

]
z, (A.48)

where z ∼ N(02n+k1+k2 , I2n+k1+k2).

Then, using the fact that AB and BA share the same nonzero eigenvalues, the matrix in the

square brackets in (A.48) has the same nonzero eigenvalues as the matrix

1

2

[
−(SFH−1

F S′F )−1 0(k1−k3)×(k2−k3)

0(k2−k3)×(k1−k3) (SGH−1
G S′G)−1

]

×

[
SFH−1

F 0(k1−k3)×(n+k2)

0(k2−k3)×(n+k1) SGH−1
G

]
M

[
H−1
F S′F 0(n+k1)×(k2−k3)

0(n+k2)×(k1−k3) H−1
G S′G

]
. (A.49)

Using the fact that SFH−1
F S′F = 1

2ΨF∗ H̃FΨF∗
′, SGH−1

G S′G = 1
2ΨG∗ H̃GΨG∗

′ and

Σθ̂FG
=

[
H−1
F 0(n+k1)×(n+k2)

0(n+k2)×(n+k1) H−1
G

]
M

[
H−1
F 0(n+k1)×(n+k2)

0(n+k2)×(n+k1) H−1
G

]
(A.50)

is the asymptotic covariance matrix of [θ̂
′
F , θ̂

′
G ]′, the matrix in (A.49) can be written as[

−(ΨF∗ H̃FΨF∗
′)−1 0(k1−k3)×(k2−k3)

0(k2−k3)×(k1−k3) (ΨG∗ H̃GΨG∗
′)−1

]
ΨFG∗ Σγ̂FGΨFG∗

′. (A.51)
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Therefore,

T (δ̂
2

F − δ̂
2

G)
A∼ Fk1+k2−2k3(ξ), (A.52)

where the ξi’s are the eigenvalues of the matrix in (A.51). This completes the proof of part (a).

(b) By the delta method,

√
T ψ̂FG

A∼ N(0k1+k2−2k3 ,Ψ
FG
∗ Σγ̂FGΨFG∗

′). (A.53)

Using consistent estimators of ΨFG∗ and Σγ̂FG for constructing

Waldψ̂FG
= T ψ̂

′
FG(Ψ̂FGΣ̂γ̂FG Ψ̂FG′)−1ψ̂FG , (A.54)

we obtain immediately

Waldψ̂FG
A∼ χ2

k1+k2−2k3 . (A.55)

This completes the proof of part (b).

C. Computation of the p-values for the multivariate inequality test

The biggest hurdle in determining the p-value of LR in (52) is the computation of the weights. For a

given p×p covariance matrix Ω = (ωij), the expressions for the weights wi(Ω), i = 0, . . . , p, are given

in Kudo (1963). The weights depend on Ω through the correlation coefficients ρij = ωij/(ωiωj).

When p = 1, w0 = w1 = 1/2. For p = 2, w0 = 1/2−w2, w1 = 1/2 and w2 = 1/4+arcsin(ρ12)/(2π).

When p = 3, w0 = 1/2− w2, w1 = 1/2− w3,

w2 =
3

8
+

arcsin(ρ12·3) + arcsin(ρ13·2) + arcsin(ρ23·1)

4π
, (A.56)

and

w3 =
1

8
+

arcsin(ρ12) + arcsin(ρ13) + arcsin(ρ23)

4π
, (A.57)

where

ρij·k =
ρij − ρikρjk

[(1− ρ2
ik)(1− ρ2

jk)]
1
2

. (A.58)

For p > 3, the computation of the weights is more complicated. Following Kudo (1963), let

P = {1, . . . , p}. There are 2p subsets of P, which are indexed by M . Let n(M) be the number of

elements in M and M ′ be the complement of M relative to P. Define ΩM as the submatrix of Ω
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that consists of the rows and columns in the set M , ΩM ′ as the submatrix of Ω that consists of

the rows and columns in the set M ′, ΩM,M ′ the submatrix of Ω with rows corresponding to the

elements in M and columns corresponding to the elements in M ′ (ΩM ′,M is similarly defined), and

ΩM ·M ′ = ΩM − ΩM,M ′Ω
−1
M ′ΩM ′,M . Kudo (1963) shows that

wi(Ω) =
∑

M : n(M)=i

P (Ω−1
M ′)P (ΩM ·M ′), (A.59)

where P (A) is the probability for a multivariate normal distribution with zero mean and covariance

matrix A to have all positive elements. In the above equation, we use the convention that P [Ω∅·P ] =

1 and P [Ω−1
∅ ] = 1. Using (A.59), we have w0(Ω) = P (Ω−1) and wp(Ω) = P (Ω).

Researchers have typically used a Monte Carlo approach to compute the positive orthant prob-

ability P (A). However, the Monte Carlo approach is not efficient because it requires a large number

of simulations to achieve the accuracy of a few digits, even when p is relatively small.

We overcome this problem by using a formula for the positive orthant probability due to Childs

(1967) and Sun (1988a). Let R = (rij) be the correlation matrix corresponding to A. Childs (1967)

and Sun (1988a) show that

P2k(A) =
1

22k
+

1

22k−1π

∑
1≤i<j≤2k

arcsin(rij)

+
k∑
j=2

1

22k−jπj

∑
1≤i1<···<i2j≤2k

I2j

(
R(i1,...,i2j)

)
, (A.60)

P2k+1(A) =
1

22k+1
+

1

22kπ

∑
1≤i<j≤2k+1

arcsin(rij)

+
k∑
j=2

1

22k+1−jπj

∑
1≤i1<···<i2j≤2k+1

I2j

(
R(i1,...,i2j)

)
, (A.61)

where R(i1,...,i2j) denotes the submatrix consisting of the (i1, . . . , i2j)-th rows and columns of R, and

I2j(Λ) =
(−1)j

(2π)j

∫ ∞
−∞
· · ·
∫ ∞
−∞

(
2j∏
i=1

1

ωi

)
exp

(
−ω
′Λω

2

)
dω1 · · · dω2j , (A.62)

where Λ is a 2j × 2j covariance matrix and ω = (ω1, . . . , ω2j)
′. Sun (1988a) provides a recursive

relation for I2j(Λ) that allows us to obtain I2j starting from I2. Sun’s formula enables us to compute

the 2j-th order multivariate integral I2j using a (j − 1)-th order multivariate integral, which can

be obtained numerically using the Gauss-Legendre quadrature method. Sun (1988b) provides a
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Fortran subroutine to compute P (A) for p ≤ 9. We improve on Sun’s program and are able to

accurately compute P (A) and hence wi(Ω) for p ≤ 11.

D. Description of the simulation designs for linear and nonlinear models

Since generating data from correctly specified and misspecified models (nested and non-nested)

that are calibrated to actual data is nontrivial, we present the details of our simulation designs.

Let Rt be an n-vector of payoffs and ft be a (k − 1)-vector of risk factors. For linear models, let

Yt = [f ′t , R
′
t]
′. For log-linear models, let Yt = [f ′t , r

′
t]
′, where rt = ln(Rt). In addition, let

µ = E[Yt] =

[
µ1

µ2

]
(A.63)

and

V = Var[Yt] =

[
V11 V12

V21 V22

]
. (A.64)

Let µ̂2 and V̂ denote the sample estimates obtained from actual data. In all our simulations,

the covariance matrix of the factors and returns, V , is chosen based on the covariance matrix

estimated from the data, i.e., V = V̂ . In addition, since the results are invariant to the mean of

the factors, without loss of generality we set µ1 = 0k−1 in all simulation designs. In this appendix,

we discuss how to choose µ2 and the SDF parameters γ, such that the model is correctly specified

or misspecified and the γ’s satisfy certain restrictions (for example, γi = 0).

Linear models

Correctly specified models. For a given γ = [γ0, γ
′
1]′, the pricing errors of a linear SDF

yt(γ) = γ0 + γ′1ft are given by

e = E[Rtyt(γ)]− 1n = µ2γ0 + V21γ1 − 1n. (A.65)

The vector of pricing errors can be re-written as

e = γ0

(
µ2 + V21

γ1

γ0

− 1n
1

γ0

)
=
µ2 − V21η1 − 1nη0

η0

, (A.66)

where η0 = 1/γ0 and η1 = −γ1/γ0. From this equation, we can see that in order for the model to

be correctly specified, we need to set µ2 = Xη, where X = [1n, V21] and η = [η0, η
′
1]′.
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When we do not need to impose restrictions on the parameter vector γ (as in the size experiment

in Table 2.A), η is chosen such that the implied µ2 is as close as possible to µ̂2, i.e.,

min
η

(µ̂2 −Xη)′V −1
22 (µ̂2 −Xη). (A.67)

The solution to this minimization problem can be easily obtained as

η∗ = (X ′V −1
22 X)−1(X ′V −1

22 µ̂2). (A.68)

The solution η∗ is then used to obtain µ2 = Xη∗ and back out the original parameters γ∗ as

γ∗1 = −η
∗
1

η∗0
, γ∗0 =

1

η∗0
. (A.69)

Under correctly specified models, interest may lie in evaluating the statistical significance of indi-

vidual coefficients as well as imposing the null hypothesis of SDF equality in nested and overlapping

model comparison tests. These are situations in which we need to choose η (or, equivalently, γ)

subject to certain constraints, say g(η) = 0m, by solving the following problem:

min
η

(µ̂2 −Xη)′V −1
22 (µ̂2 −Xη) s.t. g(η) = 0m. (A.70)

In the case of zero restrictions on the parameters, let η1 = [η′1a, η
′
1b]
′, where η1a is k1 × 1 and η1b

is k2 × 1, and k1 + k2 = k − 1. Without loss of generality, we set η1b = 0k2 . This can be easily

accomplished by choosing η̃∗ = [η̃∗c
′, 0′k2 ]′, where

η̃∗c = (X ′cV
−1

22 Xc)
−1X ′cV

−1
22 µ̂2, (A.71)

and Xc = [1n, V
a

21] with V a
21 being the first k1 columns of V21. As before, µ2 = Xη̃∗ and the values

of the original parameters γ∗ can be recovered from η̃∗.

Potentially misspecified models. We now discuss the issue of how to set µ2 such that the

model is misspecified but the pseudo-true SDF parameters are still equal to a given value of γ. Let

D = [µ2, V21]. From the definition of pseudo-true SDF parameters, we have

γ = (D′V −1
22 D)−1D′V −1

22 1n. (A.72)

Multiplying both sides of the equation above by D′V −1
22 D, we obtain the following first order

conditions:

µ′2V
−1

22 (µ2γ0 + V21γ1 − 1n) = 0, (A.73)

V12V
−1

22 (µ2γ0 + V21γ1 − 1n) = 0k−1. (A.74)
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Let z be an n-vector of constants and

µ2 =
1n − V21γ1 + z

γ0

= (z + 1n)η0 + V21η1 = Xη + zη0. (A.75)

Then, the above first order conditions imply that z must satisfy

V12V
−1

22 z = 0k−1, (A.76)

z′V −1
22 1n = −z′V −1

22 z. (A.77)

There are many possible vectors z that can satisfy these conditions. In order to have a misspecified

model with pseudo-true parameters γ, a convenient choice of z is ê, where

ê = D̂(D̂′V −1
22 D̂)−1(D̂′V −1

22 1n)− 1n, (A.78)

and D̂ = [µ̂2, V21]. Note that ê has the following properties: (1) D̂′V −1
22 ê = 0k, which implies

V12V
−1

22 ê = 0k−1, and (2) ê′V −1
22 1n = −ê′V −1

22 ê. In the simulations (Tables 1.A and 1.B, Tables 3.A

and 3.B (size experiments), Table 4.A (size experiments)), we use this choice of z and set the mean

of the returns for misspecified models as µ2 = Xη̃∗ + êη̃∗0, where η̃∗ is obtained from (A.71).

Log-linear models

Suppose that yt(γ) = exp(γ0 + γ′1ft) and[
ft

rt

]
∼ N

([
µ1

µ2

]
,

[
V11 V12

V21 V22

])
. (A.79)

Again, the goal is to set µ2 such that the model is correctly specified or misspecified with a desired

parameter vector γ.

Correctly specified models. For a given γ = [γ0, γ
′
1]′, using the properties of the log-normal

distribution, we can obtain the pricing errors of the log-linear model as

e = E[Rtyt(γ)]− 1n = E[exp(rt + γ0 + γ′1ft)]− 1n

= exp

(
γ0 + µ2 +

γ′1V11γ1

2
+ V21γ1 +

vr
2

)
− 1n, (A.80)

where vr = Diag(V22).

For convenience, let µ̃2 = µ2 + (vr/2) and γ̃0 = γ0 + (γ′1V11γ1)/2. We can then write the vector of

pricing errors as

e = exp (µ̃2 + 1nγ̃0 + V21γ1)− 1n = exp (µ̃2 +Xγ̃)− 1n, (A.81)
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where X = [1n, V21] and γ̃ = [γ̃0, γ
′
1]′.

From the above equation, we can see that a model is correctly specified if and only if µ̃2 = −Xγ̃,

or equivalently

µ2 = −vr
2
−Xγ̃. (A.82)

Therefore, for any given value of γ̃, we can set µ2 as in (A.82) and the model will be correctly

specified.

When we do not need to impose restrictions on the parameter vector γ̃ (as in the size experiment

in Table 2.B), γ̃ is determined so that the implied µ2 is as close as possible to µ̂2, i.e.,

min
γ̃

(µ̂2 − µ2)′V −1
22 (µ̂2 − µ2) = min

γ̃

(
µ̂2 +

vr
2

+Xγ̃
)′
V −1

22

(
µ̂2 +

vr
2

+Xγ̃
)
. (A.83)

The solution to this minimization problem is given by

γ̃∗ = −(X ′V −1
22 X)−1X ′V −1

22

(
µ̂2 +

vr
2

)
. (A.84)

As in the linear case, we may need to choose γ̃ subject to certain constraints, say g(γ̃) = 0m. In

these situations, we choose γ̃ by solving the following problem:

min
γ̃

(
µ̂2 +

vr
2

+Xγ̃
)′
V −1

22

(
µ̂2 +

vr
2

+Xγ̃
)

s.t. g(γ̃) = 0m. (A.85)

In the case of zero restrictions on the parameters, let γ1 = [γ′1a, γ
′
1b]
′, where γ1a is k1 × 1, γ1b is

k2× 1, and k1 + k2 = k− 1. Without loss of generality, we set γ1b = 0k2 . This can be accomplished

by choosing γ̃∗ = [γ̃∗c
′, 0′k2 ]′, where

γ̃∗c = −(X ′cV
−1

22 Xc)
−1X ′cV

−1
22

(
µ̂2 +

vr
2

)
, (A.86)

and Xc = [1n, V
a

21] with V a
21 being the first k1 columns of V21. We can then set µ2 = −vr

2 −Xγ̃
∗.

Potentially misspecified models. Setting µ2 such that the model is misspecified and the pseudo-

true SDF parameters are equal to γ̃ proves to be a more challenging task. Without loss of generality,

we assume

µ̃2 = −Xγ̃ + z, (A.87)
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where z is an n-vector of constants. When the pseudo-true SDF parameters are equal to γ̃, there

are k constraints on z, given by the following first order conditions:

D′U−1e = 0k, (A.88)

where U = E[RtR
′
t], e = E[Rtyt(γ̃)]− 1n, and

D = E

[
Rt
∂yt(γ̃)

∂γ̃′

]
. (A.89)

Note that with the reparametrization from γ to γ̃, yt(γ̃) is given by

yt(γ̃) = exp

(
γ̃0 −

γ̃′1V11γ̃1

2
+ γ̃′1ft

)
. (A.90)

We first derive explicit expressions for e, U and D. For e, we have

e = E[Rtyt(γ̃)]− 1n

= E

[
exp

(
rt + γ̃0 −

γ̃′1V11γ̃1

2
+ γ̃′1ft

)]
− 1n

= exp(z)− 1n

= z̃ − 1n, (A.91)

by denoting z̃ = exp(z). To obtain U , we need to compute E[RitRjt]. Note that

E[exp(rit + rjt)] = exp
(
µi + µj +

vii
2

+
vjj
2

+ vij

)
= E[Rit]E[Rjt] exp(vij), (A.92)

where vii = Var[rit] and vij = Cov[rit, rjt]. With this result, we have

U = E[RtR
′
t] = E[Rt]E[Rt]

′ ◦ exp(V22), (A.93)

where ◦ is the Hadamard product and

E[Rt] = exp(µ̃2) = exp(−Xγ̃) ◦ z̃. (A.94)

We now turn our attention to D and derive the expression for its first column. It is straightforward

to show that

E

[
Rt
∂yt(γ̃)

∂γ̃0

]
= E[Rtyt(γ̃)] = 1n + e = z̃. (A.95)

To derive the other columns of D, we need to compute the expectation of

Rt
∂yt(γ̃)

∂γ̃′1
= Rtyt(γ̃)(−γ̃′1V11 + f ′t). (A.96)
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We appeal to Stein’s lemma, which states that if (u, v) are bivariate normally distributed, we have

Cov[u, g(v)] = σuvE[g′(v)] (A.97)

when E[g′(v)] exists. Using Stein’s lemma, we can easily obtain

E

[
Rt
∂yt(γ̃)

∂γ̃′1

]
= E

[
ertyt(γ̃)(−γ̃′1V11 + f ′t)

]
= −z̃γ̃′1V11 + E

[
ert+γ̃0−(γ̃′1V11γ̃1)/2+γ̃′1ftf ′t

]
= −z̃γ̃′1V11 + (V21 + 1nγ̃

′
1V11) ◦ (z̃1′k−1)

= V21 ◦ (z̃1′k−1). (A.98)

Therefore, we can write D as

D = [z̃, V21 ◦ (z̃1′k−1)]. (A.99)

Having expressed D, U and e as functions of z̃, z̃ can be obtained numerically by minimizing the

distance between µ̂2 and µ2 subject to the k constraints in (A.88). Denote the solution for z̃ in

this minimization problem by z̃∗. In the simulations (Tables 1.C and 1.D, Tables 3.C and 3.D

(size experiments), Table 4.C (size experiments)), we use z̃∗ and set the mean of the returns for

misspecified models as µ2 = −vr
2 −Xγ̃

∗ + z̃∗, where γ̃∗ is obtained from (A.86).
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Table 1. t-tests under model misspecification

Panel A: t-tests under potentially misspecified models (linear YOGO model)

Size (rmkt) Size (4cndur) Size (4cdur)

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
120 0.123 0.064 0.013 0.084 0.037 0.006 0.085 0.038 0.006
240 0.118 0.061 0.013 0.084 0.040 0.006 0.084 0.038 0.006
360 0.115 0.059 0.013 0.088 0.040 0.007 0.087 0.040 0.006
480 0.110 0.057 0.013 0.089 0.042 0.007 0.089 0.042 0.007
600 0.108 0.057 0.012 0.090 0.043 0.008 0.091 0.043 0.008

Panel B: t-tests under correctly specified models (linear YOGO model)

Size (rmkt) Size (4cndur) Size (4cdur)

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
120 0.217 0.137 0.043 0.284 0.192 0.068 0.293 0.200 0.074
240 0.245 0.162 0.063 0.317 0.226 0.098 0.330 0.237 0.106
360 0.256 0.175 0.073 0.337 0.248 0.118 0.356 0.265 0.130
480 0.265 0.183 0.078 0.350 0.261 0.131 0.372 0.283 0.148
600 0.269 0.187 0.081 0.358 0.269 0.140 0.385 0.295 0.160

Panel C: t-tests under potentially misspecified models (nonlinear YOGO model)

Size (ln(Rmkt)) Size (4cndur) Size (4cdur)

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
120 0.093 0.041 0.004 0.094 0.041 0.004 0.101 0.044 0.005
240 0.106 0.054 0.010 0.099 0.051 0.010 0.111 0.059 0.012
360 0.105 0.054 0.012 0.095 0.049 0.011 0.107 0.059 0.014
480 0.104 0.054 0.012 0.088 0.044 0.010 0.101 0.054 0.014
600 0.102 0.053 0.011 0.083 0.040 0.009 0.093 0.049 0.013

Panel D: t-tests under correctly specified models (nonlinear YOGO model)

Size (ln(Rmkt)) Size (4cndur) Size (4cdur)

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
120 0.219 0.136 0.039 0.281 0.182 0.049 0.293 0.190 0.052
240 0.256 0.172 0.068 0.332 0.242 0.111 0.355 0.265 0.126
360 0.274 0.191 0.082 0.354 0.268 0.141 0.383 0.299 0.166
480 0.287 0.204 0.091 0.365 0.280 0.155 0.397 0.313 0.188
600 0.299 0.214 0.097 0.368 0.285 0.161 0.408 0.325 0.197

The table presents the empirical size of t-tests of H0 : γi = 0. We report results for different levels of
significance (10%, 5% and 1% levels) and for different values of the number of time series observations (T )
using 100,000 simulations, assuming that the factors and the gross returns (continuously compounded gross
returns in the nonlinear case) are generated from a multivariate normal distribution. The various t-ratios
are compared to the critical values from a standard normal distribution. Panels A and C report the sizes of
t-tests under potentially misspecified models based on the asymptotic covariance matrix in (23) and (24),
while Panels B and D report the sizes of t-tests under correctly specified models based on the asymptotic
covariance matrix in (26) and (27).



Table 2. Specification tests

Panel A: Linear YOGO model

HJ-distance test LM test

Size Power Size Power

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

120 0.269 0.177 0.065 0.991 0.982 0.947 0.122 0.058 0.009 0.982 0.959 0.847
240 0.164 0.094 0.026 1.000 1.000 0.999 0.103 0.049 0.009 1.000 1.000 0.998
360 0.139 0.076 0.019 1.000 1.000 1.000 0.099 0.049 0.009 1.000 1.000 1.000
480 0.127 0.068 0.016 1.000 1.000 1.000 0.098 0.048 0.009 1.000 1.000 1.000
600 0.120 0.064 0.015 1.000 1.000 1.000 0.097 0.048 0.009 1.000 1.000 1.000

Panel B: Nonlinear YOGO model

HJ-distance test LM test

Size Power Size Power

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

120 0.267 0.173 0.062 0.986 0.970 0.910 0.136 0.069 0.012 0.995 0.985 0.921
240 0.164 0.095 0.026 0.997 0.995 0.983 0.106 0.053 0.009 1.000 1.000 1.000
360 0.140 0.077 0.019 0.999 0.998 0.994 0.101 0.050 0.009 1.000 1.000 1.000
480 0.128 0.069 0.016 1.000 0.999 0.997 0.100 0.050 0.009 1.000 1.000 1.000
600 0.123 0.065 0.015 1.000 0.999 0.998 0.101 0.049 0.009 1.000 1.000 1.000

The table presents the empirical size and power of the conventional HJ-distance test and the LM test in Theo-
rem 1. We report results for different levels of significance (10%, 5% and 1% levels) and for different values of
the number of time series observations (T ) using 100,000 simulations, assuming that the factors and the gross
returns (continuously compounded gross returns in the nonlinear case) are generated from a multivariate normal
distribution.



Table 3. Model selection tests for nested SDFs

Panel A: Pairwise model comparison tests: Linear models

Weighted χ2 test Wald test

Size Power Size Power

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

120 0.089 0.038 0.005 0.337 0.198 0.046 0.107 0.051 0.009 0.468 0.334 0.129
240 0.090 0.040 0.006 0.508 0.346 0.114 0.109 0.054 0.010 0.650 0.526 0.285
360 0.093 0.043 0.006 0.636 0.478 0.195 0.107 0.054 0.010 0.760 0.657 0.423
480 0.094 0.045 0.007 0.734 0.588 0.286 0.107 0.054 0.011 0.836 0.750 0.537
600 0.093 0.045 0.007 0.807 0.682 0.377 0.105 0.053 0.011 0.887 0.819 0.633

Panel B: Multiple model comparison test: Linear models

Size Power

T 10% 5% 1% 10% 5% 1%

120 0.085 0.038 0.006 0.370 0.243 0.082
240 0.087 0.041 0.006 0.572 0.441 0.212
360 0.089 0.041 0.008 0.715 0.598 0.357
480 0.091 0.044 0.008 0.811 0.715 0.492
600 0.092 0.045 0.008 0.880 0.806 0.610

Panel C: Pairwise model comparison tests: Nonlinear models

Weighted χ2 test Wald test

Size Power Size Power

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

120 0.059 0.020 0.001 0.280 0.146 0.024 0.092 0.036 0.003 0.397 0.240 0.047
240 0.072 0.027 0.003 0.460 0.304 0.093 0.125 0.063 0.011 0.635 0.508 0.254
360 0.074 0.030 0.003 0.574 0.418 0.165 0.126 0.069 0.015 0.742 0.638 0.405
480 0.073 0.030 0.003 0.661 0.512 0.236 0.121 0.066 0.016 0.812 0.727 0.519
600 0.071 0.029 0.003 0.733 0.597 0.313 0.115 0.063 0.016 0.861 0.792 0.611

Panel D: Multiple model comparison test: Nonlinear models

Size Power

T 10% 5% 1% 10% 5% 1%

120 0.078 0.031 0.003 0.363 0.215 0.047
240 0.106 0.052 0.009 0.645 0.515 0.263
360 0.107 0.054 0.011 0.776 0.675 0.444
480 0.104 0.054 0.012 0.859 0.781 0.582
600 0.101 0.052 0.012 0.910 0.853 0.691

The table presents the empirical size and power of pairwise and multiple model comparison tests for nested linear
(Panels A and B) and nonlinear (Panels C and D) models. In Panels A and C, we report results for the weighted
chi-squared test in part (a) of Theorem 2 and the Wald test in part (b) of Theorem 2. Panels B and D are for the
Wald test for multiple nested model comparison in (54). We report results for different levels of significance (10%,
5% and 1% levels) and for different values of the number of time series observations (T ) using 100,000 simulations,
assuming that the factors and the gross returns (continuously compounded gross returns in the nonlinear case) are
generated from a multivariate normal distribution.



Table 4. Model selection tests for non-nested SDFs

Panel A: Pairwise tests of equality: Linear models

Weighted χ2 test Wald test

Size Power Size Power

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

120 0.079 0.035 0.005 0.648 0.561 0.357 0.081 0.037 0.006 0.776 0.651 0.374
240 0.083 0.038 0.006 0.887 0.855 0.758 0.082 0.037 0.006 0.979 0.957 0.849
360 0.087 0.040 0.007 0.958 0.947 0.912 0.085 0.040 0.007 0.999 0.997 0.981
480 0.088 0.042 0.007 0.984 0.980 0.968 0.088 0.042 0.007 1.000 1.000 0.998
600 0.091 0.042 0.007 0.993 0.992 0.987 0.089 0.042 0.007 1.000 1.000 1.000

Panel B: Pairwise (p = 1) and multiple (p = 2) model comparison tests: Linear models
Normal test (p = 1) LR test (p = 2)

Size Power Size Power

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

120 0.134 0.069 0.011 0.433 0.312 0.128 0.134 0.066 0.010 0.359 0.244 0.086
240 0.109 0.052 0.007 0.622 0.489 0.250 0.104 0.047 0.005 0.526 0.394 0.174
360 0.104 0.049 0.007 0.752 0.636 0.387 0.100 0.046 0.006 0.668 0.540 0.296
480 0.102 0.049 0.008 0.841 0.745 0.512 0.097 0.046 0.007 0.772 0.662 0.418
600 0.102 0.048 0.008 0.900 0.825 0.623 0.097 0.046 0.007 0.848 0.758 0.532

Panel C: Pairwise tests of equality: Nonlinear models

Weighted χ2 test Wald test

Size Power Size Power

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

120 0.050 0.017 0.001 0.159 0.074 0.011 0.077 0.031 0.003 0.363 0.216 0.046
240 0.062 0.023 0.002 0.268 0.157 0.039 0.105 0.051 0.009 0.646 0.518 0.265
360 0.065 0.026 0.003 0.328 0.210 0.064 0.107 0.055 0.012 0.778 0.678 0.445
480 0.066 0.026 0.003 0.369 0.245 0.084 0.105 0.054 0.013 0.859 0.784 0.586
600 0.067 0.027 0.003 0.409 0.282 0.106 0.102 0.052 0.012 0.910 0.854 0.692

Panel D: Pairwise (p = 1) and multiple (p = 2) model comparison tests: Nonlinear models
Normal test (p = 1) LR test (p = 2)

Size Power Size Power

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

120 0.119 0.052 0.005 0.773 0.649 0.354 0.106 0.043 0.003 0.686 0.542 0.253
240 0.105 0.046 0.004 0.914 0.858 0.682 0.095 0.037 0.003 0.880 0.808 0.587
360 0.103 0.047 0.005 0.956 0.922 0.809 0.095 0.040 0.004 0.938 0.892 0.752
480 0.102 0.048 0.006 0.976 0.955 0.879 0.095 0.042 0.005 0.965 0.937 0.840
600 0.100 0.048 0.007 0.987 0.974 0.923 0.096 0.043 0.005 0.981 0.963 0.896

The table presents the empirical size and power of pairwise and multiple model comparison tests for non-nested
linear (Panels A and B) and nonlinear (Panels C and D) models. In Panels A and C, we report results for the
weighted chi-squared test in part (a) of Theorem 3 and the Wald test in part (b) of Theorem 3. Panels B and D
present results for the pairwise (p = 1) and multiple (p = 2) model comparison tests in (35) and (52), respectively.
We report results for different levels of significance (10%, 5% and 1% levels) and for different values of the number of
time series observations (T ) using 100,000 simulations, assuming that the factors and the gross returns (continuously
compounded gross returns in the nonlinear case) are generated from a multivariate normal distribution.


