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Optimal Portfolio Choice with Parameter Uncertainty

Abstract

In this paper, we analytically derive the expected loss function associated with using

sample means and covariance matrix of returns to estimate the optimal portfolio. Our

analytical results show that the standard plug-in approach that replaces the population

parameters by their sample estimates can lead to very poor out-of-sample performance. We

further show that with parameter uncertainty, holding the sample tangency portfolio and the

riskless asset is never optimal. An investor can benefit by holding some other risky portfolios

that help reduce the estimation risk. In particular, we show that a portfolio that optimally

combines the riskless asset, the sample tangency portfolio, and the sample global minimum-

variance portfolio dominates a portfolio with just the riskless asset and the sample tangency

portfolio, suggesting that the presence of estimation risk completely alters the theoretical

recommendation of a two-fund portfolio.



I. Introduction

Theoretical models often assume that an economic agent making an optimal financial decision

knows the true parameters of the model. But the true parameters are rarely if ever known to

the decision-maker. In reality, model parameters have to be estimated, and hence the model’s

usefulness depends partly on how good the estimates are. This gives rise to estimation risk

in virtually all financial models. At present, estimation risk is commonly minimized based on

statistical criteria such as minimum variance and asymptotic efficiency. Can the parameters

be estimated in such a way that the out-of-sample performance of the model is maximized?

This paper provides some answers.

A leading example of parameter uncertainty arises from the classic portfolio choice prob-

lem. Markowitz’s (1952) seminal work shows that the optimal portfolio for a mean-variance

investor is a combination of the tangency portfolio and a riskless asset (two-fund separa-

tion). Despite its limitation as a single-period model, the mean-variance framework is one

of the most important benchmark models used in practice today (see, e.g., Litterman (2003)

and Meucci (2005)).1 However, the framework requires knowledge of both the mean and

covariance matrix of the asset returns, which in practice are unknown and have to be esti-

mated from the data. The standard approach, ignoring estimation risk, simply treats the

estimates as the true parameters and plugs them into the optimal portfolio formula derived

under the mean-variance framework. Using predictive distributions pioneered by Zellner and

Chetty (1965), Brown (1976) shows that the plug-in method is generally outperformed by

the Bayesian decision rule under a diffuse prior (Bawa, Brown, and Klein (1979) provide

an extensive survey of the early work). In fact, as our analytical derivation later will show,

the Bayesian decision rule is uniformly better than the plug-in method in that it always

yields higher expected out-of-sample performance no matter what the true parameter val-

ues are. This provides both direct and indirect theoretical support for a number of recent

studies, such as Kandel and Stambaugh (1996), Barberis (2000), Pástor (2000), Pástor and

Stambaugh (2000), Xia (2001), Tu and Zhou (2004), and Kacperczyk (2004) that use the

Bayesian predictive approach to account for parameter uncertainty. Nevertheless, as we will

1On issues related to this and more general portfolio problems can be found in an excellent survey by
Brandt (2005).
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show, it is possible to estimate the parameters in such a way as to yield a decision rule that

is uniformly better than the Bayesian approach (under a diffuse prior).

While there exist alternative ways for dealing with parameter uncertainty,2 our study fo-

cuses on the well-defined and yet unsolved problem in the classical mean-variance framework:

how should a mean-variance investor optimally estimate the portfolio weights? Although the

mean-variance framework is a simple model, it allows us to obtain analytical results that

provide insights into solving portfolio choice problems in more general settings.

In this paper, the first problem we study is how an investor can optimally estimate the

portfolio weights if he invests only in the usual two funds: the riskless asset and the sample

tangency portfolio. A similar problem was studied by TerHorst, DeRoon, and Werkerzx

(2002) assuming a known covariance matrix, but this restrictive assumption is not needed

here. When asset returns are normally distributed, we obtain a simple closed-form formula

for estimating the optimal weights in the two-fund universe. In particular, we find that a

simplified version of the formula, whose construction does not rely on any unknown param-

eters, always yields greater expected out-of-sample performance than both the plug-in and

Bayesian approaches (under a diffuse prior) no matter what the true parameter values are. A

recent paper by Mori (2004) also studied a similar problem under general linear constraints

on portfolio weights.3

The second problem we study is whether a three-fund portfolio can increase the expected

out-of-sample performance even further, i.e., whether a new risky portfolio can be added

into the riskless asset and the sample tangency portfolio so as to improve the expected

out-of-sample performance. If the true parameters are known, as assumed in theory, then

two-fund separation holds and there is no point of analyzing a three-fund portfolio. However,

when the parameters are unknown, the tangency portfolio is obtained with estimation error.

Intuitively, additional portfolios could be useful if they provide diversification of estimation

risk. Indeed, we show that the optimal portfolio weights can be solved analytically in a

2For examples, Garlappi, Uppal, and Wang (2007) and Lutgens (2004) study robust portfolio rules that
maximize the worst case performance when model parameters fall within a particular confidence interval, and
Harvey, Liechty, Liechty, and Müller (2004) study the optimal portfolio problem under a Bayesian setting
when the returns follow a skew-normal distribution.

3After completion of this paper, we were alerted that some of our results on the first problem can be
found in Mori (2004). Nevertheless, our analysis is intuitive and more relevant to the proposed problem.
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three-fund universe that consists of the riskless asset, the sample tangency portfolio, and

the sample global minimum-variance portfolio. Therefore, a three-fund portfolio rule can

dominate all the previous two-fund rules. This finding has powerful implications. It says

that the recommendation of a theoretical result, like holding a two-fund portfolio here, can

be altered completely in the presence of parameter uncertainty, to holding a three-fund

(perhaps even more) portfolio.

To better estimate expected returns, Jorion (1986) provides an interesting Bayes-Stein

shrinkage estimator, and shows by simulation that the resulting portfolio rule can often

generate higher expected out-of-sample performance than the Bayesian approach (under a

diffuse prior). We provide a comparison of Jorion’s rule with our optimal three-fund rule and

show that Jorion’s rule is effectively also a three-fund portfolio rule. As both Jorion’s rule

and our optimal three-fund rule are not analytically tractable, we use simulations to compare

their performance. We find that the Bayesian approach under a diffuse prior is outperformed

by Jorion’s rule, and that our optimal three-fund rule outperforms even Jorion’s rule.

The remainder of the paper is organized as follows. Section II provides the optimal

decision rule when the investment universe is only the riskless asset and the sample tangency

portfolio. Section III solves the optimal portfolio rule when the investment universe is

enlarged by adding the sample global minimum-variance portfolio. Section IV analyzes

Jorion’s shrinkage portfolio rule. Section V compares the performance of all the portfolio

rules with parameters calibrated from real data, and Section VI concludes.

II. Two-fund Portfolio Rules

In this section, we first discuss the mean-variance portfolio problem in the presence of es-

timation risk. Then, we analyze the classical plug-in methods for estimating the optimal

portfolio weights of the mean-variance theory, review the Bayesian predictive solution and

compare it with the classical plug-in estimates. Finally, we provide our optimal portfolio

rule when the investor is concerned with investing in the universe of the riskless asset and

the sample tangency portfolio.
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A. The Problem

Consider the standard portfolio choice problem of an investor who chooses a portfolio in the

universe of a riskless asset and N risky assets. Denote by rft and rt the rates of returns

on the riskless asset and N risky assets at time t, respectively. We define excess returns

as Rt ≡ rt − rft1N , where 1N is an N -vector of ones. The standard assumption on the

probability distribution of Rt is that Rt is independent and identically distributed (i.i.d.)

over time. In addition, we assume Rt follows a multivariate normal distribution with mean

µ and covariance matrix Σ.

Given portfolio weights w, an N × 1 vector on the risky assets, the excess return on

the portfolio at time t is Rpt = w′Rt, so its mean and variance are given by µp = w′µ and

σ2
p = w′Σw. The investor is assumed to choose w so as to maximize the mean-variance

objective function

U(w) = µp −
γ

2
σ2
p,(1)

where γ is the coefficient of relative risk aversion. When µ and Σ are known, the solution to

the investor’s optimal portfolio choice problem is

w∗ =
1

γ
Σ−1µ,(2)

and the resulting expected utility is

U(w∗) =
1

2γ
µ′Σ−1µ =

θ2

2γ
,(3)

where θ2 = µ′Σ−1µ is the squared Sharpe ratio of the ex ante tangency portfolio of the

risky assets. Given the relative risk aversion parameter γ, this is the maximum utility

that the investor can obtain when the portfolio weights w∗ are computed based on the true

parameters.

In practice, w∗ is not computable because µ and Σ are unknown. To implement the

mean-variance theory of Markowitz (1952), the optimal portfolio weights are usually chosen

by a two-step procedure. Suppose an investor has T periods of observed returns data ΦT =

{R1, R2, · · · , RT} and would like to form a portfolio for period T + 1. First, the mean and

covariance matrix of the asset returns are estimated based on the observed data. Second,
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these sample estimates are then treated as if they were the true parameters, and are simply

plugged into (2) to compute the optimal portfolio weights. We call such a portfolio rule the

plug-in rule. More generally, a portfolio rule is defined as a function of the historical returns

data ΦT ,

ŵ = f(R1, R2, · · · , RT ).(4)

For an investor who uses a portfolio rule ŵ, the out-of-sample mean and variance of his

portfolio are given by

µ̃p = ŵ′µ,(5)

σ̃2
p = ŵ′V ŵ.(6)

Note that as ŵ is random rather than fixed, µ̃p and σ̃2
p are random variables as functions of

the historical returns data.

In order to establish a comparison of different portfolio rules, one needs to establish an

objective function. It is natural to choose an objective function that is based on the average

out-of-sample performance of a portfolio rule. The important question is how do we measure

the out-of-sample performance of a portfolio rule. A measure that is consistent with the

primary objective function is

Ũ(ŵ) = µ̃p −
γ

2
σ̃2
p = ŵ′µ− γ

2
ŵ′Σŵ,(7)

which is the expected utility conditional on the weights being chosen as ŵ. There can be

other ways of measuring out-of-sample performance, like for example, the out-of-sample

Sharpe ratio, defined as µ̃p/σ̃p. However, Sharpe ratio may not be entirely appropriate as a

performance measure because it is independent of the leverage of the portfolio, so having a

suboptimal weight in the risk-free asset does not affect the Sharpe ratio of a portfolio. Our

performance measure Ũ(ŵ) has an attractive feature because it is a measure of the certainty

equivalent of portfolio ŵ. However, it is important to realize that Ũ is not the expected

utility in the usual sense because µ and Σ are unknown to the investor, so Ũ should be

interpreted as an out-of-sample performance measure of using portfolio ŵ.

Note that since ŵ is a random variable, the out-of-sample performance Ũ(ŵ) is also a

random variable. It is natural then to evaluate a portfolio rule based on its expected out-of-
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sample performance E[Ũ(ŵ)]. To justify this measure, we use standard statistical decision

theory to define the loss function of using ŵ as

L(w∗, ŵ) = U(w∗)− Ũ(ŵ).(8)

As ŵ is not equal to w∗ in general, the loss is strictly positive. However, ŵ is a function of

ΦT , so the loss depends on the realizations of the historical returns data. It is important for

decision purposes to consider the average losses involving actions taken under the various

outcomes of ΦT . The expected loss function is called the risk function and it is defined as

ρ(w∗, ŵ) = E[L(w∗, ŵ)] = U(w∗)− E[Ũ(ŵ)],(9)

where the expectation is taken with respect to the true distribution of ΦT . Thus, for a given

µ and Σ (or a given w∗), ρ(w∗, ŵ) represents the expected loss over all possible realizations

of ΦT that is incurred in using the portfolio rule ŵ.

This risk function provides a criterion for ranking various portfolio rules and the rule

that has the lowest risk is the most preferred. Brown (1976), Jorion (1986), Frost and

Savarino (1986), Stambaugh (1997), and TerHorst, DeRoon, and Werkerzx (2002) are ex-

amples of using ρ(w∗, ŵ) to evaluate portfolio rules. Instead of ranking portfolio rules using

the risk function ρ(w∗, ŵ), we can equivalently rank them by their expected out-of-sample

performance E[Ũ(ŵ)]. Note that E[Ũ(ŵ)] is the expected out-of-sample performance under

the true distribution of returns across repeated random samples of ΦT . So, E[Ũ(ŵ)] is the

out-of-sample performance an investor can achieve on average under parameter uncertainty

when he follows the portfolio rule ŵ. This is an objective criterion for evaluating two com-

peting portfolio choice rules. In general, one portfolio rule will generate higher expected

out-of-sample performance than another over certain parameter values of (µ,Σ), but lower

over some other values. In this case, the two portfolio rules do not uniformly dominate each

other, and which one is preferable depends on the actual values of µ and Σ. However, some

portfolio rules are inadmissible in the sense that there exists another portfolio rule that gen-

erates higher expected out-of-sample performance for every possible choice of (µ,Σ). Clearly,

inadmissible portfolio rules should be eliminated from consideration.
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B. Understanding Estimation Risk

Under the assumption that Rt is i.i.d. normal, the sample mean and covariance matrix µ̂

and Σ̂, defined as

µ̂ =
1

T

T∑
t=1

Rt,(10)

Σ̂ =
1

T

T∑
t=1

(Rt − µ̂)(Rt − µ̂)′,(11)

are the sufficient statistics of the historical returns data ΦT . Therefore, we only need to

consider portfolio rules that are functions of µ̂ and Σ̂.

We assume T > N so that Σ̂ is invertible. The standard plug-in portfolio rule is to

replace µ and Σ in (2) by µ̂ and Σ̂. The estimated portfolio weights using the plug-in rule

are

ŵ =
1

γ
Σ̂−1µ̂.(12)

Statistically, µ̂ and Σ̂ are the maximum likelihood estimators of µ and Σ, so ŵ is also

a maximum likelihood estimator of w∗ = Σ−1µ/γ. Therefore, asymptotically, ŵ is the

most efficient estimator of the unknown parameter vector w∗. In statistics, the maximum

likelihood estimator is usually regarded as a very good estimator. However, as will be shown

below, this estimator of w∗ is not optimal in terms of maximizing the expected out-of-sample

performance.

It is interesting to compare the standard plug-in estimator ŵ given by (12) with the

unknown but true optimal weights w∗. Under the normality assumption, it is well-known

that µ̂ and Σ̂ are independent of each other and they have the following exact distributions

µ̂ ∼ N(µ,Σ/T ),(13)

Σ̂ ∼ WN(T − 1,Σ)/T,(14)

where WN(T − 1,Σ) denotes a Wishart distribution with T − 1 degrees of freedom and

covariance matrix Σ. Since E[Σ̂−1] = TΣ−1/(T −N − 2) (see, e.g., Muirhead (1982, p.97)),

we have

E[ŵ] =
T

T −N − 2
w∗,(15)
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when T > N + 2. This implies that |ŵi| > |w∗i |, so investors who do not know the true

parameters and estimate them by using (12) tend to take bigger positions in the risky assets

than those who know the true parameters.

To understand estimation risk from parameter uncertainties in µ and Σ, we analyze the

use of ŵ in three cases. The first case is a hypothetical one in which Σ is known and µ is

estimated. Fixing the value of Σ allows us to understand the cost from estimating µ alone.

The second case is also a hypothetical one in which µ is known but Σ is estimated, allowing

us to understand the cost from estimating Σ alone. The third case is the more realistic one

in which neither Σ nor µ is known and both need to be estimated.

The first case is the easiest one to analyze among the three. When Σ is known, the

portfolio rule is ŵ = Σ−1µ̂/γ, so the estimation error in ŵ is due only to using µ̂ instead of

µ. Since µ̂′Σ−1µ̂ ∼ χ2
N(Tµ′Σ−1µ)/T , we have

E[Ũ(ŵ) |Σ] = E[ŵ]′µ− γ

2
E[ŵ′Σŵ](16)

=
1

γ
µ′Σ−1µ− 1

2γ
E[µ̂′Σ−1µ̂]

=
1

γ
µ′Σ−1µ− 1

2γ

(
N + Tµ′Σ−1µ

T

)
=

θ2

2γ
− N

2γT
.

As a result, the risk function from using ŵ rather than w∗ is

ρ(w∗, ŵ|Σ) ≡ U(w∗)− E[Ũ(ŵ)|Σ] =
N

2γT
,(17)

which means that the investor expects to lose a certainty equivalent return of N/(2γT ) on

average. Intuitively, as the sample size increases, µ̂ becomes a more accurate estimator of µ,

so the loss decreases. In the extreme case where T → ∞, the true parameters are learned,

so the loss is zero. On the other hand, the greater the number of assets, the greater the

number of elements of µ that must be estimated, the more the errors in estimating the

tangency portfolio, so the greater the loss. Finally, the more risk averse the investor (the

higher γ), the less he invests in the risky assets, so the smaller the impact of estimation

risk. Note that the case of known Σ is similar to a continuous-time set-up, such as Xia’s

(2001), where the variance is known because it can be learned without error from continuous
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observations. However, the drift of a diffusion process depends only on the initial and ending

observations and is estimated with error. Equation (17) highlights analytically the impact of

the number of assets relative to the length of estimation period on the expected out-of-sample

performance in discrete time.4

To see how uncertainty about Σ alone affects expected out-of-sample performance, con-

sider now the case where µ is known while Σ has to be estimated. The optimal weights are

now ŵ = Σ̂−1µ/γ. Let W = Σ−
1
2 Σ̂Σ−

1
2 ∼ WN(T − 1, IN)/T . The inverse moments of W are

(see, e.g., Haff (1979))

E[W−1] =

(
T

T −N − 2

)
IN ,(18)

E[W−2] =

[
T 2(T − 2)

(T −N − 1)(T −N − 2)(T −N − 4)

]
IN ,(19)

where T > N + 4. Using these results, we know the expected out-of-sample performance is

E[Ũ(ŵ)|µ] =
1

γ
E[µ′Σ̂−1µ]− 1

2γ
E[µ′Σ̂−1ΣΣ̂−1µ](20)

=
1

γ
E[µ′Σ−

1
2W−1Σ−

1
2µ]− 1

2γ
E[µ′Σ−

1
2W−2Σ−

1
2µ]

= k1
θ2

2γ
,

where

k1 =

(
T

T −N − 2

)[
2− T (T − 2)

(T −N − 1)(T −N − 4)

]
.(21)

Note that 1 − k1 is the percentage loss of the expected out-of-sample performance due to

the estimation error of Σ̂. It is straightforward to verify that k1 < 1 and it is a decreasing

function of N and an increasing function of T . Therefore, similar to the earlier case where

only µ was unknown, the estimation error of Σ̂ (and hence the expected loss in out-of-sample

performance) also increases with the number of assets and decreases with the length of the

time series.

Compared to the previous case, the investor will still sometimes avoid investing in the

risky assets if he uses the portfolio rule ŵ = Σ̂−1µ/γ because k1 can be negative for N

4When θ2 < N/T , we have E[Ũ(ŵ)|Σ] < 0. Because non-participation in the risky assets yields zero out-
of-sample performance, the negative value of E[Ũ(ŵ)|Σ] suggests that the investor is better off not investing
in the risky assets when θ2 < N/T . Intuitively, when θ2 is small or N/T is large, the risk in estimating the
parameters outweighs the gain from investing in the risky assets.
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large relative to T . However, the cost of not knowing µ (assuming Σ is known) affects the

expected out-of-sample performance only by the fixed amount N/(2γT ), irrespective of the

magnitude of the true parameters. In contrast, not knowing Σ (assuming µ is known) reduces

the expected out-of-sample performance by a constant proportional amount that depends

on the squared Sharpe ratio of the tangency portfolio.

Finally, consider the case where both µ and Σ are unknown and have to be estimated

from the data. Suppose the estimated optimal weights, ŵ, are now given by (12). Using

the inverse moment properties of the Wishart distribution and the fact that µ̂ and Σ̂ are

independent, we have

E[Ũ(ŵ)] =
1

γ
E[µ̂′Σ̂−1µ]− 1

2γ
E[µ̂′Σ̂−1ΣΣ̂−1µ̂](22)

=
1

γ
E[µ̂′Σ−

1
2W−1Σ−

1
2µ]− 1

2γ
E[µ̂′Σ−

1
2W−2Σ−

1
2 µ̂]

= k1
θ2

2γ
− NT (T − 2)

2γ(T −N − 1)(T −N − 2)(T −N − 4)
,

assuming T > N + 4. Hence, the expected loss in out-of-sample performance is

ρ(w∗, ŵ) = (1− k1)
θ2

2γ
+

NT (T − 2)

2γ(T −N − 1)(T −N − 2)(T −N − 4)
.(23)

This formula explicitly relates the expected loss of out-of-sample performance to N , T , γ,

and θ2. The qualitative properties are the same as before. As N or θ2 increases, the loss

increases, and as T or γ increases, the loss decreases. Note that the second term of ρ(w∗, ŵ)

is always greater than ρ(w∗, ŵ|Σ), so the effects of estimation errors of µ̂ and Σ̂ on the out-

of-sample performance are not additive because ŵ is a multiplicative function of Σ̂−1 and

µ̂. When Σ̂−1 is used instead of Σ−1 in constructing ŵ, the estimation error of µ̂ is further

magnified, which results in the investor taking larger positions in the risky assets.

Note that in past studies of portfolio rules under estimation risk, the expected out-of-

sample performance or the risk function of the plug-in portfolio rule is obtained by simula-

tion.5 In contrast, we provide here an analytical expression. The advantage of the analytical

solution is that it allows us not only to provide insights about how to obtain better portfolio

5One exception is Brown (1978) who provides an infinite series summation formula for the expected out-
of-sample performance in the one risky asset case. Another exception is Mori (2004) who provides analytical
expression of the risk function for the plug-in rule under equality constraints on portfolio weights.
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rules, but also to address a number of important issues such as the impact of the error from

estimating the covariance matrix of the returns on the expected out-of-sample performance.

There is a general perception that estimation error in expected returns is far more costly

than estimation error in the covariance matrix. Indeed, many existing studies of portfolio

selection in the presence of estimation risk treat the estimation error in the covariance matrix

as a second-order effect and focus exclusively on the impact of the estimation error in the

expected returns by taking covariance matrix as known. Some simulation studies appear to

provide evidence to justify this perception. For example, Chopra and Ziemba (1993) estimate

the loss of expected out-of-sample performance from the estimation error of the means and

find that it is much higher than the loss that is due to estimation error of the covariances.

However, with the aid of our analytical formula for the expected out-of-sample performance,

we show that the general perception can be incorrect.

Table 1 reports the expected percentage loss of out-of-sample performance due to esti-

mation errors in µ̂, in Σ̂, and in both µ̂ and Σ̂, for various values of N and T . Panel A

presents the results for θ = 0.2 and Panel B presents the results for θ = 0.4. The expected

percentage loss is not a function of the risk aversion coefficient, so the results in Table 1 are

applicable for all values of γ. The first column presents the percentage loss of expected out-

of-sample performance due to estimation error in µ̂ alone, i.e., 100(1 − E[Ũ(ŵ)|Σ]/U(w∗)).

The second column presents the percentage loss of expected out-of-sample performance due

to estimation error in Σ̂ alone, i.e., 100(1−E[Ũ(ŵ)|µ]/U(w∗)). The fourth column presents

the percentage loss of expected out-of-sample performance due to estimation errors in both

µ̂ and Σ̂, i.e., 100(1−E[Ũ(ŵ)]/U(w∗)). Since the effects of estimation errors in µ̂ and Σ̂ are

not additive, the third column reports the interactive effect of estimation errors in µ̂ and Σ̂,

whose summation with the first two columns is equal to the fourth column.

Table 1 about here

Assuming θ = 0.2, Panel A shows that when N/T is small, the estimation error in µ̂

indeed accounts for most of the loss of out-of-sample performance, often more than ten

times the loss out-of-sample performance from the estimation error in Σ̂. However, when

N/T is large, the reduction of out-of-sample performance due to the estimation error in Σ̂ is
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no longer negligible. More importantly, there is a very significant interactive effect between

the estimation errors in µ̂ and Σ̂. For example, when N = 10 and T = 60, the interactive

effect is almost as large as that from estimating µ. Clearly, ignoring the estimation error

in Σ̂ will grossly underestimate the loss of out-of-sample performance due to estimation

error when N/T is large. Panel B presents the corresponding results for θ = 0.4. With

the increase in θ, there are two main differences in the results. First, the percentage loss

of expected out-of-sample performance due to the estimation error in µ̂ alone is smaller,

while the percentage loss of out-of-sample performance due to the estimation error in Σ̂

alone is independent of θ. As a result, the estimation error in Σ̂ is relatively more important

than before. Second, the percentage loss in expected out-of-sample performance due to the

interactive effect also goes down with the increase in θ, so as a whole, the percentage loss in

expected out-of-sample performance due to both estimation errors in µ̂ and Σ̂ is a decreasing

function of θ2. Other than these two differences, the general pattern is the same: when N/T

is small, the estimation error in µ̂ is more costly than the estimation error in Σ̂; however,

when N/T is large, the estimation error in Σ̂ becomes larger and sometimes can be more

costly than the estimation error in µ̂. The results in Table 1 suggest that we should not

ignore the estimation error in Σ̂, especially when the ratio N/T is large.

C. Three Classic Plug-in Rules

Besides the preceding standard plug-in estimate of the optimal portfolio weights that plugs

the maximum likelihood estimator of µ and Σ into the optimal portfolio formula (2) to get

the estimated portfolio rule (12), alternative estimates of Σ can be used to obtain different

plug-in rules. Two other common estimators of Σ are sometimes used. It is of interest that

they in fact can yield higher expected out-of-sample performance than using ŵ.

The second plug-in approach is to estimate Σ by using an unbiased estimator,

Σ̄ =
1

T − 1

T∑
t=1

(Rt − µ̂)(Rt − µ̂)′ =
T

T − 1
Σ̂.(24)

Since Σ̄ is slightly greater than Σ̂, the resulting optimal portfolio weights invest less aggres-
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sively in the risky assets than does ŵ:

w̄ ≡ 1

γ
Σ̄−1µ̂ =

1

γ

(
T − 1

T

)
Σ̂−1µ̂ =

(
T − 1

T

)
ŵ.(25)

However, because E[w̄] = T−1
T−N−2w

∗, such a portfolio rule still involves taking larger positions

in the risky assets relative to the true optimal portfolio. Assuming T > N + 4, the expected

out-of-sample performance associated with portfolio rule w̄ is

E[Ũ(w̄)] = k2
θ2

2γ
− N(T − 1)2(T − 2)

2γT (T −N − 1)(T −N − 2)(T −N − 4)
,(26)

where

k2 =

(
T − 1

T −N − 2

)[
2− (T − 1)(T − 2)

(T −N − 1)(T −N − 4)

]
.(27)

Based on this expression, it can then be verified that E[Ũ(w̄)] is greater than E[Ũ(ŵ)], so

w̄ is a better choice than ŵ.

The third plug-in approach is to estimate Σ with

Σ̃ =
1

T −N − 2

T∑
t=1

(Rt − µ̂)(Rt − µ̂)′ =
T

T −N − 2
Σ̂.(28)

Then, the plug-in estimator for the optimal portfolio weights is

w̃ ≡ 1

γ
Σ̃−1µ̂ =

T −N − 2

T
ŵ.(29)

Although Σ̃ is not an unbiased estimator of Σ, Σ̃−1 is an unbiased estimator of Σ−1, so w̃

is an unbiased estimator of w∗, i.e., E[w̃] = w∗. Hence, over repeated samples, the investor

who uses w̃ will on average invest the same amount of money in the risky assets as he would

invest in the true optimal portfolio. Assuming T > N + 4,

E[Ũ(w̃)] = k3
θ2

2γ
− N(T − 2)(T −N − 2)

2γT (T −N − 1)(T −N − 4)
,(30)

where

k3 = 2− (T − 2)(T −N − 2)

(T −N − 1)(T −N − 4)
.(31)

It is straightforward to verify that E[Ũ(w̃)] is greater than E[Ũ(w̄)], so the portfolio rule w̃

is better than w̄, and hence is also better than ŵ.
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In summary, we have evaluated the expected out-of-sample performance of three classic

plug-in estimators, ŵ, w̄, and w̃, of the optimal portfolio weights w∗. Interestingly, it is w̃,

the unbiased estimator of the unknown optimal portfolio weights, that achieves the high-

est expected out-of-sample performance, while the maximum likelihood estimate yields the

lowest.

D. Bayesian Solution

While the plug-in method ignores estimation risk, the Bayesian approach based on the pre-

dictive distributions pioneered by Zellner and Chetty (1965) provide a general framework

that integrates estimation risk into the analysis. Under the classical framework, utility is

defined with respect to the parameters µ and Σ. Bayesian approach deals with parameter

uncertainty by assuming the investor cares about the expected utility under the predictive

distribution p(RT+1|ΦT ) which is determined by both the historical data and the prior. With

a good choice of prior (say highly centered around the true values), there is no doubt that a

Bayesian portfolio rule can substantially outperform the classic plug-in rules. However, it is

not entirely clear how a good prior can be obtained. For a fair comparison with the classic

plug-in rules, we assume a diffuse prior here. Brown (1976), Klein and Bawa (1976), and

Stambaugh (1997) show under the standard diffuse prior on µ and Σ,

p0(µ,Σ) ∝ |Σ|−
N+1

2 ,(32)

the Bayesian optimal portfolio weights has the same formula as for w∗ except the parameters

being replaced by their predictive moments,

ŵBayes =
1

γ

(
T −N − 2

T + 1

)
Σ̂−1µ̂.(33)

The Bayesian solution differs from the unbiased estimator w̃ only by a factor of T/(T + 1),

and suggests also two-fund separation: investing only in the riskless asset and the sample

tangency portfolio. However, since

E[ŵBayes] =

(
T

T + 1

)
w∗,(34)

the Bayesian solution is more conservative than the case where the true parameters are known

because it suggests taking smaller positions in the risky assets. Intuitively, the Bayesian
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approach recognizes estimation risk explicitly, and hence the risky assets become riskier,

while the riskless rate is known for sure. So, all else being equal, the riskless asset becomes

more attractive and hence the Bayesian investor invests more in it.

While the Bayesian portfolio rule is optimal by design in maximizing the expected utility

based on the predictive distribution of the returns, will it have better out-of-sample per-

formance than the classic plug-in methods? Simulations by Brown (1976) and Stambaugh

(1997) suggest that it does outperform the plug-in methods. We provide here an analytical

proof for this result.

Using the same technique for evaluating E[Ũ(ŵ)], we have

E[Ũ(ŵBayes)] = k4
θ2

2γ
− NT (T − 2)(T −N − 2)

2γ(T + 1)2(T −N − 1)(T −N − 4)
,(35)

where T > N + 4 and

k4 =

(
T

T + 1

)[
2− T (T − 2)(T −N − 2)

(T + 1)(T −N − 1)(T −N − 4)

]
.(36)

Therefore,

E[Ũ(ŵBayes)]− E[Ũ(w̃)] = (k4 − k3)
θ2

2γ
+

N(T − 2)(T −N − 2)(2T + 1)

2γT (T + 1)2(T −N − 1)(T −N − 4)
.(37)

It is easy to see that whenever T > N + 4,

k4 − k3 =
(T 2 + 6T − 4) +N [2T (T −N)− 3T − 2(N + 4)]

(T + 1)2(T −N − 1)(T −N − 4)
> 0(38)

because 2T (T −N) > 8T > 3T + 2(N + 4). Hence, the explicit expressions for E[Ũ(ŵBayes)]

and E[Ũ(w̃)] show analytically that the Bayesian portfolio rule always strictly outperforms

the earlier classic plug-in methods by yielding higher expected out-of-sample performance,

regardless of the values of the true parameters. Therefore, the three classic plug-in portfolio

rules are inadmissible and they should be replaced by better portfolio rules.

An intuition for the better out-of-sample performance of the Bayesian portfolio rule is as

follows. In the portfolio problem (unlike standard problems where risk functions are used

to evaluate parameters), there is a built-in tradeoff between mean and variance in the risk

function. By not accounting for this tradeoff, the plug-in method must fail in a risk function
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comparison. To some extent, the Bayesian approach exploits some of this tradeoff and hence

leads to a better portfolio rule. Brown (1978) was the first to make such a point. Our

procedures in the next section are exactly ways to exploit more fully the tradeoffs between

the mean and variance in the risk function for the portfolio problem.

The uniform dominance result suggests that investors are better off using the Bayesian

portfolio rule than the classic plug-in rules. However, it turns out that the Bayesian portfolio

rule is still inadmissible because we show later that there exists a portfolio rule that uniformly

dominates the Bayesian portfolio rule under diffuse prior.

In a Bayesian framework, informative priors other than the diffuse one may be used.

Although there may be countless ways of doing so in principle, it is not an easy matter to

construct useful informative priors in practice. For examples, Pástor (2000) and Pástor and

Stambaugh (2000) provide interesting priors that incorporate certain beliefs on the usefulness

of the CAPM and study their impacts on asset allocation decisions. While understanding

how predictive moments are impacted by informative priors is interesting, it is difficult to

obtain analytical solution of the risk function for such portfolio rules. To limit the scope

of this paper, we will in what follows focus on the diffuse prior only, leaving the study of

informative Bayesian portfolio rules for future research.

E. Optimal Two-Fund Rule

Theoretically, the estimator of w∗ can be any function of the sufficient statistics µ̂ and Σ̂,

i.e.,

ŵ = f(µ̂, Σ̂).(39)

The economic question of interest to the investor is to find a such a function f(µ̂, Σ̂) so

that the expected out-of-sample performance is maximized. This function can potentially

be a very complex nonlinear function of µ̂ and Σ̂, and there can be infinite many ways to

construct it. However, it is not an easy matter to determine the optimal f(µ̂, Σ̂). So, we

first limit our attention to a class of portfolio rules that hold just the riskless asset and the

sample tangency portfolio, and then turn to a more general three-fund portfolio rule in the

next section.
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Although both the plug-in and the Bayesian rules suggest holding the riskless asset

and the sample tangency portfolio, their weights on the sample tangency portfolio are not

necessarily optimal in terms of maximizing the expected out-of-sample performance. Indeed,

consider the class of two-fund portfolio rules which have weights

ŵ =
c

γ
Σ̂−1µ̂,(40)

where c is a constant scalar. All the previous rules are special cases of this class. For

example, the first plug-in and the Bayesian rules specify c1 = 1 and c2 = (T−N−2)/(T +1),

respectively.

Using a similar derivation as before, we know that the expected out-of-sample perfor-

mance of this class of portfolio rules is

E[Ũ(cΣ̂−1µ̂/γ)] =
cθ2

γ

(
T

T −N − 2

)
(41)

− c2

2γ

(
θ2 +

N

T

)[
T 2(T − 2)

(T −N − 1)(T −N − 2)(T −N − 4)

]
,

assuming T > N + 4. Differentiating with respect to c, the optimal c is

c∗ =

[
(T −N − 1)(T −N − 4)

T (T − 2)

](
θ2

θ2 + N
T

)
,(42)

which is a product of two terms. If Σ is known, then c∗ will consist only of the second term,

which thus accounts for the estimation error in µ̂. Similarly, the first term of c∗ accounts for

the estimation error in Σ̂. Clearly, both terms are less than one. The value of the second

term depends on the relative magnitude of θ2 and N/T , while the value of the first term

depends on the relative magnitude of N and T , but not θ2.

Expected out-of-sample performance under the optimal choice of ŵ∗ = c∗Σ̂−1µ̂/γ is

E[Ũ(ŵ∗)] =
θ2

2γ

[
(T −N − 1)(T −N − 4)

(T − 2)(T −N − 2)

](
θ2

θ2 + N
T

)
,(43)

which is, of course, higher than the expected out-of-sample performance under both the

classic plug-in and the Bayesian rules. Compared to the case of no uncertainty,

E[Ũ(ŵ∗)]

U(w∗)
=

[
(T −N − 1)(T −N − 4)

(T − 2)(T −N − 2)

](
θ2

θ2 + N
T

)
< 1,(44)
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which is a decreasing function of N and an increasing function of T and θ2. As a result, the

percentage loss of expected out-of-sample performance increases with the number of assets

but decreases with both the length of the time series and the squared Sharpe ratio of the

tangency portfolio.

Although c∗ is optimal, there does not exist a feasible portfolio rule using c∗ since θ is

unknown in practice. Nevertheless, c∗ provides important insights into the optimal decision.

In particular, it can yield a simple decision rule that dominates the Bayesian rule. Consider

the following rule, which is optimal when θ2 →∞:

ŵ∗ =
c3
γ

Σ̂−1µ̂, c3 =
(T −N − 1)(T −N − 4)

T (T − 2)
.(45)

This rule suggests investing ŵ∗ in the risky assets and 1 − 1′N ŵ∗ in the riskless asset. Like

the Bayesian rule, it is parameter independent (i.e., it only depends on N and T but not on

µ and Σ). However, it dominates the Bayesian rule not only when θ approaches infinity, but

also for all possible parameter values. The reason is that f(c) ≡ E[Ũ(cΣ̂−1µ̂/γ)] in (41) is a

quadratic function of c, so the expected out-of-sample performance is a decreasing function

of c for c ≥ c∗. Therefore, to show dominance, it suffices to show that c2 > c3 > c∗. Indeed,

when T > N + 4,

c2 =
T −N − 2

T + 1
>
T −N − 4

T
>

(
T −N − 4

T

)(
T −N − 1

T − 2

)
= c3,(46)

and c3 > c∗ obviously. Thus, regardless of the value of θ2, the expected out-of-sample

performance is always greater for ŵ∗ than that under the Bayesian portfolio rule. The

expected out-of-sample performance of w∗ can be computed explicitly by (41) with c = c3.

The portfolio rule ŵ∗ can be viewed as a plug-in estimator that estimates Σ by using

Σ̂∗ ≡ Σ̂/c3. Incidentally, Haff (1979, Theorem 7) shows that when estimating Σ−1, Σ̂−1∗

dominates all the estimators that are of the form cΣ̂−1, when the loss function is defined

as tr(cΣ̂−1Σ − IN)2. Although effectively the same estimator of Σ−1 is obtained here, our

motivation and the loss function are quite different from Haff’s.

The optimal scalar c∗ provides an additional insight on improving upon using c3. Without

information about the value of θ2, c3 represents the best choice of c that maximizes the

expected out-of-sample performance. However, if a priori θ2 ≤ θ̄2, but the exact value of θ2
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is not known, then

c̄ = c3

(
θ̄2

θ̄2 + N
T

)
(47)

is a better choice of c because the expected out-of-sample performance f(c) is a decreasing

function of c when c ≥ c∗. Since c∗ < c̄ < c3, it follows that f(c∗) > f(c̄) > f(c3). If at the

monthly frequency it seems reasonable to believe that θ2 ≤ 1, then c̄ = c3T/(T + N) gives

a higher expected out-of-sample performance. However, this choice requires bounding the

Sharpe ratio, so it is not parameter independent, and its performance depends on how the

true Sharpe ratio deviates from θ̄. Hence, to avoid ambiguous choices of θ̄, this type of rule

will not be studied in the rest of the paper.

To illustrate the magnitude of the expected loss of out-of-sample performance due to

estimation risk for various two-fund rules, we present two numerical examples. In the first

one, we assume an investor with a risk aversion coefficient of γ = 3 chooses a portfolio out of

N = 10 risky assets and a riskless one. Assume further that the Sharpe ratio of the ex ante

tangency portfolio is θ = 0.2. Figure 1 plots the expected out-of-sample performance (in

percentage monthly return) of the investor under various two-fund rules for different lengths

of estimation window. If the investor knows µ and Σ, he will hold w∗ for the risky assets

to achieve a certainty equivalent of 0.667%/month (dashed line). If the investor just knows

θ, then he will hold the ex post tangency portfolio using the optimal weight ŵ∗ = c∗Σ̂−1µ̂/γ

and his expected out-of-sample performance is indicated by the solid line. In comparison

with using w∗, there is some expected loss of out-of-sample performance from using ŵ∗.

Nevertheless, the expected out-of-sample performance is still positive, implying that it makes

the investor better off than holding the riskless asset alone. However, this is no longer the

case if the investor does not know θ, and if the investor holds the portfolio ŵ∗ that does not

depend on the value of θ. Although this rule is better than the three classic plug-in rules

and the Bayesian rule, it results in significant losses in expected out-of-sample performance

as indicated by the dotted line, especially when T is small. In fact, an estimation window

of at least T = 250 months is needed before such a portfolio rule dominates the riskless

asset. Finally, the dashed-dotted line shows the expected out-of-sample performance for the

standard plug-in portfolio rule ŵ = Σ̂−1µ̂/γ. In this case, an estimation window of at least

T = 296 months is needed before this rule outperforms the riskless asset.
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Figure 1 about here

In the second example, we make the same assumptions as in the first one except that

there are now N = 25 risky assets, and the Sharpe ratio is assumed to be 0.3 instead of 0.2

due to the increase in the number of risky assets. Figure 2 plots the expected out-of-sample

performance of the investor under the four two-fund rules. For w∗ and ŵ∗, the increase in the

Sharpe ratio results in higher expected out-of-sample performance for the investor. However,

this is not necessarily true when there is parameter uncertainty and when ŵ∗ and ŵ are used

as the estimated portfolio weights. Indeed, by comparing the numbers in Figures 1 and 2,

we can see that increasing the number of assets can in fact lead to a decrease in the expected

out-of-sample performance, especially when T is small.

Figure 2 about here

These two examples illustrate that while ŵ∗ improves over ŵ, it is still a mediocre portfolio

rule because it delivers negative expected out-of-sample performance when the parameters

are estimated with fewer than 20 years of monthly data. While ŵ∗ seems a much better rule,

it is not feasible as it depends on the unknown parameter θ2. Therefore, it is important to

find a good estimate of θ2 that will allow the implementation of an approximate optimal

two-fund rule. A natural estimator of θ2 is its sample counterpart,

θ̂2 = µ̂′Σ̂−1µ̂.(48)

However, θ̂2 can be a heavily biased estimator of θ2 when T is small. In the Appendix, we

show that θ̂2 has the following distribution:

θ̂2 ∼
(

N

T −N

)
FN,T−N(Tθ2),(49)

where FN,T−N(Tθ2) is a noncentral F distribution with N and T − N degrees of freedom,

and a noncentrality parameter of Tθ2. Because of this, the unbiased estimator of θ2 is

θ̂2u =
(T −N − 2)θ̂2 −N

T
.(50)

However, this estimator can take negative value so it is also an undesirable estimator of θ2.
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Note that the problem of estimating θ2 using θ̂2 is equivalent to the problem of estimating

the noncentrality parameter of a noncentral F -distribution using a single observation. This

problem has been studied by a number of researchers in statistics. For example, Rukhin

(1993) and Kubokawa, Robert, and Saleh (1993) both propose estimators that are superior to

the unbiased estimator of θ under the quadratic loss function, whereas Fourdrinier, Philippe,

and Robert (2000) and Chen and Kan (2004) provide superior estimators under Stein’s

type loss function. For our application, we use an adjusted estimator of θ2 that is due to

Kubokawa, Robert, and Saleh (1993). After some simplification as given in the Appendix,

this estimator can be written as

θ̂2a =
(T −N − 2)θ̂2 −N

T
+

2(θ̂2)
N
2 (1 + θ̂2)−

T−2
2

TBθ̂2/(1+θ̂2)(N/2, (T −N)/2)
,(51)

where

Bx(a, b) =

∫ x

0

ya−1(1− y)b−1dy(52)

is the incomplete beta function. The first part of this estimator is the unbiased estimator of

θ2 and the second part of the estimator is the adjustment to improve the unbiased estimator

when the unbiased estimator is too small.

Figure 3 plots θ̂2a and θ̂2u as a function of θ̂2 for N = 10 and T = 100. It can be seen

that θ̂2a is an increasing and convex function of θ̂2. When θ̂2 is equal to zero, θ̂2a = 0. As θ̂2

gets larger, it becomes more like a linear function of θ̂2 and behaves almost like the unbiased

estimator θ̂2u. To understand the intuition why θ̂2a is a better estimator of θ2, notice that

(T −N − 2)θ̂2 behaves almost like a χ2
N(Tθ2) random variable, and it has an expected value

of Tθ2 + N . When (T − N − 2)θ̂2 is large, it is more likely that part of its large value is

due to the upward bias of N , so we effectively use the unbiased estimator θ̂2u. However,

when (T −N − 2)θ̂2 is small, we should not subtract N from (T −N − 2)θ̂2 because a small

(T −N − 2)θ̂2 (say less than N) indicates that (T −N − 2)θ̂2 is less than its expected value

of N . Therefore, our estimator θ̂2a should be higher than θ̂2u when θ̂2u is small or negative,

causing θ̂2a to be a nonlinear function of θ̂2.

Figure 3 about here
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With the adjusted estimator of θ2, the optimal c∗ can be estimated using

ĉ∗ = c3

(
θ̂2a

θ̂2a + N
T

)
,(53)

and the associated feasible two-fund optimal portfolio weights are

ŵII =
1

γ
ĉ∗Σ̂−1µ̂.(54)

In comparison with c3, ĉ
∗ is random and data-dependent, so the expected out-of-sample

performance of using ŵII is intractable analytically. Nevertheless, ŵII is expected to outper-

form ŵ∗ by design. This must be the case when the estimate of θ2 is accurate enough. The

simulation results reported in Section V confirms that this is indeed the case.

Recently, Garlappi, Uppal, and Wang (2007, Proposition 3) propose an interesting two-

fund rule that is optimal for an investor who exhibits uncertainty aversion. Their approach

incorporates parameter uncertainty in the utility function that yields a two-fund portfolio

rule6

ŵua =
cua
γ

Σ̄−1µ̂,(55)

where

cua =

{
1− (ε/θ̂2)

1
2 if θ̂2 > ε,

0 if θ̂2 ≤ ε,
(56)

with ε = NF−1N,T−N(p)/(T−N), and F−1N,T−N(·) is the inverse cumulative distribution function

of a central F -distribution with N and T−N degrees of freedom and p is a probability. Under

the null hypothesis that θ = 0, θ̂2 ∼ NFN,T−N/(T − N), so using the above portfolio rule,

an investor will choose not to invest in the risky assets with probability p if the Sharpe ratio

is actually zero. Therefore, p is used to indicate the investor’s aversion to uncertainty and

an investor with high aversion to uncertainty will choose a higher p. In this paper, we use

p = 0.99, which is a value that provides good performance based on the empirical results in

Garlappi, Uppal, and Wang (2007).7 This portfolio rule makes intuitive sense. It suggests

that when there is uncertainty about θ2, an investor needs to have enough confidence that

6Although Garlappi, Uppal, and Wang (2007) do not explicitly state which estimator of Σ they use, it is
clear from their context that they use the unbiased estimator of Σ. See also Lutgens (2004, Theorem 1) for
a similar portfolio rule.

7We also try p = 0.95 and the results are qualitatively the same.
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θ 6= 0 (i.e., a large enough θ̂2) before he is willing to invest in the sample tangency portfolio.

Otherwise, he will choose to invest in just the riskless asset.

In terms of maximizing the mean-variance expected out-of-sample performance, the un-

certainty aversion two-fund rule cannot outperform our theoretical optimal two-fund rule by

design. However, since our optimal two-fund rule has to be estimated, so it is not entirely

clear whether the uncertainty aversion two-fund rule is always outperformed by our estimated

optimal two-fund rule. This issue will be addressed by using simulations in Section V.

III. Three-fund Separation: Investing on the Ex Post

Frontier

Theoretically, if a mean-variance optimizing investor knows the true parameters, he should

invest only in the riskless asset and the tangency portfolio, but the parameters are unknown

in practice. A natural approach guided by the standard mean-variance theory is to invest in

two funds: the riskless asset and the sample tangency portfolio. This problem was analyzed

in detail in the previous section.

However, investing in only the two funds generates a loss in expected out-of-sample per-

formance, as shown below. Intuitively, if there is parameter uncertainty, use of another

risky portfolio can help to diversify estimation risk of the sample tangency portfolio. This

is because while both portfolios have estimation errors, their estimation errors are not per-

fectly correlated. To the extent that the risk-return tradeoffs are not constant across the

two portfolios, expected out-of-sample performance is higher when the two portfolios are

optimally combined. The relative weights in the two portfolios depend on the estimation

errors of the two portfolios, their correlation, and their risk-return tradeoffs. In addition to

the sample tangency portfolio, which risky portfolio should be used? We choose to use the

sample global minimum-variance portfolio for two reasons. First, the weights of the global

minimum-variance portfolio depend only on Σ̂ but not µ̂, so the weights can be estimated

with higher accuracy. Second, if we limit ourselves to consider just portfolios on the ex post

minimum-variance frontier, then the sample global minimum-variance portfolio is a natural

candidate. Similar to the ex ante frontier portfolios, every sample frontier portfolio is a linear

23



combination of two distinct sample frontier portfolios. Hence, it suffices to consider only the

sample tangency and global minimum-variance portfolios.8

Consider a portfolio rule of the form

ŵ = ŵ(c, d) =
1

γ
(cΣ̂−1µ̂+ dΣ̂−11N),(57)

where c and d are constants to be chosen optimally. Since the weights of the sample tangency

and global minimum-variance portfolios are proportional to Σ̂−1µ̂ and Σ̂−11N , respectively,

the portfolio rule ŵ(c, d) invests in these two sample frontier portfolios and the riskless asset.

Under this class of portfolio rules, the expected out-of-sample performance is

E[Ũ(ŵ(c, d))](58)

= E[ŵ(c, d)]′µ− γ

2
E[ŵ(c, d)′Σŵ(c, d)]

=

(
T

T −N − 2

)
1

2γ

[
2(cµ′Σ−1µ+ dµ′Σ−11N)− T (T − 2)

(T −N − 1)(T −N − 4)

×
((

µ′Σ−1µ+
N

T

)
c2 + 2(µ′Σ−11N)cd+ (1′NΣ−11N)d2

)]
,

where T > N + 4. Differentiating with respect to c and d, we obtain the c and d that

maximize the expected out-of-sample performance as

c∗∗ = c3

(
ψ2

ψ2 + N
T

)
,(59)

d∗∗ = c3

(
N
T

ψ2 + N
T

)
µg,(60)

where

ψ2 = µ′Σ−1µ− (µ′Σ−11N)2

1′NΣ−11N
= (µ− µg1N)′Σ−1(µ− µg1N)(61)

is the squared slope of the asymptote to the ex ante minimum-variance frontier, and µg =

(1′NΣ−1µ)/(1′NΣ−11N) is the expected excess return of the ex ante global minimum-variance

portfolio. Therefore, the optimal portfolio weights are

ŵ∗∗ =
c3
γ

[(
ψ2

ψ2 + N
T

)
Σ̂−1µ̂+

(
N
T

ψ2 + N
T

)
µgΣ̂

−11N

]
.(62)

8It should be emphasized that our method can also be used to analyze other combinations of risky
portfolios, and it is possible that other choices of risky portfolios can lead to even higher expected out-of-
sample performance than the one that we propose.
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Since d∗∗ 6= 0 unless µg = 0, this portfolio rule suggests the use of the sample global

minimum-variance portfolio no matter what the true parameters µ and Σ are (except when

µg = 0). The higher N/T , the greater the investment required in the global minimum-

variance portfolio. Intuitively, the greater the number of assets, the greater the difficulty in

estimating the weights of the tangency portfolio, and hence the greater the reliance on the

optimal portfolio that assumes constant means across assets. This was first pointed out by

Jobson, Korkie, and Ratti (1979), who suggest investing in only the sample global minimum-

variance portfolio. Since c∗∗ > 0 whenever T > N + 4, so investing in just the sample global

minimum-variance portfolio is clearly suboptimal. The optimal amount to invest in the

sample tangency portfolio depends on the relative magnitude of ψ2 and N/T . The greater

the slope of the asymptote to the minimum-variance frontier, the more the investor invests

in the sample tangency portfolio because it is potentially more rewarding than investing in

the sample global minimum-variance portfolio.

Under the optimal weights ŵ∗∗, the expected out-of-sample performance is

E[Ũ(ŵ∗∗)] =
θ2

2γ

(T −N − 1)(T −N − 4)

(T − 2)(T −N − 2)

1−
N
T

θ2 +
(
θ2

ψ2

)(
N
T

)
 ,(63)

when T > N + 4. In the presence of parameter uncertainty in both µ and Σ, this is the

highest expected out-of-sample performance obtained so far. However, this level of expected

out-of-sample performance is unattainable because ψ2 and µg are not known and have to be

estimated to implement the above strategy.

To estimate µg and ψ2, we can use their sample counterparts

µ̂g =
µ̂′Σ̂−11N

1′N Σ̂−11N
,(64)

ψ̂2 = (µ̂− µ̂g1N)′Σ̂−1(µ̂− µ̂g1N).(65)

In the Appendix, we show that

(T −N + 1)ψ̂2

N − 1
∼ FN−1,T−N+1(Tψ

2),(66)

so ψ̂2 shares the same problem with θ̂2 as being a heavily biased estimator when T is small.
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Therefore, similarly to θ̂2a, we use

ψ̂2
a =

(T −N − 1)ψ̂2 − (N − 1)

T
+

2(ψ̂2)
N−1

2 (1 + ψ̂2)−
T−2
2

TBψ̂2/(1+ψ̂2)((N − 1)/2, (T −N + 1)/2)
(67)

to estimate ψ2. The associated three-fund optimal portfolio weights are then given by

ŵIII =
c3
γ

[(
ψ̂2
a

ψ̂2
a + N

T

)
Σ̂−1µ̂+

(
N
T

ψ̂2
a + N

T

)
µ̂gΣ̂

−11N

]
.(68)

Like ŵII, ŵIII is random since the weights of the sample tangency and global minimum-

variance portfolios depend on the realization of µ̂g and ψ̂2. However, since ŵ∗∗ dominates

ŵ∗, ŵIII is expected to dominate ŵII. But analytical comparison is difficult because ψ̂2
a and µ̂g

are dependent on random data samples. Section V provides simulations on E[Ũ(ŵIII)], and

the results indeed show that the expected out-of-sample performance under this three-fund

rule ŵIII tends to be higher than those under the two-fund rule ŵII.

IV. Shrinkage Estimators

Since Stein’s (1956) seminal work, it is known that when N > 2, the sample mean µ̂ is

not the best estimator of the population mean µ in terms of the quadratic loss function.

This is because Stein’s estimator or a shrinkage estimator that shrinks the sample mean

appropriately to a constant can have a smaller expected quadratic loss than the sample

mean. As a result of Stein’s surprising finding, there is a large literature on various shrinkage

estimators and the related Bayesian estimators (of which Berger (1985) provides an excellent

survey from a Bayesian perspective).

In the finance literature, Jorion (1986, 1991), motivated by both a shrinkage consideration

and a Bayesian analysis (under a suitable informed prior), develops a Bayes-Stein estimator

of µ,

µ̂BS = (1− v)µ̂+ vµ̂g1N ,(69)

where µ̂g is the shrinkage target,

µ̂g =
1′N Σ̃−1µ̂

1′N Σ̃−11N
=

1′N Σ̂−1µ̂

1′N Σ̂−11N
,(70)
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which is the average excess return on the sample global minimum-variance portfolio, and v

is the weight given to the target,

v =
N + 2

(N + 2) + T (µ̂− µ̂g1N)′Σ̃−1(µ̂− µ̂g1N)
,(71)

where Σ̃ is defined as in (28). From a shrinkage point of view, combining µ̂BS with Σ̃ gives

an estimator of the optimal portfolio weights.

Jorion’s method is also a Bayesian estimation of the optimal portfolio weights, because

he replaces Σ in the classic optimal weights formula (Eq.(2)) with the predictive variance of

the asset returns,

Var[RT+1|Σ, λ,ΦT ] =

(
1 +

1

T + λ

)
Σ +

λ

T (T + 1 + λ)

1N1′N
1′NΣ−11N

,(72)

where λ is a precision parameter in the following informative prior

p0(µ|Σ, µg, λ) ∝ exp

[
−1

2
(µ− 1Nµg)

′(λΣ−1)(µ− 1Nµg)

]
,(73)

which leads to the shrinkage estimator µ̂BS. Theoretically, Var[RT+1|ΦT ] should be used

after integrating out both Σ and λ from their posterior distributions, but this integration

is a formidable task, so the natural approach is to simply use Var[RT+1|Σ, λ,ΦT ] instead.

Although Σ and λ are unknown in Var[RT+1|Σ, λ,ΦT ], they can be replaced by their sample

estimates. In this way, Jorion’s empirical Bayes-Stein estimator of the optimal portfolio

weights is

wBS =
1

γ
(Σ̂BS)−1µ̂BS,(74)

where

Σ̂BS =

(
1 +

1

T + λ̂

)
Σ̃ +

λ̂

T (T + 1 + λ̂)

1N1′N
1′N Σ̃−11N

(75)

and λ̂ = (N + 2)/[(µ̂− µ̂g1N)′Σ̃−1(µ̂− µ̂g1N)].

Jorion’s (1986) approach effectively provides a three-fund rule. Alternatively, our esti-

mated optimal three-fund rule can be thought of as a shrinkage rule with a particular choice

of shrinkage estimator of µ and a particular choice of Σ. To see why, rewrite (68) as

ŵIII =
c3
γ

[(
ψ̂2
a

ψ̂2
a + N

T

)
Σ̂−1µ̂+

(
N
T

ψ̂2
a + N

T

)
µ̂gΣ̂

−11N

]
(76)

=
1

γ
Σ̂−1∗

[(
T ψ̂2

a

N + T ψ̂2
a

)
µ̂+

(
N

N + T ψ̂2
a

)
µ̂g1N

]
.
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With this expression, we can see that the main difference between our estimated optimal

three-fund rule and Jorion’s shrinkage rule is that our estimated optimal three-fund rule

calls for the use of Σ̂∗ instead of Σ̂BS to estimate Σ and the use of the Bayes-Stein shrinkage

estimator µ̂BS with a value of v = N/(N + T ψ̂2
a) to estimate µ.

Although Jorion’s shrinkage portfolio rule is a three-fund rule, it can be suboptimal

because it is not constructed for holding optimal proportions in the three funds. Rather,

it is motivated by using the standard two-fund optimal portfolio formula with a better

estimator of the mean, and this better estimate has the average excess return of the sample

global minimum-variance portfolio as the shrinkage target. Since the weights assigned to the

sample global minimum-variance and tangency portfolios by Jorion’s portfolio rule are not

optimal, we expect our optimal three-fund rule to perform better. As the rules are complex

functions of µ̂ and Σ̂, it is difficult to prove it analytically. However, the expected out-of-

sample performance of the two rules can be easily estimated using simulated data sets. In

our simulation experiments, the optimal three-fund rule indeed outperforms Jorion’s rule.

V. Comparison of Alternative Portfolio Rules

In this section, we evaluate the expected out-of-sample performance of 13 portfolio rules for

a mean-variance investor with parameters calibrated from real data. While the rules are

developed under the multivariate normality assumption, we also examine their performance

under a more plausible multivariate t-distribution, and find the qualitative results are quite

robust to the departure from normality.

In what follows, we assume that the mean-variance investor has a relative risk aversion

of γ = 3. The expected out-of-sample performance for other values of γ can be obtained

by simply rescaling the expected out-of-sample performance calculated for γ = 3, so the

relative rankings of the portfolio rules are independent of the choice of γ. In evaluating these

portfolio rules, we consider two scenarios. In the first one, we assume there are N = 10 risky

assets, with their mean and covariance matrix chosen based on the sample estimates from

the monthly excess returns on the 10 NYSE size-ranked portfolios from 1926/1–2003/12. For
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this set of 10 risky assets, our choice of µ and Σ give θ = 0.159, ψ = 0.130, and µg = 0.00444.9

In the second scenario, we assume there are N = 25 risky assets. Because Fama and French’s

(1993) 25 portfolios, formed based on size and book-to-market ratio, are the standard test

assets in recent empirical asset pricing studies, we assume that the investor invests in these

25 portfolios. The mean and covariance matrix of these 25 portfolios are chosen based on

the sample estimates from the monthly excess returns from 1932/1–2003/12.10 For this set

of 25 risky assets, our choice of µ and Σ give θ = 0.344, ψ = 0.267, and µg = 0.00889.

Out of the 13 portfolio rules that have been discussed in this paper, the expected out-

of-sample performance can be derived analytically for nine, and for the remaining four,

we rely on an efficient simulation method which proceeds as follows. For different lengths

of the estimation window T , generate a random sample of µ̂ and Σ̂ from (13) and (14).

Then, construct the optimal portfolio using the various portfolio rules and compute each

corresponding out-of-sample performance. The average out-of-sample performances across

100,000 simulations are then used to approximate the expected out-of-sample performances.

Table 2 reports the results for the 10 asset case. The first three portfolio rules assume

that the investor knows some of the parameters. If he knows µ and Σ, the expected utility

of his optimal portfolio is given by equation (3), which is 0.419%/month as reported in the

first row (“Parameter-certainty Optimal”). If the investor only knows θ, he can invest an

optimal amount in the sample tangency portfolio, and the resulting expected out-of-sample

performance is reported in the second row (“Theoretical Optimal Two-fund”). Investing in

the ex post instead of the ex ante tangency portfolio generates a substantial loss in expected

out-of-sample performance. The loss is a decreasing function of the length of the estimation

period, but even for T = 480 months, the expected out-of-sample performance from the

optimal two-fund rule is only 0.224%/month versus 0.419%/month from holding the ex ante

tangency portfolio. The third row reports the expected out-of-sample performance of a port-

folio that invests optimally in the sample tangency and global minimum-variance portfolios

(“Theoretical Optimal Three-Fund”). Implementing this rule requires knowing ψ and µg.

Compared to the optimal two-fund rule, the gain in expected out-of-sample performance is

9The individual elements of µ and Σ are not reported because it can be shown that the expected out-of-
sample performance of all our portfolio rules are a function of only θ, ψ, and µg.

10We are grateful to Ken French for making this data available on his website.
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significant when T is small. Note that these three rules cannot be implemented in practice,

so their expected out-of-sample performances are provided only as reference points.

Table 2 about here

In the next eight rows, we report the expected out-of-sample performances of various

two-fund rules. The first three rows are for the plug-in methods that estimate µ by µ̂, Σ by

Σ̂, Σ̄ = T Σ̂/(T − 1), and Σ̃ = T Σ̂/(T −N − 2). The next row is for the Bayesian rule under

a diffuse prior which essentially estimates Σ by (T + 1)Σ̂/(T −N − 2). The fifth row reports

the expected out-of-sample performance of using the parameter-free optimal two-fund rule,

which estimates Σ using Haff’s estimator of the covariance matrix Σ̂∗ = Σ̂/c3. All five rules

are poor, although the parameter-free optimal two-fund rule dominates all the others.11

When the sample size is as large as T = 360 months, a history of thirty-years worth

of data, one might think it can provide sufficiently accurate estimates of the parameters

such that the plug-in methods should work reasonably well. Quite the contrary, due to the

volatilities of the estimates, the expected out-of-sample performance of using the plug-in

methods are in fact negative! This also includes the Bayesian portfolio rule. As the sample

size decreases from 360 months, the problem is exacerbated. These results show clearly

that blindly substituting sample estimates for population parameters can cause significant

reduction in out-of-sample performance.

The next two-fund rule is the “Estimated Optimal Two-fund” rule, which is obtained

by replacing the true θ2 in the optimal two-fund rule by the estimated θ2. Although the

estimated optimal two-fund rule does not deliver the same level of expected out-of-sample

performance as the theoretical optimal two-fund rule, it is implementable and performs

substantially better than all the plug-in rules. It starts to yield positive expected out-

of-sample performance when T > 120 months, whereas all the other plug-in rules need

T > 360 months to yield positive expected out-of-sample performance. Nevertheless, when

11One may suspect that the poor performance of the plug-in rules be caused by the sample tangency
portfolio falling on the inefficient side of the sample frontier. Modifying them by investing in the sample
tangency portfolio only when it is on the efficient side, we find via simulations that the modified rules only
provide marginal improvements when T is small, and the improvements are negligible when T is large. More
importantly, the modified rules do not outperform our optimal three-fund rule even when T is small.

30



T is small, the estimate of θ2 is very volatile, so the estimated optimal two-fund rule still

delivers negative expected out-of-sample performance for T ≤ 120 months.

The second-last two-fund rule is the “Uncertainty Aversion Two-fund” rule of Garlappi,

Uppal, and Wang (2007). It is the best rule when T = 60 months, even though the expected

out-of-sample performance is still negative. However, it is dominated by the estimated

optimal two-fund rule when T > 120 months because it invests too heavily in the riskless

asset. Nevertheless, it should be pointed out that the uncertainty aversion rule was not

designed for maximizing the expected out-of-sample performance of a mean-variance investor,

so its under-performance is expected, which does not contradict in any way that it is the

best rule under Garlappi, Uppal, and Wang’s (2007) uncertainty aversion utility function.

The last two-fund rule is the “Global Minimum-Variance” portfolio rule, which invests

Σ−1∗ 1N µ̂g/γ in the risky assets and the rest in the riskless asset.12 This portfolio rule invests

only in the sample global minimum-variance portfolio and the riskless asset, so it is also

a two-fund rule. In the Appendix, we show analytically that the expected out-of-sample

performance of this global minimum-variance portfolio rule is given by

(T −N − 1)(T −N − 4)

(T − 2)(T −N − 2)

1

2γ

(
θ2 − ψ2 +

(T−N−5)ψ2

T−N−1 − T−4
T

T −N − 3

)
.(77)

With the parameter specifications here, the simulation results show that this rule is generally

dominated by the estimated optimal two-fund rule.

The last two rows in Table 2 report the expected out-of-sample performance of the two

three-fund rules. The first rule is Jorion’s shrinkage estimator of the optimal portfolio, which

substantially outperforms the plug-in rules and the Bayesian rule. However, it only starts

to outperform the estimated optimal two-fund rule when T > 360. Therefore, a better

estimator of µ alone is not sufficient to beat the estimated optimal two-fund rule. The

second three-fund rule is the “Estimated Optimal Three-fund” rule, which is obtained by

replacing ψ2 and µg in the theoretical optimal three-fund rule with their estimates. When

T is small, the estimated optimal three-fund rule provides an often substantial improvement

12It can be shown that within the class of portfolio rules dΣ̂−11N/γ, the d that maximizes expected
out-of-sample performance is d∗ = c3µg, which implies that the optimal weights are Σ̂−1

∗ 1Nµg/γ. Our
implementable version of the global minimum-variance portfolio rule is obtained by replacing µg with µ̂g.
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over Jorion’s rule. When T is large, the shrinkage rule and the estimated optimal three-fund

rule generate virtually identical expected out-of-sample performance.

From Table 2, the theoretical optimal expected out-of-sample performance is unattainable

using existing rules. This is particularly apparent when T = 60, but as the sample size

increases, the problem diminishes. When T = 480, the expected out-of-sample performance

of the estimated and theoretical optimal three-fund rules become very close, suggesting that

using estimated ψ2 and µg is less of a problem. Nevertheless, the expected out-of-sample

performance of the estimated optimal three-fund rule is 0.206%/month, still about 20% less

than the expected out-of-sample performance of 0.258%/month from the theoretical optimal

three-fund rule. So there is still room for improvement in our estimated optimal three-fund

rule, especially when T is small.

Table 3 presents the corresponding results for the 25 asset case. As the number of risky

assets increases, two effects occur. The first effect is that there are more parameters to

estimate and hence there is more estimation risk, which in turn leads to lower expected

out-of-sample performance. The second effect is that with more assets, the Sharpe ratio

of the tangency portfolio increases, which in turn leads to higher expected out-of-sample

performance in the absence of estimation risk. In our example, the Sharpe ratio of the

tangency portfolio in the 25 asset case is about twice as big as it is in the 10 asset case. As

a result, the expected out-of-sample performance for the first three portfolio rules in Table 3

are all higher than their counterparts in Table 2 because the first three portfolio rules assume

that some of the parameters are known, so there is little estimation risk. This is not the

case for the implementable portfolio rules. For example, when T is small, the plug-in rules

in the 25 asset case generate far lower expected out-of-sample performance than in the 10

asset case. Although the numbers in Tables 2 and 3 are different, the general picture is

largely the same. Specifically, the plug-in portfolio rules are all very poor, the estimated

optimal two-fund and three-fund rules perform far better than all the plug-in rules and the

uncertainty aversion two-fund rules across all T , with the estimated optimal three-fund rule

having an edge even over Jorion’s shrinkage portfolio rule. The estimated optimal three-fund

rule performs particularly well in the 25 asset case, losing out only to the global minimum-

variance portfolio rule when T = 60, and dominating all the other implementable portfolio
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rules across T . As a result, an investor facing such a portfolio problem is better off using

the estimated optimal three-fund rule for T ≥ 120.

Table 3 about here

In summary, the simulation results suggest that parameter estimates based on statistical

criteria alone, such as the maximum likelihood estimator, perform poorly at an economically

unacceptable level. Among the ten implementable rules, our newly developed estimated op-

timal three-fund rule performs remarkably well (when T > 120) and offers 65% improvement

in the expected out-of-sample performance over the popular maximum likelihood estimator

even when T is as large as 480 (N = 25).13

VI. Conclusion

Models for financial decision making often involve unknown parameters that have to be esti-

mated from the data. However, estimation is typically separated from the decision making,

and the goodness of the estimates is commonly judged by using statistical criteria such as

minimum variance and asymptotic efficiency. We argue that it is important to estimate

parameters by combining the estimation with the economic objectives at hand. In particu-

lar, we show that, in the standard mean-variance framework, the usual maximum likelihood

estimate of the optimal portfolio weights is outperformed by alternative sample estimates.

These, in turn, are uniformly dominated by the Bayesian approach under a diffuse prior,

which accounts for the parameter uncertainty by using predictive densities. The Bayesian

solution, however, is uniformly dominated by a new two-fund rule that holds the riskless

asset and the sample tangency portfolio optimally.

While mean-variance portfolio theory recommends a two-fund solution which is often

implemented by holding the sample tangency portfolio and the riskless asset, we show that

this is not optimal because a three-fund portfolio rule obtained by combining the usual two

13As mentioned earlier, we also performed simulations by assuming the returns follow a multivariate
t-distribution (with five degrees of freedom and with the same mean and covariance matrix as in the mul-
tivariate normality case). The rankings of the portfolio rules are largely unchanged, suggesting our results
are robust to departure from normality. Results are available upon request.
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funds and the sample global minimum-variance portfolio can improve expected out-of-sample

performance substantially. In fact, the three-fund rule dominates many of the existing two-

fund portfolio rules. While better rules might be discovered by future research, our finding

that a three-fund portfolio rule can dominate the standard sample two-fund portfolio rules

has powerful implications. It says that the recommendation of a theoretical result, like

holding a two-fund portfolio here, can be altered completely in the presence of parameter

uncertainty, to a holding a three-fund (perhaps even more) portfolio.

Many potential extensions are possible. For example, it is of interest to extend our analy-

sis to more complex dynamic portfolio choice problems, such as the set-ups of Barberis (2000)

and Aı̈t-Sahalia and Brandt (2001). In fact, economically better estimates can potentially

be sought in many financial decisions, either in investments or in corporate finance, that

involve estimation of unknown parameters with well-defined economic objectives. Hence,

this paper seems to pose many interesting questions for future research. For instance, our

methodology can be applied to determine the mean-variance optimal hedge ratio in hedging.

It can also be used to estimate the discount rate for maximizing the net present value of an

investment project. In the asset pricing literature, the market risk premium estimated from

sample mean excess returns is generally considered to be too high, but this is not necessarily

the optimally estimated market risk premium that maximizes investors’ economic objective

function. Accounting for parameter uncertainty (and perhaps model uncertainty too), what

would be the risk premium estimate? This appears to be another interesting topic for future

research.
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Appendix

Proof of (49): Using Theorem 3.2.13 of Muirhead (1982), we have

µ̂′Σ−1µ̂

µ̂(T Σ̂)−1µ̂
∼ χ2

T−N ,(A.1)

which is independent of µ̂. Therefore, we can write

µ̂′Σ̂−1µ̂ =
T (µ̂′Σ−1µ̂)

χ2
T−N

,(A.2)

where the numerator and denominator are independent. Since T µ̂′Σ−1µ̂ ∼ χ2
N(Tµ′Σ−1µ),

θ̂2 = µ̂′Σ̂−1µ̂ ∼
(

N

T −N

)
FN,T−N(Tθ2).(A.3)

This completes the proof.

Proof of (51): Theorem 3.1 of Kubokawa, Robert, and Saleh (1993) states that if w ∼
χ2
p(δ)/χ

2
n, where the numerator and denominator are independent, then the unbiased esti-

mator of δ is (n − 2)w − p but under quadratic loss, this unbiased estimator is dominated

by

δ̂a = (n− 2)w − φ0(w),(A.4)

where

φ0(w) = (n− 2)

∫ w
0
t
p
2 (1 + t)−

n+p
2 dt∫ w

0
t
p
2
−1(1 + t)−

n+p
2 dt

.(A.5)

To simplify φ0(w), write the integral in the numerator as∫ w

0

t
p
2 (1 + t)−

n+p
2 dt =

∫ w

0

(
t

1 + t

) p
2

(1 + t)−
n
2 dt.(A.6)

Using integration by parts on this integral gives

φ0(w) = p− 2w
p
2 (1 + w)−

n+p−2
2∫ w

0
t
p
2
−1(1 + t)−

n+p
2 dt

.(A.7)

For the integral in the denominator, we use a change of variables of y = t/(1 + t) to obtain∫ w

0

t
p
2
−1(1 + t)−

n+p
2 dt =

∫ w
1+w

0

y
p
2
−1(1− y)

n
2
−1dy = Bw/(1+w)(p/2, n/2).(A.8)
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Therefore, the adjusted estimator of δ is

δ̂a = (n− 2)w − p+
2w

p
2 (1 + w)−

n+p−2
2

Bw/(1+w)(p/2, n/2)
.(A.9)

Our adjusted estimator θ̂2a is then obtained by letting δ̂a = T θ̂2a, δ = Tθ2, w = θ̂2, p = N ,

and n = T −N in the equation above. The adjusted estimator ψ̂2
a is similarly obtained. This

completes the proof.

Proof of (66): Let

Ã =
(
[µ̂, 1N ]′Σ−1[µ̂, 1N ]

)−1
=

[
µ̂′Σ−1µ̂ µ̂′Σ−11N

1′NΣ−1µ̂ 1′NΣ−11N

]−1
,(A.10)

Â =
(

[µ̂, 1N ]′Σ̂−1[µ̂, 1N ]
)−1

=

[
µ̂′Σ̂−1µ̂ µ̂′Σ̂−11N

1′N Σ̂−1µ̂ 1′N Σ̂−11N

]−1
.(A.11)

From Theorem 3.2.11 of Muirhead (1982), conditional on µ̂,

Â ∼ W2(T −N + 1, Ã/T ).(A.12)

Let Ãij and Âij be the (i, j)th element of Ã and Â, respectively. It is straightforward to

verify that

Ã11 =
1

ψ̃2
, Â11 =

1

ψ̂2
,(A.13)

where ψ̃2 = µ̂′Σ−1µ̂− (µ̂′Σ−11N)2/(1′NΣ−11N). From (A.12),

Â11

Ã11/T
=
T ψ̃2

ψ̂2
≡ w ∼ χ2

T−N+1,(A.14)

and w is independent of µ̂. Since

v ≡ T ψ̃2 = T µ̂′Σ−
1
2

[
IN − Σ−

1
2 1′N(1′NΣ−11N)−11′NΣ−

1
2

]
Σ−

1
2 µ̂ ∼ χ2

N−1(Tψ
2),(A.15)

we have

ψ̂2 =
T ψ̃2

w
=
v

w
∼
(

N − 1

T −N + 1

)
FN−1,T−N+1(Tψ

2).(A.16)

This completes the proof.
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Proof of (77): The expected out-of-sample performance of the “global minimum-variance”

portfolio rule is given by

E

[
Ũ

(
c3
γ

Σ̂−11N µ̂g

)]
=
c3
γ
E[µ̂g1

′
N Σ̂−1µ]− c23

2γ
E[µ̂2

g(1
′
N Σ̂−1ΣΣ̂−11N)].(A.17)

Using the fact that µ̂ and Σ̂ are independent and E[µ̂µ̂′] = µµ′+ Σ/T , we can write the two

terms in (A.17) as

E[µ̂g1
′
N Σ̂−1µ] = E

[
µ̂′Σ̂−11N

1′N Σ̂−11N
(1′N Σ̂−1µ)

]
= E

[
(1′N Σ̂−1µ)2

1′N Σ̂−11N

]
(A.18)

and

E[µ̂2
g(1
′
N Σ̂−1ΣΣ̂−11N)] = E

[
(µ′Σ̂−11N)2

(1′N Σ̂−11N)2
1′N Σ̂−1ΣΣ̂−11N

]
+E

[
(1′N Σ̂−1ΣΣ̂−11N)2

T (1′N Σ̂−11N)2

]
.(A.19)

Let ν = Σ−
1
2 1N/(1

′
NΣ−11N)

1
2 and η = Σ−

1
2 (µ−µg1N)/ψ. It is easy to verify that ν and η are

orthonormal vectors. Denote Q to be an N × (N − 1) orthonormal matrix with its columns

orthogonal to ν and its first column is equal to η. Then [ν, Q] form an orthonormal basis

of RN . Let W = Σ−
1
2 Σ̂Σ−

1
2 ∼ WN(T − 1, IN)/T . We now define an N ×N matrix A as

A =
(
[ν, Q]′W−1[ν, Q]

)−1
.(A.20)

Using Theorem 3.2.11 of Muirhead (1982), we have A ∼ WN(T − 1, IN)/T . Partition A

into two by two submatrices and denote its (i, j)th block as Aij, with the first element of A

denoted as A11. Using Theorem 3.2.10 of Muirhead (1982), we have

u ≡ A11 − A12A
−1
22 A21 ∼ χ2

T−N/T,(A.21)

z ≡ −A−
1
2

22 A21 ∼ N(0N−1, IN−1/
√
T ),(A.22)

A22 ∼ WN−1(T − 1, IN−1)/T,(A.23)

and they are independent of each other. Let e1 = [1, 0′N−2]
′ and c = 1′NΣ−11N . Using the

partitioned matrix inverse formula, it can be verified that

1′N Σ̂−11N = cν ′W−1ν =
c

u
,(A.24)

1′N Σ̂−1µ = cµgν
′W−1ν + c

1
2ψη′W−1ν =

cµg + c
1
2ψe′1A

− 1
2

22 z

u
,(A.25)

1′N Σ̂−1ΣΣ̂−11N = cν ′W−2ν = cν ′W−1(νν ′ +QQ′)W−1ν =
c(1 + z′A−122 z)

u2
.(A.26)
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Using these expressions, we can express (A.18) as

E

[
(1′N Σ̂−1µ)2

1′N Σ̂−11N

]
= E


(
c

1
2µg + ψe′1A

− 1
2

22 z
)2

u

(A.27)

=
T

T −N − 2
E

[
E

[(
c

1
2µg + ψe′1A

− 1
2

22 z
)2∣∣∣∣A22

]]
=

T

T −N − 2
E
[
cµ2

g + ψ2e′1(TA22)
−1e1

∣∣A22

]
=

T

T −N − 2

(
θ2 − ψ2 +

ψ2

T −N − 1

)
.

The last equality follows from the fact that θ2−ψ2 = cµ2
g and E[(TA22)

−1] = IN/(T−N−1).

Similarly, the first term in (A.19) can be expressed as

E

[
(µ′Σ̂−11N)2

(1′N Σ̂−11N)2
1′N Σ̂−1ΣΣ̂−11N

]
(A.28)

= E

[
(c

1
2µg + ψe′1A

− 1
2

22 z)2(1 + z′A−122 z)

u2

]

=
T 2E[(cµ2

g + 2ψc
1
2µge

′
1A
−1
22 z + ψ2z′A

− 1
2

22 e1e
′
1A
− 1

2
22 z)(1 + z′A−122 z)]

(T −N − 2)(T −N − 4)

=
T 2E[(cµ2

g + ψ2z′A
− 1

2
22 e1e

′
1A
− 1

2
22 z)(1 + z′A−122 z)]

(T −N − 2)(T −N − 4)
.

Using Theorem 3.2.12 of Muirhead (1982), we have z′A−122 z = u1/u2, where u1 ∼ χ2
N−1 and

u2 ∼ χ2
T−N+1, and they are independent of each other. Using this result, the first term in

the expectation is

cµ2
gE[1+z′A−122 z] = cµ2

g

(
1 + E

[
u1
u2

])
= cµ2

g

(
1 +

N − 1

T −N − 1

)
=

(T − 2)(θ2 − ψ2)

T −N − 1
.(A.29)

The second term in the expectation is

E[ψ2z′A
− 1

2
22 e1e

′
1A
− 1

2
22 z(1 + z′A−122 z)](A.30)

= ψ2
(
E[z′A

− 1
2

22 e1e
′
1A
− 1

2
22 z] + E[z′A

− 1
2

22 e1e
′
1A
− 1

2
22 zz

′A−122 z)]
)

= ψ2
(
E[e′1(TA22)

−1e1] + E[e′1(TA22)
−1e1tr((TA22)

−1)] + 2E[e′1(TA22)
−2e1]

)
= ψ2

[
1

T −N − 1
+

(T −N)(N − 1)− 2(N − 2)

(T −N)(T −N − 1)(T −N − 3)
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+
2(T − 2)

(T −N)(T −N − 1)(T −N − 3)

]
=

(T − 2)ψ2

(T −N − 1)(T −N − 3)
,

where the second last equality follows the results in Theorem 3.2 of Haff (1979). Therefore,

we have

E

[
(µ′Σ̂−11N)2

(1′N Σ̂−11N)2
1′N Σ̂−1ΣΣ̂−11N

]
(A.31)

=
T 2(T − 2)

(T −N − 1)(T −N − 2)(T −N − 4)

[
θ2 −

(
T −N − 4

T −N − 3

)
ψ2

]
.

For the second term in (A.19), it can be expressed as

E

[
(1′N Σ̂−1ΣΣ̂−11N)2

T (1′N Σ̂−11N)2

]
= E

[
(1 + z′A−122 z)2

Tu2

]
(A.32)

=

TE

[
1 + 2

(
u1
u2

)
+
(
u1
u2

)2]
(T −N − 2)(T −N − 4)

=
T
[
1 + 2(N−1)

T−N−1 + (N−1)(N+1)
(T−N−1)(T−N−3)

]
(T −N − 2)(T −N − 4)

=
T (T − 2)(T − 4)

(T −N − 1)(T −N − 2)(T −N − 3)(T −N − 4)
.

Combining all the above results, the expected out-of-sample performance is explicitly eval-

uated as:

E

[
Ũ

(
c3
γ

Σ̂−11N µ̂g

)]
(A.33)

=
c3T

γ

(
θ2

T −N − 2
− ψ2

T −N − 1

)
− c23T

2(T − 2)

2γ(T −N − 1)(T −N − 2)

×
[(

θ2

T −N − 4
− ψ2

T −N − 3

)
+

T − 4

T (T −N − 3)(T −N − 4)

]
.

After some simplification, we obtain (77). This completes the proof.
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TABLE 1
Percentage Loss of Expected Out-of-Sample Performance Due to Estimation Errors

in Means and Covariance Matrix of Returns

Panel A: θ = 0.2

Percentage Loss of Expected Out-of-Sample Performance

N T µ̂ Σ̂ Interaction µ̂ and Σ̂

1 60 41.67 4.31 6.18 52.15
120 20.83 1.90 1.46 24.19
240 10.42 0.89 0.36 11.66
360 6.94 0.58 0.16 7.68
480 5.21 0.43 0.09 5.73

2 60 83.33 6.85 17.61 107.80
120 41.67 2.93 4.09 48.69
240 20.83 1.35 0.99 23.17
360 13.89 0.88 0.43 15.20
480 10.42 0.65 0.24 11.31

5 60 208.33 16.64 89.69 314.66
120 104.17 6.44 19.62 130.23
240 52.08 2.84 4.61 59.53
360 34.72 1.81 2.01 38.54
480 26.04 1.33 1.12 28.49

10 60 416.67 42.99 387.46 847.12
120 208.33 13.95 75.36 297.64
240 104.17 5.65 16.85 126.67
360 69.44 3.51 7.23 80.19
480 52.08 2.54 4.00 58.62

25 60 1041.67 336.67 5211.57 6589.91
120 520.83 55.53 591.64 1168.01
240 260.42 17.18 110.77 388.37
360 173.61 9.81 45.19 228.61
480 130.21 6.81 24.39 161.42

The table presents the percentage loss of expected out-of-sample performance from holding a
sample tangency portfolio of N risky assets with the parameters estimated using T periods of
historical returns instead of using the true parameters. The first column reports the percentage
loss due to the use of the sample average returns µ̂ instead of true expected returns. The second
column reports the percentage loss due to the use of the sample covariance matrix Σ̂ instead of
the true covariance matrix. The third column reports the interactive effect from using µ̂ and
Σ̂. The fourth column reports the total percentage loss of expected out-of-sample performance
from using µ̂ and Σ̂. Panel A assumes the Sharpe ratio (θ) of the N risky assets is 0.2 and
Panel B assumes θ = 0.4.
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TABLE 1 (Continued)
Percentage Loss of Expected Out-of-Sample Performance Due to Estimation Errors

in Means and Covariance Matrix of Returns

Panel B: θ = 0.4

Percentage Loss in Expected Out-of-Sample Performance

N T µ̂ Σ̂ Interaction µ̂ and Σ̂

1 60 10.42 4.31 1.55 16.27
120 5.21 1.90 0.37 7.47
240 2.60 0.89 0.09 3.58
360 1.74 0.58 0.04 2.36
480 1.30 0.43 0.02 1.75

2 60 20.83 6.85 4.40 32.09
120 10.42 2.93 1.02 14.37
240 5.21 1.35 0.25 6.81
360 3.47 0.88 0.11 4.46
480 2.60 0.65 0.06 3.32

5 60 52.08 16.64 22.42 91.14
120 26.04 6.44 4.90 37.39
240 13.02 2.84 1.15 17.01
360 8.68 1.81 0.50 11.00
480 6.51 1.33 0.28 8.12

10 60 104.17 42.99 96.86 244.02
120 52.08 13.95 18.84 84.87
240 26.04 5.65 4.21 35.91
360 17.36 3.51 1.81 22.68
480 13.02 2.54 1.00 16.56

25 60 260.42 336.67 1302.89 1899.98
120 130.21 55.53 147.91 333.65
240 65.10 17.18 27.69 109.98
360 43.40 9.81 11.30 64.51
480 32.55 6.81 6.10 45.47
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TABLE 2
Expected Out-of-Sample Performance of Various Portfolio Rules with 10 Risky

Assets when Returns Follow Multivariate Normal Distribution

Portfolio Rule T = 60 T = 120 T = 180 T = 240

Parameter-certainty Optimal 0.419 0.419 0.419 0.419
Theoretical Optimal Two-fund 0.044 0.088 0.122 0.150
Theoretical Optimal Three-fund 0.133 0.168 0.191 0.209

1st Plug-in, Σ̂ −5.122 −1.531 −0.748 −0.411

2nd Plug-in, Σ̄ = T Σ̂/(T − 1) −4.936 −1.498 −0.735 −0.404

3rd Plug-in, Σ̃ = T Σ̂/(T −N − 2) −3.110 −1.156 −0.596 −0.329
Bayesian (diffuse prior) −2.996 −1.130 −0.584 −0.323
Parameter-free Optimal Two-fund −1.910 −0.879 −0.476 −0.263
Estimated Optimal Two-fund −0.185 −0.007 0.060 0.102
Uncertainty Aversion Two-fund −0.001 0.004 0.007 0.012
Global Minimum-Variance −0.152 −0.010 0.040 0.064

Jorion’s Shrinkage −0.899 −0.220 −0.030 0.062
Estimated Optimal Three-fund −0.343 −0.053 0.051 0.107

Portfolio Rule T = 300 T = 360 T = 420 T = 480

Parameter-certainty Optimal 0.419 0.419 0.419 0.419
Theoretical Optimal Two-fund 0.173 0.193 0.210 0.224
Theoretical Optimal Three-fund 0.224 0.237 0.248 0.258

1st Plug-in, Σ̂ −0.225 −0.107 −0.025 0.034

2nd Plug-in, Σ̄ = T Σ̂/(T − 1) −0.221 −0.104 −0.023 0.036

3rd Plug-in, Σ̃ = T Σ̂/(T −N − 2) −0.174 −0.072 0.000 0.054
Bayesian (diffuse prior) −0.170 −0.069 0.002 0.055
Parameter-free Optimal Two-fund −0.132 −0.043 0.022 0.070
Estimated Optimal Two-fund 0.133 0.157 0.177 0.194
Uncertainty Aversion Two-fund 0.017 0.024 0.032 0.040
Global Minimum-Variance 0.079 0.089 0.096 0.101

Jorion’s Shrinkage 0.117 0.155 0.182 0.203
Estimated Optimal Three-fund 0.143 0.169 0.189 0.206

The table reports the expected out-of-sample performance (in percentages per month) of 13
portfolio rules that choose an optimal portfolio of 10 risky assets and a riskless asset for different
lengths of the estimation period (T ). The excess returns of the 10 risky assets are assumed to
be generated from a multivariate normal distribution, with the mean and covariance matrix
chosen based on the sample estimates of 10 size-ranked NYSE portfolios. The investor is
assumed to have a risk aversion coefficient of three. The expected out-of-sample performance
of the first eight rules and the global minimum-variance rule are obtained analytically. For
the other four rules, the expected out-of-sample performances are approximated using 100,000
simulations.
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TABLE 3
Expected Out-of-Sample Performance of Various Portfolio Rules with 25 Risky

Assets when Returns Follow Multivariate Normal Distribution

Portfolio Rule T = 60 T = 120 T = 180 T = 240

Parameter-certainty Optimal 1.977 1.977 1.977 1.977
Theoretical Optimal Two-fund 0.241 0.559 0.778 0.937
Theoretical Optimal Three-fund 0.531 0.852 1.019 1.133

1st Plug-in, Σ̂ −46.367 −6.537 −2.305 −0.837

2nd Plug-in, Σ̄ = T Σ̂/(T − 1) −44.716 −6.387 −2.254 −0.812

3rd Plug-in, Σ̃ = T Σ̂/(T −N − 2) −12.247 −3.037 −1.072 −0.215
Bayesian (diffuse prior) −11.785 −2.955 −1.039 −0.197
Parameter-free Optimal Two-fund −2.736 −1.166 −0.289 0.214
Estimated Optimal Two-fund −0.047 0.415 0.668 0.851
Uncertainty Aversion Two-fund −0.038 0.071 0.181 0.320
Global Minimum-Variance 0.186 0.490 0.591 0.641

Jorion’s Shrinkage −3.692 −0.201 0.509 0.829
Estimated Optimal Three-fund −0.022 0.600 0.849 1.002

Portfolio Rule T = 300 T = 360 T = 420 T = 480

Parameter-certainty Optimal 1.977 1.977 1.977 1.977
Theoretical Optimal Two-fund 1.060 1.156 1.234 1.299
Theoretical Optimal Three-fund 1.221 1.290 1.347 1.395

1st Plug-in, Σ̂ −0.108 0.324 0.610 0.811

2nd Plug-in, Σ̄ = T Σ̂/(T − 1) −0.093 0.334 0.617 0.817

3rd Plug-in, Σ̃ = T Σ̂/(T −N − 2) 0.266 0.574 0.788 0.945
Bayesian (diffuse prior) 0.277 0.582 0.793 0.949
Parameter-free Optimal Two-fund 0.537 0.760 0.924 1.048
Estimated Optimal Two-fund 0.991 1.101 1.190 1.262
Uncertainty Aversion Two-fund 0.466 0.599 0.716 0.816
Global Minimum-Variance 0.671 0.691 0.705 0.716

Jorion’s Shrinkage 1.018 1.145 1.238 1.309
Estimated Optimal Three-fund 1.114 1.200 1.271 1.330

The table reports the expected out-of-sample performance (in percentages per month) of 13
portfolio rules that choose an optimal portfolio of 25 risky assets and a riskless asset for different
lengths of the estimation period (T ). The excess returns of the 25 risky assets are assumed to
be generated from a multivariate normal distribution, with the mean and covariance matrix
chosen based on the sample estimates of Fama and French’s 25 size and book-to-market ranked
portfolios. The investor is assumed to have a risk aversion coefficient of three. The expected
out-of-sample performance of the first eight rules and the global minimum-variance rule are
obtained analytically. For the other four rules, the expected out-of-sample performances are
approximated using 100,000 simulations.
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FIGURE 1
Expected out-of-sample performance under various two-fund rules with 10

risky assets
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The figure plots the expected out-of-sample performance (in percentage monthly returns)
of an investor using different two-fund portfolio rules as a function of the length of the
estimation period (T ). The investor has a relative risk aversion of 3 and chooses an optimal
portfolio of 10 risky assets and one riskless asset. The dashed line shows the expected out-of-
sample performance of an investor who invests in the ex ante tangency portfolio, which has
a Sharpe ratio (θ) of 0.2. The solid line shows the expected out-of-sample performance of an
investor who knows θ and invests an optimal proportion in the sample tangency portfolio.
The dotted line shows the expected out-of-sample performance of an investor who invests an
optimal proportion in the sample tangency portfolio, with the weight being only a function
of N and T . The dashed-dotted line shows the expected out-of-sample performance of an
investor who holds the sample tangency portfolio with a weight determined by plugging the
sample means and covariance matrix of the returns into the optimal weight formula.
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FIGURE 2
Expected out-of-sample performance under various two-fund rules with 25

risky assets
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The figure plots the expected out-of-sample performance (in percentage monthly return) The
figure plots the expected out-of-sample performance (in percentage monthly returns) of an
investor using different two-fund portfolio rules as a function of the length of the estimation
period (T ). The investor has a relative risk aversion of 3 and chooses an optimal portfolio
of 25 risky assets and one riskless asset. The dashed line shows the expected out-of-sample
performance of an investor who invests in the ex ante tangency portfolio, which has a Sharpe
ratio (θ) of 0.3. The solid line shows the expected out-of-sample performance of an investor
who knows θ and invests an optimal proportion in the sample tangency portfolio. The dotted
line shows the expected out-of-sample performance of an investor who invests an optimal
proportion in the sample tangency portfolio, with the weight being only a function of N
and T . The dashed-dotted line shows the expected out-of-sample performance of an investor
who holds the sample tangency portfolio with a weight determined by plugging the sample
means and covariance matrix of the returns into the optimal weight formula.
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FIGURE 3
Representation of two estimators of squared population Sharpe ratio for

different values of squared sample Sharpe ratio.
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The figure plots two estimators of the squared population Sharpe ratio of the tangency
portfolio (θ2) as a function of its sample counterpart θ̂2 when there are 10 assets and the
sample size is 100. The dotted line is for the estimator θ̂2u, which is an unbiased estimator
of θ2. The solid line is for the adjusted estimator θ̂2a that is due to Kubokawa, Robert, and
Saleh (1993).
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