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This supplementary material to the main paper contains four sections. Section A illustrates

the estimation accuracy of the number of degrees of freedom ν and the distribution of τt .

Section B studies the impact of fat tails on the accuracy of the adjusted estimators of θ 2 and ψ2.

Section C reports the tables containing the results for the additional empirical tests. Section D

contains the proofs of all theoretical results in the main body of the paper.

A. Accuracy of Estimators of ν and τt

In this section, we illustrate the estimation accuracy of the number of degrees of freedom

ν and the distribution of τt , which underlie the two calibration methods proposed in Section V to

estimate the optimal two-fund and three-fund combination coefficients.

Figure A.1 studies the estimation accuracy for ν , which we estimate by maximum

likelihood. We set N = 25, a population value of ν = (4,6,8), and we depict boxplots of ν̂ across

10,000 simulations of multivariate t-distributed returns for a sample size T = (60,120,240). We

set (µ,Σ) = (0N , IN) without loss of generality because ν does not depend on (µ,Σ). Figure A.1

shows that as ν increases, and thus the returns are closer to multivariate normal, it becomes more

difficult to estimate ν . Specifically, the boxplots get wider as ν increases. However, in comparison

to the volatility of ν̂ , the bias of ν̂ is more reasonable, and close to zero for T = 120 and 240.

Figure A.2 illustrates how the sample distribution of τt by El Karoui (2010, 2013), τ̂t

in (60), converges to the true distribution of τt as N increases. We assume returns are multivariate

t-distributed, in which case we can show that the exact density function of τt in (2) is

fτt (x) =
(ν/2−1)

ν

2 e−
ν−2
2x

Γ(ν/2)x
ν+2

2
.(A1)
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Figure A.1: Boxplots of Estimates of the Number of Degrees of Freedom ν .

This figure depicts boxplots of maximum-likelihood estimates of the number of degrees of freedom ν of the
multivariate t-distribution. The boxplots are obtained by simulating 10,000 times T return vectors from a
multivariate t-distribution with (µ,Σ) = (0N , IN), N = 25, ν = (4,6,8), and T = (60,120,240). The dotted
horizontal lines depict the true value of ν .

Figure A.2: Comparison of the True Distribution of τt with the Sample Distribution.

This figure compares the sample distribution of τt by El Karoui (2010, 2013), τ̂t in (60), with the true
distribution of τt . We assume returns are multivariate t-distributed, in which case the exact density function
of τt is given by (A1). The density function of τ̂t is found using a kernel density estimator. We set T = 120,
ν = 6, and an increasing number of assets N that goes from 10 to 100.
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Then, we set T = 120, ν = 6, and we compare the true density function of τt in (A1) with that of

τ̂t found using a kernel density estimator. We do the comparison for an increasing number of

assets N that goes from 10 to 100. Figure A.2 shows indeed that the sample distribution and the

true distribution get closer to one another as N increases even for a finite T . Moreover, the sample

distribution is reasonably accurate even for rather small values of N such as N = 25.

B. Impact of Fat Tails on Adjusted Estimators of θ 2 and ψ2

In the main body of the paper, we estimate θ 2 and ψ2 via their adjusted estimators θ 2
a and

ψ2
a in (54)–(55). These estimators are proposed by Kan and Zhou (2007) and are designed to have

minimum root mean square error (RMSE). Unlike the unbiased estimators θ̂ 2
unb and ψ̂2

unb, given by

the first term in (54)–(55), the adjusted estimators are non-negative. Moreover, the adjusted

estimators deliver a lower RMSE than the trimmed estimators max(θ̂ 2
unb,0) and max(ψ̂2

unb,0).

However, the adjusted estimators are derived under the multivariate normal distributional

assumption, whereas we assume that returns are multivariate elliptical. Therefore, it is of interest

to study how fat tails impact the RMSE of θ̂ 2
a and ψ̂2

a . For that purpose, we conduct the following

simulation. We simulate M = 1,000,000 times T returns from a multivariate t-distribution with ν

degrees of freedom and (µ,Σ) calibrated to a dataset of N = 25 portfolios of firms sorted on size

and book-to-market spanning July 1926 to July 2023. This choice of (µ,Σ) yields θ = 0.302 and

ψ = 0.250 in the population. For each simulation m = 1, . . . ,M, we obtain adjusted estimates θ̂ 2
a,m

and ψ̂2
a,m, and compute the RMSE as

RMSE(θ̂ 2
a ) =

√
1
M

M

∑
m=1

(θ̂ 2
a,m −θ 2)2 and RMSE(ψ̂2

a ) =

√
1
M

M

∑
m=1

(ψ̂2
a,m −ψ2)2.(A2)
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Figure A.3: Root Mean Squared Error of θ 2
a and ψ2

a

This figure depicts the root mean squared error (RMSE) of the adjusted estimators θ̂ 2
a and ψ̂2

a when the asset
returns are multivariate t-distributed with ν degrees of freedom, where ν varies between 4 and 20. We
consider a sample size T = 60, 120, and 240 months. We calibrate the population value of θ and ψ to a
dataset of N = 25 portfolios of firms sorted on size and book-to-market spanning July 1926 to July 2023,
which yields θ = 0.302 and ψ = 0.250. The RMSE is obtained over one million simulations.

Figure A.3 depicts RMSE(θ̂ 2
a ) and RMSE(ψ̂2

a ) for ν varying between 4 and 20 and T = 60, 120,

and 240 months. Figure A.3 shows that the RMSE does not increase much as ν gets smaller and

tails get fatter. For example, when going from ν = 20 (close to normal) to ν = 6 (excess kurtosis

of three), RMSE(θ̂ 2
a ) goes from 0.171 to 0.180 for T = 60, 0.078 to 0.084 for T = 120, and 0.049

to 0.052 for T = 240, respectively. The conclusion is similar for RMSE(ψ̂2
a ). Moreover, Figure A.3

shows that the RMSE of θ̂ 2
a and ψ̂2

a is particularly large when T = 60 months, which worsens the

estimation accuracy for the two-fund and three-fund combination coefficients. This partly explains

why, in Figure 3 of the main body of the manuscript, the empirical performance is generally much

worse (and sometimes negative) when T = 60 months relative to T = 120 and 240 months.
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C. Tables for the Additional Empirical Tests

In this section, we report tables containing additional empirical results. Specifically,

Table C.1 reports the skewness and excess kurtosis of the two-fund and three-fund rules,

Table C.2 reports the in-sample versus out-of-sample performance of the two-fund and three-fund

rules discussed in Section VI.C.1, Table C.3 reports the results for the combination of the sample

GMV portfolio with the risk-free asset discussed in Section VI.C.2, and Table C.4 reports the

results for daily data discussed in Section VI.C.3.
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Table C.1: Skewness and Excess Kurtosis of Two-Fund and Three-Fund Rules.

This table reports the monthly skewness and excess kurtosis of the net-of-cost out-of-sample returns of the
two-fund and three-fund rules across the six datasets described in Section VI.B. The combination coefficients
are calibrated either to the multivariate normal distribution or to the multivariate elliptical distribution using
the exact finite-sample formula. Formulas for the estimated two-fund and three-fund combination
coefficients are available in Table 1. See the notes of Table 3 in the main body of the paper for details.

10MOM 16ANOM 25SBETA
Normal Elliptical Normal Elliptical Normal Elliptical

Two-fund rule
T = 60 Skewness 1.675 0.722 0.263 0.281 −0.912 −0.832

Exc. kurtosis 18.60 9.977 4.266 4.774 16.98 12.40
T = 120 Skewness 0.727 0.662 0.381 0.460 −0.285 −0.509

Exc. kurtosis 5.334 4.554 3.224 3.575 12.62 8.634
T = 240 Skewness −0.153 −0.171 0.829 0.794 −0.914 −0.975

Exc. kurtosis 4.179 3.952 3.310 3.088 4.483 4.742
Three-fund rule
T = 60 Skewness 1.255 0.635 0.115 0.181 −0.126 −0.692

Exc. kurtosis 12.74 7.936 4.508 5.508 13.28 10.289
T = 120 Skewness 0.472 0.480 −0.259 −0.172 −0.448 −0.716

Exc. kurtosis 3.558 3.465 3.860 3.904 10.26 7.234
T = 240 Skewness −0.237 −0.240 0.307 0.384 −1.046 −1.102

Exc. kurtosis 3.298 3.391 2.089 2.134 3.502 4.122

25SBTM 25OPINV 30IND
Normal Elliptical Normal Elliptical Normal Elliptical

Two-fund rule
T = 60 Skewness 0.786 1.101 −0.990 −0.666 −1.547 0.185

Exc. kurtosis 16.90 15.61 17.08 15.06 49.79 25.36
T = 120 Skewness 0.833 0.691 −0.560 −0.298 0.756 0.730

Exc. kurtosis 5.131 4.794 7.867 7.259 7.602 7.398
T = 240 Skewness 0.433 0.393 −0.868 −1.001 −0.716 −0.704

Exc. kurtosis 7.349 6.358 10.62 10.12 7.515 7.364
Three-fund rule
T = 60 Skewness 0.157 0.945 −0.811 −0.639 −0.966 0.252

Exc. kurtosis 15.54 15.32 12.12 14.20 22.06 16.17
T = 120 Skewness 0.461 0.386 0.079 0.015 0.733 0.926

Exc. kurtosis 3.342 3.261 3.703 3.416 8.738 10.25
T = 240 Skewness 0.368 0.345 −0.408 −0.601 −0.151 −0.226

Exc. kurtosis 4.445 4.656 6.241 6.555 4.297 5.007
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Table C.2: In-Sample versus Out-of-Sample Performance of Two-Fund and Three-Fund Rules.

This table reports, for the two-fund and three-fund rules and across the six datasets described in
Section VI.B, the difference between 1) the average in-sample annualized mean return, volatility, and utility
over all estimation windows of size T = 60, 120, and 240 months versus 2) the corresponding out-of-sample
realized statistic. The difference for the volatility is always negative and we report it positively. Thus, the
lower the differences, the better. The combination coefficients are calibrated either to the multivariate
normal, t, or elliptical distribution using the exact finite-sample formula. Formulas for the estimated
two-fund and three-fund combination coefficients are available in Table 1. See the notes of Table 3 in the
main body of the paper for details.

10MOM 16ANOM 25SBETA
Normal t Elliptical Normal t Elliptical Normal t Elliptical

Two-fund rule
T = 60 Mean 0.757 0.704 0.577 1.483 1.391 0.961 1.152 1.124 0.672

Vol 0.567 0.523 0.352 0.609 0.581 0.388 0.716 0.704 0.391
Utility 1.209 1.092 0.776 1.976 1.839 1.180 1.676 1.629 0.839

T = 120 Mean 0.567 0.529 0.449 0.867 0.808 0.636 0.887 0.848 0.639
Vol 0.326 0.308 0.244 0.317 0.281 0.241 0.489 0.479 0.299
Utility 0.792 0.728 0.583 1.081 0.981 0.768 1.245 1.188 0.793

T = 240 Mean 0.425 0.401 0.364 0.638 0.593 0.504 0.650 0.629 0.508
Vol 0.238 0.230 0.206 0.196 0.168 0.157 0.219 0.212 0.165
Utility 0.615 0.573 0.504 0.848 0.758 0.642 0.773 0.744 0.586

Three-fund rule
T = 60 Mean 0.797 0.740 0.592 1.452 1.362 0.900 1.076 1.050 0.613

Vol 0.554 0.515 0.347 0.778 0.735 0.474 0.952 0.926 0.425
Utility 1.325 1.186 0.809 2.299 2.100 1.218 2.033 1.942 0.817

T = 120 Mean 0.531 0.493 0.422 0.859 0.797 0.634 0.863 0.813 0.610
Vol 0.276 0.267 0.217 0.343 0.291 0.249 0.600 0.575 0.320
Utility 0.759 0.693 0.554 1.142 1.010 0.787 1.445 1.334 0.797

T = 240 Mean 0.395 0.381 0.347 0.562 0.520 0.456 0.487 0.472 0.393
Vol 0.183 0.191 0.177 0.169 0.146 0.139 0.224 0.213 0.162
Utility 0.566 0.541 0.479 0.751 0.670 0.581 0.676 0.639 0.491

25SBTM 25OPINV 30IND
Normal t Elliptical Normal t Elliptical Normal t Elliptical

Two-fund rule
T = 60 Mean 1.093 1.063 0.672 1.196 1.165 0.706 0.719 0.704 0.553

Vol 0.771 0.767 0.426 0.906 0.897 0.510 0.637 0.610 0.459
Utility 1.662 1.620 0.860 1.928 1.880 0.952 1.044 1.006 0.731

T = 120 Mean 0.840 0.801 0.582 1.099 1.054 0.717 0.442 0.432 0.388
Vol 0.542 0.506 0.338 0.567 0.545 0.344 0.332 0.324 0.285
Utility 1.269 1.176 0.769 1.562 1.477 0.908 0.566 0.550 0.481

T = 240 Mean 0.679 0.645 0.523 0.809 0.780 0.615 0.321 0.316 0.293
Vol 0.484 0.451 0.336 0.630 0.618 0.427 0.203 0.199 0.183
Utility 1.125 1.036 0.755 1.474 1.409 0.956 0.374 0.367 0.337

Three-fund rule
T = 60 Mean 1.075 1.021 0.635 1.108 1.074 0.644 0.781 0.750 0.563

Vol 0.898 0.881 0.450 1.036 1.012 0.531 0.769 0.726 0.513
Utility 1.923 1.820 0.851 2.165 2.068 0.921 1.304 1.219 0.797

T = 120 Mean 0.757 0.719 0.538 0.851 0.809 0.593 0.349 0.338 0.309
Vol 0.581 0.541 0.344 0.565 0.524 0.305 0.457 0.437 0.358
Utility 1.298 1.181 0.739 1.397 1.270 0.765 0.629 0.588 0.470

T = 240 Mean 0.610 0.586 0.486 0.631 0.606 0.503 0.258 0.253 0.235
Vol 0.461 0.434 0.330 0.549 0.537 0.385 0.226 0.223 0.199
Utility 1.065 0.983 0.719 1.272 1.196 0.823 0.383 0.366 0.319
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Table C.3: Out-of-Sample Performance of the Combination of the Sample GMV Portfolio with the
Risk-Free Asset.

This table reports the annualized gross and net-of-cost out-of-sample utility (EU), and the mean value of the
combination coefficient, for the scaled GMV portfolio in Section VI.C.2 across the six datasets described in
Section VI.B. The largest EU in each case is depicted in bold. See the notes of Table 3 in the main body of
the paper for details.

Normal t t Elliptical Elliptical Cross
(exact) (asymp) (exact) (asymp) (exact) validation

A) 10MOM dataset
T = 60 Gross EU 0.041 0.043 0.068 0.108 0.115 0.090

Net EU 0.000 0.003 0.031 0.079 0.088 0.054
Mean ĉ 0.648 0.609 0.560 0.419 0.380 0.236

T = 120 Gross EU 0.124 0.131 0.136 0.145 0.147 0.121
Net EU 0.105 0.113 0.119 0.130 0.133 0.102
Mean ĉ 0.816 0.755 0.724 0.599 0.570 0.374

T = 240 Gross EU 0.078 0.069 0.072 0.077 0.079 0.055
Net EU 0.068 0.059 0.062 0.069 0.071 0.045
Mean ĉ 0.906 0.844 0.825 0.739 0.720 0.524

B) 16ANOM dataset
T = 60 Gross EU −0.270 −0.303 −0.209 0.028 0.061 0.029

Net EU −0.350 −0.377 −0.282 −0.030 0.007 −0.033
Mean ĉ 0.494 0.480 0.438 0.288 0.260 0.090

T = 120 Gross EU 0.070 0.110 0.120 0.123 0.129 0.090
Net EU 0.037 0.079 0.090 0.100 0.106 0.066
Mean ĉ 0.727 0.677 0.650 0.491 0.468 0.200

T = 240 Gross EU 0.262 0.281 0.283 0.268 0.267 0.207
Net EU 0.242 0.263 0.265 0.253 0.252 0.190
Mean ĉ 0.859 0.811 0.795 0.660 0.644 0.470

C) 25SBETA dataset
T = 60 Gross EU −0.148 −0.242 −0.113 0.154 0.155 0.053

Net EU −0.293 −0.387 −0.251 0.075 0.084 −0.045
Mean ĉ 0.303 0.315 0.280 0.140 0.123 0.077

T = 120 Gross EU −0.178 −0.156 −0.124 0.054 0.059 −0.070
Net EU −0.231 −0.206 −0.174 0.018 0.023 −0.104
Mean ĉ 0.604 0.566 0.543 0.340 0.324 0.128

T = 240 Gross EU 0.141 0.151 0.153 0.169 0.168 0.055
Net EU 0.111 0.122 0.125 0.148 0.147 0.031
Mean ĉ 0.791 0.747 0.733 0.543 0.530 0.275
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Table C.3: Out-of-Sample Performance of the Combination of the Sample GMV Portfolio with the
Risk-Free Asset (continued).

Normal t t Elliptical Elliptical Cross
(exact) (asymp) (exact) (asymp) (exact) validation

D) 25SBTM dataset
T = 60 Gross EU −0.021 −0.072 0.020 0.181 0.180 0.128

Net EU −0.150 −0.200 −0.103 0.107 0.114 0.030
Mean ĉ 0.303 0.312 0.277 0.140 0.123 0.077

T = 120 Gross EU 0.221 0.240 0.251 0.268 0.266 0.238
Net EU 0.157 0.179 0.192 0.227 0.226 0.212
Mean ĉ 0.604 0.559 0.536 0.335 0.319 0.510

T = 240 Gross EU 0.204 0.215 0.219 0.237 0.215 0.227
Net EU 0.168 0.182 0.186 0.211 0.166 0.198
Mean ĉ 0.791 0.721 0.707 0.522 0.192 0.382

E) 25OPINV dataset
T = 60 Gross EU −0.090 −0.144 −0.042 0.147 0.151 0.045

Net EU −0.242 −0.297 −0.187 0.063 0.075 −0.063
Mean ĉ 0.303 0.319 0.284 0.138 0.122 0.082

T = 120 Gross EU 0.160 0.203 0.217 0.246 0.242 0.161
Net EU 0.088 0.133 0.149 0.201 0.199 0.099
Mean ĉ 0.604 0.572 0.549 0.336 0.320 0.223

T = 240 Gross EU 0.245 0.266 0.269 0.269 0.269 0.243
Net EU 0.203 0.225 0.229 0.239 0.239 0.206
Mean ĉ 0.791 0.746 0.732 0.537 0.525 0.449

F) 30IND dataset
T = 60 Gross EU −0.119 −0.140 −0.080 0.009 0.022 0.034

Net EU −0.194 −0.221 −0.152 −0.043 −0.023 −0.013
Mean ĉ 0.217 0.233 0.201 0.138 0.119 0.047

T = 120 Gross EU 0.058 0.069 0.079 0.104 0.107 0.079
Net EU 0.029 0.041 0.052 0.083 0.087 0.056
Mean ĉ 0.541 0.504 0.482 0.360 0.344 0.170

T = 240 Gross EU 0.041 0.044 0.047 0.061 0.063 0.025
Net EU 0.025 0.030 0.033 0.049 0.051 0.011
Mean ĉ 0.754 0.698 0.685 0.561 0.549 0.374
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Table C.4: Out-of-Sample Performance with Daily Data.

This table reports the gross and net-of-cost annualized out-of-sample utility (EU), and the mean value of the
combination coefficients, for the scaled GMV portfolio, the two-fund rule, and the three-fund rules across the
six datasets described in Section VI.B. We use sample sizes of T = 5, 10, and 20 years of daily returns. The
largest EU in each case is depicted in bold. See the notes of Table 3 in the main body of the paper for details.

Normal t Elliptical Normal t Elliptical
(exact) (asymp) (asymp) (exact) (asymp) (asymp)

A) 10MOM dataset B) 25SBTM dataset
(ν̂ = 3.42) (ν̂ = 2.99)

Scaled GMV portfolio
T = 5 years Gross EU 2.348 2.400 2.582 3.085 3.220 3.894

Net EU 2.232 2.285 2.472 2.835 2.973 3.657
Mean ĉ 0.982 0.953 0.896 0.958 0.936 0.810

T = 10 years Gross EU 2.267 2.312 2.381 3.665 3.701 4.154
Net EU 2.190 2.236 2.306 3.489 3.526 3.983
Mean ĉ 0.991 0.966 0.932 0.979 0.958 0.871

T = 20 years Gross EU 2.328 2.367 2.446 3.045 3.077 3.441
Net EU 2.258 2.297 2.377 2.849 2.882 3.254
Mean ĉ 0.995 0.971 0.959 0.990 0.963 0.918

Two-fund rule
T = 5 years Gross EU 2.159 2.200 2.401 2.843 2.905 3.687

Net EU 1.968 2.011 2.220 2.500 2.563 3.352
Mean ĉ 0.541 0.536 0.508 0.459 0.456 0.407

T = 10 years Gross EU 2.312 2.350 2.438 3.424 3.454 3.970
Net EU 2.192 2.231 2.321 3.157 3.188 3.710
Mean ĉ 0.586 0.579 0.559 0.518 0.515 0.473

T = 20 years Gross EU 2.464 2.508 2.606 2.568 2.600 3.024
Net EU 2.359 2.403 2.503 2.299 2.332 2.765
Mean ĉ 0.681 0.675 0.660 0.639 0.637 0.603

Three-fund rule
T = 5 years Gross EU 2.209 2.267 2.479 2.814 2.956 3.769

Net EU 2.039 2.098 2.317 2.490 2.635 3.453
Mean ĉ1 0.342 0.340 0.326 0.281 0.280 0.259
Mean ĉ2/µ̂g 0.640 0.613 0.570 0.678 0.657 0.551

T = 10 years Gross EU 2.350 2.400 2.477 3.684 3.725 4.236
Net EU 2.241 2.292 2.371 3.435 3.478 3.993
Mean ĉ1 0.409 0.407 0.395 0.358 0.356 0.335
Mean ĉ2/µ̂g 0.581 0.558 0.537 0.621 0.602 0.536

T = 20 years Gross EU 2.514 2.560 2.651 2.875 2.911 3.326
Net EU 2.417 2.464 2.557 2.615 2.653 3.077
Mean ĉ1 0.527 0.524 0.514 0.488 0.486 0.466
Mean ĉ2/µ̂g 0.469 0.446 0.445 0.502 0.477 0.451
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Table C.4: Out-of-Sample Performance with Daily Data (continued).

Normal t Elliptical Normal t Elliptical
(exact) (asymp) (asymp) (exact) (asymp) (asymp)

C) 25OPINV dataset D) 30IND dataset
(ν̂ = 6.27) (ν̂ = 3.86)

Scaled GMV portfolio
T = 5 years Gross EU 5.951 6.064 7.248 2.499 2.685 3.453

Net EU 5.511 5.627 6.829 2.291 2.479 3.256
Mean ĉ 0.958 0.944 0.810 0.951 0.923 0.822

T = 10 years Gross EU 4.928 4.994 5.871 2.771 2.906 3.243
Net EU 4.593 4.660 5.550 2.643 2.778 3.119
Mean ĉ 0.979 0.968 0.866 0.975 0.952 0.883

T = 20 years Gross EU −0.539 −0.470 0.430 3.057 3.167 3.461
Net EU −0.855 −0.785 0.132 2.943 3.054 3.350
Mean ĉ 0.990 0.982 0.912 0.988 0.967 0.927

Two-fund rule
T = 5 years Gross EU 5.758 5.835 7.012 2.100 2.246 3.007

Net EU 5.157 5.236 6.437 1.790 1.936 2.708
Mean ĉ 0.621 0.617 0.540 0.477 0.472 0.435

T = 10 years Gross EU 4.725 4.766 5.671 2.650 2.739 3.059
Net EU 4.300 4.343 5.260 2.452 2.542 2.867
Mean ĉ 0.681 0.677 0.612 0.530 0.525 0.496

T = 20 years Gross EU −0.692 −0.633 0.300 2.699 2.789 3.084
Net EU -1.068 -1.008 −0.059 2.548 2.638 2.936
Mean ĉ 0.750 0.747 0.695 0.600 0.595 0.574

Three-fund rule
T = 5 years Gross EU 5.866 5.982 7.296 2.217 2.412 3.247

Net EU 5.339 5.458 6.786 1.949 2.145 2.989
Mean ĉ1 0.313 0.312 0.283 0.228 0.228 0.218
Mean ĉ2/µ̂g 0.645 0.632 0.527 0.722 0.695 0.603

T = 10 years Gross EU 4.718 4.789 5.752 2.754 2.888 3.226
Net EU 4.331 4.403 5.377 2.594 2.729 3.070
Mean ĉ1 0.361 0.360 0.329 0.200 0.200 0.195
Mean ĉ2/µ̂g 0.618 0.608 0.537 0.775 0.752 0.689

T = 20 years Gross EU −0.954 −0.882 0.084 2.938 3.049 3.346
Net EU -1.308 -1.235 −0.253 2.812 2.923 3.223
Mean ĉ1 0.477 0.476 0.452 0.159 0.158 0.157
Mean ĉ2/µ̂g 0.513 0.507 0.461 0.829 0.809 0.770
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D. Proofs of Theoretical Results

Proof of Proposition 1

The expected out-of-sample utility of the two-fund rule ŵ2 f (c) is

E[U(ŵ2 f (c))] =
c
γ

µ̃1 −
c2

2γ
σ̃

2
1 ,(A3)

which yields the optimal c⋆ in (21). The expected out-of-sample utility of the three-fund rule

ŵ3 f (c1,c2) is

E[U(ŵ3 f (c1,c2))] =
c1

γ
µ̃1 +

c2

γ
µ̃2 −

c2
1

2γ
σ̃

2
1 −

c2
2

2γ
σ̃

2
2 −

c1c2

γ
σ̃12,(A4)

which yields the optimal (c⋆1,c⋆2) in (22) and completes the proof.

Proof of Proposition 2

Part 1. Because µ̂ and Σ̂ are asymptotically unbiased for a fixed N, the sample mean-variance

portfolio ŵ is asymptotically unbiased too. To find its asymptotic covariance matrix, we write ŵ as

a function of µ̂ and vec(Σ̂−1) as

ŵ =
1
γ
(µ̂⊤⊗ IN)vec(Σ̂−1).(A5)
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Moreover, the derivative of vec(Σ̂−1) with respect to vec(Σ̂) is

∂vec(Σ̂−1)

∂vec(Σ̂)⊤
=−Σ̂

−1 ⊗ Σ̂
−1.(A6)

Therefore, using the delta method, we can find the asymptotic covariance matrix of ŵ from the

asymptotic covariance matrix of (µ̂,vec(Σ̂)), which from Muirhead (1982, p.82, 89) is

Avar

 µ̂

vec(Σ̂)

=

 Σ 0N×N2

0N2×N (1+κ)(IN2 +KN)(Σ⊗Σ)+κ vec(Σ)vec(Σ)⊤

,(A7)

where KN is an N2 ×N2 commutation matrix such that KNvec(A) = vec(A⊤) for an N ×N matrix

A. Specifically, given (A5)–(A6), we have

∂ ŵ
∂ µ̂⊤ =

1
γ

Σ̂
−1,(A8)

∂ ŵ
∂vec(Σ̂)⊤

=−1
γ
(Σ̂−1

µ̂)⊗ Σ̂
−1,(A9)

and therefore the asymptotic covariance matrix of ŵ is

Avar[ŵ] =
1
γ2

[
Σ
−1,−(Σ−1

µ)⊗Σ
−1]Avar

 µ̂

vec(Σ̂)

[Σ−1,−(Σ−1
µ)⊗Σ

−1]⊤,(A10)

which after simplification corresponds to the desired result in (23).

Part 2. Given that ŵ is asymptotically unbiased as shown in part 1, µ̃p and σ̃2
p are asymptotically

unbiased too. To find the asymptotic covariance matrix of µ̃p and σ̃2
p , we use the delta method. Let

h(w) = [w⊤µ,w⊤Σw]⊤. Then, the Jacobian of h evaluated at w⋆ is
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∇h(w⋆) = [µ⊤,2w⋆⊤Σ]⊤ = [µ⊤,2µ⊤/γ]⊤. Therefore, the asymptotic covariance matrix of µ̃p and

σ̃2
p is Avar[µ̃p, σ̃

2
p ] = ∇h(w⋆)⊤Avar[ŵ]∇h(w⋆), where Avar[ŵ] is given by (??), which corresponds

to the desired result in (24).

Part 3. Given ŵ = 1
γ
Σ̂−1µ̂ and U(ŵ) = ŵ⊤µ − ŵ⊤Σŵ, we have

D =
∂U(ŵ)

∂ ŵ

∣∣∣∣
ŵ=w∗

= µ − γΣw⋆ = 0N ,(A11)

H =
∂ 2U(ŵ)
∂ ŵ∂ ŵ⊤

∣∣∣∣
ŵ=w∗

=−γΣ.(A12)

Because D = 0N , it holds that

T [U(ŵ)−U(w⋆)]
d−→

N

∑
i=1

λiXi,(A13)

where the Xi’s are independent χ2
1 random variables and the λi’s are the eigenvalues of HS/2,

where S is the asymptotic covariance matrix of ŵ in (23):

S =
1
γ2

(
(1+(1+κ)θ 2)Σ−1 +(1+2κ)Σ−1

µµ
⊤

Σ
−1
)
.(A14)

The matrix HS/2 is

1
2

HS =−1+(1+κ)θ 2

2γ

(
IN +

1+2κ

1+(1+κ)θ 2 µµ
⊤

Σ
−1
)
.(A15)

All the eigenvalues of IN are one, and µµ⊤Σ−1 has N −1 zero eigenvalues and one eigenvalue

equal to the trace of µµ⊤Σ−1, i.e., θ 2. Therefore, we have λ1 = · · ·= λN−1 =−1+(1+κ)θ 2

2γ
and
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λN =−1+(1+κ)θ 2

2γ

(
1+ (1+2κ)θ 2

1+(1+κ)θ 2

)
=−1+(2+3κ)θ 2

2γ
, which yields the desired result in (25).

Part 4. Let the risk-aversion coefficient γ = 1 for notational simplicity, which is without loss of

generality because it is clear that µ̃p, σ̃2
p , and U(ŵ) are proportional to 1/γ , 1/γ2, and 1/(2γ),

respectively. Let φ = [µ⊤,w⋆⊤]⊤ and φ̂ = [µ̂⊤, ŵ⊤]⊤. Note that φ̂ can be written as the

generalized-method-of-moments estimator of φ based on the following moment conditions:

(A16) E[gt(φ)] = E

 rt −µ

Ctw⋆−µ

= 02N ,

where Ct = (rt −µ)(rt −µ)⊤.

We derive the first-order bias of φ̂ by using a stochastic expansion of φ̂ based on the results

of Bao and Ullah (2007, 2009), which suggest

(A17) φ̂ = φ +a−1/2 +a−1 +a−3/2 +Op(T−2),

where

a−1/2 =−E[H1]
−1ḡ,(A18)

a−1 =−E[H1]
−1V1a−1/2 −

1
2
E[H1]

−1E[H2](a−1/2 ⊗a−1/2),(A19)

a−3/2 =−E[H1]
−1V1a−1 −

1
2
E[H1]

−1V2(a−1/2 ⊗a−1/2)

− 1
2
E[H1]

−1E[H2](a−1/2 ⊗a−1 +a−1 ⊗a−1/2)

− 1
6
E[H1]

−1E[H3](a−1/2 ⊗a−1/2 ⊗a−1/2),(A20)
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with ḡ = 1
T ∑

T
t=1 gt(φ), Hi = ∇iḡ, and Vi = Hi −E[Hi].1

We now provide explicit expressions of a−1/2 and a−1. For a−3/2, we can show that its

expectation is O(T−2).2 For a−1/2, we have

(A21) H1 =

 −IN 0N×N

−ztIN − (rt −µ)w⋆⊤− IN Ct

,

where zt = (rt −µ)⊤w⋆, and thus,

E[H1] =

 −IN 0N×N

−IN Σ

,(A22)

E[H1]
−1 =

 −IN 0N×N

−Σ−1 Σ−1

.(A23)

It follows that a−1/2 is equal to

(A24) a−1/2 =
1
T

T

∑
t=1

 rt −µ

at

,

where

(A25) at = Σ
−1(rt −µ)(1− zt)+w∗,

1∇iḡ is the matrix of i-th order partial derivative of ḡ(φ) and is obtained recursively. Specifically, If ḡ(φ) is a

k-vector function of φ , the j-th element of the l-th row of Ai ≡ ∇iḡ (a k× ki matrix) is the 1× k vector

ai
l j = ∂ai−1

l j /∂φ⊤.
2An explicit expression of E[a−3/2] is available upon request.
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and it is obvious that E[a−1/2] = 02N .

For a−1, we have from (A21) and (A22) that

V1 =
1
T

T

∑
t=1

 0N×N 0N×N

−ztIN − (rt −µ)w⋆⊤ Ct −Σ

.(A26)

Moreover,

H2 =
1
T

T

∑
t=1

 0N×2N2 0N×2N2

At Bt

,(A27)

where

At = IN ⊗ [w⋆⊤, −(rt −µ)⊤]+w⋆⊤⊗D⊤
1 − (rt −µ)vec(D2)

⊤,(A28)

Bt =−(rt −µ)⊤⊗D⊤
1 − (rt −µ)vec(D1)

⊤,(A29)

with

D1 =

 IN

0N×N

,(A30)

D2 =

 0N×N

IN

.(A31)
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Therefore,

E[H2] =

 0N×2N2 0N×2N2

IN ⊗ [w⋆⊤, 0⊤N ]+w⋆⊤⊗D⊤
1 0N×2N2

.(A32)

It follows that a−1 is equal to

a−1 =
1

T 2

T

∑
s=1

T

∑
t=1

 0N

zsΣ
−1(rt −µ)−Σ−1(Cs −Σ)at

.(A33)

Using the fact that rs is independent of rt if s ̸= t, E[zt ] = 0, E[at ] = 0N , and E[Ct −Σ] = 0N×N , the

expectation of a−1 is

E[a−1] =
1
T

 0N

E[ztΣ
−1(rt −µ)]−E[Σ−1(Ct −Σ)at ]

.(A34)

Let yt = Σ−1/2(rt −µ). Then,

E[ztΣ
−1(rt −µ)] = E[yty⊤t ]w

⋆ = w⋆,(A35)

E[Σ−1(Ct −Σ)at ] = E[yty⊤t ]w
⋆−E[(y⊤t yt)yty⊤t ]w

⋆ = [1− (N +2)(1+κ)]w⋆,(A36)

where we use the fact that E[(y⊤t yt)yty⊤t ] = (N +2)(1+κ)IN under the multivariate elliptical

distribution assumption. Therefore,

E[a−1] =

 0N

1
T (N +2)(1+κ)w⋆

.(A37)

A18



Using E[a−1/2] = 02N and E[a−1] in (A37), the first-order bias of ŵ is

(A38) E[ŵ]−w⋆ =
(N +2)(1+κ)w⋆

T
+O(T−2).

It follows that

E[µ̃p]−µp =
(N +2)(1+κ)µp

T
+O(T−2),(A39)

which corresponds to the desired result in (26) after adding back 1/γ .

Turning to the first-order bias of σ̃2
p , we use (A17) to obtain

(A40) E[σ̃2
p ]−σ

2
p = 2w⋆⊤

ΣE[ã−1]+E[ã⊤−1/2Σã−1/2]+O(T−2),

where ã−1/2 and ã−1 are the last N elements of a−1/2 and a−1, respectively. Given E[ã−1]

in (A37), we have

2w⋆⊤
ΣE[ã−1] =

2(N +2)(1+κ)θ 2

T
.(A41)

Moreover, given ã−1/2 in (A24), we have

ã⊤−1/2Σã−1/2 =
1

T 2

T

∑
s=1

T

∑
t=1

a⊤s Σat .(A42)
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Therefore,

E[ã⊤−1/2Σã−1/2] =
1
T
E[a⊤t Σat ]

=
1
T

(
θ

2 +2E[(1− zt)(rt −µ)⊤Σ
−1

µ]+E[(1− zt)
2(rt −µ)⊤Σ

−1(rt −µ)]
)
.(A43)

It holds that

E[(1− zt)(rt −µ)⊤Σ
−1

µ] =−θ
2,(A44)

E[(1− zt)
2(rt −µ)⊤Σ

−1(rt −µ)] = E[y⊤t yt ]+E[µ⊤
Σ
−1/2(y⊤t yt)yty⊤t Σ

−1/2
µ]

= N +(N +2)(1+κ)θ 2,(A45)

and thus,

(A46) E[ã⊤−1/2Σã−1/2] =
N +[(N +2)(1+κ)−1]θ 2

T
.

It follows that

E[σ̃2
p ]−σ

2
p =

N +[3(N +2)(1+κ)−1]θ 2

T
+O(T−2),(A47)

which corresponds to the desired result in (27) after adding back 1/γ2. Finally, the first-order bias

of U(ŵ) in (28) is directly obtained from (26)–(27). This completes the proof.
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Proof of Proposition 3

Part 1. This result is a direct consequence of El Karoui (2010, equation (9)) after defining the

parameter η as (1−ρ)s, where s is defined in El Karoui (2010, equation (4)). El Karoui (2010)

shows in p. 3506 that s≥ 1/(1−ρ), and thus η ≥ 1. Finally, we show in part 4 of this proposition

that limρ→1 η = E[1/τt ].

Part 2. From El Karoui (2013, equation (3.4)), we have

σ̃
2
p =

1
γ2 µ̂

⊤
Σ̂
−1

ΣΣ̂
−1

µ̂
p−→ 1

γ2 µ
⊤

Σ̂
−1

ΣΣ̂
−1

µ +
ηρ

γ2(1−ρ)3 .(A48)

Moreover, using the last equation in p. 748 of El Karoui (2013), we obtain

µ
⊤

Σ̂
−1

ΣΣ̂
−1

µ
p−→ ϕθ 2

(1−ρ)3 ,(A49)

where ϕ is defined as (1−ρ)3ξ with ξ defined in El Karoui (2013, equation (3.2)). El Karoui

(2013, fact 3.1) shows that ξ ≥ s2/(1−ρ), which in our notation is equivalent to ϕ ≥ η2. Finally,

we show in part 4 of this proposition that limρ→1 ϕ = (E[1/τt ])
2.

Part 3. Equation (33) is a direct consequence of (29)–(31). As shown in part 4 of this proposition,

the case of multivariate normally distributed returns corresponds to η = ϕ = 1. Therefore, the

limit of U(ŵ) in (33) is smaller than that under normality if

2η

1−ρ
− ϕ

(1−ρ)3 ≤ 2
1−ρ

− 1
(1−ρ)3 ,(A50)
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which is equivalent to

ρ ≥ 1−

√
ϕ −1

2(η −1)
.(A51)

Condition (A51) always holds because the right-hand side of (A51) is negative:

1−

√
ϕ −1

2(η −1)
≤ 1−

√
η2 −1

2(η −1)
= 1−

√
η +1

2
≤ 0,(A52)

where the first and last inequalities hold because ϕ ≥ η2 and η ≥ 1, respectively.

Part 4. El Karoui (2010, p. 3506) and El Karoui (2013, Fact 3.1) show that η = ϕ = 1 when

returns are multivariate normally distributed. Moreover, when ρ → 0 we recover the fixed N

asymptotic regime in Proposition 2, in which case η = ϕ = 1 too because µ̃p and σ̃2
p are

asymptotically unbiased. Finally, we show that limρ→1 η = E[1/τt ] and limρ→1 ϕ = (E[1/τt ])
2.

For η , it is direct from its definition in (30). For ϕ , we apply L’Hopital’s rule to obtain

lim
ρ→1

ϕ =

 lim
ρ→1

2
η3

∂η

∂ρ
+E

[
τ2

(1−ρ +ρητt)2

]
+2ρE

τ2
t (1− τt(η +ρ

∂η

∂ρ
))

(1−ρ +ρητt)3

−1

.(A53)

We apply implicit differentiation on (30) to obtain

∂η

∂ρ
=

E
[

1−ητt
(1−ρ+ρητt)2

]
E
[

ρτt
(1−ρ+ρητt)2

] ,(A54)

whose limit as ρ → 1 is

lim
ρ→1

∂η

∂ρ
=

E[1/τ2
t ]

E[1/τt ]
−E[1/τt ].(A55)
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Finally, using (A55) and limρ→1 η = E[1/τt ], the limit in (A53) simplifies to (E[1/τt ])
2. This

completes the proof.

Proof of Proposition 4

Using the results in the proof of Proposition 3, the quantities needed in Proposition 1 to

identify the optimal combination coefficients are

µ̃1 =
ηθ 2

1−ρ
,(A56)

µ̃2 =
η

1−ρ

θ 2
g

µg
,(A57)

σ̃
2
1 =

ϕθ 2 +ηρ

(1−ρ)3 ,(A58)

σ̃
2
2 =

ϕ

(1−ρ)3

θ 2
g

µ2
g
,(A59)

σ̃12 =
ϕ

(1−ρ)3

θ 2
g

µg
.(A60)

Plugging (A56)–(A60) into (21)–(22) delivers the optimal two-fund and three-fund combination

coefficients in (34)–(36). Finally, these combination coefficients are smaller than those under

normally distributed returns because ϕ ≥ η2 ≥ η . This completes the proof.

Proof of Proposition 5

Part 1. Given µ̃1 and σ̃2
1 in (A56) and (A58), we have from (A3) that the out-of-sample utility of

the two-fund rule ŵ2 f (c) converges to

U(ŵ2 f (c))
p→ c

γ

ηθ 2

1−ρ
− c2

2γ

ϕθ 2 +ηρ

(1−ρ)3 .(A61)

A23



Plugging the limit of c⋆ in (34) into (A61) yields the desired result in (37). This utility is larger

than that under the multivariate normal distribution if and only if

ηθ 2

ϕ

η
θ 2 +ρ

>
θ 2

θ 2 +ρ
,(A62)

which is equivalent to the condition θ 2 < ρη(η −1)/(ϕ −η2).

Part 2. Given µ̃1, µ̃2, σ̃2
1 , σ̃2

2 , and σ̃12 in (A56)–(A60), we have from (A4) that the out-of-sample

utility of the three-fund rule ŵ3 f (c) converges to

U(ŵ3 f (c1,c2))
p→ c1

γ

ηθ 2

1−ρ
+

c2

γ

η

1−ρ

θ 2
g

µg
−

c2
1

2γ

ϕθ 2 +ηρ

(1−ρ)3 −
c2

2
2γ

ϕ

(1−ρ)3

θ 2
g

µ2
g
− c1c2

γ

ϕ

(1−ρ)3

θ 2
g

µg
.

(A63)

Plugging the limit of (c⋆1,c⋆2) in (35)–(36) into (A63) yields the desired result in (38). This utility

is larger than that under the multivariate normal distribution if and only if

ηψ2

ϕ

η
ψ2 +ρ

(
1+

ηρθ 2
g

ϕθ 2ψ2

)
>

ψ2

ψ2 +ρ

(
1+

ρθ 2
g

θ 2ψ2

)
,(A64)

which is equivalent to the condition η(ψ2 +ρ)(θ 2ψ2 + η

ϕ
θ 2

g ρ)> (ϕ

η
ψ2 +ρ)(θ 2ψ2 +θ 2

g ρ). This

completes the proof.
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Proof of Proposition 6

Part 1. Given the distribution of τt in (2), the expectation in (30) evaluates to

E
[
(1−ρ +ρητt)

−1]= ν

2(1−ρ)
eyE ν

2 +1(y),(A65)

where y = (ν −2)ρη/[2(1−ρ)]. Using the recursive relation on the exponential integral,

E ν

2 +1(y) =
e−y − yE ν

2
(y)

ν/2
.(A66)

Therefore, (A65) simplifies to

E
[
(1−ρ +ρητt)

−1]= 1− yeyE ν

2
(y)

1−ρ
,(A67)

and thus condition (30) means that η is the solution to (39). Finally, E[1/τt ] = ν/(ν −2), and thus

1 ≤ η ≤ ν/(ν −2) from Proposition 3.

Part 2. Given the distribution of τt in (2), the expectation in (32) evaluates to

E
[

τ2
t

(1−ρ +ρητt)2

]
=

1
(1−ρ)2

[
−
(

ν −2
2

)
+

(
ν −2

2

)2(
1+

ρη

1−ρ

)
eyE ν

2 −1(y)

]
,(A68)

where y = (ν −2)ρη/[2(1−ρ)]. Using the recursive relation on the exponential integral,

E ν

2 −1(y) =
e−y − (ν

2 −1)E ν

2
(y)

y
.(A69)
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Moreover, it holds that eyE ν

2
(y) = ρ/y from (39). Therefore,

eyE ν

2 −1(y) =
1
y
−

ρ(ν

2 −1)
y2 .(A70)

Plugging (A70) and y = (ν−2)ρη

2(1−ρ) into (A68) yields

E
[

τ2
t

(1−ρ +ρητt)2

]
=

(ν −2)(η −1)
2ρη2 .(A71)

Plugging (A71) into (32) delivers the desired formula for ϕ in (40). Finally,

(E[1/τt ])
2 = ν2/(ν −2)2, and thus η2 ≤ ϕ ≤ ν2/(ν −2)2 from Proposition 3. This completes the

proof.

Proof of Proposition 7

Given the definition of Y , Λ, M, and the stochastic representation for the multivariate

elliptical distribution in (1), we can write the sample mean and covariance matrix as

µ̂ = µ +
1
T

Σ
1/2Y⊤

Λ1T ,(A72)

Σ̂ =
1
T

Σ
1/2Y⊤

ΛMΛY Σ
1/2.(A73)

Therefore, the out-of-sample mean and variance of the sample mean-variance portfolio ŵ are

µ̃p =
1
γ

[
T µ

⊤
Σ
−1/2(Y⊤

ΛMΛY )−1
Σ
−1/2

µ +1⊤T ΛY (Y⊤
ΛMΛY )−1

Σ
−1/2

µ

]
,(A74)

σ̃
2
p =

1
γ2

[
T 2

µ
⊤

Σ
−1/2(Y⊤

ΛMΛY )−2
Σ
−1/2

µ +2T 1⊤T ΛY (Y⊤
ΛMΛY )−2

Σ
−1/2

µ
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+1⊤T ΛY (Y⊤
ΛMΛY )−2Y⊤

Λ1T

]
.(A75)

By symmetry, the expectation of the second terms in (A74)–(A75) is zero because Y has zero

mean. Therefore, the expected out-of-sample mean and variance are

E[µ̃p] =
1
γ

T µ
⊤

Σ
−1/2E

[
(Y⊤

ΛMΛY )−1
]
Σ
−1/2

µ,(A76)

E[σ̃2
p ] =

1
γ2 T 2

µ
⊤

Σ
−1/2E

[
(Y⊤

ΛMΛY )−2
]
Σ
−1/2

µ +
1
γ2E

[
1⊤T ΛY (Y⊤

ΛMΛY )−2Y⊤
Λ1T

]
.(A77)

By definition of k3, the second term in (A77) is equal to

1
γ2E

[
1⊤T ΛY (Y⊤

ΛMΛY )−2Y⊤
Λ1T

]
=

NT (T −2)
(T −N −1)(T −N −2)(T −N −4)

k3

γ2 .(A78)

Moreover, Y⊤ΛMΛY = T Σ−1/2Σ̂Σ−1/2, and thus by symmetry E[(Y⊤ΛMΛY )−1] and

E[(Y⊤ΛMΛY )−2] are both proportional to the identity matrix IN . If we denote the proportionality

constants by a1 and a2, then

1
γ

T µ
⊤

Σ
−1/2E

[
(Y⊤

ΛMΛY )−1
]
Σ
−1/2

µ = Ta1µp,(A79)

1
γ2 T 2

µ
⊤

Σ
−1/2E

[
(Y⊤

ΛMΛY )−2
]
Σ
−1/2

µ = T 2a2σ
2
p ,(A80)

which proves (44)–(45) because k1 = (T −N −2)a1 and k2 =
(T−N−1)(T−N−2)(T−N−4)

T−2 a2 by

definition. Finally, it is known from Kan and Zhou (2007) that when asset returns are multivariate

normally distributed, the expectations of µ̃p and σ̃2
p evaluate to (44) and (45), respectively, with

k1 = k2 = k3 = 1. This completes the proof.
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Proof of Proposition 8

Using the results in the proof of Proposition 7, the quantities needed in Proposition 1 to

identify the optimal combination coefficients are

µ̃1 =
T

T −N −2
k1θ

2,(A81)

µ̃2 =
T

T −N −2
k1

θ 2
g

µg
,(A82)

σ̃
2
1 =

T 2(T −2)
(T −N −1)(T −N −2)(T −N −4)

(
k2θ

2 + k3
N
T

)
,(A83)

σ̃
2
2 =

T 2(T −2)
(T −N −1)(T −N −2)(T −N −4)

k2
θ 2

g

µ2
g
,(A84)

σ̃12 =
T 2(T −2)

(T −N −1)(T −N −2)(T −N −4)
k2

θ 2
g

µg
.(A85)

Plugging (A81)–(A85) into (21)–(22) delivers the optimal two-fund and three-fund combination

coefficients in (50)–(52). This completes the proof.

Proof of Proposition 9

The proof of this proposition is similar to that for the optimal three-fund combination

coefficients in Propositions 4 and 8 when we constrain the combination coefficient on the sample

mean-variance portfolio to be c1 = 0.
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