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Abstract In this paper we present two new algorithms for computing all Schur func-
tions sκ(x1, . . . ,xn) for partitions κ such that |κ| ≤ N.

For nonnegative arguments, x1, . . . ,xn, both algorithms are subtraction-free and
thus each Schur function is computed to high relative accuracy in floating point arith-
metic. The cost of each algorithm per Schur function is O(n2).
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1 Introduction

We consider the problem of accurately and efficiently evaluating the Schur function
sκ(x1, x2, . . . ,xn) and series thereof for nonnegative arguments xi ≥ 0, i = 1,2, . . . ,n.
The Schur functions are indexed by partitions κ . We say that κ = (κ1,κ2, . . .), κ1 ≥
κ2 ≥ ·· · ≥ 0, is a partition of an integer k, denoted κ ` k, if κ1 +κ2 + · · · = k. Only
finitely many of the κi can be nonzero.

Our ultimate goal is to efficiently compute the the hypergeometric function of an
n×n semidefinite matrix argument X and parameter α > 0:

pF (α)

q (a1, . . . ,ap;b1, . . . ,bq;X) =
∞

∑
k=0

∑
κ`k

1
k!
·
(a1)

(α)

κ · · ·(ap)
(α)

κ

(b1)
(α)

κ · · ·(bq)
(α)

κ

·C(α)

κ (X), (1)

where
(c)(α)

κ ≡ ∏
(i, j)∈κ

(c− (i−1)/α + j−1) (2)

is the generalized Pochhammer symbol, and C(α)

κ (X) is the Jack function. The latter is a
generalization of the Schur function and is normalized so that ∑κ`k C(α)

κ (X)= (tr(X))k

[24,31,39]. The argument X in (1) is a matrix for historical reasons only; C(α)

κ and

pF (α)
q are scalar-valued symmetric functions in the eigenvalues xi ≥ 0, i = 1,2, . . . ,n,

of X .
The practical importance of computing the hypergeometric function of a matrix

argument stems from far reaching applications in multitude of fields. For example,
in multivariate statistics it provides a closed-form expression for the distributions
of the eigenvalues of the Wishart, Jacobi, Laguerre, and MANOVA random matrix
ensembles [9,34,10,23]. These distributions, in turn, are needed in critical statistical
tests in applications ranging from genomics [37] to wireless communications [14,25,
38], finance [20], target classification [22], etc.

Despite its enormous practical importance, only limited progress has been made
in the computation of this function since the 1960s. The problems with its computa-
tion come from two sources: (1) it converges extremely slowly, and (2) the straight-
forward evaluation of a single Jack function is exponential [8]. The frustrations of
many researchers with the lack of efficient algorithms are long standing and well
documented [3,17,19,21,32,34,36].

The recent progress in computing the hypergeometric function of a matrix ar-
gument has focused on exploiting the combinatorial properties of the Jack function
leading to new algorithms which are exponentially faster than the previous best ones
(see Section 2 for an overview).

Interestingly, the computational potential of the combinatorial properties of the
Jack function had been missed for quite some time. It is thus our hope to draw the at-
tention of the combinatorics community to this problem and its far reaching practical
applications.
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Although the hypergeometric function of a matrix argument is defined for any
α > 0 and there are corresponding theoretical interpretations [11], most applications
focus on α = 1 and α = 2 only. This is largely because these values correspond to the
distributions of the eigenvalues of complex and real random matrices, respectively.

In this paper we focus on α = 1. In this case the Jack function C(1)
κ (X) is a nor-

malization of the Schur function sκ(x1, . . . ,xn) (see (3) in Section 2 for the exact
relationship).

One way to compute the hypergeometric function of a matrix argument in practice
is to truncate the series (1) for k ≤ N for some sufficiently large N.

Since sκ(x1,x2, . . . ,xn) = 0 if κn+1 > 0, our goal is thus to compute, as quickly
and accurately as possible, all Schur functions corresponding to partitions κ in not
more than n parts and size not exceeding N.

Denote the set of those Schur functions by SN,n:

SN,n ≡ {sκ(x1, . . . ,xn)|κ = (κ1, . . . ,κn), |κ| ≡ κ1 + · · ·+κn ≤ N}.

Computing even a single Schur function accurately and efficiently is far from
trivial. We elaborate on this briefly.

There are several determinantal expressions for the Schur function (the classical
definition as quotient of alternants [30, (0.1)], the Jacobi–Trudi identity [30, (0.2)],
its dual version—the Nägelsbach–Kostka formula [30, (0.3)], [43], the Giambelli
[31, p. 47] and Lascoux–Pragacz [31, (2), p. 87] determinants). Each one would
seemingly provide a very efficient way to compute the Schur function. The prob-
lem with this approach is that the matrices involved quickly become ill conditioned
as the sizes of the matrix argument (n) and the partition (|κ|) grow. This implies that
conventional (Gaussian-elimination-based) algorithms will quickly lose accuracy to
roundoff errors. The loss of accuracy is due to a phenomenon known as subtractive
cancellation—loss of significant digits due to subtraction of intermediate (and thus
approximate) quantities of similar magnitude.

The analysis in [8] shows that the loss of accuracy in evaluating the determinantal
expressions for the Schur function can be arbitrarily large in all but the dual Jacobi–
Trudi identity. In the latter the amount of subtractive cancellation can be bounded
independent of the values of the input arguments xi. By using extended precision one
can compensate for that loss of accuracy leading to an algorithm that is guaranteed to
be accurate and costs O((n|κ|+κ3

1 )(|κ|κ1|1+ρ)).1

Subtraction is the only arithmetic operation that could lead to loss of accuracy;
multiplication, division, and addition of same-sign quantities always preserves the
relative accuracy.

In this paper we present two new algorithms for computing the Schur function.
Both algorithms are subtraction-free, meaning that both are guaranteed to compute
the value of the Schur function to high relative accuracy in floating point arithmetic.
Both are also very efficient—the cost per Schur function, when computing all Schur
functions in the set SN,n, is O(n2).

This represents a major improvement over the previous best result in [8] in the
sense that no extended precision arithmetic is required to achieve accuracy and the

1 Here ρ is tiny and accounts for certain logarithmic functions.
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cost of computing a single Schur function is reduced from O((n|κ|+κ3
1 )(|κ|κ1)

1+ρ))
to O(n2).

While both our new algorithms have the same complexity and accuracy charac-
teristics, each is significant in its own right for the following reasons:

– The first algorithm implements the classical definition of the Schur function as a
sum of monomials over all semistandard Young tableaux. Since the coefficients in
this expression are positive (integers), such an approach is subtraction-free, thus
guaranteed to be accurate. The full expression of the Schur function as a sum
of monomials contains exponentially many terms (O(n|κ|) [8]) thus the similarly
exponential cost of the previous algorithms based on it [8]. Since the practical
evaluation of the hypergeometric function requires summation over partitions of
size N much larger then the number of variables n, the computational savings in
reducing the cost of an individual Schur function is considerable.
We use dynamic programming and exploit various redundancies to reduce the
cost to O(n2) per Schur function so long as all Schur functions in the set SN,n are
computed. This algorithm is not efficient for computing individual Schur func-
tions (since it requires the computation of most functions in SN,n). However, this
is not an issue when computing the hypergeometric function of a matrix argument
since all functions in SN,n need to be computed there anyway. These ideas gen-
eralize the approach of Neuman in [35, (5.1)] and may generalize further beyond
α = 1; we elaborate on this in Section 6.
In contrast, the second algorithm does allow the efficient computation of indi-
vidual Schur functions, but is based on identities with no known generalizations
beyond α = 1.

– The second algorithm represents an accurate evaluation of the expression of the
Schur function as a quotient of (generalized, totally nonnegative) Vandermonde
determinants. Since virtually all linear algebra with totally nonnegative matrices
can be performed efficiently and in a subtraction-free fashion [27,28], this leads
to an accurate algorithm for the evaluation of individual Schur functions at the
cost of only O(n2κ1) each. The cost reduces further to O(n2) each if all of SN,n
is computed.

This paper is organized as follows. We present background information and sur-
vey existing algorithms for this problem in Section 2. Our new algorithms are pre-
sented in Sections 3 and 4. We draw conclusions and outline open problems in Section
6.

We made software implementations of both our new algorithms available online
[26].

2 Preliminaries

Algorithms for computing the hypergeometric function of a matrix argument for spe-
cific values of p,q, and α can be found in [2,4,5,18,19].

In this section we survey the approach of Koev and Edelman [29] which works
for any α > 0. We also introduce a few improvements and set the stage for our new
algorithms in the case α = 1.
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We first recall a few definitions that are relevant. For a partition κ , its conjugate
partition κ ′ = (κ ′1,κ

′
2, . . .), is defined as κ ′i = #{κ j|κ j ≥ i, j = 1,2, . . .}. For positive

integers i and j we say that (i, j) ∈ κ if i≤ κ ′j and j≤ κi). The upper and lower hook
lengths at (i, j) ∈ κ are defined, respectively, as:

h∗κ(i, j) ≡ κ
′
j− i+α(κi− j+1);

hκ
∗ (i, j) ≡ κ

′
j− i+1+α(κi− j).

The products of the upper and lower hook lengths are denoted, respectively, as:

H∗κ ≡ ∏
(i, j)∈κ

h∗κ(i, j) and Hκ
∗ ≡ ∏

(i, j)∈κ

hκ
∗ (i, j).

We introduce the “Schur” normalization of the Jack function

S(α)

κ (X) =
Hκ
∗

α |κ||κ|!
C(α)

κ (X). (3)

This normalization is such that S(1)
κ (X) = sκ(x1, . . . ,xn) [39, Proposition 1.2].

The hypergeometric function of a matrix argument in terms of S(α)

κ (X) is:

pF (α)

q (a1, . . . ,ap;b1, . . . ,bq;X) =
∞

∑
k=0

∑
κ`k

(a1)
(α)

κ · · ·(ap)
(α)

κ

(b1)
(α)

κ · · ·(bq)
(α)

κ

· αk

Hκ
∗
·S(α)

κ (X). (4)

Denote the coefficient in front of S(α)

κ (X) in (4) by:

Qκ ≡
(a1)

(α)

κ · · ·(ap)
(α)

κ

(b1)
(α)

κ · · ·(bq)
(α)

κ

· α
|κ|

Hκ
∗
.

Let the partition κ = (κ1,κ2, . . . ,κh) have h = κ ′1 nonzero parts. When κi > κi+1,
we define the partition:

κ(i) ≡ (κ1,κ2, . . . ,κi−1,κi−1,κi+1, . . . ,κh). (5)

The main idea in the evaluation of (4) is to update the κ term in (4) from terms
earlier in the series. In particular, we update Qκ from Qκ(h) and S(α)

κ (x1, . . . ,xn) from
Sµ(x1, . . . ,xn−1), µ ≤ κ .

In order to make the Qκ update as simple as possible, we first express Hκ
∗ in a

way that does not involve the conjugate partition, κ ′:

Hκ
∗ =

h

∏
r=1

κr

∏
c=1

(
κ
′
c− r+1+α(κr− c)

)
=

h

∏
r=1

r

∏
j=1

κ j

∏
c=κ j+1+1

( j− r+1+α(κr− c))

= α
|κ|

h

∏
j=1

j

∏
r=1

(
j− r+1

α
+κr−κ j

)
κ j−κ j+1

,
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where (c)t = c(c+ 1) · · ·(c+ t − 1) is the rising factorial, the univariate version of
the Pochhammer symbol defined in (2).

Defining κ̃i ≡ ακi− i we obtain:

H
κ(h)
∗

Hκ
∗

=
1

ακh−α +1

h−1

∏
j=1

κ̃ j− κ̃h

κ̃ j− κ̃h +1
. (6)

Using (6), Qκ can be updated from Qκ(h) as

Qκ = Qκ(h) ·
∏

p
j=1(a j + κ̄h)

∏
q
j=1(b j + κ̄h)

· α

ακh−α +1
·

h−1

∏
j=1

κ̃ j− κ̃h

κ̃ j− κ̃h +1
, (7)

where κ̄h ≡ κh−1− h−1
α

.

The Jack function S(α)

κ (X) can be dynamically updated using the formula of Stan-
ley [39, Proposition 4.2] (see also [29, (3.8)] and (3)):

S(α)
κ (x1, . . . ,xn) = ∑

µ

S(α)
µ (x1, . . . ,xn−1)x

|κ/µ|
n σκµ , (8)

where the summation is over all partitions µ ≤ κ such that the skew shape κ/µ is a
horizontal strip (i.e., κ1 ≥ µ1 ≥ κ2 ≥ µ2 ≥ ·· · [40, p. 339]). The coefficients σκµ are
defined as

σκµ = ∏
(i, j)∈κ

hκ
∗ (i, j)

h∗κ(i, j) ∏
(i, j)∈µ

h∗µ(i, j)

hµ
∗ (i, j)

, (9)

where both products are over all (i, j) ∈ κ such that κ ′j = µ ′j +1. For α = 1, clearly,
σκµ = 1 for all κ and µ .

Once again, instead of computing the coefficients σκµ in (8) from scratch, it is
much more efficient to start with σκκ = 1 and update the next coefficient in the sum
(8) from the previous ones. To this end, let µ be a partition such that κ ′j = µ ′j for
j = 1,2, . . . ,µk− 1, and κ/µ be a horizontal strip. Then we update σκµ from σκµ(k)
using:

σκµ(k)

σκµ

=
k

∏
r=1

h∗κ(r,µk)

hκ
∗ (r,µk)

k−1

∏
r=1

hµ
∗ (r,µk)

h∗µ(r,µk)
=

k

∏
r=1

1+ κ̃r− µ̃k

α + κ̃r− µ̃k

k−1

∏
r=1

µ̃r− µ̃k +α−1
µ̃r− µ̃k

, (10)

which is obtained directly from (9).
We use (8) to compute S(α)

κ (x1, . . . ,xi) for i = h+1, . . . ,n. For i = h, the result of
Stanley [39, Propositions 5.1 and 5.5] allows for a very efficient update:

S(α)
κ (x1, . . . ,xh) = (x1 · · ·xh)

κh ·S(α)
κ−κhI(x1, . . . ,xh) ·

κh

∏
j=1

h

∏
i=1

h− i+1+α(κi− j)
h− i+α(κi− j+1)

,

(11)
where κ−κhI ≡ (κ1−κh,κ2−κh, . . . ,κh−1−κh).

The new results in this section comprise of the updates (7) and (10), which are
more efficient than the analogous ones in [29, Lemmas 3.1 and 3.2]. These new up-
dates do not require the conjugate partition to be computed and maintained by the
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algorithm and cost 2(p+q)+4h and 9k, down from 2(p+q)+11κh +9h−11 and
12k+6µk−7, respectively.

Additionally, the use of (11) reduces the cost of an evaluation of a truncation of
(1) by a factor of about N/2.

3 The first algorithm

In this section we present the first of our two new algorithms for computing all Schur
functions of the set SN,n.

We first recall the definition of a Young diagram and a semistandard tableau.
A Young diagram of a partition κ ` k is a finite collection of k boxes arranged

in left-justified rows, with κi boxes in row i, i = 1,2, . . .. For example, the Young
diagram below corresponds to the partition κ = (4,2,1) ` 7:

When the boxes of the Young diagram are filled with the numbers 1,2, . . . ,n
such that the numbers increase nonstrictly along rows and increase strictly along
columns we obtain a semistandard tableaux. We say that the content of the tableaux
is (c1,c2, . . . ,cn) if there are c1 ones, c2 twos, etc. For example, the following semis-
tandard tableau of shape (4,2,1) has content (2,2,1,2):

1 1 2 3
2 4
4

To every semistandard tableau of content T = (c1,c2, . . . ,cn) we associate the term
XT = xc1

1 xc2
2 · · ·xcn

n .
Our algorithm is based on the classical definition of the Schur function [40, Sec-

tion 7.10]:
sκ(x1, . . . ,xk) = ∑

T∈Aκ

XT ,

where the summation is over the set Aκ of all semistandard κ-tableaux T filled with
the numbers 1,2, . . . ,k.

Extending the notation, let

sm
κ (x1, . . . ,xk) = ∑

T∈Aκ,m

XT ,

where the summation is over the set Aκ,m, which equals Aκ with the additional re-
striction that k does not appear in the first m rows.

Note that sκ(x1, . . . ,xk) = s0
κ(x1, . . . ,xk) and sκ(x1, . . . ,xk−1) = sk

κ(x1, . . . ,xk).
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Lemma 1 The following identity holds for all sm−1
κ (x1, . . . ,xk):

sm−1
κ (x1, . . . ,xk) =

{
sm

κ (x1, . . . ,xk), if κm = κm+1;
sm−1

κ(m)
(x1, . . . ,xk) · xk + sm

κ (x1, . . . ,xk), otherwise,

where the partition κ(m) is defined as in (5).

Proof In the first case (κm = κm+1), no k is allowed in the mth row of T because of
the strictly increasing property of each column of T . Therefore, the restriction that no
k appear in the first m−1 rows of T is equivalent to the restriction that no k appear in
the first m rows of T , and Aκ,m−1 = Aκ,m.

In the second case, there are two possibilities for the κ-tableau T ∈ Aκ,m−1. If the
entry in position (m,κm) is not equal to k, then none of the entries in the mth row can
equal k due to the nondecreasing nature of each row. Thus, the tableaux fitting this
description are exactly the set Aκ,m.

If the entry in position (m,κm) is equal to k, then removal of that square of
the tableau clearly results in an element of Aκ(m),m−1. Further, for every tableau in
Aκ(m),m−1, the addition of a square containing k to the mth row results in a valid semi-
standard tableau in Aκ,m−1. The tableau retains its semistandardness because every
element in the mth row (and in the entire table as well) can be no larger than k, and
every element in the κmth column above the new square can be no larger than k− 1
due to the restriction that every tableau in Aκ(m),m−1 cannot have k in the first m− 1
columns.

We have thus constructed a bijection f mapping Aκ(m),m−1 to the set (call it B)
of tableaux in Aκ,m−1 where the entry in position (m,κm) equals k. Clearly, for each
T ∈ Aκ(m),m−1,X f (T ) = XT · xk, so ∑T∈B XT = ∑T∈Aκ(m),m−1

XT · xk.

Combining these two possibilities for T ∈ Aκ,m−1, we obtain

sm−1
κ (x1, . . . ,xk) = ∑

T∈Aκ,m−1

XT

= ∑
T∈Aκ,m

XT + ∑
T∈Aκ(m),m−1

XT · xk

= sm
κ (x1, . . . ,xk)+ sm−1

κ(m)
(x1, . . . ,xk) · xk,

concluding our proof. ut

Our algorithm, based on Lemma 1, is very simple.

Algorithm 1 The following algorithm computes all Schur functions in SN,n.

for all κ ∈SN,n initialize sκ = xκ1
1 if κ ∈SN,1 and sκ = 0 otherwise

for k = 2 to n (Loop 1)
for m = k down to 1 (Loop 2)
for all κ ∈SN,k such that κm > κm+1, in reverse lexicographic

order

sκ = sκ + sκ(m)
· xk

endfor

endfor

endfor
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After the first line Algorithm 1, the variables sκ contain sκ(x1). During each itera-
tion of Loop 1, the values stored in sκ for κ ∈SN,k are updated from sκ(x1, . . . ,xk−1)=
sk

κ(x1, . . . ,xk) to sκ(x1, . . . ,xk) = s0
κ(x1, . . . ,xk). During each iteration of Loop 2, the

values in sκ for κ ∈SN,k are updated from sm
κ (x1, . . . ,xk) to sm−1

κ (x1, . . . ,xk).
The last line of the algorithm implements Lemma 1. Since the partitions are

processed in reverse lexicographic order, sκ(m)
will have already been updated for

each κ when this line is executed. Thus, at the time sκ is updated, sκ(m)
contains

sm−1
κ(m)

(x1, . . . ,xk), and sκ is updated from sm
κ (x1, . . . ,xk) to sm−1

κ (x1, . . . ,xk). The algo-
rithm updates the Schur functions “in place” using a single memory location for each
partition.

One implementation issue is the need to retrieve the value of sκ(m)
in the innermost

loop of the algorithm. Since κ is a partition in n parts, figuring the memory location
of sκ(m)

on the fly would take O(n) time, an unfortunate situation since sκ(m)
only

participates in two floating point operations. Our solution to this problem was to
precompute a lookup table, which given the index of a partition κ and m contains the
index of sκ(m)

.

4 The second algorithm

Our second algorithm is based on the expression of the Schur function as a quotient
of totally nonnegative generalized Vandermonde determinants:

sκ(x1, . . . ,xn) =
detG

detVn,n
, (12)

where
G≡

(
x

j−1+κn− j+1
i

)n
i, j=1 and Vn,n ≡

(
x j−1

i

)n
i, j=1

are n×n generalized and ordinary Vandermonde matrices, respectively.
Since sκ(x1,x2, . . . ,xn) is a symmetric polynomial, we can assume that the xi’s

are sorted in increasing order: 0≤ x1 ≤ x2 ≤ ·· · ≤ xn. This choice of ordering makes
G and Vn,m totally nonnegative [13, p. 76] thus the methods of [28, Section 6] can
be used to evaluate (12) with guaranteed accuracy in O(n2κ1) time. The matrices
G and Vn,m are notoriously ill conditioned [15] meaning that conventional Gaussian-
elimination-based algorithms will quickly lose all accuracy to roundoff [8].

The contribution of this section is to show how to eliminate the removable singu-
larity at xi = x j, i 6= j, and to arrange the computations in such a way that the cost per
Schur function is only O(n2) when evaluating all of SN,n.

To this end we will represent the Schur function as a determinant of certain com-
plete symmetric polynomials (see also [1,6,33,43] for other examples where the gen-
eral idea of using other bases for the representation of symmetric functions has proven
useful).

Since the generalized Vandermonde matrix G is a submatrix of the rectangular
Vandermonde matrix

Vn,m ≡
(
x j−1

i

)n,m
i, j=1,
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m = n+κ1, consisting of columns 1+κn,2+κn−1, . . . ,n+κ1, we consider the LDU
decomposition Vn,n+κ1 = LDU , where L is a unit lower triangular n×n matrix, D is
a diagonal n×n matrix, and U is a unit upper triangular n× (n+κ1) matrix.

The critical observation here is that the value of detG is unaffected by L, namely

detG = detD ·detŪ ,

where Ū is the (n×n) submatrix of U consisting of columns 1+κn,2+κn−1, . . . ,n+
κ1.

However, detD = detVn,n, thus

sκ(x1,x2, . . . ,xn) = detŪ . (13)

The explicit form of U is known [12, Section 2.2], [41, eq. (2.3)], [42, Section 3]
allowing us to write (13) also as:

sκ(x1, . . . ,xn) = det
(
hi− j+κn− j+1(x1, . . . ,xi)

)n
i, j=1,

where hk, k = 1,2, . . . , are the complete symmetric polynomials and, by default, hk ≡
0 for k < 0.

The bidiagonal decomposition of U , has a particularly easy form:

BD(U) =



1 x1 x1 . . . x1 x1 x1 . . .
0 1 x2 . . . x2 x2 x2 . . .
0 0 1 . . . x3 x3 x3 . . .

. . .
0 0 0 1 xn xn . . .


. (14)

For example, for n = 3, m = 4 [27, Section 3]:

U =

1 0 0 0
0 1 0 0
0 0 1 0




1 x1
1 x2

1 x3
1




1 x1
1 x2

1 0
1




1 x1
1 0

1 0
1

 .
In order to compute the Schur function, it is therefore sufficient to compute the

determinant of the matrix obtained by removing the appropriate κ1 columns of U .
This can be readily done using existing techniques–Algorithm 5.6 from [28] starts
with the bidiagonal decomposition of a totally nonnegative matrix and produces the
bidiagonal decomposition of the totally nonnegative matrix obtained by removing
any given column. This is done in a subtraction-free fashion and thus to high relative
accuracy.

Therefore from BD(U) we obtain BD(Ū) in O(n2κ1) time. This is the cost per
individual Schur function.

In order to compute the hypergeometric function of a matrix argument, we com-
pute the Schur functions in reverse lexicographic order. For a given Schur function
sκ , let i be the smallest index such that κi > κi+1, i.e., κ = (κi,κi, . . . ,κi,κi+1, . . .).
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The generalized Vandermonde matrix Gκ corresponding to sκ has exponents

(κn,1+κn−1, . . . ,n− i−1+κi+1,n− i+κi, . . . ,n−1+κi, . . .).

Consider now the partition λ = (κi−1,κi−1, . . . ,κi−1,κi+1, . . .). It comes earlier in
the reverse lexicographic order than κ , thus sλ is already computed. The generalized
Vandermonde matrix Gλ that corresponds to sλ has exponents

(κn,1+κn−1, . . . ,n− i−1+κi+1,n− i−1+κi, . . . ,n−2+κi, . . .).

Therefore Gκ can be obtained from Gλ by removing its (i+ 1)st column. The
same is true for the corresponding bidiagonal decompositions and can be achieved in
O(n2) time using Algorithm 5.6 from [28].

The cost per Schur function when computing the hypergeometric function of a
matrix argument is again O(n2).

5 Numerical experiments

We performed extensive numerical experiments to confirm the correctness and perfor-
mance of our algorithms against the algorithm mhg from [29]. We present the results
of one typical experiment on the logarithmic plot in Figure 1. We timed all three al-
gorithms for different values of N on a matrix argument of size n = 5. For N� n the
number of partitions of N in not more than n parts grows as O(Nn). Both our new
algorithms performed, roughly, as N5, which was expected. They are also way faster
than the algorithm mhg from [29]. The practical implementation of Algorithm 1 of
this paper is also clearly faster than that of Algorithm 2.

10 20 30 40 50 60 70 80 90 100 110

Max size partition, N

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

T
im

e

mhg

Alg. 1

Alg. 2

Fig. 1 Logarithmic plot of the performance of Algorithms 1 and 2 vs the algorithm of [29] on a 5× 5
matrix argument.
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6 Open problems

It is natural to ask if the ideas of this paper can extend beyond α = 1 and in particular
to α = 2, the other value of α of major practical importance [34].

None of the determinantal expressions for the Schur function are believed to have
analogues for α 6= 1, thus we are skeptical of the potential of the ideas in Section 4
to generalize.

The results of Section 3, however, may extend beyond α = 1.
Consider the (column) vector s(n) consisting of all Schur functions in SN,n or-

dered in reverse lexicographic order. Let s(n−1) be the same set, but on n−1 variables
x1, . . . ,xn−1. Then

s(n) = Ms(n−1)

where M is an |SN,n|× |SN,n−1| matrix whose entries are indexed by partitions and
Mµν = x|µ|−|ν | if µ/ν is a horizontal strip and 0 otherwise. The contribution of Sec-
tion 4 was to recognize that M consists of blocks of the form

A =


1
x 1
x2 x 1
x3 x2 x 1

 .
Since A−1 is bidiagonal:

A−1 =


1
−x 1
−x 1
−x 1

 ,
given a vector (call it z), the matrix-vector product y = Az can be formed in linear
(instead of quadratic) time by solving instead the bidiagonal linear system A−1y = z
for y.

This was our original approach in designing Algorithm 1. Ultimately we found
the much more elegant proof which we presented instead.

The question remains whether this approach can be generalized to other values of
α . Unfortunately the matrix A in general has the form:

A(α) =


1
x 1

1
2! x2(α +1) x 1

1
3! x3(1+α)(1+2α) 1

2! x2(α +1) x 1

 ,
where the general expression for the entries A(α) is a(α)

i j = xi− j

(i− j)! ∏
i− j−1
k=0 (kα +1), i > j.

The matrix (A(α))−1 is not bidiagonal for α 6= 1 thus the approach of Section 3
cannot be carried over directly. One could consider exploiting the Toeplitz structure of
A(α) to form a matrix-vector product with it in O(k logk) instead of k2 time (assuming
A(α) is k× k) [16, p. 193]. Current computing technology, however, limits N to about
200 and since k ≤ N, this approach does not appear feasible in practice at this time.
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