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Expected Return and the Bid-Ask Spread

ABSTRACT

This paper empirically examines the relation between the expected stock return and the

bid-ask spread. Using the same portfolio formation method as in Amihud and Mendelson

(1986) but different test methodologies, we do not find any clear reliable relation between

the CAPM risk-adjusted return and the relative bid-ask spread. Our empirical results

are more consistent with the conclusions of Constantinides (1986) that transaction costs

play a minor role in the determination of expected returns in security markets.



Expected Return and the Bid-Ask Spread

Most asset pricing models, such as Sharpe (1964), Lintner (1965), Merton (1973),

Ross (1976), Rubinstein (1976), Breeden (1979) and Cox, Ingersoll and Ross (1985), are

derived with the assumption of a perfect capital market. In these cases, the expected

return of a financial asset is a function of risks alone. In actual trading, however, the

transaction costs can be very different for different classes of financial assets and the

equilibrium expected gross return can be a function of the transaction costs also.

Since investors can only consume the investment income net of transaction costs, the

expected gross return should be positively correlated with transaction costs. Unfortu-

nately, there is little agreement among the researchers of how important this positive

relation between the expected return and the transaction costs is. On one hand, differ-

ences in transaction costs can induce a clientele effect. For example, high transaction cost

securities tend to be held for long-term investment purposes and such cost-minimization

strategies on the part of investors would attenuate any positive relation between return

and transaction costs. Furthermore, Constantinides (1986) argues theoretically that

transaction costs can only have a second-order effect on the liquidity premium implied

by the equilibrium asset returns in an intertemporal portfolio selection model. On the

other hand, Amihud and Mendelson (1986) (hereafter AM) empirically find that there

is an economically and statistically significant positive relation between the expected

return and the relative bid-ask spread.

The relative bid-ask spread is measured as the dealer’s bid-ask spread divided by

the average of the bid-price and the ask-price. Since many recent studies have found a

reliable relation between expected return and (functions of) price, it is obvious that we

cannot unambiguously interpret the results in AM as a relation between the expected

return and the relative bid-ask spread. Miller and Scholes (1982) observe a positive

relation between return and the inverse of price and point out that the inverse of price

may be proxying for the errors in the estimation of risk. Since firm size and relative bid-
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ask spread are both functions of price and both are possibly related to risk mismeasured

or unmeasured, the explanation for the size effect proposed in the Chan and Chen (1988)

study may also apply to the relative bid-ask spread variable. Furthermore, given the

recent empirical evidence in Fama and French (1988) and Chen, Grundy and Stambaugh

(1990), the slope coefficient of the relative bid-ask spread in a joint time-series cross-

sectional test may also be picking up time-series variations in the market risk and risk

premium.

In this study, we shall investigate the relation between the expected return and the

relative bid-ask spread taking into account the recent empirical regularities mentioned

above. We examine the robustness of this relation estimated with (i) the Fama-MacBeth

(1973) approach, (ii) the SUR framework as in Zellner (1962), Gibbons (1982), and

Stambaugh (1982), (iii) the unconditional approach in Chan and Chen (1988), and

(iv) an empirical design proposed in Chen, Grundy and Stambaugh (1990) where the

changing risk measure is modeled directly. In most cases, we find that the relation

between the CAPM risk-adjusted return and the relative bid-ask spread is economically

and statistically indistinguishable from zero.

I. The Data

The relative bid-ask spread variable is the same as that constructed in Stoll and Whaley

(1983) and used in the AM study.1 The primary data source is Fitch’s Stock Quotations

on the NYSE. The relative spread is the year-end bid-ask spread divided by the average

of the bid-price and the ask-price. For each year in the sample period 1961–1980, the

spread for stock i, Sit, is the average of the beginning and end-of-year relative spread in

year t − 1.

To test the relation between the expected return and the relative bid-ask spread

conditional on the market beta, we form 49 equally-weighted portfolios based on the same
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criteria used in AM. For each “test” year from 1961 to 1980, the stocks traded through

the eleven-year period from t − 10 to t on the NYSE are first ranked by their relative

spreads in t − 1 and divided into seven spread groups. Within each spread group, the

stocks are ranked by their equally-weighted NYSE market beta estimated with monthly

excess returns from year t − 10 to t − 6, and divided into seven subgroups. Thus, we

form 49 equally-weighted portfolios and the portfolio composition is updated once a year.

The monthly portfolio excess returns are equally-weighted monthly rebalanced returns

in excess of the 30-day Treasury-bill rates.

Using their methodology, we find that our results are largely consistent with the

findings in AM. For example, AM (1986, p. 238) report the following result from a joint

time-series cross-sectional empirical design:

rpt = 0.0036 + 0.00672
(6.18)

βpt + 0.211
(6.83)

Spt +
19∑

t=1

dtDYt + ept,

and our estimation of the same equation, using the same methodology, is

rpt = 0.0039 + 0.00712
(6.45)

βpt + 0.212
(6.79)

Spt +
19∑

t=1

dtDYt + ept,

where rpt is the average monthly excess return for portfolio p in year t, βpt is the equally-

weighted NYSE market beta estimated with monthly excess returns from year t − 5 to

t − 1, Spt is the average relative spread of the stocks in portfolio p as of year t − 1, and

DYt is the yearly dummy variable with DYt = 1 in year t (t = 1, 2, . . . , 19).2

As AM recognize in their discussion, the t-statistics in these equations are overstated

because of the correlations among residuals across portfolio groups. Using the OLS

standard errors that are corrected for the residual correlations,3 the above equation

becomes

rpt = 0.0039 + 0.00712
(2.23)

βpt + 0.212
(2.46)

Spt +
19∑

t=1

dtDYt + ept. (1)
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II. Empirical Results

A. Empirical Design Consideration

Since the market risk (beta) of a security is not directly observable, the precision of the

estimated betas can be a very important issue in an empirical design. Miller and Scholes

(1982) point out that the inverse of price, 1/P , may be better than the estimated beta

as a proxy for risk. This is especially true if a recent drop in the price of a stock reflects

an increase in the risk. Thus, a spurious cross-sectional relation between return and

a variable which is a function of price (e.g., size, P/E, dividend-yield, relative bid-ask

spread) may arise because of the imprecision of the estimated betas. This is the first of

the two design issues that we want to address in this study.

The second issue is related to the stochastic nature of the parameters of the asset

pricing model. Given the evidence in Fama and French (1988) and Chen, Grundy, and

Stambaugh (1990), a variable which is a function of the share price can be related to

return in a joint time-series cross-sectional test because it proxies for the changes in the

conditional parameters of the asset pricing model. The following experiments provide

some direct evidence that the relative bid-ask spread is related to the stochastic expected

market premium and the stochastic beta over time.

Let S̄t be the cross-sectional average of the 49 relative spreads measured the previous

year and r̄mt be the average monthly realized excess return of the equally-weighted NYSE

index in year t. The following equation is estimated with annual data over the sample

period 1961–1980.

r̄mt = −0.038
(−1.78)

+ 3.194
(2.19)

S̄t + εmt.

Even though the average spread variable is only updated once a year, the result indicates

that the relative bid-ask spread, like the dividend-yield, can forecast changes in expected

return.
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Next, we document the relation between the relative bid-ask spread and the condi-

tional beta. We assume the following simple linear relation:

βpt = β0p + β1pSpt, (2)

where β0p and β1p are portfolio specific constants and Spt is the relative spread measured

in the previous year. Thus the market model of portfolio p becomes

rpt = α0p + β0prmt + β1pSptrmt + ept. (3)

In this specification, the beta for portfolio p is stochastic as a linear function of the

relative spread if and only if β1p is non-zero. We estimate the above equation with

monthly excess returns for all 49 portfolios in the sample period 1961–1980. The test

statistic rejects the null hypothesis that all β1p = 0 at a p -level less than 10−7, indicating

that indeed portfolio betas are stochastic as a function of the relative spread.4

In the estimation of equation (1) above, observations across portfolios (49 portfolios)

and across time (20 years) are stacked together for the regression. A spurious positive

relation between the risk-adjusted return and the relative bid-ask spread can arise be-

cause (i) the spread variables proxy for the errors in the conditional betas estimated with

only 60 monthly observations (from year t − 1 to t − 5) — both across portfolios each

year and across time for each portfolio, and (ii) the spread variables proxy for changes

in the market risk premium since the estimated risk premium in (1) is constrained to be

constant over time.

In the empirical tests that follow, each design will address some or all of these prob-

lems. In the Fama-MacBeth (1973) cross-sectional regressions, the risk premium is

allowed to change every month and the relative bid-ask spread cannot proxy for changes

in the conditional beta over time. However, the precision of the estimated betas may

not be high because they are only estimated with 60 monthly observations. In the

Gibbons (1982)–Stambaugh (1982) SUR framework, assuming that the unconditional

return is linearly related to the unconditional beta (see, e.g., Chan and Chen (1988)
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for sufficient conditions), the precision of the unconditional beta is improved when it

is estimated with 240 monthly observations, but the relative bid-ask spread may still

proxy for changes in the conditional beta over time. With the Chan and Chen (1988)

approach and the Chen, Grundy and Stambaugh (1990) approach, if the assumptions

governing the stochastic beta are good working approximations, these two approaches

will address both the estimation error problem and the stochastic parameter problem

at the same time. In the empirical tests that follow, we find that when the problems

discussed above are taken into account, we can no longer observe any reliable relation

between the CAPM risk-adjusted return and the relative bid-ask spread.

B. The Fama-MacBeth Approach

All of the parameters necessary to implement the Fama-MacBeth approach have been

estimated already and have been used as inputs in estimating (1). The only difference is

how the overall estimates for the slope coefficients are obtained. In (1), we stack all the

observations across portfolios and across time in one regression. In Fama-MacBeth, we

run monthly cross-sectional regressions with the 49 portfolios, thus obtaining a monthly

estimate of each slope coefficient, and we use the mean and the standard deviation

of the mean of the monthly estimates as the overall estimate of the slope coefficient

and its standard error. Unlike (1), the Fama-MacBeth approach allows the estimated

market risk premium to change every month. Consequently, the relative bid-ask spread

cannot be proxying for the changes in the expected return that arise from the changes in

the expected market premium. Furthermore, since the monthly slope coefficients for the

spread variable are estimated in cross-sectional regressions, they cannot be contaminated

by any positive relation between the relative spread and the estimation error of the

conditional beta over time.5 The drawback of this approach is that only 60 observations

are used to estimate the betas and the relative bid-ask spread may be proxying for risk

mismeasured in the cross-sectional regressions.
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In implementing the Fama-MacBeth approach, the null hypothesis is nested in the

alternative hypothesis that there is a positive relation between the risk-adjusted return

and the relative bid-ask spread:

rpt = γ0t + γ1tβpt + γ2tSpt + ept, (4)

where βpt is the portfolio beta estimated with monthly excess return from the previous

five years and Spt is the relative bid-ask spread. If the estimated γ2 is reliably positive,

we reject the null hypothesis in favor of the alternative hypothesis. We also examine

another alternative hypothesis suggested by AM

rpt =
7∑

i=1

γ0it + γ1tβpt +
7∑

i=1

γ2itŜ
i
pt + εpt, (5)

where the intercept, γ0i, and the slope coefficient for the spread variable, γ2i, are allowed

to be different for each of the seven spread groups. Here, Ŝi
pt is the mean-adjusted

relative spread variable defined as Spt− S̄i where S̄i is the average of the relative spreads

in group i if portfolio p is in spread group i, and zero if portfolio p is not in spread

group i. The results are reported in columns 1 and 2 in Table 1.

When we compare the result in column 1 with the result reported in (1), we notice

a striking difference. Recall that we are using numerically exactly the same estimated

betas. The main difference arises from the Fama-MacBeth design which does not stack

the time series observations in a single regression. This difference in the methodology

is sufficient to lower the estimated slope coefficient for the spread variable to less than

half of what is reported in (1), and the point estimate of 0.0893 has a t-statistic of only

1.07.

The result reported in column 2 also indicates that there is no reliable relation

between the risk-adjusted return and the relative bid-ask spread. A Hotelling T 2 test

[F (7, 233) = 1.133, p-value= 0.34] indicates that we cannot reject the null hypothesis

that jointly γ21 = γ22 = γ23 = γ24 = γ25 = γ26 = γ27 = 0.6 The slope coefficients

across the seven spread groups are highly variable and do not conform to any discernible
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pattern. This is not too surprising because there is little cross-sectional dispersion in the

relative spread variable within the same spread group. Overall, even though the market

betas may be estimated with errors, we do not find any positive relation between the

CAPM risk-adjusted return and the relative bid-ask spread using the classical Fama-

MacBeth approach.7

C. Results Using the SUR Approach

In this section, the methodology that we use is the nonlinear SUR approach of Gib-

bons (1982) and Stambaugh (1982). Only the non-overlapping monthly excess returns

in the “test” years are used in the tests. Due to the fairly large number of equations,

we use all the time-series observations in estimating the system so that the asymptotic

distribution is a reasonable approximation. The null hypothesis is that there is a linear

relation between the unconditional beta and the unconditional return. With this ap-

proach, the precision of the estimated unconditional betas is likely to be high because

the unconditional betas are essentially estimated with 240 monthly observations. The

only drawback of this approach is that the relative bid-ask spreads may be proxying for

changes in expected returns that arise from the changes in the conditional betas.

The model that we estimate is:

rpt = γ0 + γ1tβp + γ2Spt + ept, (6)

where Spt is the relative spread for portfolio p, γ1t = γ′
1 + rmt, γ′

1 is a constant and rmt

is the excess equally-weighted NYSE market return for month t. We also examine the

model:

rpt =
7∑

i=1

γ0i + γ1tβp +
7∑

i=1

γ2iŜ
i
pt + ept, (7)

where the intercept, γ0i, and the slope coefficient for the spread variable, γ2i, are allowed

to be different for each of the seven spread groups. The results are reported in columns

3 and 4 of Table 1.
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With only a single spread variable (column 3), we find that the estimated slope

coefficient for the relative spread variable is 0.0998 with an asymptotic t-statistic of

2.00, indicating that it is somewhat related to the return. When we allow each spread

group to have its own slope coefficient for the relative spread, most of them are positive.

However, they do not resemble the monotonic pattern (AM, Table 4) that may reflect

the clientele effect induced by the differential transaction cost. We also test the null

hypothesis that jointly γ21 = γ22 = . . . = γ27 = 0 and the test statistic, which is

distributed asymptotically as chi-square with 7 degrees of freedom, is 14.42 with a p-

value of 0.044. The overall picture again indicates that there may be some relation

between return and the relative bid-ask spread, but it is not clear if this relation is

arisen from the higher compensations for the larger spreads.

D. The Unconditional Two-Step Approach

In this section, we use the two-step methodology in Chan and Chen (1988) to investigate

the relation between spread and return. In the first step, we estimate the unconditional

market betas for the 49 portfolios by regressing excess monthly portfolio returns (in the

“test” years) on the excess equally-weighted NYSE market return. In the second step,

we regress cross-sectionally the monthly returns of the 49 portfolios on the estimated

unconditional beta and the portfolio relative spread. Thus we have a series of 240

estimates, one for each month in the sample period 1961 to 1980, for each of the slope

coefficients. The overall estimate and the standard error of the slope coefficient are

given by the mean and the standard deviation of the mean of the 240 estimates. If the

slope coefficient for the spread variable is reliably different from zero, it must reflect a

cross-sectional relation between return and spread.

If the assumptions underlying the Chan and Chen model are satisfied,8 this approach

has the advantage that the estimated slope coefficient for the spread variable would not

be contaminated by any time-series correlations between the spread and the stochastic
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market risk and risk premium. We can also use the full sample period observations to

estimate the unconditional betas so that the precision is maximized. The models that

we estimate are:

rpt = γ0t + γ1tβp + γ2tSpt + ept, (8)

and

rpt =
7∑

i=1

γ0it + γ1tβp +
7∑

i=1

γ2itŜ
i
pt + εpt. (9)

The means of the estimated γ’s are reported in columns 5 and 6 in Table 1.

The results are qualitatively similar to those in columns 1 through 4. In column 5,

the slope coefficient for the spread variable is 0.026 (t-ratio = 0.29). Both the point

estimate and the t-statistic are smaller than those estimated with the Fama-MacBeth

methodology (where the precision of the estimated betas is lower) and those estimated

with SUR in the previous section (where the relative spread may proxy for the changes

in the conditional betas). In column 6, the seven slope coefficients are all within two

standard errors from zero with no obvious pattern. A Hotelling T 2 test [F (7, 233) =

1.024, p-value= 0.41] indicates that we cannot reject the joint hypothesis that γ21 =

γ22 = . . . = γ27 = 0.9 Therefore, we conclude that there is no reliable evidence relating

the CAPM risk-adjusted return to the relative bid-ask spread.

E. An Approach that Models the Stochastic Beta

In the above two sections, we make an implicit assumption about the stochastic behavior

of the conditional beta that enables us to test the model with the unconditional moments.

Alternatively, we can handle the stochastic conditional beta by modeling it directly.

Since one possibility of why the relative bid-ask spread variable is nonzero in a joint

time-series cross-sectional test is that the conditional beta may be a function of the

relative spread, we model the conditional beta here the same way as in section A:

βpt = βp0 + βp1Spt.
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In the corresponding tests for the relation between return and spread, the models that

we estimate, using a nonlinear SUR methodology,10 are, respectively:

rpt = γ0 + γ1tβpt + γ2Ŝ
i
pt + εpt, (10)

and

rpt =
7∑

i=1

γ0i + γ1tβpt +
7∑

i=1

γ2iŜ
i
pt + εpt. (11)

where βpt is defined above and γ1t is defined as in equations (6) and (7). The estimates

of the γ’s are reported in columns 7 and 8 in Table 1.

Not surprisingly, the results are qualitatively the same as those in columns 1 through

6. In column 7, the estimated slope coefficient for the spread variable is 0.0670 (t-ratio

= 1.33). In column 8, the coefficients do not have any discernible pattern across the

spread groups. The chi-square statistic for the hypothesis that γ21 to γ27 are jointly zero

is 14.66 (p-value equals 0.041). Overall, there is no strong indication that the data reject

the null hypothesis that there is no relation between the CAPM risk-adjusted expected

return and the relative bid-ask spread.

III. Conclusion

We investigate the relation between the expected return and the relative bid-ask spread

using the same portfolio formation method as in Amihud and Mendelson (1986) but

different test methodologies. We do not find any clear reliable relation between the

CAPM risk-adjusted return and the relative bid-ask spread. Our empirical results are

more consistent with the conclusions of Constantinides (1986) that transaction costs

play a minor role in the determination of expected returns in security markets.

Our test methods differ from those by previous authors mainly in our attempt to

accommodate the stochastic risk and risk premium and to improve the precision of the

estimated betas in the empirical design. If we consider collectively the evidence presented
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in Chan and Chen (1988), Chen, Grundy and Stambaugh (1990) and in this study, an

interesting pattern emerges. When returns are not “properly” adjusted for risk, variables

that are functions of the most recently observed price of a stock, such as size, dividend

yield and the relative bid-ask spread, are often found to possess explanatory power on

the cross-sectional differences in the risk-adjusted return. As Miller and Scholes (1982)

point out, the most recently observed price of a security may well be a very good proxy

for the security risk, and the explanatory power of a price-related variable can derive

from its ability to proxy for risks mismeasured or unmeasured. The evidence presented

here as well as the above-mentioned studies are consistent with this view. In the present

case, after we estimate the models taking into account the recent empirical regularities

related to the stochastic beta, the stochastic risk premium and the importance of the

precision of the estimated betas, we do not find any reliable relation between the CAPM

risk-adjusted return and the relative bid-ask spread.

12



Table I
The Relation Between Return and the Relative Bid-Ask Spread

(1961–1980)
The table reports estimates of the relation between return and the relative bid-ask spread for eight different models:

rpt = γ0t + γ1tβpt + γ2tSpt + ept (1)

rpt =

7∑

i=1

γ0it + γ1tβpt +

7∑

i=1

γ2itŜ
i
pt + εpt (2)

rpt = γ0 + γ1tβp + γ2Spt + ept (3)

rpt =

7∑

i=1

γ0i + γ1tβp +

7∑

i=1

γ2iŜ
i
pt + εpt (4)

rpt = γ0t + γ1tβp + γ2tSpt + ept (5)

rpt =

7∑

i=1

γ0it + γ1tβp +

7∑

i=1

γ2itŜ
i
pt + εpt (6)

rpt = γ0 + γ1tβpt + γ2Spt + ept (7)

rpt =

7∑

i=1

γ0i + γ1tβpt +

7∑

i=1

γ2iŜ
i
pt + εpt (8)

Models (1) and (2) are estimated with the Fama-Macbeth (1973) method. Models (3), (4), (7) and (8) are estimated with
nonlinear SUR. Models (5) and (6) are estimated with the Chan and Chen (1988) unconditional two-step approach. rpt

is the monthly portfolio return for the 49 spread-beta ranked portfolios in excess of 30-day Treasury-bill rate. In models
(3), (4), (7) and (8), γ1t = γ′

1 + rmt and rmt is the monthly equally-weighted NYSE market return in excess of 30-day
Treasury-bill rate. γ1 = γ′

1 + r̄mt where r̄mt is the average of rmt over 1961 to 1980. In models (1), (2), (5) and (6), the
γ’s reported in the table are time-series averages of the monthly estimated γ’s. Define Spt as the average relative spread
[≡ (ask−bid)/(average of ask and bid)] for portfolio p measured in the previous year and S̄i is the average of the relative

spreads in group i, then Ŝi
pt = Spt − S̄i if portfolio p is in spread group i, and zero otherwise. In models (7) and (8),

βpt = βp0 + βp1Spt.

Models
1 2 3 4 5 6 7 8

γ0 −0.0048 • −0.0071 • −0.0065 • −0.0065 •
(−1.95) (−3.20) (−2.42) (−3.28)

γ1 0.0108 0.0107 0.0175 0.0044 0.0136 0.0126 0.0175 0.0196
(2.87) (2.74) (4.02) (4.38) (2.83) (2.52) (4.15) (4.57)

γ2 0.0893 • 0.0998 • 0.0260 • 0.0670 •
(1.07) (2.00) (0.29) (1.33)

γ21 −4.058 −0.056 −3.713 0.145
(−1.87) (−0.06) (−1.78) (0.15)

γ22 4.840 0.477 4.688 0.683
(1.31) (0.92) (1.27) (1.26)

γ23 1.587 0.785 1.776 1.231
(0.41) (2.12) (0.47) (3.13)

γ24 1.606 0.283 2.134 0.297
(0.38) (1.04) (0.51) (1.01)

γ25 1.249 0.515 2.495 0.485
(0.47) (2.41) (0.97) (2.12)

γ26 2.551 0.195 1.711 0.190
(1.43) (1.38) (0.96) (1.27)

γ27 −0.079 0.171 −0.116 0.068
(−0.33) (2.04) (−0.45) (0.75)
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FOOTNOTES

1. We thank Stoll and Whaley for providing us with the relative bid-ask spread data.

2. They also report the results from another empirical design where they have a sep-

arate slope coefficient for each spread group. Their results (p.349, Table 4, column 1)

for the seven slope coefficients (with t-statistics in parentheses) are 3.641 (2.76), 3.242

(3.50), 2.854 (3.93), 1.657 (3.06), 2.224 (5.69), 1.365 (5.28) and 0.605 (5.28), respec-

tively. Using their methodology but our data, our estimates for the slope coefficients are

3.649 (2.73), 2.949 (3.24), 2.545 (3.60), 1.773 (3.37), 1.730 (4.51), 0.809 (3.46) and 0.594

(6.59), respectively for the seven spread groups from the smallest to the largest spread

group.

3. The standard errors are estimated with (X ′X)−1X ′ΣX(X ′X)−1, where X is the

matrix of observations of the independent variables and Σ is a block diagonal matrix

with the block covariance matrix of the residuals for the 49 portfolios on the diagonal.

The residuals are estimated with their method (AM, p.237) adapted for the average

excess monthly returns. We have also estimated (1) with GLS with the same estimated

covariance matrix and the slope of the spread variable is 0.067 (t-ratio = 1.15).

4. The test statistic, which is asymptotically distributed as chi-square with 49 degrees

of freedom, is 175.46.

5. For example, if, at every point of time, all the estimated betas are biased towards

1 because of estimation error, but they are still cross-sectionally perfectly correlated

with the true betas, then there is still a cross-sectional linear relation between expected

return and the estimated betas. However, a variable that is a function of price may still

be spuriously related to return in a joint time-series cross-sectional design due to the

misestimated conditional betas over time.

6. The t-test and the F -test are based on the null hypothesis that all the slope coef-

ficients are zero. If we test the hypothesis with the assumption that γ1 �= 0, Shanken

(1985) shows that under certain assumptions, both the t and the F -statistics should
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be adjusted downward. Since the null hypothesis cannot be rejected even without the

adjustment, we conclude that there is no reliable relation between risk-adjusted return

and the relative bid-ask spread.

7. We have also estimated the models in columns 1 and 2 using GLS in the cross-

sectional regressions (with the residual covariance matrix estimated from the residuals in

equation (3)), and the results are qualitatively the same. The estimated slope coefficient

is 0.085 (t-ratio = 0.90) for the spread variable in equation (4). In equation (5), all of

the estimated slope coefficients are negative and the F -statistic for the null hypothesis

that all seven spread slope coefficients are jointly zero is 1.26 (p-value = 0.27).

8. The main assumption is that there is a linear function that relates the conditional

portfolio betas to the means of the distributions of the conditional portfolio betas cross-

sectionally (plus noise). It implies that the unconditional portfolio betas estimated in

non-overlapping periods are highly cross-sectionally correlated. The cross-sectional cor-

relation between the 49 unconditional betas estimated over the first 10 years and the 49

unconditional betas estimated over the second 10 years is 0.83. Although the correlation

is not as high as that reported in Chan and Chen (1988) for the size portfolios, we regard

the assumptions underlying the Chan and Chen (1988) approach here as approximations

in order to investigate how robust the results are to different methodologies.

9. We have also estimated the models in columns 5 and 6 using GLS in the cross-

sectional regressions and the results are qualitatively the same. The estimated slope

coefficient is 0.058 (t-ratio = 0.60) for the spread variable in equation (8). In equation

(9), the F -statistic for the null hypothesis that all seven spread slope coefficients are

jointly zero is 0.716 (p-value = 0.66). We have also estimated the models described in

this footnote and footnote 7 with GLS using the residual covariance matrix estimated

from (i) a simple market model for each of the 49 portfolios and (ii) the procedure

described in AM (p.237), and the results are qualitatively the same.

10. This is essentially the same as the generalized method of moments (see Hansen

(1982)) methodology used in Chen, Grundy and Stambaugh (1990).
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