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OA.1 Proof of Proposition 1

Consider a general European derivative with maturity t+ τ and a payoff at maturity given

by

Ht+τ = h(St+τ ), (1)

where h(St+τ ) is a deterministic function of the underlying stock price at t+ τ . As noted in

Grundy (1991) and Lo and Wang (1995), the drift of the stock price process is irrelevant for

determining the price of the derivative today, and we can use the risk-neutralized process

of the stock price to determine the price of the European derivative today. Under the

risk neutral measure, the continuously compounded return of rt+τ = log(St+τ ) − log(St) is

normally distributed with a mean of τ
(
r − σ2

2

)
and variance of τσ2. It follows that the

current price of the European derivative is given by

Ht(St, σ) = e−rτEQ
t [h(St+τ )]

= e−rτ

∫ ∞

−∞
h
(
Ste

(r− 1
2
σ2)τ+σ

√
τv
)
ϕ(v)dv. (2)

Similarly, the price of the derivative at time t+ k, where 0 ≤ k ≤ τ , can be obtained as

Ht+k(St+k, σ) = e−r(τ−k)EQ
t+k[h(St+τ )]

= e−r(τ−k)

∫ ∞

−∞
h(St+ke

(r− 1
2
σ2)(τ−k)+σ

√
τ−kv)ϕ(v)dv. (3)

Under the physical measure, the stock price follows a trending O-U process and its k-period

continuously compounded return rk = log(St+k)− log(St) is normally distributed with mean

kµ and variance kσ2
k. As a result, we can write St+k as

St+k = Ste
µk+σk

√
kw, (4)

where w is a standard normal random variable. Then, we can compute the expected price

of the derivative at time t+ k as

Et[Ht+k] =

∫ ∞

−∞
Ht+k

(
Ste

µk+σk

√
kw, σ

)
ϕ(w)dw

=

∫ ∞

−∞

[
e−r(τ−k)

∫ ∞

−∞
h
(
Ste

µk+σk

√
kwe(r−

σ2

2
)(τ−k)+σ

√
τ−kv

)
ϕ(v)dv

]
ϕ(w)dw

= e−r(τ−k)

∫ ∞

−∞

∫ ∞

−∞
h
(
Ste

µk+(r−σ2

2
)(τ−k)e

√
σ2
kk+σ2(τ−k)u

)
ϕ2

(
u,w;

σk

√
k

σ∗√τ

)
dwdu
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= e−r(τ−k)

∫ ∞

−∞
h

(
Ste

µk+
(
r−σ2

2

)
(τ−k)+σ∗√τu

)
ϕ(u)du

= erkHt

(
Ste

µk+
(
r−σ2

2

)
(τ−k)−

(
r−σ∗2

2

)
τ
, σ∗
)

= erkHt(S
∗
t , σ

∗), (5)

where

S∗
t = Ste

µk+
(
r−σ2

2

)
(τ−k)−

(
r−σ∗2

2

)
τ
= Ste

(
µ−r+

σ2
k
2

)
k

(6)

and ϕ2(·, ·; ρ) stands for the density function of a standard bivariate normal random variable

with correlation ρ. In the above derivation, we make a change of variable of

u =
σk

√
kw + σ

√
τ − kv√

σ2
kk + σ2(τ − k)

=
σk

√
kw + σ

√
τ − kv

σ∗√τ
∼ N(0, 1), (7)

and we have

Corr[u,w] = Cov[u,w] =
σk

√
k

σ∗√τ
. (8)

This completes the proof.

OA.2 Proof of Corollary 1.1

This is a special case of Proposition 1 with k = τ , thus σ∗ = στ and S∗
t = Ste

(µ−r+
σ2
τ
2
)τ = S̃t.

This completes the proof.

OA.3 Proof of Proposition 2

From the Black-Scholes formula, it is easy to show that

∂CBS(S∗
t , K, r, τ, σ∗)

∂S∗
t

= Φ(d∗1), (9)

∂PBS(S∗
t , K, r, τ, σ∗)

∂S∗
t

= −Φ(−d∗1), (10)

∂CBS(S∗
t , K, r, τ, σ∗)

∂σ∗ = S∗
t ϕ(d

∗
1)
√
τ , (11)

∂PBS(S∗
t , K, r, τ, σ∗)

∂σ∗ = S∗
t ϕ(d

∗
1)
√
τ , (12)
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where

d∗1 =
log
(

S∗
t

K

)
+
(
r + σ∗2

2

)
τ

σ∗√τ
. (13)

It follows that

∂Et[Ct+k]

∂σk

= erk
[
∂CBS(S∗

t , K, r, τ, σ∗)

∂S∗
t

∂S∗
t

∂σk

+
∂CBS(S∗

t , K, r, τ, σ∗)

∂σ∗
∂σ∗

∂σk

]
= erk

[
Φ(d∗1)S

∗
t kσk + S∗

t ϕ(d
∗
1)
√
τ
kσk

τσ∗

]
= erkS∗

t kσk

[
Φ(d∗1) +

ϕ(d∗1)

σ∗√τ

]
, (14)

∂Et[Pt+k]

∂σk

= erk
[
∂PBS(S∗

t , K, r, τ, σ∗)

∂S∗
t

∂S∗
t

∂σk

+
∂PBS(S∗

t , K, r, τ, σ∗)

∂σ∗
∂σ∗

∂σk

]
= erk

[
−Φ(−d∗1)S

∗
t kσk + S∗

t ϕ(d
∗
1)
√
τ
kσk

τσ∗

]
= erkS∗

t kσk

[
−Φ(−d∗1) +

ϕ(d∗1)

σ∗√τ

]
. (15)

We now show that when k = τ and µ > 0, ∂Et[Pt+k]/∂σk > 0 for at-the-money and out-of-

the-money put options. Note that when k = τ and µ > 0,

St ≥ K ⇒ S∗
t ≥ Ke

(
µ−r+

σ2
τ
2

)
τ
⇒ d∗1 ≥ σ∗√τ . (16)

It follows that

−Φ(−d∗1) +
ϕ(d∗1)

σ∗√τ
≥ −Φ(−d∗1) +

ϕ(d∗1)

d∗1
=

Φ(−d∗1)

d∗1

[
−d∗1 +

ϕ(d∗1)

Φ(−d∗1)

]
> 0. (17)

The last inequality follows from the result of Gordon (1941) regarding inverse Mill’s ratio

for normal random variable that states for d∗1 ≥ 0,

ϕ(d∗1)

1− Φ(d∗1)
> d∗1. (18)

This completes the proof.
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OA.4 Proof of Monotonicity of σ2
k in γ

We show that under the bivariate O-U process, σ2
k is a monotonically decreasing function of

γ. The expression of σ2
k is given by

σ2
k =

1

kγ

[
σ2 +

λ2σ2
x

δ(γ + δ)

] [
(1− e−kγ)− λ

γ − δ
βqx(e

−kδ − e−kγ)

]
, (19)

where

βqx =
γλσ2

x

δ(δ + γ)σ2 + λ2σ2
x

. (20)

Taking derivative of σ2
k with respect to γ, we obtain

∂σ2
k

∂γ
=

e−k(δ+γ)

δγ2(δ2 − γ2)2k
[f1 + λ2σ2

xf2], (21)

where

f1 = −δekδ(δ2 − γ2)2(ekγ − 1− kγ)σ2, (22)

f2 = 2γ3ekγ − (δ − γ)2(δ + 2γ)ek(δ+γ) + [δ2(1 + kγ)− γ2(3 + kγ)]δekδ. (23)

Since ekγ > 1 + kγ, it is obvious that f1 ≤ 0. It suffices to show that f2 ≤ 0. Let a = kγ

and b = kδ. We can re-write f2 as a function of a and b as follows

f2/k
3 = f(a, b) = 2a3ea − (a− b)2(b+ 2a)ea+b + (b2(1 + a)− a2(3 + a))beb

= 2a3ea + b[(1 + a)b2 − (3 + a)a2]eb − (a− b)2(2a+ b)ea+b. (24)

We first show that f(a, a+ d) ≤ f(a, a) = 0 for d > 0. We have

f(a, a+ d) = ea
{
2a3 + (a+ d)[2a2(d− 1) + d2 + ad(2 + d)]ed − d2(3a+ d)ea+d

}
. (25)

Since ea > 0, it suffices to show that the expression within the braces is non-positive. This

follows because

2a3 + (a+ d)[2a2(d− 1) + d2 + ad(2 + d)]ed − d2(3a+ d)ea+d

≤ 2a3 + (a+ d)[2a2(d− 1) + d2 + ad(2 + d)]ed − d2(3a+ d)ed
(
1 + a+

a2

2

)
= −a2

2
[d3ed + (−4 + 4ed − 4ded + 3d2ed)a]
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= −a2

2

(
d3ed + a

∞∑
n=2

3n2 − 7n+ 4

n!
dn

)
≤ 0. (26)

We next show that f(b+ c, b) ≤ f(b, b) = 0 for c > 0. We have

f(b+ c, b) = eb
{
b3(1 + b+ c)− b(b+ c)2(3 + b+ c) + 2(b+ c)3ec − c2(3b+ 2c)eb+c

}
. (27)

Since eb > 0, it suffices to show that the expression within the braces is non-positive. This

follows because

b3(1 + b+ c)− b(b+ c)2(3 + b+ c) + 2(b+ c)3ec − c2(3b+ 2c)eb+c

≤ b3(1 + b+ c)− b(b+ c)2(3 + b+ c) + 2(b+ c)3ec − c2(3b+ 2c)ec
(
1 + b+

b2

2

)
≡ − b

2
(d0 + d1b+ d2b

2). (28)

Hence, it suffices to show that d0, d1, and d2 are all non-negative. Using power series expan-

sion around 0, we observe that

d0 = 2c2[3 + c+ (2c− 3)ec] = 2c2
∞∑
n=2

2n− 3

n!
cn ≥ 0,

d1 = 6c(2 + c) + 2c[c(3 + c)− 6]ec = 2c
∞∑
n=2

n2 + 2n− 6

n!
cn ≥ 0,

d2 = 4(1 + c) + (3c2 − 4)ec =
∞∑
n=2

3n2 − 3n− 4

n!
cn ≥ 0. (29)

This completes the proof.

OA.5 Proof of Monotonicity of ρk(1) in γ

We show that under the bivariate O-U process, ρk(1) is a monotonically decreasing function

of γ. Given the expression of ρk(1), it can be shown that

∂ρk(1)

∂γ
=

σ4f1 + σ2λ2σ2
xf2 + λ4σ4

xf3
c

, (30)
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where

c = 2ekγ
[
ekγ(ekδ − 1)γλ2σ2

x + δekδ(ekγ − 1)(γ2σ2 − λ2σ2
x)− δ3ekδ(ekγ − 1)σ2

]2
> 0 (31)

and

f1 = −δ2e2kδ(ekγ − 1)2(δ2 − γ2)2k, (32)

f2 = δ(δ2 + γ2)ekγ(ekδ − 1)(ekγ − 1)(ekδ − ekγ)

− δ(δ2 − γ2)[2kδe2kδ(ekγ − 1)2 − kγ(ekδ − 1)ekγ(ekδ+kγ + ekγ − 2ekδ)], (33)

f3 = −δ[ekδ+3kγ − e3kγ + kδe2kδ(ekγ − 1)2 + (1 + kγ)e2kγ

− (1 + kγ)e2kδ+2kγ − (1 + 2kγ)(ekδ+kγ − e2kδ+kγ)]. (34)

To prove ∂ρk(1)/∂γ ≤ 0, we need to prove that f1 ≤ 0, f2 ≤ 0, and f3 ≤ 0. It is obvious

that f1 ≤ 0.

Proof of f2 ≤ 0:

Let a = kγ and b = kδ. Dividing f2 by δ/k2, which preserves the sign of f2, we obtain a

function of a and b

g(a, b) = (a2 + b2)ea(ea − 1)(eb − 1)(eb − ea)

+ (a2 − b2)[2be2b(ea − 1)2 − aea(eb − 1)(ea+b + ea − 2eb)]. (35)

First, consider the case δ > γ so that b > a. We want to show that g(a, a+ d) < g(a, a) = 0

for d > 0, hence g is a decreasing function of b for b > a when fixing a. Taking a partial

derivative of g(a, a+ d) with respect to d, we get ∂g(a, a+ d)/∂d = −e2ag1(a, d), where

g1(a, d) = −(2a2 + 2ad+ d2)ea+d(ea − 1)(ed − 1)− [a2 + (a+ d)2]ed(ea − 1)(ea+d − 1)

− 2(a+ d)(ea − 1)(ed − 1)(ea+d − 1)

+ 2(a+ d)[2(a+ d)e2d(ea − 1)2 − a(ea+d − 1)(ea+d − 2ed + 1)]

+ 2d(2a+ d)ed[(1 + 2d)ed(ea − 1)2 + a(e2a+d − 2ea+d + 2ed − 1)]. (36)

We now show that g1(a, d) ≥ 0. Observing that g1(0, d) = 0, it suffices to show that ∂g1
∂a

≥ 0.

Repeating similar argument, we have ∂g1
∂a

(0, d) = 0, hence it reduces to showing that ∂2g1
∂a2

≥ 0.

We then have

∂2g1
∂a2

(0, d) = −2d+ 8ded + 4d2ed − 6de2d + 6d2e2d + 8d3e2d
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=
∞∑
n=1

(n+ 2)[(2n− 3)2n + 4]

n!
dn+1 ≥ 0. (37)

Therefore, it now suffices to show that ∂3g1
∂a3

is non-negative. We have the following functional

form
∂3g1
∂a3

= 2ead0(a, d) + 2ead1(a, d)a+ 8ea+dd2(a, d)a
2, (38)

where

d0(a, d) = 4
(
4d3 + 19d2 + 13d− 6

)
ea+2d + 4(d+ 2)(d+ 3)ea+d

−
(
4d3 + 35d2 + 47d− 3

)
e2d − d− 3, (39)

d1(a, d) = 8
(
5d2 + 9d− 4

)
ea+2d + 8(d+ 4)ea+d −

(
10d2 + 32d− 1

)
e2d − 1, (40)

d2(a, d) = (4d− 2)ea+d + 2ea − ded. (41)

We now show that d0, d1, and d2 are all non-negative. Since d0(a, 0) = 0, taking a derivative

with respect to d we obtain

∂d0
∂d

= 4
(
d2 + 7d+ 11

)
ea+d + 4

(
8d3 + 50d2 + 64d+ 1

)
ea+2d

−
(
8d3 + 82d2 + 164d+ 41

)
e2d − 1

≥ 4
(
d2 + 7d+ 11

)
ed + 4

(
8d3 + 50d2 + 64d+ 1

)
e2d −

(
8d3 + 82d2 + 164d+ 41

)
e2d − 1

= 4
(
d2 + 7d+ 11

)
ed +

(
24d3 + 118d2 + 92d− 37

)
e2d − 1 ≥ 6, (42)

where the last inequality can be shown by power series expansion in d around 0, which we

omit the expression for brevity. Next, since d1(a, 0) = 0, taking a derivative with respect to

d we obtain

∂d1
∂d

= 2ed
[
4
(
10d2 + 28d+ 1

)
ea+d + 4(d+ 5)ea −

(
10d2 + 42d+ 15

)
ed
]

≥ 2ed
[
4
(
10d2 + 28d+ 1

)
ed + 4(d+ 5)−

(
10d2 + 42d+ 15

)
ed
]

= 2ed[4(5 + d) + (30d2 + 70d− 11)ed] ≥ 18ed, (43)

where the last inequality can be shown by power series expansion in d around 0, which we

omit the expression for brevity. Lastly, since d2(a, 0) = 0, taking a derivative with respect

to d we obtain
∂d2
∂d

= ed[2ea − 1 + (4ea − 1)d] > 0. (44)
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This completes the proof that g(a, a+ d) < g(a, a) = 0 for d > 0.

Similarly, we now need to show that g(b + c, b) < g(b, b) = 0 for c > 0. Taking a partial

derivative of g(b+ c, b) with respect to c, we get ∂g(b+ c, b)/∂c = −e2bg2(b, c), where

g2(b, c) = (2b2 + 2bc+ c2)ec(eb − 1)(3eb+2c − 2eb+c − 2ec + 1)

+ 2(b+ c)ec(eb − 1)(ec − 1)(eb+c − 1)

− 2(b+ c)[2b(eb+c − 1)2 − (b+ c)ec(eb − 1)(eb+c + ec − 2)]

− c(2b+ c)ec{2b(e2b+c − eb + ec − 1)− (eb − 1)[(2c+ 1)(eb+c + ec − 1)− 1]}.
(45)

The proof of g2(b, c) ≥ 0 is similar to the proof of g1(a, d) ≥ 0, so we only sketch it here. Since

g2(0, c) = 0, it suffices to show that ∂g2
∂b

≥ 0. We then show that ∂g2
∂b

(0, c) ≥ 0, which suggests

that it suffices to show that ∂2g2
∂b2

≥ 0. Repeating similar argument, we have ∂2g2
∂c2

(0, c) = 0

and it suffices to show ∂3g2
∂b3

≥ 0. After simplification, we obtain

∂3g2
∂b3

= eb+ce0(b, c) + 2eb+ce1(b, c)b+ 2eb+ce2(b, c)b
2, (46)

where

e0(b, c) = 2c3(8eb+c − 1) + 6(ec − 1)(16eb+c − 7ec − 7) + 4c(ec − 1)(22eb+c − 5ec − 5)

+ c2(24eb+2c + 32eb+c − 3e2c − 11), (47)

e1(b, c) = c2(8eb+c − 1) + (ec − 1)(80eb+c − 19ec − 19)

+ c(24eb+2c − 56eb+c − 3e2c + 11), (48)

e2(b, c) = c(2− 16eb+c) + 3(ec − 1)(8eb+c − ec − 1). (49)

The proof that e0, e1, and e2 are positive is similar to the proof of of positivity of d0, d1, and

d2, so we do not repeat it here. This completes the proof that g(b + c, b) < 0, hence g(a, b)

is negative for all a and b.

Proof of f3 ≤ 0:

We now show that f3 ≤ 0. Let a = kγ and b = kδ, we need to show that

f(a, b) = e3a+b − e3a + be2b(ea − 1)2 − (1 + a)e2a(e2b − 1) + (1 + 2a)(ea+2b − ea+b) ≥ 0. (50)

We first show that f(a, a + d) ≥ f(a, a) = 0 for d > 0. We have f(a, a + d) = e2ag(a, d),
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where

g(a, d) = a(ed − 1)2 + (ea − 1)[ed − 1− de2d + ea+d + (d− 1)ea+2d]. (51)

As g(0, d) = 0, it suffices to show that ∂g
∂a

≥ 0. Using the inequality

1 + (d− 1)ed =
∞∑
n=2

n− 1

n!
dn ≥ 0, (52)

we obtain

∂g

∂a
= (ea − 1){2ea+d[1 + (d− 1)ed]− (ed − 1)2}

≥ (ea − 1){2ed[1 + (d− 1)ed]− (ed − 1)2}

= (ea − 1)[−1 + 4ed + (2d− 3)e2d]

= (ea − 1)
∞∑
n=2

4 + (n− 3)2n

n!
dn ≥ 0. (53)

We next show that f(b + c, b) ≥ f(b, b) = 0 for c > 0. We have f(b + c, b) = e2bh(b, c),

where

h(b, c) = b(ec − 1)2 + ec(eb − 1)[(ec − 1)(eb+c − 1)− c(−2 + ec + eb+c)]. (54)

As h(0, c) = 0, it suffices to show that ∂h
∂b

≥ 0. We have

∂h

∂b
= (eb+c − 1)[2eb+c(ec − 1− c)− (ec − 1)2]

≥ (eb+c − 1)[2ec(ec − 1− c)− (ec − 1)2]

= (eb+c − 1)(e2c − 2cec − 1)

= (eb+c − 1)
∞∑
n=2

2n − 2n

n!
cn ≥ 0. (55)

This completes the proof that f3 ≤ 0.

OA.6 Delta-hedged Option Return

As in Goyal and Saretto (2009), we consider static delta-hedged call option gain held-to-

expiration given by

ΠC
t,T = CT −∆C

t ST − (Ct −∆C
t St)e

rτ . (56)
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Hence, the expected Delta-hedged call option gain held-to-expiration can be computed as

Et[Π
C
t,T ] = Et[CT −∆C

t ST − (Ct −∆C
t St)e

rτ ]

= Et[CT ]−∆C
t Et[ST ]− (Ct −∆C

t St)e
rτ

= Et[CT ]−∆C
t Ste

τµ+
τσ2

τ
2 − (Ct −∆C

t St)e
rτ . (57)

Now, if we take the partial derivative of the above expected gain with respect to στ , which

has equivalent sign as taking partial derivative with respect to the first-order autocorrelation,

using (15) we get

∂Et[Π
C
t,T ]

∂στ

=
∂Et[CT ]

∂στ

−∆C
t Ste

τµ+
τσ2

τ
2 τστ

= erτS∗
t τστ

[
(Φ(d∗1)− Φ(d1)) +

ϕ(d∗1)

στ

√
τ

]
. (58)

For put option, we have

Et[Π
P
t,T ] = Et[PT ]−∆P

t Ste
τµ+

τσ2
τ

2 − (Pt −∆P
t St)e

rτ . (59)

Using (16), we get

∂Et[Π
P
t,T ]

∂στ

=
∂Et[PT ]

∂στ

−∆P
t Ste

τµ+
τσ2

τ
2 τστ

= erτS∗
t τστ

[
−Φ(−d∗1) +

ϕ(d∗1)

στ

√
τ
+ Φ(−d1)

]
= erτS∗

t τστ

[
(Φ(d∗1)− Φ(d1)) +

ϕ(d∗1)

στ

√
τ

]
=

∂Et[Π
C
t,T ]

∂στ

. (60)

The last equality also follows from the put-call parity. Since Φ(−d1) is always positive, if

∂Et[PT ]/∂στ was positive, then the delta-hedged put option gain has also positive partial

derivative with respect to the first-order autocorrelation. Hence, we conclude that delta-

hedged option gain also follows the same pattern as the raw return in our case.
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OA.7 Expected Option Return under the Stochastic

Volatility Model

In this section, we provide analytical expressions for computing expected option returns

under the stochastic volatility model discussed in Section 4.3. Expected held-to-expiration

call option return is defined by

Et[max(ST −K, 0)]

EQ
t [max(ST −K, 0)]

− 1. (61)

Since the model is cast in affine form, we can apply the standard result to obtain conditional

characteristic function of log terminal stock price. The characteristic function of the log-spot

price under the physical measure is then given by

Et[exp(iu log(St+τ )])] = f(u, τ, log(St), Vt, Xt)

= exp(A(u, τ) +B0(u, τ) log(St) +B1(u, τ)Vt +B2(u, τ)Xt), (62)

where A,B1, and B2 are given as the solution to the following Ricatti ODE with the initial

conditions A(0) = B1(0) = B2(0) = 0,

dA

dτ
= (µ+ γµ(T − τ))iue−γ(T−τ) + κθB1 +

1

2
σ2
xB2,

dB1

dτ
= −1

2
u2e−2γ(T−τ) + (ξρiue−γ(T−τ) − κ)B1 +

1

2
ξ2B2

1 ,

dB2

dτ
= λiue−γ(T−τ) − δB2, (63)

and B0(u, τ) = iue−γ(T−τ). The above system of Ricatti equations can be solved numerically

using standard techniques such as the fourth-order Runge-Kutta method. Once the charac-

teristic function is available in a closed-form, expected call option payoff can be valued using

the formula following Heston (1993)

Ct = StP1 −Ke−rτP2, (64)

where the P1 and P2 probabilities are computed using Fourier inversion

P1 =
1

2
+

1

π

∫ ∞

0

Re

[
eiu log(St

K )f(u+ 1, τ, log(St), Vt, Xt)

iuSterτ

]
du,
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P2 =
1

2
+

1

π

∫ ∞

0

Re

[
eiu log(St

K )f(u, τ, log(St), Vt, Xt)

iu

]
du. (65)

The integrands in the above expressions vanish quickly and can be computed effectively

using a numerical integration scheme such as quadrature.

On the other hand, the model is identical to the Heston (1993)’s stochastic volatility

model under the risk-neutral measure. Therefore, the denominator term, which is simply

the option price, can be computed following Heston (1993). Since we know the functional

form of the conditional characteristic function, a similar method can be applied to compute

expected put option return as well.
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Table OA.1
Description of Control Variables in the Fama-MacBeth Regression

Variable Description

skew skew is the physical skewness calculated using the past 22-day daily returns for each
stock.

ex-ante skew ex-ante skew is the risk-neutral skewness calculated based on Boyer and Vorkink (2014).

bm ratio bm ratio for June of year t−1 to May of year t is computed as the ratio of the book value
of common equity in fiscal year t − 1 to the market value of equity (size) in December
of year t− 1. Book equity is the book value of stockholders’ equity, plus balance sheet
deferred taxes and investment tax credit (if available), minus the book value of preferred
stock.

size size is the natural logarithm of a firm’s market cap at the end of each month, and market
cap is defined as the product of the closing price and the number of shares outstanding
(in millions of dollars).

beta beta is the beta coefficient of each underlying stock based on the CAPM.

disp disp is the standard deviation of the analyst forecasts scaled by the mean of analyst
forecasts in Diether, Mallowy, and Scherbina (2002) from the IBES.

baspread baspread is the ratio of the difference between the bid and ask quotes of option to the
midpoint of the bid and ask quotes at the end of the previous month.

suv suv is defined as the standardized unexpected volume following Garfinkel and Sokobin
(2006). It is computed as the standardized prediction error from a regression of trading
volume on the absolute value of returns during the week before the end of each month
(trading days [−6,−2] relative to the end of each month).

cfv cfv is the cash flow variance, defined as the variance of the monthly ratio of cash flow
to the market value of equity over the last 60 months. Cash flow is calculated as net
income plus depreciation and amortization, all scaled by the market value of equity.

ch ch is the cash-to-assets ratio, defined as the value of corporate cash holdings over the
value of the firm’s total assets.

issue 1y issue 1y is the one-year new issues, measured as the log change in shares outstanding
from the past 11 months.

pm pm is the profit margin, defined as earnings before interest and tax scaled by revenues.

lnprice lnprice is the natural logarithm of the price at the end of each month.

profit profit is calculated as earnings divided by book equity, in which earnings is defined as
income before extraordinary items.

tef tef is the total external financing, defined as net share issuance plus net debt issuance
minus cash dividends, scaled by total assets.

z score z score is calculated as (1.2×(working capital/assets) + 1.4×(retained earnings/assets)
+ 3.3×(EBIT/assets) + 0.6×(market value of equity/book value of total liabilities) +
(revenues/assets)).

This table lists predictors used as control variables in Table 4 of the Fama-MacBeth regression.
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Table OA.2
Portfolio Sorted by Stock Return Autocorrelation

Panel A. Equal-weighted Portfolio

Call Option Put Option
Delta-hedged Delta-hedged

Straddle
Underlying

Call Put Stock

Low 0.050 −0.143 −0.0055 −0.0068 −0.041 0.0107

2 0.076 −0.129 −0.0036 −0.0048 −0.023 0.0114

3 0.090 −0.124 −0.0034 −0.0047 −0.015 0.0117

4 0.084 −0.097 −0.0021 −0.0042 −0.011 0.0113

High 0.088 −0.079 −0.0017 −0.0040 0.002 0.0105

High-Low 0.037 0.064 0.0038 0.0028 0.043 −0.0002

t-stat (2.60) (4.61) (4.07) (3.46) (5.72) (−0.10)

Two Option-factor alpha 0.043 0.058 0.0050 0.0038 0.043 −0.0011

t-stat (2.90) (4.12) (6.04) (5.05) (5.58) (−0.57)

Panel B: Security Price-weighted Portfolio

Call Option Put Option
Delta-hedged Delta-hedged

Straddle
Underlying

Call Put Stock

Low 0.040 −0.133 −0.0041 −0.0056 −0.045 0.0098

2 0.070 −0.135 −0.0024 −0.0045 −0.028 0.0116

3 0.090 −0.132 −0.0020 −0.0037 −0.017 0.0123

4 0.082 −0.116 −0.0018 −0.0039 −0.018 0.0125

High 0.076 −0.083 −0.0007 −0.0028 −0.001 0.0118

High-Low 0.036 0.051 0.0034 0.0028 0.043 0.0020

t-stat (2.35) (3.31) (4.11) (3.54) (4.96) (1.16)

Two Option-factor alpha 0.043 0.046 0.0044 0.0036 0.045 0.0013

t-stat (2.78) (2.92) (5.74) (4.86) (5.05) (0.74)

This table summarizes the average returns in monthly frequencies for portfolios sorted by the stock return
autocorrelation and hold for one month. Panel A reports the equal-weighted average returns, while Panel
B reports the security price-weighted average returns assuming we invest equal shares for all firms in the
portfolio. In Panel B, for call option, put option, and stock portfolios, the weights are based on the corre-
sponding security prices. For delta-hedged call, delta-hedged put, and straddle, the weights are based on the
initial investment for each firm in the portfolio. We follow Zhan, Han, Cao, and Tong (2022) to construct
a two option-factor model: illiquidity and idiosyncratic volatility. The factor realizations in each month are
obtained as the high-minus-low spread returns of stock value-weighted portfolios of writing delta-neutral calls
sorted on the idiosyncratic volatility or the Amihud illiquidity measure of the underlying stock. The alpha
is calculated based on the two option-factor model. The sample period is from January 1996 to December
2020.
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Table OA.3
Option Portfolios Double Sorted by Stock Return Autocorrelation and Other
Stock Characteristics

Panel A: Double Sorting Call Option Return

Sorted by Realized Volatility Low 2 3 4 High

α of High ρ − Low ρ 0.061 0.086 0.060 0.035 0.031

t-stat of α (2.60) (3.66) (2.75) (1.50) (1.18)

Sorted by Idiosyncratic Volatility Low 2 3 4 High

α of High ρ − Low ρ 0.071 0.071 0.070 0.041 0.002

t-stat of α (2.88) (3.13) (3.14) (1.75) (0.06)

Sorted by Variance Risk Premium Low 2 3 4 High

α of High ρ − Low ρ 0.038 0.032 0.062 0.037 0.064

t-stat of α (1.63) (1.40) (2.65) (1.55) (2.85)

Sorted by ILIQ Low 2 3 4 High

α of High ρ − Low ρ 0.051 0.034 0.033 0.023 0.053

t-stat of α (2.23) (1.45) (1.39) (1.02) (1.95)

Sorted by IVTS Low 2 3 4 High

α of High ρ − Low ρ 0.012 0.053 0.040 0.074 0.025

t-stat of α (0.54) (2.31) (1.70) (3.37) (1.05)

Panel B: Double Sorting Put Option Return

Sorted by Realized Volatility Low 2 3 4 High

α of High ρ − Low ρ 0.012 0.054 0.064 0.094 0.022

t-stat of α (0.45) (2.53) (3.27) (4.12) (0.93)

Sorted by Idiosyncratic Volatility Low 2 3 4 High

α of High ρ − Low ρ 0.028 0.040 0.086 0.029 0.062

t-stat of α (1.01) (1.92) (4.12) (1.24) (2.76)

Sorted by Variance Risk Premium Low 2 3 4 High

α of High ρ − Low ρ 0.089 0.048 0.065 0.051 0.059

t-stat of α (4.19) (1.96) (3.00) (2.26) (2.73)

Sorted by ILIQ Low 2 3 4 High

α of High ρ − Low ρ 0.055 0.075 0.058 0.039 0.073

t-stat of α (2.46) (3.24) (2.51) (1.98) (3.01)

Sorted by IVTS Low 2 3 4 High

α of High ρ − Low ρ 0.087 0.058 0.049 0.049 0.061

t-stat of α (4.52) (2.62) (2.11) (2.40) (2.71)

In this table, we conduct an unconditional sorting based on a certain stock characteristic and stock return
autocorrelation, in total twenty-five bins in two dimensions. We classify a certain security into each bin
based on the cutoffs of the sorted characteristic and stock return autocorrelation. ILIQ stands for the
stock illiquidity computed following Amihud (2002) and IVTS denotes the implied volatility term structure
defined in Section 3. Within each bin we compute the difference of average returns between the high and
low stock return autocorrelation quintile. We follow Zhan et al. (2022) to construct a two option-factor
model: illiquidity and idiosyncratic volatility. The factor realizations in each month are obtained as the
high-minus-low spread returns of stock-value-weighted portfolios of writing delta-neutral calls sorted on the
idiosyncratic volatility or the Amihud illiquidity measure of the underlying stock. We report the alpha
and the corresponding t-stat based on the two option-factor model for equal-weighted call and put option
portfolios.
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Table OA.4
Option Portfolios Double Sorted by Stock Return Autocorrelation and Other
Stock Characteristics

Panel A: Double Sorting Delta-hedged Call Option Return

Sorted by Realized Volatility Low 2 3 4 High

High ρ − Low ρ 0.002 0.005 0.005 0.007 0.008

t-stat (2.89) (5.06) (4.54) (3.91) (3.36)

Sorted by Idiosyncratic Volatility Low 2 3 4 High

High ρ − Low ρ 0.004 0.005 0.006 0.006 0.006

t-stat (3.93) (4.90) (4.83) (3.82) (2.67)

Sorted by Variance Risk Premium Low 2 3 4 High

High ρ − Low ρ 0.006 0.003 0.004 0.005 0.004

t-stat (3.94) (2.56) (3.71) (3.76) (2.49)

Sorted by ILIQ Low 2 3 4 High

High ρ − Low ρ 0.003 0.004 0.003 0.004 0.006

t-stat (2.85) (2.96) (2.22) (2.93) (2.97)

Sorted by IVTS Low 2 3 4 High

High ρ − Low ρ 0.004 0.005 0.003 0.005 0.005

t-stat (2.22) (3.58) (2.72) (4.43) (3.36)

Panel B: Double Sorting Delta-hedged Put Option Return

Sorted by Realized Volatility Low 2 3 4 High

High ρ − Low ρ 0.002 0.004 0.005 0.007 0.003

t-stat (2.16) (3.99) (4.20) (4.43) (1.56)

Sorted by Idiosyncratic Volatility Low 2 3 4 High

High ρ − Low ρ 0.003 0.004 0.005 0.005 0.002

t-stat (2.83) (4.59) (4.62) (3.19) (1.22)

Sorted by Variance Risk Premium Low 2 3 4 High

High ρ − Low ρ 0.004 0.002 0.004 0.004 0.004

t-stat (2.98) (1.46) (3.09) (3.23) (2.52)

Sorted by ILIQ Low 2 3 4 High

High ρ − Low ρ 0.003 0.003 0.003 0.002 0.004

t-stat (2.94) (2.46) (2.33) (1.59) (2.03)

Sorted by IVTS Low 2 3 4 High

High ρ − Low ρ 0.003 0.004 0.003 0.004 0.003

t-stat (2.12) (2.87) (2.18) (3.90) (2.08)

In this table, we conduct an unconditional sorting based on a certain stock characteristic and stock return
autocorrelation, in total twenty-five bins in two dimensions. We classify a certain security into each bin
based on the cutoffs of the sorted characteristic and stock return autocorrelation. ILIQ stands for the stock
illiquidity computed following Amihud (2002) and IVTS denotes the implied volatility term structure defined
in Section 3. Within each bin we compute the difference of average returns between the high and low stock
return autocorrelation quintile. We show the results for equal-weighted delta-hedged call and delta-hedged
put portfolios.
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Table OA.5
Option Portfolios Double Sorted by Stock Return Autocorrelation and Other
Stock Characteristics

Panel A: Double Sorting Straddle Return

Sorted by Realized Volatility Low 2 3 4 High

High ρ − Low ρ 0.049 0.058 0.042 0.055 0.026

t-stat (3.51) (4.40) (3.31) (4.16) (1.66)

Sorted by Idiosyncratic Volatility Low 2 3 4 High

High ρ − Low ρ 0.056 0.048 0.057 0.038 0.025

t-stat (3.81) (3.85) (4.79) (2.83) (1.66)

Sorted by Variance Risk Premium Low 2 3 4 High

High ρ − Low ρ 0.049 0.033 0.055 0.052 0.050

t-stat (3.88) (2.66) (4.49) (3.74) (3.78)

Sorted by ILIQ Low 2 3 4 High

High ρ − Low ρ 0.049 0.049 0.042 0.037 0.022

t-stat (4.40) (3.78) (3.37) (2.71) (1.15)

Sorted by IVTS Low 2 3 4 High

High ρ − Low ρ 0.041 0.053 0.040 0.052 0.040

t-stat (3.00) (4.28) (2.93) (4.21) (3.09)

Panel B: Double Sorting Straddle Return (Alpha)

Sorted by Realized Volatility Low 2 3 4 High

α of High ρ − Low ρ 0.045 0.056 0.041 0.053 0.022

t-stat of α (3.15) (4.21) (3.15) (3.91) (1.37)

Sorted by Idiosyncratic Volatility Low 2 3 4 High

α of High ρ − Low ρ 0.058 0.042 0.057 0.035 0.024

t-stat of α (3.81) (3.30) (4.65) (2.53) (1.53)

Sorted by Variance Risk Premium Low 2 3 4 High

α of High ρ − Low ρ 0.049 0.032 0.061 0.048 0.046

t-stat of α (3.84) (2.48) (4.87) (3.38) (3.41)

Sorted by ILIQ Low 2 3 4 High

α of High ρ − Low ρ 0.049 0.050 0.038 0.032 0.010

t-stat of α (4.40) (3.83) (2.99) (2.30) (0.50)

Sorted by IVTS Low 2 3 4 High

α of High ρ − Low ρ 0.040 0.049 0.039 0.054 0.042

t-stat of α (2.83) (3.88) (2.77) (4.22) (3.20)

In this table, we conduct an unconditional sorting based on a certain stock characteristic and stock return autocorrelation,
in total twenty-five bins in two dimensions. We classify a certain security into each bin based on the cutoffs of the sorted
characteristic and stock return autocorrelation. ILIQ stands for the stock illiquidity computed following Amihud (2002) and
IVTS denotes the implied volatility term structure defined in Section 3. Within each bin we compute the difference of average
returns between the high and low stock return autocorrelation quintile. In Panel A, we show the results for equal-weighted
straddle portfolios. In Panel B, we follow Zhan et al. (2022) to construct a two option-factor model: illiquidity and idiosyncratic
volatility. The factor realizations in each month are obtained as the high-minus-low spread returns of stock-value-weighted
portfolios of writing delta-neutral calls sorted on the idiosyncratic volatility or the Amihud illiquidity measure of the underlying
stock. We report the alpha and the corresponding t-stat based on the two option-factor model for straddle portfolios.
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Table OA.6
Fama-MacBeth Regressions with Stock Return Autocorrelation

Call Option Put Option
Delta-hedged Delta-hedged

Straddle
Underlying

Call Put Stock

Intercept 7.761 −11.415 −0.326 −0.490 −1.766 1.113

t-stat (2.42) (−2.28) (−1.70) (−2.74) (−0.98) (2.74)

Autocorrelation 1.200 2.284 0.125 0.083 1.363 −0.009

t-stat (2.48) (4.87) (3.86) (2.97) (5.67) (−0.12)

Average adj. R2 (%) 0.29 0.32 0.25 0.26 0.28 0.54

This table reports the Fama-MacBeth regressions for each dependent variable that is the return of different
securities specified at the top of each column. The independent variable is stock return autocorrelation. All
predictors are normalized to have mean zero and standard deviation of one at each month. The detailed
cross-sectional regression and time-series test are specified in Section 3.3. All dependent and independent
variables are expressed as monthly values and the coefficients are multiplied by 100. The coefficients in
the table are calculated by taking the time-series average of the cross-sectional regressions over time. The
t-stat reported is the t-test with Newey-West one-lag correction. The sample period is from January 1996
to December 2020.
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Figure OA.1
Expected Delta-hedged Call Option Gain under the Trending O-U Process
This figure plots the expected hold-to-expiration call option gain as a function of first-order auto-

correlation of stock returns under the trending O-U process. All options are at-the-money options

with the following parameters: µ = 0.10, r = 0.05, τ = 1/12, and σ = 0.2.
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