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Hansen and Jagannathan (1991) (hereafter HJ) derive restrictions on the volatility of
stochastic discount factors that price a given set of returns. This article studies the sam-
pling properties of HJ bounds that use conditioning information. One approach is to
multiply the returns by the lagged variables. We also study optimized HJ bounds with
conditioning information from Gallant, Hansen, and Tauchen (1990) and based on port-
folios derived in Ferson and Siegel (2001). We document striking finite-sample biases
in the HJ bounds, where the bounds reject asset-pricing models too often. We provide a
useful bias correction. We also evaluate asymptotic standard errors for the bounds from
Hansen, Heaton, and Luttmer (1995).

Most asset pricing models can be represented in the form of a fundamental
valuation equation:

E�mtRt � Zt−1�= e� (1)

where the symbol e is a vector of ones. This equation “prices” a vector of
returns, Rt , on traded assets, measured as a unity plus the rates of return.
The pricing is conditional on Zt−1, a vector of instruments in the public
information set at time t−1. The random variable, mt , that prices the assets is
the stochastic discount factor. Different asset pricing models may be treated
as different specifications for the stochastic discount factor.1 The elements of
the vector mtRt may be viewed as “risk-adjusted” gross returns. The returns
are risk adjusted by “discounting” them, or multiplying by mt , to arrive at
the “present value” per dollar invested, equal to one dollar.
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Hansen and Jagannathan (1991) (hereafter HJ) derive lower bounds for
the variance of any stochastic discount factor which satisfies the fundamental
valuation Equation (1); such bounds may be used as a prior diagnostic. If a
candidate for mt , corresponding to a particular theory, fails to satisfy the HJ
bounds, then it cannot satisfy Equation (1).
Burnside (1994) and Cecchetti, Lam, and Mark (1994) describe classic

hypothesis tests based on the distance between a stochastic discount factor
(SDF) and the HJ bounds. Burnside evaluates the sampling properties of
such tests with a Monte Carlo simulation of the consumption-based model
from Lucas (1978). Tierens (1993) extends the simulation evidence to the
Epstein and Zin (1991) model. These studies find that the sample SDF plots
outside the sample HJ bounds too often when the model is true. However,
both studies limit their attention to cases where there is no conditioning
information, so the lagged instrument, Zt−1, is a constant.

This article focuses on the use of conditioning information in the HJ
bounds. For a given choice of lagged variables, Zt−1, there are several ways
to implement the bounds, but no previous study compares the various app-
roaches. Given the evidence of biases in models with no conditioning infor-
mation, an analysis of the sampling properties of bounds with conditioning
information is useful. This article provides that analysis.
We evaluate the finite-sample properties of HJ bounds with three app-

roaches to conditioning information: (1) the multiplicative approach sug-
gested by HJ; (2) the optimal bounds of Gallant, Hansen, and Tauchen
(1990); and (3) the efficient portfolio bounds, based on the unconditionally
efficient portfolios derived by Ferson and Siegel (2001). Our results show
that the use of conditioning information in the bounds is important, and the
way in which information is used is also important. When sampling error
is accounted for, bounds that use no conditioning information hardly restrict
the variances of stochastic discount factors to be positive, and thus have lit-
tle economic content. In contrast, bounds that use conditioning information
efficiently can rule out interesting SDF models.
Our article makes the following contributions. We document a strikingly

large upward bias in HJ bounds with conditioning information. The biases
are shown to be economically important in magnitude. For the multiplicative
bounds suggested by HJ, our adjustment works very well in removing the
expected finite-sample bias. The bias and the usefulness of the bias correc-
tions are robust to reasonable changes in the data-generating process. Finally,
we provide simulation evidence on the accuracy of the asymptotic standard
errors for the HJ bounds, as developed in Hansen, Heaton, and Luttmer
(1995). These standard errors perform well in finite samples, only mildly
understating the empirical standard deviations.
The article is organized as follows. In Section 1 we review the HJ bounds

with conditioning information. We present the adjustments for finite sam-
ple bias in Section 2. Section 3 describes the data. Section 4 presents some

568



Stochastic Discount Factor Bounds

empirical examples that illustrate the importance of the biases and our adjust-
ments for the biases in HJ bounds. Section 5 describes our simulation study
into the properties of the various methods for computing the HJ bounds.
Section 6 considers the effects of alternative generating processes for the
data. Section 7 evaluates the asymptotic standard errors of Hansen, Heaton,
and Luttmer. Section 8 offers a summary and concluding remarks.

1. The Hansen–Jagannathan Bounds

We first consider the special case where the conditioning information is a
constant, so the expectations in Equation (1) are unconditional and a stochas-
tic discount factor is defined as any random variable m such that E�mR�= e.
Assume that the random column n-vector R of the assets’ gross returns has
mean E�R�= � and covariance matrix /�.

Proposition 1 [HJ]. The stochastic discount factor m with minimum vari-
ance for its expectation E�m� is given by

m= E�m�+ �e−E�m���′ /�−1�R−��� (2)

and the variance of m is

�2
m = �e−E�m���′ /�−1�e−E�m���	 (3)

The proof is provided in HJ.

The stochastic discount factor in Equation (2) is a linear function of the
asset returns, where the weights are fixed over time. We therefore refer to
this case as the “fixed” bounds. HJ show that the bound is related to the
maximum Sharpe ratio that can be obtained by a (fixed) portfolio of the assets
under consideration. The Sharpe ratio is defined as the ratio of the expected
excess return to the standard deviation of the portfolio return. If the vector
of assets’ expected excess returns is �−E�m�−1e and /� is the covariance
matrix, the square of the maximum Sharpe ratio is ��−E�m�−1e�′ /�−1��−
E�m�−1e�. Thus, from Equation (3), the lower bound on the variance of
stochastic discount factors is the maximum squared Sharpe ratio multiplied
by �E�m��2.

1.1 Bounds with conditioning information
Recent articles refine and extend the HJ bounds in several directions.2 This
article focuses on the use of given lagged variables, Zt−1, to refine the bounds.

2 HJ show how restricting m > 0 can refine the bounds. Snow (1991) considers selected higher moments of
the returns distribution. Bansal and Lehmann (1997) derive restrictions on E�ln�m�� that involve all higher
moments of m and reduce to the HJ bounds if returns are lognormally distributed. Balduzzi and Kallal (1997)
incorporate the implications for the risk premium on an economic variable. Cochrane and Hansen (1992) state
restrictions in terms of the correlation between the stochastic discount factor and returns, while Cochrane and
Saa’-Requejo (2000) bound the Sharpe ratios of assets’ pricing errors. Hansen and Jagannathan (1997) develop
measures of distance between candidate SDFs and the m that would price the assets.
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Note that we take the instruments as given; thus we do not study how to
choose Zt−1. To understand how conditioning information can refine the HJ
bounds, note that Equation (1) says

E�mtRt − e � Zt−1�= 0	 (4)

Using conditional independence, Equation (4) is equivalent to

E
�mtRt − e�f �Zt−1�� = 0 for all bounded measurable

scalar functions f �•�� (5)

where the unconditional expectation is assumed to exist. In other words, if
we consider Rtf �Zt−1� to represent the payoffs of dynamic trading strategies,
whose prices are given by e · f �Zt−1�, then the presence of the conditioning
information is essentially equivalent to the condition that the SDF should
price not only the original assets’ payoff, but also the dynamic strategies.
The larger the set of strategies for which the condition is required to hold,
the smaller is the set of mt’s that can satisfy the condition and the tighter are
the bounds.
When there is no conditioning information, f �•� is a constant and the SDF

must price only the original assets. HJ (1991) choose the set of functions f �•�
to be elements of the linear function I ⊗Zt−1, where I is the n×n identity
matrix. This “multiplicative” approach has become a standard in the asset
pricing literature.
We consider two additional approaches to conditioning information. The

first is the efficient portfolio bounds, in which the set of functions f �•� is
chosen to be the set of all portfolio weight functions. Equation (5) becomes
E
�mtRt − e�′w�Zt−1�� = 0 for all n-vector valued functions w�Z�, with
w′�Z�e = 1. Ferson and Siegel (2001) present closed-form solutions for the
unconditionally efficient portfolio weights w�Z�, which maximize the Sharpe
ratio and thus the lower bound on SDF variances.
The third approach to conditioning information is from Gallant, Hansen,

and Tauchen (1990; hereafter GHT). They derive a greatest lower bound
which implies that Equation (5) holds for all bounded integrable functions
f �•�. We present a closed-form expression that facilitates the implementation
of their bound.3

1.2 Efficient portfolio bounds
Ferson and Siegel (2001) derive portfolios that use the given conditioning
information, Z, to achieve unconditional mean-variance efficiency. These

3 Bekaert and Liu (1999) show how to compute an optimal bound in a multiplicative framework, where the
bound is shown to reach the GHT bound when the conditional moments are correctly specified. They point
out that the GHT bounds are invalidated when the conditional moments involved in their computation are
incorrectly specified.
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portfolios are used in our efficient portfolio (UE) bounds. Let x = x�Z� =
�x1�Z�� � � � � xn�Z��

′ denote the shares invested in each of the n assets, with
the constraint that x′e= 1. The observed gross return on the portfolio, RP =
x′�Z�R, has expectation and variance (using iterated expectations given Z to
eliminate the unexpected returns) as follows:

�P = E�x′�Z���Z��

�2
P = E
x′�Z����Z��′�Z�+ /�
�Z��x�Z��−�2

P �
(6)

where ��Z� denotes the conditional mean vector of the n returns, given
Z, and /�
�Z� is the conditional covariance matrix. Define the following
constants:

�1 = E

(
1

e′�e

)
(7)

�2 = E

(
e′���Z�

e′�e

)
(8)

�3 = E

[
�′�Z�

(
�− �ee′�

e′�e

)
��Z�

]
� (9)

where
�=��Z�= �E�RR′ � Z��−1 = ���Z��′�Z�+ /�
�Z��

−1	 (10)

Proposition 2 [Ferson and Siegel (2001)]. Given n risky assets, the port-
folio having minimum unconditional variance among portfolios with uncon-
ditional expected return �P is determined by the optimal weights:

x′�Z�= e′�
e′�e

+ �P −�2

�3

�′�Z�
(
�− �ee′�

e′�e

)
	 (11)

The variance of the portfolio defined by x�Z� is

�2
P =

(
�1+

�2
2

�3

)
− 2�2

�3

�P +
1−�3

�3

�2
P 	 (12)

The proof is given by Ferson and Siegel (2001).

To implement the UE bounds we must specify the conditional mean and
variance functions, ��Z� and /�
�Z�. The efficient set constants �1, �2, and
�3 are then estimated using sample averages. If these moments are incor-
rectly specified the portfolio weight given by Equation (11) will no longer
be efficient, but it still describes a valid dynamic portfolio strategy. The mean
variance boundary and Sharpe ratio constructed from the strategy provides a
valid but inefficient bound on stochastic discount factors in this case.
Fixed-weight combinations of any two portfolios on an unconditional mean

standard deviation boundary can describe the entire boundary [Hansen and
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Richard (1987)]. To form the UE bounds we pick two portfolios. One is
the global minimum variance portfolio, which has the following mean and
variance:

�∗ = �2/�1−�3� (13)

��∗�2 = �1−�2
2/�1−�3�	 (14)

This follows by choosing �P to minimize the quadratic function for �2
P , as

given in Equation (12). The second portfolio is chosen by setting �P equal
to an arbitrary target return. For a given 
�P ��P� hyperbola constructed
from the two unconditionally efficient portfolio returns, the corresponding
HJ bound can be obtained using Equation (3). Here, /� is a 2× 2 matrix
and � is a two-vector of the unconditional means of the two unconditionally
efficient portfolios.

1.3 Optimal bounds
This section provides a convenient, closed-form expression for the optimal
HJ bounds that were originally derived by GHT. First, define the following
conditional efficient set constants, analogous to the efficient set constants
used in traditional mean variance analysis [see, e.g., Ingersoll (1987)]:

��Z�= e′ /�−1

 �Z�e

��Z�= e′ /�−1

 �Z���Z�

��Z�= �′�Z� /�−1

 �Z���Z�

(15)

Proposition 3. Optimal HJ bounds [GHT]. The stochastic discount factor
m with minimum variance for its expectation E�m� that satisfies E�mR �
Z�= e is given by

m= ��Z�+ �e− ��Z���Z��′ /�−1

 �Z��R−��Z��� (16)

where ��Z�, the conditional mean of m given Z, is defined as

��Z�= E�m � Z�= ��Z�

1+��Z�
+ 1

1+��Z�

{
E�m�−E

(
��Z�

1+��Z�

)
E
(

1
1+��Z�

) }
(17)

and the unconditional variance of m is

�2
m =

[
E�m�−E

(
��Z�

1+��Z�

)]2
E
(

1
1+��Z�

) +E���Z��−E

[
�2�Z�

1+��Z�

]
− �E�m��2	 (18)

A proof of Proposition 3 is available by request from the authors.4

4 The result may be verified by computing E�mR′ � Z� = e′ using Equation (16) for m, which holds for any
definition of ��Z�. Then, note that any other stochastic discount factor with the same unconditional mean as
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Equation (18) may be used directly to compute the optimal HJ bounds. As
with the UE bound, it is necessary to specify the conditional mean function
��Z� and the conditional variance function /�
�Z�. The four unconditional
expectations that appear in Equation (18) may be estimated from the corre-
sponding sample means, independent of the value of E�m�. As emphasized
by Bekaert and Liu (1999), if the moments are incorrectly specified the result
may not be a valid bound on the variance of SDFs.

1.4 Discussion
The optimal bounds provide the greatest lower bound on SDFs. The UE
bounds incorporate an additional restriction to functions of the conditioning
information that are portfolio weights, which sum to 1.0 at each date. This
reduces the flexibility of the UE bounds to exploit the conditioning informa-
tion, and thus they do not attain the greatest lower bound. Intuitively, suppose
there was only one asset. Then the restricted weight could not respond at all
to the conditioning information.
The additional restriction in the UE bounds may be understood in terms

of the duality between HJ bounds and the mean-standard deviation diagram
for returns. For a given value of E�m�, the value of �m on the HJ boundary
is determined by the maximum Sharpe ratio when the implicit risk-free rate
is �E�m��−1 − 1. In the UE bounds, the Sharpe ratio for a given E�m� is
achieved by a fixed-weight combination of the two unconditionally efficient
portfolios, weighted according to the fixed value of E�m�. In the optimal
bounds, we choose E�m � Z� for each realization of Z subject only to the
limitation that E�E�m � Z�� is the fixed E�m�. This allows the minimization
to obtain the unrestricted optimal bound.5

While the UE bounds do not attain the greatest lower bound, they are nev-
ertheless empirically interesting in view of two forms of “robustness.” The
first, as emphasized by Bekaert and Liu (1999), is that the portfolio-based
bounds remain valid when the conditional moments are incorrectly speci-
fied. Second, Ferson and Siegel (2001) show that the UE portfolio weights,
unlike traditional mean variance optimal weights, are “conservative,” in the
sense that they avoid extreme positions in risky assets when the conditional

the m given by Equation (16) can be expressed as m+
, where E�
�= E�
m�= 0, and thus its variance is
larger than the variance of m.

5 The difference between the two bounds may also be understood using the characterization of mean-variance
frontiers from Hansen and Richard (1987). If a portfolio minimizes unconditional variance for a given mean,
in the set of all returns that can be formed by trading with Z, it is unconditionally efficient (UE). Hansen
and Richard show such UE portfolios are also conditionally mean variance efficient (CE) for each realization
of Z. Both the optimal and the UE bounds are formed from CE portfolios. Hansen and Richard show that
any CE portfolio return is wtR1� t+1 + �1−wt�R2� t+1, where R1� t+1 and R2� t+1 are two UE returns which
are also CE. For a given realization of Zt , each point on the conditional mean variance boundary implies
a corresponding risk-free rate �E�m � Zt��

−1 − 1 and a weight, wt . In contrast, all UE portfolio returns can
be formed as wR1� t+1 + �1−w�R2� t+1, where w does not depend on Zt . In the UE bounds we fix w to
correspond to �E�m��−1−1.
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moments are extreme. The UE portfolio weight, as a function of a condi-
tional expected return, appears similar to the redescending influence curves
used in robust statistics. Thus the UE weights should be robust to outlier
observations. These features may translate into robust sampling properties of
the UE bounds.

2. Bias Correction

Consider first the case of no conditioning information, as in the fixed bounds.
A simple bias-adjusted estimator assumes normally distributed returns, and is
based on standard results for exact finite-sample distributions. Assume that
T independent observations are made on the asset return vector R. When
the sample average �̂ and the sample covariance matrix S (dividing by T )
are used, we have the maximum likelihood estimate (MLE) of the variance
bound:

�̂2
m = �e−E�m��̂�′S−1�e−E�m��̂�	 (19)

Assuming normality, the quadratic form in Equation (19) has a noncentral
chi-squared distribution, directly related to the distribution of the maximum
squared Sharpe ratio, studied by Jobson and Korkie (1980). Using this distri-
bution [also derived as a special case of Shanken (1982, 1987)] we find the
mean of �̂2

m. The estimated variance is biased upward (i.e., the true variance
is overestimated). We solve for a transformation of �̂2

m that is unbiased.

Proposition 4. If asset returns are multivariate normal, then the expectation
of the estimated variance of m in Equation (19) is given by

E
(
�̂2
m

)= n

T −n−2
�E�m��2+ T

T −n−2
�2
m (20)

and an unbiased estimator of the variance is given by

�̂2
m� adjusted =

(
1− n+2

T

)
�̂2
m−

n

T
�E�m��2� (21)

in the sense that E��̂2
m� adjusted�= �2

m.

Equation (21) reveals the importance of the number of assets, n, relative
to the number of time-series observations, T , for the determination of the
bias. Approximately the adjustment shrinks the estimated variance toward
the value −�E�m��2, shrinking by the fraction n/T .
While the finite-sample adjustment in Equation (21) is developed for the

case of no conditioning information, it may be directly applied to the multi-
plicative bounds of HJ. To see this, note that Equation (1) implies

E�mtRt ⊗Zt−1− e⊗Zt−1 � Zt−1�= 0	 (22)
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Dividing the components of Zt−1 by their unconditional means and then
taking the unconditional expectation implies

E�mtRt ⊗ Z̃t−1�= e� (23)

where Z̃t−1 =Zt−1 /.E�Zt−1�and /. denotes element-by-element division. Treat-
ing Rt ⊗ Z̃t−1 as the expanded set of “returns,” the multiplicative bounds are
computed in the same fashion as the fixed bounds. In the finite sample adjust-
ment, n is taken to be the number of original assets times one plus the number
of lagged instruments, n�L+1�. The adjustment ignores the uncertainty due
to the fact that E�Z� must be estimated by the sample means. In our simu-
lations we account for this uncertainty and find that the correction performs
well in realistic sample sizes.

2.1 Bias correction for optimized bounds
Building on Proposition 4, we provide approximate finite-sample bias cor-
rections for the optimal and UE bounds.

Proposition 5. If asset returns are jointly normal, conditional on Z, and the
maximum likelihood estimators for E�R �Z� and /�
�Z� are used to form esti-
mated �̂2

m∗ in the UE or optimal bounds, then an approximate bias-adjusted
estimator for the bounds is

�̂2
m∗� adjusted =

(
T −n−2

T

)
�̂2
m∗ − n

T
�E�m��2+ 2

T
var�E�m � Z��	 (24)

Proof. Both the UE and optimal bounds may be represented as the variance
of a particular SDF, m∗, which may be expressed as

m∗ = E�m � Z�+ �e−E�m � Z���Z��′ /�
�Z��R−��Z��	 (25)

The optimal and UE bounds differ in the specification of the E�m � Z� func-
tion. Computing the variance of Equation (25),

�2�m∗� = var�E�m � Z��
+E
�e−E�m � Z���Z��′ /�−1


 �Z��e−E�m � Z���Z���	 (26)

For an estimated bound we replace ��Z� and /�−1

 �Z� with their MLEs, which

results in �̂2
m∗ . Evaluate the right-hand term of Equation (26) using iterated

expectations. First, consider the conditional expectation given Z of the second
term, assuming conditional joint normality of the returns, given Z, taking
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E�m � Z� as given and using Proposition 4. Then, taking the unconditional
expectation of this result we arrive at the approximation

E��̂2
m∗� �

(
T

T −n−2

)
�2�m∗�+

(
n

T −n−2

)
�E�m��2

+
( −2
T −n−2

)
var�E�m � Z��	 (27)

The approximation arises because we assume that the parameters in the
E�m �Z� function are at their probability limits in Equation (27). Rearranging
Equation (27) we obtain the adjusted estimator.

2.2 Implementing the bias corrections
We can rearrange Equation (24) to decompose the effects of the finite-sample
bias adjustment:

�̂2
m∗� adjusted = �̂2

m∗ −
{(

n+2
T

)
�̂2
m∗ + n

T
�E�m��2

}
+ 2

T
var�E�m � Z��	 (28)

The second term on the right side of Equation (28) may be considered a
“degrees-of-freedom” adjustment, as the effect for a given �̂2

m∗ and E�m�
depends only on n and T . This term always lowers the estimated bound, more
so when n is large relative to T . The third term depends on the unconditional
variance of E�m �Z�, and it works in the opposite direction. This term is zero
in the fixed and multiplicative bounds, since E�m � Z� is a constant in those
bounds. We find that �2/T �var�E�m � Z�� makes a very small contribution
to the adjustment (less than 0.2% of the total effect) for both the UE and
optimal bounds.
For the optimal bounds, E�m � Z� is specified in Equation (17), and for

the UE bounds

var�E�mUE � Z��=
(
1−E�m��P

�P

)2 var�E�RUE � Z��
�2
P

	 (29)

To use Equation (29) in the bias correction, we find RUE , the portfolio with
weights given by Equation (11), where �P and �2

P are chosen to correspond
to the point on the mean standard deviation frontier, tangent to a line drawn
from �E�m��−1 on the expected gross return axis.6 Using Equations (17) and
(29), consistent estimates of var�E�m � Z�� are obtained from the sample
variances of the fitted values of the terms that are functions of Z.
When �2/T �var�E�m � Z�� is small, Equation (28) shows that the bias

adjustment is essentially the degrees-of-freedom component. The adjustment

6 These values may be found by selecting �P to maximize 
�P − �E�m��−1�2/�2
P , where �2

P is given by
Equation (12).
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differs across the various bounds mainly when the degrees-of-freedom differ.
For example, the adjustment is much larger in the multiplicative bounds,
where n�L+1� replaces n as the number of assets. The bias correction also
depends proportionally on the magnitude of �̂2

m∗ and will be smaller when
the level of the bounds is lower, such as in the fixed bounds.

3. Data

We use three different datasets in our empirical illustrations. These are desig-
ned to span the range of data frequencies, sample sizes, and predictabil-
ity environments most relevant to the empirical asset pricing literature. An
annual and a quarterly dataset are constructed, similar to HJ. The quarterly
data feature relatively strong return predictability based on interest rates, in a
small cross section of bond returns. A monthly dataset provides an example
representative of asset-pricing studies using a cross section of equity portfo-
lios, with short rates and dividend yields as predictors. Summary statistics
are provided in Tables 1 and 2.
The annual dataset used by HJ consists of real returns on a value-weighted

stock index and short-term real interest rates, from Shiller (1982). The annual
data cover the 1891–1985 period. The lagged instruments consist of a con-
stant and the first lagged values of the two real returns.7

The quarterly returns are the real, three-month holding period returns on
Treasury bills with initial maturities of 3, 6, 9, and 12 months. The returns
are from the Center for Research in Security Prices files for original-issue
12-month bills. Real returns are the nominal returns deflated by the compo-
nent of the consumer price index relating to nondurable goods, as in Ferson
and Harvey (1992). The quarterly data cover the period from the third quarter
of 1964 through the fourth quarter of 1987, which is the same as HJ. The
lagged instruments, following HJ, consist of a constant and the first lagged
values of the real returns and real, per capita consumption growth, which we
obtain from the Commerce Department via Citibase.
Our monthly dataset includes the total returns (price change plus divi-

dends) on 25 industry portfolios from Harvey and Kirby (1996), measured
for the period February 1963 to December 1994.8 The portfolios are created
by grouping individual common stocks according to their SIC codes and
forming value-weighted averages (based on beginning-of-month values) of
the total returns within each group of firms. Table 2 shows the industry clas-
sifications for the 25 portfolios and their summary statistics. The instruments
are (1) the lagged value of a one-month Treasury bill yield, (2) the lagged
dividend yield of the Standard & Poors 500 index.

7 These data are published in Shiller (1989, Tables 26.1–26.2).
8 We are grateful to Campbell Harvey for providing the data.
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Table 1
Summary statistics

Variable Mean � �1 R2

Panel A: Annual data set: 1891–1985 (95 observations)

Consumption growth 0	01815 0	03470 −0	1442 0	0195
S&P 500 real return 0	07835 0	18986 0	03646 0	0272
T-bill real return 0	02335 0	09491 0	31871 0	1217

Panel B: Quarterly data set: 1964Q4–1986Q4 (93 observations)

Consumption growth 0	00364 0	00997 0	06570 0	0381
3-month bill −0	00653 0	01293 0	37726 0	21355
6-month bill −0	00649 0	01492 0	28553 0	19919
9-month bill −0	00619 0	01716 0	19880 0	17938
12-month bill −0	02429 0	03974 0	08040 0	07763

Consumption growth is the growth rate of seasonally adjusted U.S. real per capita expenditures for consumer nondurable goods.
All returns are deflated (real) returns stated as decimal fraction per period, as described in the data section. Mean is the sample
mean, � is the sample standard deviation, �1 is the first-order sample autocorrelation and R2 is a regression of the variable on
the lagged instruments. The lagged instruments in the quarterly dataset consist of a constant and the first lagged values of the
consumption growth and the real return series. In the annual dataset, a constant and a single lag of the two returns are used as
instruments.

Table 2
Monthly returns and instruments

Industry SIC codes Mean � �1 R2

1 Aerospace 372, 376 0	0107 0	0644 0	13 0	09414
2 Transportation 40, 45 0	0094 0	0648 0	08 0	06622
3 Banking 60 0	0086 0	0631 0	10 0	03665
4 Building materials 24, 32 0	0097 0	0608 0	09 0	06724
5 Chemicals/plastics 281, 282, 286–289, 308 0	0094 0	0525 −0	01 0	04625
6 Construction 15–17 0	0109 0	0760 0	16 0	08692
7 Entertainment 365, 483, 484, 78 0	0135 0	0662 0	14 0	05069
8 Food/beverages 20 0	0117 0	0449 0	05 0	03799
9 Healthcare 283, 384, 385, 80 0	0113 0	0524 0	01 0	02134

10 Industrial mach. 351–356 0	0089 0	0587 0	05 0	06382
11 Insurance/real estate 63–65 0	0095 0	0581 0	15 0	05912
12 Investments 62, 67 0	0097 0	0453 0	05 0	07559
13 Metals 33 0	0075 0	0610 −0	02 0	02885
14 Mining 10, 12, 14 0	0108 0	0535 0	01 0	05654
15 Motor vehicles 371, 551, 552 0	0095 0	0584 0	11 0	06550
16 Paper 26 0	0095 0	0536 −0	02 0	03265
17 Petroleum 13, 29 0	0102 0	0518 −0	02 0	03931
18 Printing/publishing 27 0	0114 0	0586 0	21 0	10077
19 Professional services 73, 87 0	0111 0	0693 0	13 0	07523
20 Retailing 53, 56, 57, 59 0	0106 0	0597 0	15 0	04893
21 Semiconductors 357, 367 0	0080 0	0559 0	08 0	07575
22 Telecommunications 366, 381, 481, 482, 489 0	0085 0	0412 −0	05 0	03498
23 Textiles/apparel 22, 23 0	0100 0	0613 0	21 0	08511
24 Utilities 49 0	0078 0	0392 0	02 0	05663
25 Wholesaling 50, 51 0	0109 0	0614 0	13 0	03930

Dividend yield na 1	631 0	6909 0	98 na
Treasury bill yield na 3	8005 0	9083 0	98 na

Monthly returns on 25 portfolios of common stocks are from Harvey and Kirby (1996). The portfolios are value weighted
within each industry group. Mean is the sample mean of the return, in monthly decimal fraction units, � is the sample standard
deviation, and �1 is the first-order autocorrelation of the monthly return. R2 is the coefficient of determination from the
regression of the return on the two lagged instruments, which are the dividend yield and Treasury bill yield shown in the last
two rows. The sample period is February 1963 through December 1994 (383 observations).
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4. Empirical Examples

In this section we illustrate sample versions of the various HJ bounds. Here
is how the bounds are constructed. The “fixed” bounds use no conditioning
information and are determined by a fixed-weight combination of the basic
asset returns, as in Equation (2). We use the maximum likelihood estimates of
the mean vector and covariance matrix. When normality is not assumed, these
are consistent method of moment estimates. To form the efficient portfolio
and the optimal bounds we must specify the conditional mean function ��Z�
and the conditional variance function /�
�Z�. Here we simply regress the
returns on the lagged instruments. The fitted values of the regression are our
estimate of ��Z� and the sample covariance matrix of the residuals is our
estimate of the (fixed) conditional covariance matrix. The portfolio constants
�1, �2, and �3 in Equations (7)–(9) and the unconditional expectations in
Equation (18) are estimated using sample averages. For the UE bounds, we
use Equation (11) to form two portfolios. One sets the target mean �P equal
to the grand mean of the asset returns, the other is the global minimum
variance portfolio, with target mean given by Equation (13).
Figure 1 illustrates the various bounds with monthly datasets over the July

1963 to December 1994 period, using no finite sample adjustments. We show
the volatility �̂m in the figures, but report the variance in subsequent tables.
We summarize most of the subsequent results by reporting the values when
E�m� = 1. The general shape of the curves, for other values of E�m�, are
similar to those depicted here for monthly data, but the distances between the
various bounds and the amount of convexity in the curves differ, depending
on the amount of predictability and on the expected return-to-volatility ratios
available in the datasets. For example, in the annual dataset the amount of
predictability is relatively small, so the curves are closer together. In the
quarterly dataset, the curves appear more convex.
A valid stochastic discount factor must lie above the bounds, “in the cup.”

The bounds using conditioning information plot above the fixed bounds
in Figure 1, illustrating that conditioning information allows one to rule
out more stochastic discount factors. Also, there are substantial differences
between the various bounds, so it matters which bound one uses.
To illustrate, we consider the example of the “three-factor model” of Fama

and French (1993, 1996).9 Fama and French advocate a model in which three
return factors describe SDF. The factors are a market portfolio return, the
difference between the returns of a small-stock and a large-stock portfolio,
and the difference between a high and a low book-to-market portfolio. While
there is some controversy over the justification for this model, it has been
popular in recent studies. If we hypothesize a multibeta pricing model, where

9 Using an example from Lucas’s (1978) consumption-based model, we find that the consumption SDF is so far
outside the bounds (using annual, quarterly, or monthly data) that our results would not change any inferences.
A simple model of habit persistence, like the one used by HJ, produces a similar result.
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Figure 1
Unadjusted HJ bounds from monthly data, July 1963–December 1994, with the estimated conditional model
(“FFC”) and unconditional model (“FFU”).

expected returns are linear in their covariances with the Fama–French factors,
it implies and SDF in which mt in Equation (1) is a linear function of the
factors [see Dybvig and Ingersoll (1982) or Ferson and Jagannathan (1996)]:
mt = a�z�+B�z�′Ft , where Ft is the vector of factors.
Farnsworth et al. (2002) estimate SDF formulations of the Fama–French

model using a monthly dataset for July 1963 to December 1994, only five
months shorter than our sample period, and we use their results here. Fol-
lowing Cochrane (1996), they assume that the coefficients a�z� and B�z�

are linear functions of our lagged instruments, a Treasury bill and a divi-
dend yield. In this case we have a conditional version of the model, which
we denote by “FFC” in graphs. When a�z� and B�z� are constants and no
lagged instruments are used in forming the SDF, we have an unconditional
model (“FFU”).
Figure 1 shows that with no bias adjustments, the Fama–French SDFs plot

close to the fixed bounds, but below the bounds with conditioning infor-
mation. While no standard errors for the bounds are shown, if we use the
sampling variation from the simulations below, both versions of the three-
factor model would be rejected using the biased bounds with conditioning
information.
Note that in Figure 1 the sample multiplicative bound plots above the opti-

mal bound. This cannot occur, except as a result of misspecification or finite
sample error. Thus the figure motivates a study of the sampling properties of
the bounds.
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Figure 2
Bias-adjusted HJ bounds from monthly data, July 1963–December 1994, with the estimated conditional model
(“FFC”) and unconditional model (“FFU”).

Figure 2 applies our finite sample bias adjustments to the various bounds.
Now the ordering of the various bounds appears reasonable, with the opti-
mal bounds plotting above and the fixed bounds below. The effect of the
adjustment to the multiplicative bounds, in particular, appears substantial.10

The conditional three-factor model SDF now plots above the fixed and
multiplicative bounds, close to the UE bound, and below the optimal bounds
with conditioning information. The point FFC lies 0.64 standard errors below
the optimal bound, while FFU is 2.49 standard errors below.11 After bias
adjustment, one would not reject the conditional Fama–French SDF “FFC”
using the bounds with conditioning information. This reverses the conclusion
from Figure 1, illustrating that the biases in the bounds are economically
significant. Furthermore, after bias adjustment one would reject FFU with
the optimal bounds, but not with the multiplicative bounds. Thus the choice
between bounds with conditioning information is also a matter of economic
significance.

10 For some values of E�m� the adjusted �̂m can be less than zero, and this occurs in Figure 2 for the fixed
bounds. As we describe below, the fixed bounds have little economic content when sampling variation is
accounted for, and the negative adjusted bounds suggest as much. Negative values are set to zero in the
figure. The local concavity of the curve for values of �̂m near zero is explained by the fact that the square
root functions have an infinite slope at zero.

11 These examples ignore the sampling error in the location of the FFC and FFU points, and should therefore be
taken as illustrative. See Burnside (1994), Cecchetti, Lam, and Mark (1994), and Tierens (1993) for examples
that account for this source of sampling error in specific SDF models.
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5. Simulation Results

We conduct a simulation study of the sampling properties of the various
bounds. The experiments accommodate data that are dependent over time.
For example, the monthly dividend yields and lagged interest rates have first-
order sample autocorrelations in excess of 0.9, while asset returns have small
autocorrelations, as may be seen in Tables 1 and 2. We focus on capturing
the autocorrelation of the lagged instruments. Using these instruments to
model their conditional means, the simulated asset returns inherit mild serial
dependence.
We estimate a first-order vector autoregression (VAR) for the lagged instru-

ments and we use the estimated coefficient matrix as parameters of the
model.12 The parameters for the conditional means of the asset returns are
estimated by regressions on the lagged instruments. The residuals from the
VAR, UZ, and the deviations of the asset returns from their conditional means,
Ur , represent the shocks in the model. We concatenate these as �Ur�UZ� and
compute the sample covariance matrix as a parameter of the simulation. We
generate the artificial shocks in the simulations by drawing data with this
covariance matrix, either from a normal distribution or by resampling from
the actual residuals. We build up the time series of the simulated instruments
recursively using the VAR coefficients and the simulated UZ shocks. The
artificial returns are formed as the conditional means functions, evaluated at
the values of the artificial instruments, plus an independent draw from the
Ur distribution. (In a later section we explore the robustness of the results to
more general data-generating schemes.)
In each simulation trial the bounds are estimated from a sample of artificial

data in the same way that we estimate the bounds in the previous section.
The estimated HJ curve may be described in any given example by the values
of the three coefficients, a, b, and c, as

�̂2�m�= a+b�E�m�−1�+ c�E�m�−1�2	 (30)

Thus, for each simulation trial, we record the values of a, b, and c. We use
5,000 Monte Carlo trials for each dataset. For a given E�m� the values of a,
b, and c, which summarize a simulation trial, determine a value of �̂2

m. The
5,000 values of �̂2

m, one for each simulation trial, are used to produce the
summary statistics shown in the tables. The number of observations in each
of the artificial samples is equal to that of an actual dataset. For example,
in the quarterly dataset, each of the 5,000 trials uses an artificial sample
of 93 quarters, representing the four assets and instruments. We conduct

12 Such an approach may underestimate the degree of persistence in the lagged instruments [see, e.g., Bekaert,
Hodrick, and Marshall (1997)]. However, we find that the artificial data generated this way match the actual
sample first-order autocorrelation of the instruments to within the variability of the data across simulation
trials.
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simulations corresponding to the annual, quarterly, and monthly datasets.
The tables summarize the results of the simulations at E�m�= 1.

5.1 A benchmark: the “true” HJ bounds
Since we do not wish to tie our results to a particular model economy (and
corresponding SDF) we use large-scale simulation to find the benchmarks
against which the sampling properties are measured. In order to determine
the “true” bounds, we form artificial samples just like in the simulations, but
with one million observations. (Averaging the values of 
a� b� c� across 100
simulations with 10,000 observations produces similar results.)
The true variance bounds are shown in Table 3, where the artificial data

are normally distributed. The bounds are the highest in the quarterly dataset,
which reflects the high Sharpe ratios that appear in samples of Treasury bill
returns, consistent with HJ. Comparing the different bounds for the same
dataset confirms that, abstracting from sampling error, the different bounds
can produce vastly different results. For example, in monthly data the multi-
plicative bound for �2

m is about three times the fixed bound, and the optimal
bound is almost four times the fixed bound. Thus, abstracting from sampling
variability, both the decision to use conditioning information and the way
in which the given conditioning information is used make a difference. The
differences are also large in the quarterly dataset, while in the annual data,
the differences between the various bounds are relatively small. In the annual
dataset there is a relatively small degree of predictability, as suggested by the
regression R2 values in Table 1, so the fixed bounds are closer to the bounds
with conditioning information in that case.

Table 3
Finite sample properties of bounds on stochastic discount factor variances

Type of bound n T True Mean Std. Adj. mean Adj. std.

Panel A: Annual data

Fixed bound 2 95 0	197 0	223 0	103 0	192 0	099
Mult bound 6 95 0	211 0	273 0	121 0	187 0	112
UE bound 2 95 0	203 0	248 0	108 0	216 0	104
Optimal bound 2 95 0	212 0	265 0	115 0	232 0	110

Panel B: Quarterly data

Fixed bound 4 93 0	488 0	561 0	193 0	482 0	182
Mult bound 20 93 0	914 1	564 0	414 0	979 0	319
UE bound 4 93 0	915 1	167 0	306 1	051 0	287
Optimal bound 4 93 1	144 1	509 0	336 1	369 0	315

Panel C: Monthly data

Fixed bound 25 383 0	104 0	200 0	058 0	121 0	054
Mult bound 75 383 0	313 0	626 0	114 0	304 0	092
UE bound 25 383 0	329 0	523 0	096 0	421 0	089
Optimal bound 25 383 0	386 0	615 0	115 0	506 0	107

For each bound, this table shows the mean and standard deviation of the lower bound on �2
m taken across 5,000 simulation

trials. The artificial data are normally distributed, homoscedastic. The bound is evaluated at E�m�= 1. n is the effective number
of assets and T is the number of times-series observations. Mean and Std. refer to the unadjusted bounds, while Adj. Mean and
Adj. Std. refer to the bounds adjusted for finite sample bias. The true bound is based on large-scale simulation with 1,000,000
observations.
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5.2 The location of the sample bounds
Table 3 reports the mean of the estimated bounds, �̂2

m, taken across the
5,000 simulation trials. Comparing these values with the true bounds shows
the expected finite sample bias. All of the bounds display an upward bias;
that is, the expected sample bounds are higher than the true bounds. Thus
some valid stochastic discount factors are expected to plot outside of the
sample HJ bounds. The upward bias of the fixed bounds is consistent with the
previous studies of Burnside (1994), Cecchetti, Lam, and Mark (1994), and
Tierens (1993). Table 3 extends the evidence to the bounds with conditioning
information. The expected sample bounds range from 113% to 200% of the
true bounds on �2

m.
Consistent with Propositions 4 and 5, the finite sample biases are more

extreme where the number of time-series observations is small relative to
the number of assets. For example, the annual data include 95 observations
on two assets, and the ratio of estimated to true bounds is 113–129%. The
monthly data include 383 observations on 25 assets and the ratio of esti-
mated to true bounds is 159–200%. The quarterly data presents an interme-
diate case. In each dataset the multiplicative bounds have the largest bias;
in the quarterly and monthly data the differences are substantial. The ratio
of the estimated to the true bound is slightly closer to 1.0 for the UE than
for the optimal bound.
The relation of the HJ bounds to the maximum squared Sharpe ratio pro-

vides intuition for the extreme sampling bias of the multiplicative bounds
compared with the other bounds. It is well known from the classical mean
variance analysis that portfolios based on the usual MLEs of the mean returns
and their covariance tend to be biased in favor of overstated Sharpe ratios.
This intuition is reflected in Propositions 4 and 5. The bias is greater, for a
given sample size T , when more assets are included in the portfolio.13 Since
the multiplicative bounds create additional “assets,” the maximum Sharpe
ratio, and thus the bound on �2

m, is more upwardly biased. The smaller finite
sample bias of the UE bound, in contrast, reflects the robustness of UE port-
folios, discussed by Ferson and Siegel (2001).

5.3 Bias adjustment
Table 3 reports the bounds, adjusted for finite sample bias, averaged across
the 5,000 simulation trials (Adj. Mean). The average adjusted bounds range
from 90% to 131% of the true bounds versus 113% to 200% before adjust-
ment. In the annual data, all the adjusted bounds are within 10% of the
true. The adjustments generally work well for the quarterly data, the optimal
bound being the exception. For example, the adjustment reduces the quarterly
multiplicative bound bias from 71% to 8.5%. The monthly bias is reduced

13 See Frost and Savarino (1988), MacKinlay (1987), and Green and Hollifield (1992) for illustrations.
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from 100% to −3%. The adjustment performs quite well on the multiplica-
tive bounds in all of the samples, and it performs even better on the fixed
bounds.14

The bias adjustments provide substantial improvements in the location of
the optimal and UE bounds, but they are not as accurate here as in the
multiplicative case. However, before adjustment, the biases in the optimized
bounds range from 28% to 59% in the quarterly and monthly data, not as
severe as the multiplicative case. After adjustment the biases are roughly
halved. Thus, while the bias adjustments improve the optimized bounds, they
are not highly accurate. Since these are Monte Carlo simulations assuming
normality, the inaccuracy of the corrections may not be attributed to the
failure of the normality assumption. Thus the degrees-of-freedom adjustment,
the main component of the correction, is not large enough to account for the
additional complexity of the optimized bounds.

5.4 The precision of the bounds
The value of the bounds as a diagnostic tool depends not only on their
location, but also on their precision. The simulations provide information on
the sampling variation of the bounds. Table 3 reports the standard deviations
of the bounds, evaluated at E�m� = 1, with and without adjustment, taken
across the 5,000 simulation trials.
Recall that the adjustment approximately shrinks the uncentered second

moment of the stochastic discount factor, multiplying it by a factor of less
than 1.0. This results in smaller standard errors, and the adjusted bounds
are more precise. The fixed bounds have the smallest standard deviations,
and also the smallest average values. Among the bounds with conditioning
information, the UE bounds always have the smallest standard deviations.
Thus one appeal of the UE bounds is their relative precision.
Table 3 shows that none of the bounds have much economic content in

the annual dataset. Negative values of �2
m lie within two standard deviations

of the true version of each bound. In the quarterly and annual datasets the
bounds place substantive restrictions on �2

m. The bounds with conditioning
information are much more restrictive than the fixed bounds. In particular, the
fixed bound in monthly data has virtually no economic content, as the true
bound is within two standard errors of zero. This result was also illustrated
in Figure 2.
The efficient portfolio and optimal bounds are more restrictive of SDF vari-

ances than the multiplicative bounds. For example, in the monthly dataset a
value of �2

m = 0	128 is two standard deviations below the true multiplicative
bound. For the efficient portfolio bound, the critical value for the SDF vari-
ance is 0.148, while for the optimal bound the variance must exceed 0.173. In

14 Since we draw normally distributed data in these simulations, the adjustment to the fixed bound would be
exact if the data were serially independent. We consider nonnormal and heteroscedastic artificial data below.
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the quarterly sample the UE and optimal bounds have even larger advantages
over the multiplicative bound. Thus when we consider both the location and
the precision of the bounds, the efficient use of the conditioning informa-
tion produces markedly tighter bounds. This reinforces the impression from
Figure 2 that it is important to efficiently use the conditioning information
in variance bounds.

6. Effects of Nonnormality and Heteroscedasticity

The previous simulations use strong assumptions about the data-generating
process, including normality and homoscedasticity. Since there is evidence
in the literature inconsistent with these assumptions, we explore alterna-
tive assumptions. We conduct experiments in which we generalize the data-
generating process by progressively relaxing the assumptions. For each
experiment we conduct a new large-scale simulation to define a “true” bound,
as the true bound may depend on the specification of the moments in the
data-generating process.

6.1 Nonnormality
In the first experiment we relax the assumption that the shocks in the data-
generating process are normally distributed. Instead of drawing normally dis-
tributed shocks with a given covariance matrix, we use an approach similar
to the bootstrap [see, e.g., Efron (1982)]. We resample vectors from the sam-
ple of residuals �Ur�UZ�, choosing dates randomly with replacement. The
artificial data are otherwise generated as before. The simulated data will be
homoscedastic but not normally distributed, on the assumption that the sam-
ple is not normally distributed.
The results of the first experiment are summarized in panels A–C of

Table 4. The true values of the fixed-weight bounds are the same as in
Table 3, because the fixed bound is a consistent estimator and no lagged
instruments are used. The true bounds that use lagged instruments are affec-
ted only very slightly by nonnormality. The other results are also similar
to those in Table 3. Among the bounds with conditioning information, the
multiplicative bounds have the largest bias and the UE bounds the smallest.
The UE bounds have the smallest standard errors. Using the true location
and accounting for the standard deviations, the UE and optimal bounds are
more restrictive of the data than the multiplicative bounds. The performance
of the finite sample adjustment is consistent with our previous observations
and is not degraded by the nonnormality in the actual data.

6.2 Heteroscedasticity
Heteroscedastic data raises some new issues. First, the expected values of
objects like �′�Z� /�−1


 �Z�, which appear in both the optimal and UE bounds,
will differ from their values under homoscedasticity when the conditional
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Table 4
Sensitivity analyses

Type of bound True Mean Std. Adj. mean Adj. std.

Experiment 1: Serially dependent, nonnormal data

Panel A: Annual data

Fixed bound 0	197 0	227 0	108 0	199 0	105
Mult bound 0	213 0	279 0	128 0	195 0	119
UE bound 0	205 0	249 0	112 0	218 0	108
Optimal bound 0	211 0	271 0	123 0	239 0	118

Panel B: Quarterly data

Fixed bound 0	488 0	558 0	166 0	485 0	157
Mult bound 0	908 1	598 0	407 1	018 0	314
UE bound 0	901 1	108 0	276 0	995 0	259
Optimal bound 1	137 1	543 0	340 1	400 0	318

Panel C: Monthly data

Fixed bound 0	104 0	203 0	061 0	123 0	057
Mult bound 0	300 0	628 0	120 0	307 0	096
UE bound 0	321 0	509 0	098 0	408 0	091
Optimal bound 0	384 0	612 0	124 0	509 0	116

Experiment 2: Serially dependent, nonnormal, conditionally heteroscedastic data: Model I

Panel D: Annual data

Fixed bound 0	035 0	214 0	105 0	184 0	101
Mult bound 0	037 0	307 0	133 0	218 0	122
UE bound 0	036 0	257 0	111 0	225 0	106
Optimal bound 0	037 0	252 0	113 0	221 0	108

Panel E: Quarterly data

Fixed bound 0	449 0	565 0	174 0	486 0	162
Mult bound 0	826 1	614 0	415 1	017 0	317
UE bound 0	747 1	091 0	304 0	979 0	285
Optimal bound 0	959 1	485 1	765 1	346 1	651

Panel F: Monthly data

Fixed bound 0	050 0	200 0	057 0	121 0	053
Mult bound 0	230 0	633 0	117 0	310 0	094
UE bound 0	251 0	513 0	097 0	412 0	090
Optimal bound 0	303 0	619 0	122 0	510 0	114

Experiment 2: Serially dependent, nonnormal, conditionally heteroscedastic data: Model II

Panel G: Annual data

Fixed bound 0	201 0	233 0	112 0	204 0	108
Mult bound 0	223 0	295 0	137 0	210 0	126
UE bound 0	213 0	264 0	117 0	232 0	112
Optimal bound 0	219 0	276 0	124 0	243 0	119

Panel H: Quarterly data

Fixed bound 0	494 0	572 0	172 0	498 0	163
Mult bound 0	995 1	538 0	386 0	972 0	298
UE bound 0	898 1	017 0	260 0	910 0	244
Optimal bound 1	138 1	487 0	331 1	348 0	309

Panel I: Monthly data

Fixed bound 0	103 0	202 0	057 0	123 0	053
Mult bound 0	313 0	647 0	125 0	323 0	100
UE bound 0	320 0	521 0	100 0	412 0	093
Optimal bound 0	381 0	584 0	104 0	478 0	096

The true bounds are obtained by large-scale simulation with 1,000,000 observations. Each bound on �2
m is evaluated at E�m�= 1.

Mean and Std. are taken across 5,000 simulation trials. Adj. Mean and Adj. Std. refer to the bounds adjusted for finite sample
bias, also with 5,000 simulation trials.
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mean and elements of the conditional covariance matrix are correlated. Since
this is likely to be the case, the “true” locations of the bounds may shift. Sec-
ond, the issue of correctly specifying the heteroscedasticity becomes poten-
tially important. Under heteroscedasticity, the correct data-generating process
may not be obvious. If the wrong specification is used, the estimated optimal
bounds may not be valid and the UE bounds will be inefficient.
In the next two experiments we allow for both nonnormality and con-

ditional heteroscedasticity in the data-generating process. There are many
ways to model conditional heteroscedasticity. Given the large size of the
conditional covariance matrix (25×25 in the monthly data) and the fact that
we embed the estimation of the model parameters in the simulation, we are
motivated to use an approach to conditional heteroscedasticity that is easy
to model by regression methods. To guard against conclusions that depend
on the specific heteroscedasticity model, we report results for two alternative
models.
Our first heteroscedasticity model, Model I, uses a single factor to generate

time-varying volatility. In the annual and quarterly samples the factor, ft , is
the return of the Standard & Poor’s stock market index. In the quarterly bond
return data, the factor is a short-term interest rate, the return to rolling over
one-month Treasury bills.
We begin with the unexpected returns, urt = Rt −E�Rt � Zt−1� and uft =

ft −E�ft � Zt−1�, estimated by the regression residuals. We assume that the
unexpected returns follow a factor model: un = ufth+
rt , where h is a fixed
n-vector of loadings and 
rt has a fixed covariance matrix, cov�
r�. We then
model var�ft � Zt−1�= var�uft � Zt−1� using regression methods. Specifically,
using the residuals, the ln�u2

ft� are regressed on Zt−1 and the coefficient
vector, �, is retained as a parameter of the simulation. The conditional vari-
ance is then formed, for a given value of Z, as var�uft � Z� = c · exp�� ′Z�.
(The scale factor, c, is chosen to account for Jensen’s inequality, to match the
mean of var�uft � Zt−1� to the sample variance of uft .) This leads to a model
for the conditional covariance matrix, /�
�Z�= �hh′�var�uft �Zt−1�+cov�
r�.
Each period we generate the artificial return vector as the sum of the con-
ditional mean vector, given the generated value of Z, plus an independent
draw from the matrix of the 
rt residuals, plus an independent draw from
the studentized residuals, uft , which are scaled to have conditional variance
c · exp�� ′Z�, and multiplied by the loading, h.
Our second heteroscedaticity model, Model II, allows each asset return

to have a unique time-varying volatility, while the correlations among the
returns are assumed to be fixed. The approach is essentially the same as in
Model I, except the conditional standard deviations are modeled by regressing
the absolute residuals, �urt�, on the lagged instruments, and scaling the fitted
value by

√
�/2.15 The conditional covariance matrix is then formed as the

15 This approach is advocated by Davidian and Carroll (1987), and is similar to Schwert and Seguin (1990) and
Ferson and Foerster (1994).
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products of the conditional standard deviations and the fixed correlations.
The correlations are chosen to equal the sample correlations of the regression
residuals urt .

16

In the simulations, our artificial econometrician uses the data essentially
the same way that we use it to estimate the bounds in the empirical examples
and to define the data-generating process. For the fixed and multiplicative
bounds, the analyst simply computes the sample estimates for the uncondi-
tional mean and covariance matrix, and with these, constructs the bounds.
Things are slightly more complicated for the optimal and UE bounds. In

these bounds the functional forms of ��Z� and �
�Z� are taken as known,
but all the parameters describing those functions must be estimated. We
include the estimation of these parameters in the simulation. This represents
the potential disadvantage of optimal and UE bounds, that these parame-
ters must be estimated to implement the bounds, and their estimation creates
sampling error. The constants which are the unconditional expectations of
functions of ��Z� and �
�Z�, such as in Equations (7)–(9), (17) and (18),
are also estimated by the artificial econometrician.
Assuming that the analyst knows the functional forms of ��Z� and �
�Z�,

but not the true parameter values, is consistent with the previous experiments,
where the analyst knows that ��Z� is a regression function of returns on
the lagged instruments and �
�Z� is a constant. For a discussion which
emphasizes the role of misspecified conditional moments in HJ bounds, see
Bekaert and Liu (1999).
Panels D–F of Table 4 show the results of the heteroscedasticity exper-

iments under Model I and panels G–I present Model II. Compared to the
previous experiments, the locations of the true bounds are slightly higher
in Model II, and lower in Model I. The ratios of the estimated to the true
bounds, however, are similar to the previous results in Model II. The biases
vary from 15% to 107% across the cases, and the relative performance of
the different bounds is similar to that observed before. In Model I the biases
are more extreme in percentage terms, where the true bounds are lower, but
comparable in absolute magnitude for many of the cases (exceptions are the
annual data, and the fixed bounds in monthly data, where the true bounds
are much lower). The overall impressions are consistent with the previous
experiments. The multiplicative bounds have the largest bias. The UE bounds
have the smallest standard deviations, among the bounds with conditioning
information. The finite-sample bias adjustments continue to perform well for
the fixed and multiplicative bounds, with a few exceptions in Model I. In
Model II the adjusted location of each estimated bound is within 11% of the

16 We find that this approach overstates the conditional heteroscedasticity, in the sense that the regression of the
generated unexpected returns squared, on the instruments, produces a larger R2 than the original data. We
therefore shrink the conditional covariance matrices in Model II toward the fixed unconditional covariance
matrix using a convex combination of the two, where the weight is selected for each dataset to match the
regression R2 with the actual data.
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true bound in the annual and quarterly data, except in the case of the optimal
bound in quarterly data (18%). Even in monthly data the bias is cut in half,
or better, by the adjustment. Accounting for sampling variation, the optimal
and UE bounds are more restrictive of SDF variances than the multiplica-
tive bound, confirming the importance of the efficient use of conditioning
information in the bounds.

7. Asymptotic Standard Errors

Hansen, Heaton, and Luttmer (1995; hereafter HHL) provide asymptotic dis-
tribution theory for the minimum second moment of a stochastic discount
factor. This section evaluates the accuracy of the HHL standard errors in
finite samples. They show that a consistent estimator for the asymptotic vari-
ance of �̂2

m is obtained as the asymptotic variance of �1/T �
∑

�t , with

�t = 
−��̂′�Xt − �̂��2−2�̂′�E�m�Xt −Pt−1��� (31)

where �̂= S−1� 1
T

∑
Pt−1−E�m��̂�. In this formulation, Xt = Rt ⊗Zt−1 and

Pt−1 = Zt−1 for the multiplicative bounds. For the fixed bounds, Xt = Rt and
Pt−1 = e, the vector of ones. The sample mean is �̂ = 1

T

∑
Xt . We estimate

the asymptotic variance of �1/T �
∑

�t using the spectral density estimator
at frequency zero from Hansen (1982). The number of autocovariance terms
included is determined by examining the sample autocorrelations of �t and
including the lags where the sample autocorrelations exceed two approximate
standard errors.17

Table 5 summarizes the sampling properties of the HHL asymptotic stan-
dard errors for the fixed bounds. The “Unadjusted Empirical” and “Adjusted
Empirical” are the standard deviations of the variance bounds from the sim-
ulations, repeated from the previous tables for convenience. “Average Unad-
justed Asymptotic” is the mean value of the HHL standard errors taken over
the 5,000 trials, and “Average Adjusted Asymptotic” is the mean value of
HHL standard errors for the adjusted variance bounds. The table shows that
the asymptotic standard errors are reliable in the annual and quarterly data.
They are mildly understated, relative to the empirical standard errors, by
less than 10%, in each of the four experiments. In the monthly data, where
the number of time series (383) is small relative to the number of assets
(25), the asymptotic standard errors are less reliable. They are understated
by almost 20% when the data are homoscedastic, and sometimes more under
heteroscedasticity. Overall, however, the fit is rather impressive.
Table 6 summarizes the accuracy of the HHL standard errors for the mul-

tiplicative variance bounds. We are unable to extend the analysis of HHL to
cases where the conditioning information is used optimally, so this remains a

17 This criterion results in one lag in the annual and monthly datasets and four lags in the quarterly dataset.
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Table 5
Evaluation of asymptotic standard errors: fixed bounds

Average Average
Unadjusted Adjusted unadjusted adjusted

Type of artificial data empirical empirical asymptotic asymptotic

Panel A: Annual data

Normal 0	103 0	099 0	102 0	099
Nonnormal, homoscedastic 0	108 0	105 0	105 0	101
Nonnormal, heteroscedastic I 0	105 0	101 0	099 0	096
Nonnormal, heteroscedastic II 0	112 0	108 0	104 0	101

Panel B: Quarterly data

Normal 0	193 0	182 0	175 0	165
Nonnormal, homoscedastic 0	166 0	157 0	154 0	146
Nonnormal, heteroscedastic I 0	174 0	162 0	157 0	148
Nonnormal, heteroscedastic II 0	172 0	163 0	157 0	149

Panel C: Monthly data

Normal 0	058 0	054 0	048 0	044
Nonnormal, homoscedastic 0	061 0	057 0	050 0	047
Nonnormal, heteroscedastic I 0	057 0	053 0	049 0	046
Nonnormal, heteroscedastic II 0	057 0	053 0	032 0	030

This table evaluates the asymptotic standard errors for the fixed variance bound, from Hansen, Heaton, and
Luttmer (1995), as given by Equation (31). The variance bounds are evaluated at E�m� = 1. Unadjusted
empirical is the standard deviation of the estimated bound, taken over the 5,000 simulation trials. Adjusted
empirical is the standard deviation of the bias-adjusted bound. Average unadjusted asymptotic is the aver-
age of the asymptotic standard error across the 5,000 trials. Average adjusted asymptotic is the average
asymptotic standard error for the bias-adjusted variance bound, adjusted for finite-sample bias according to
Equation (24).

Table 6
Evaluation of asymptotic standard errors: multiplicative bounds

Average Average
Unadjusted Adjusted unadjusted adjusted

Type of artificial data empirical empirical asymptotic asymptotic

Panel A: Annual data

Normal 0	121 0	112 0	119 0	113
Nonnormal, homoscedastic 0	128 0	119 0	125 0	118
Nonnormal, heteroscedastic I 0	133 0	122 0	127 0	120
Nonnormal, heteroscedastic II 0	137 0	126 0	125 0	118

Panel B: Quarterly data

Normal 0	414 0	319 0	370 0	285
Nonnormal, homoscedastic 0	407 0	314 0	365 0	282
Nonnormal, heteroscedastic I 0	415 0	317 0	370 0	286
Nonnormal, heteroscedastic II 0	386 0	298 0	353 0	272

Panel C: Monthly data

Normal 0	114 0	092 0	091 0	079
Nonnormal, homoscedastic 0	120 0	096 0	093 0	081
Nonnormal, heteroscedastic I 0	117 0	114 0	094 0	081
Nonnormal, heteroscedastic II 0	125 0	100 0	038 0	028

This table evaluates the asymptotic standard errors for the multiplicative variance bound, from Hansen, Heaton, and Luttmer
(1995), as given by Equation (31). The variance bounds are evaluated at E�m� = 1. Unadjusted empirical is the standard
deviation of the estimated bound, taken over the 5,000 simulation trials. Adjusted empirical is the standard deviation of the bias-
adjusted bound. Average unadjusted asymptotic is the average of the asymptotic standard error across the 5,000 trials. Average
adjusted asymptotic is the average asymptotic standard error for the bias-adjusted variance bound, adjusted for finite-sample
bias according to Equation (24).
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topic for future research. The results for the multiplicative bounds are similar
to Table 5. In the annual and quarterly data the standard errors are mildly
understated, usually by less than 10%. In the monthly data the understatement
is more severe, often exceeding 20%.

8. Summary and Conclusions

This article offers a number of refinements and insights into the volatility
bounds on SDFs, first developed by HJ. When there is no conditioning infor-
mation, the bounds are formed from fixed-weight combinations of the asset
returns, with weights depending on the sample mean and covariance matrix.
In the presence of conditioning information, most studies in the literature
have followed Hansen and Jagannathan, multiplying the returns by the lagged
variables and constructing “multiplicative” bounds with these dynamic strat-
egy returns. We find that sample values of these bounds are upwardly biased,
the bias becoming substantial when the number of assets is large relative to
the number of time-series observations. This means that studies using the
biased bounds run a risk of rejecting too many models for the stochastic
discount factor. We argue that the magnitude of the bias is economically sig-
nificant. We provide a finite sample adjustment for this bias and show with
simulations that it works very well in controlling the bias in the multiplicative
bounds.
We compare Hansen and Jagannathan’s “multiplicative” approach with two

alternative approaches to the use of conditioning information. One approach,
following Ferson and Siegel (2001), is based on unconditional mean variance
efficient portfolio strategies in the presence of conditioning information. We
call these the “efficient portfolio” (UE) bounds. The second approach, based
on GHT, provides the theoretically tightest possible bounds. We present a
closed-form solution for this optimal bound, which simplifies the imple-
mentation and analysis. We also evaluate asymptotic standard errors for
the HJ bounds, derived by HHL. Our simulation study leads to several
conclusions.
1. Multiplicative bounds are easy to use but they can be terribly biased.

Our finite-sample adjustment improves their specification in the sense that the
expected bias in the location of the adjusted bounds is small. However, the
sampling variation in the multiplicative bounds is large, relative to the other
bounds with conditioning information. As a result, the multiplicative bounds
are less restrictive of SDF variances once their sampling error is taken into
account. If we could use only one version of the bounds with conditioning
information, based on these results, it would not be the multiplicative bound.
2. Optimal bounds are more difficult to implement than the multiplicative

bounds, requiring a specification for the conditional means and variances of
the asset returns. The magnitudes of the finite sample biases are less than in
the multiplicative case. Accounting for sampling error, the optimal bounds
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are the most restrictive of SDF variances. However, the bias adjustment is the
least effective for these bounds, and they are not robust to the specification of
the conditional moments. Based on these results, we would prefer to use the
optimal bound in a setting where we had a high degree of confidence in the
specification of the data-generating process, and where the most restrictive
bound is desired.
3. Efficient portfolio bounds are similar in complexity to the optimal

bounds, also requiring a specification of the conditional moments. How-
ever, unlike the optimal bounds, they are theoretically robust to an incor-
rect specification of the conditional moments [Bekaert and Liu (1999)]. The
UE bounds have smaller standard errors than either the multiplicative or the
optimal bounds, and smaller bias prior to any adjustments. However, the UE
bounds are not as restrictive of SDF variances as the optimal bounds. Based
on these results, we advocate the UE bounds in settings where robustness to
the specification of the conditional moments and precision of the bounds are
the important concerns.
4. HHL asymptotic standard errors for the fixed and multiplicative bounds

are reasonably accurate, mildly understated in our annual and quarterly sam-
ples by less than 10%. The understatement is worse when the number of
assets is large relative to the number of time-series observations. The asymp-
totic standard errors are easy to compute and should be useful in similar
applications.

References
Bansal, R., and B. N. Lehmann, 1997, “Growth-Optimal Restrictions on Asset Pricing Models,” Macroeco-
nomic Dynamics, 1, 1–22.

Bekaert, G., and J. Liu, 1999, “Conditioning Information and Variance Bounds on Pricing Kernels,” working
paper, National Bureau of Economic Research.

Bekaert, B., R. J. Hodrick, and D. A. Marshall, 1997, “On Biases in Tests of the Expectations Hypothesis of
the Term Structure of Interest Rates,” Journal of Financial Economics, 44, 309–348.

Balduzzi, P., and H. Kallal, 1997, “Risk Premia and Variance Bounds,” Journal of Finance, 52, 1913–1949.

Burnside, C., 1994, “Hansen-Jagannathan Bounds as Classical Tests of Asset-Pricing Models,” Journal of
Business and Economic Statistics, 12, 57–79.

Cecchetti, S. G., P. Lam, and N. Mark, 1994, “Testing Volatility Restrictions on Intertemporal Marginal Rates
of Substitution Implied by Euler Equations and Asset Returns,” Journal of Finance, 59, 123–152.

Cochrane, J. H., 1996, “A Cross-Sectional Test of a Production-Based Asset Pricing Model,” Journal of
Political Economy, 104, 572–621.

Cochrane, J. H., 2001, Asset Pricing, Princeton University Press, Princeton, NJ.

Cochrane, J. H., and L. P. Hansen, 1992, “Asset Pricing Explorations for Macroeconomists,” NBER Macroe-
conomic Annual, 7, 115–165.

Cochrane, J. H., and J. Saa’-Requejo, 2000, “Beyond Arbitrage: Good-Deal Pricing of Derivatives in Incom-
plete Markets,” Journal of Political Economy, 108, 79–119.

Davidian, M., and R. J. Carroll, 1987, “Variance Function Estimation,” Journal of the American Statistical
Association, 82, 1079–1091.

593



The Review of Financial Studies / v 16 n 2 2003

Dybvig, P., and J. Ingersoll, 1982, “Mean Variance Theory in Complete Markets,” Journal of Business, 55,
233–251.

Efron, B., 1982, The Jackknife, the Bootstrap, and Other Resampling Plans, Society for Industrial and Applied
Mathematics, Philadelphia, PA.

Epstein, L., and S. Zin, 1991, “Substitution, Risk Aversion and the Temporal Behavior of Asset Returns,”
Journal of Political Economy, 99, 263–286.

Fama, E. F., and K. R. French, 1993, “Common Risk Factors in the Returns on Stocks and Bonds,” Journal
of Financial Economics, 33, 3–56.

Fama, E. F., and K. R. French, 1996, “Multifactor Explanations of Asset Pricing Anomalies,” Journal of
Finance, 51, 55–87.

Farnsworth, H., W. Ferson, D. Jackson, and S. Todd, 2002, “Performance Evaluation with Stochastic Discount
Factors,” forthcoming in Journal of Business.

Ferson, W. E., 1995, “Theory and Empirical Testing of Asset Pricing Models,” Handbooks in OR & MS,
Vol. 9, Elsevier, Amsterdam.

Ferson, W. E., and S. R. Foerster, 1994, “Finite Sample Properties of the Generalized Methods of Moments
Tests of Conditional Asset Pricing Models,” Journal of Financial Economics, 36, 29–56.

Ferson, W. E., and C. R. Harvey, 1992, “Seasonality and Consumption-Based Asset Pricing Models,” Journal
of Finance, 47, 511–552.

Ferson, W. E., and R. Jagannathan, 1996, “Econometric Evaluation of Asset Pricing Models,” in G. S. Maddala
and C. R. Rao (eds.), Handbook of Statistics, Vol. 14, Statistical Methods in Finance, Amsterdam, North
Holland.

Ferson, W. E., and A. F. Siegel, 2001, “The Efficient Use of Conditioning Information in Portfolios,” Journal
of Finance, 56, 967–982.

Frost, P., and J. Savarino, 1988, “For Better Performance: Constrain Portfolio Weights,” Journal of Portfolio
Management, 15, 29–34.

Gallant, A. R., L. P. Hansen, and G. Tauchen, 1990, “Using Conditional Moments of Asset Payoffs to Infer
the Volatility of Intertemporal Marginal Rates of Substitution,” Journal of Econometrics, 45, 141–179.

Green, R., and B. Hollifield, 1992, “When Will Mean Variance Efficient Portfolios be Well Diversified?”
Journal of Finance, 47, 1785–1809.

Hansen, L. P., 1982, “Large Sample Properties of Generalized Method of Moments Estimators,” Econometrica,
50, 1029–1054.

Hansen, L. P., J. Heaton, and E. Luttmer, 1995, “Econometric Evaluation of Asset Pricing Models,” Review
of Financial Studies, 8, 237–274.

Hansen, L. P., and R. Jagannathan, 1991, “Implications of Security Market Data for Models of Dynamic
Economies,” Journal of Political Economy, 99, 225–262.

Hansen, L. P., and R. Jagannathan, 1997, “Assessing Specification Errors in Stochastic Discount Factor Mod-
els,” Journal of Finance, 52, 557–590.

Hansen, L. P., and S. F. Richard, 1987, “The Role of Conditioning Information in Deducing Testable Restric-
tions Implied by Dynamic Asset Pricing Models,” Econometrica, 55, 587–613.

Harvey, C. R., and C. Kirby, 1996, “Analytic Tests of Factor Pricing Models,” unpublished working paper,
Duke University.

Ingersoll, J. E., Jr., 1987, Financial Decision Making, Rowman & Littlefield, Savage, MD.

Jobson, J. D., and B. M. Korkie, 1980, “Estimation for Markowitz Efficient Portfolios,” Journal of the Amer-
ican Statistical Association, 75, 544–554.

594



Stochastic Discount Factor Bounds

Lucas, R. E., Jr., 1978, “Asset Prices in an Exchange Economy,” Econometrica, 46, 1429–1445.

MacKinlay, A. C., 1987, “On Multivariate Tests of the CAPM,” Journal of Financial Economics, 18, 341–371.

Schwert, G. W., and P. J. Seguin, 1990, “Heteroskedasticity in Stock Returns,” Journal of Finance, 45,
1129–1155.

Shanken, J., 1982, “An Analysis of the Traditional Risk-Return Model,” Ph.D. dissertation, Carnegie-Mellon
University, Pittsburgh, PA.

Shanken, J., 1987, “Multivariate Proxies and Asset Pricing Relations: Living with the Roll Critique,” Journal
of Financial Economics, 18, 91–110.

Shiller, R. J., 1982, “Consumption, Asset Markets and Macroeconomic Fluctuations,” Carnegie-Rochester
Series on Public Policy, 17, 203–238.

Shiller, R. J., 1989, Market Volatility, MIT Press, Cambridge, MA.

Snow, C., 1991, “Diagnosing Asset Pricing Models Using the Distribution of Asset Returns,” Journal of
Finance, 46, 955–983.

Tierens, I. C., 1993, “Pitfalls in Naive Implementations of the Hansen-Jagannathan Diagnostic,” working
paper, University of Chicago.

595


