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Abstract

In this paper, we develop a unified framework for the study of mean-variance efficiency and

discount factor bounds in the presence of conditioning information. We extend the Hilbert

space framework of Hansen and Richard (1987) to obtain new characterizations of the efficient

portfolio frontier and variance bounds on discount factors, as functions of the conditioning

information. We introduce a covariance-orthogonal representation of the asset return space,

which allows us to derive several new results, and provide a portfolio-based interpretation of

existing results. Our analysis is inspired by, and extends the recent work of Ferson and Siegel

(2001,2002), and Bekaert and Liu (2001). Our results have several important applications in

empirical asset pricing, such as the construction of portfolio-based tests of asset pricing models,

conditional measures of portfolio performance, and tests of return predictability.
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1 Introduction

In this paper, we develop a unified framework for the study of mean-variance efficiency and

discount factor bounds in the presence of conditioning information. Stochastic discount

factor (SDF) bounds are central in testing asset pricing models. Such bounds define the

feasible region in the mean-variance plane by providing a lower bound on the variance of

admissible SDFs. Recent studies have focused on the use of conditioning information to

refine these bounds. Since by duality, discount factor bounds are directly related to the

mean-variance efficient frontier, studying the optimal use of conditioning information in

the construction of managed portfolios is hence of central importance. The optimal use of

conditioning information is likely to enlarge the opportunity set available to an investor, in

contrast to the ad hoc multiplicative use prevalent in the literature. The study of portfolio

efficiency with conditioning information, and thus the construction of managed portfolios

that utilize such information optimally, is hence of independent interest. Our results extend

and complement the existing literature in many important ways, and have several theoretical

implications and empirical applications, including the construction of performance measures

and tests of asset pricing models.

The main contribution of this paper is two-fold; First, we develop a new portfolio-based

framework for the implementation of discount factor bounds, with and without conditioning

information. We do this by constructing a new, covariance-orthogonal parameterization of

the space of returns on managed portfolios that permits us to derive a general expression

for such bounds. Our results connect various different approaches to the construction of

such bounds, and allow a direct comparison of their respective properties. In particular,

we provide a direct proof of the Gallant, Hansen, and Tauchen (1990) bounds, and an
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explicit expression for the ‘unconditionally efficient’ bounds of Ferson and Siegel (2002). Our

intuitive decomposition of the bounds, which is new even in the fixed-weight case without

conditioning information, yields an interesting interpretation of the original Hansen and

Jagannathan (1991) bounds.

Second, to operationalize our theoretical results, we explicitly construct the weights of effi-

ciently managed portfolios, as functions of the conditioning information. While for a specific

class of portfolios, these weights have also been reported by Ferson and Siegel (2001), our

solutions are more general. Our expressions enable us to characterize the optimal portfolios

that maximize unconditional Sharpe ratios and thus attain the sharpest possible discount

factor bounds. Moreover, our formulation of the weights facilitates the analysis of their

behavior in response to changes in conditioning information. This may have important

implications for the statistical properties of tests derived from such portfolios, and for the

empirical properties of performance measures.

Mean-variance efficiency, together with the stochastic discount factor approach, are at the

heart of modern empirical asset pricing, (see Ferson (2002) for a discussion). Mean-variance

theory has found numerous applications, for example in portfolio analysis and asset allo-

cation, empirical tests of asset pricing models, measurement of portfolio performance, and

many other fields. The Hilbert space approach to mean-variance theory, pioneered by Cham-

berlain and Rothschild (1983), provides an elegant and powerful alternative to traditional

mean-variance optimization. Hansen and Richard (1987) extend this framework to study

the optimal use of conditioning information, which is of increasing importance, given the

evidence for asset return predictability, (see Cochrane 1999).

Our work is related to Gallant, Hansen, and Tauchen (1990) (GHT), and Bekaert and Liu
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(2001). GHT were the first to use conditioning information to improve the variance bounds

for asset pricing models by projecting the SDF unconditionally onto the infinite-dimensional

space of ‘managed’ pay-offs, and calculating the variance of this projection. Bekaert and

Liu (2001) provide an alternative implementation of the GHT bounds by finding an optimal

transformation of the conditioning instruments which maximizes the implied hypothetical

Sharpe ratio. Our methodology allows us to characterize the efficient frontier in their setting,

thus recovering the expression for their bounds, and identifying the portfolio which attains

them.

Our work is also related to Ferson and Siegel (2001), who characterize the unconditional

frontier of ‘conditional’ returns, stating the weights of efficient portfolios for multiple assets.

Our relative contribution is to provide a constructive derivation of these weights, and a

theoretical investigation of their behavior. The numerical results reported by Ferson and

Siegel (2001) indicate that in their setting, the weights in the case with risk-free asset display

a conservative response to extreme values of the conditioning instruments. Our analysis

provides a theoretical explanation for this, even in the case without risk-free asset.

Ferson and Siegel (2002) use their characterization of the efficient frontier to construct

portfolio-based bounds for discount factors, which they refer to as ‘unconditionally effi-

cient (UE)’ bounds. Our contribution is to provide an explicit expression for these bounds

in terms of their efficient set constants, as a simple application of our general result. In con-

trast, their construction is purely numerical, based on parameterizing the frontier in terms

of the global minimum variance portfolio (GMV) and another, arbitrarily chosen portfolio.

Our analysis provides a theoretical basis for these choices.

The remainder of this paper is organized as follows; In Section 2, we provide an overview of
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the relevant asset pricing theory. In Section 3 we develop our main theoretical results. In

the subsequent two Sections, we operationalize these by explicitly characterizing the weights

of efficient portfolios. Section 4 focuses on the case without risk-free asset, and provides an

analysis of the implied discount factor bounds, while Section 5 covers the case with risk-free

asset. Section 6 concludes.

2 Theoretical Background

In this section, we provide a brief outline of the underlying asset pricing theory, and establish

our notation. Our exposition is based largely on Hansen and Richard (1987), and Cochrane

(2001). We first construct the space of state-contingent pay-offs, and within it the space

of traded pay-offs, augmented by the use of conditioning information. Next, we define two

different notions of ‘return’ within this space.

2.1 Set-Up and Notation

We begin by constructing the space of state-contingent pay-offs. Fix a probability space

(Ω,F , P ), endowed with a discrete-time filtration (Ft)t. We fix t > 0, and consider the

period beginning at time t− 1 and ending at t. Denote by L2
t the space of all Ft-measurable

random variables that are (unconditionally) square-integrable with respect to P . Obviously,

L2
t is a Hilbert space with respect to the inner product

〈xt, yt 〉 := E
(
xt · yt

)
, for xt, yt ∈ L2

t . (1)
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To incorporate conditioning information, let Gt−1 ⊆ Ft be a sub-σ-field. We think of Gt−1

as summarizing all information on which investors base their portfolio decisions at time

t − 1. In particular, asset prices at time t − 1 will typically depend on Gt−1. In most

practical applications, Gt−1 will be chosen as the σ-field generated by a set of conditioning

instruments, variables observable at time t−1 that contain information about the distribution

of asset returns. Examples considered in the literature include dividend yield (Fama and

French 1988), interest rate spreads (Campbell 1987), or consumption-wealth ratio (Lettau

and Ludvigson 2001).

Hansen and Richard (1987) show that L2
t can be made into a conditional Hilbert space,

when the inner product is replaced by its conditional version. E
(
xt · yt | Gt−1

)
. Intuitively,

we may think of a conditional Hilbert space as a family of regular, finite-dimensional Hilbert

spaces, indexed by the outcomes of the conditioning information. Let Xt ⊆ L2
t be a (condi-

tionally) complete, linear subspace of L2
t . In particular, Xt is closed with respect to linear

combinations of pay-offs with ‘weights’ that are Gt−1-measurable functions. We interpret Xt

as the space of all pay-offs that are attainable by forming ‘managed’ portfolios from traded

assets. As a closed linear subspace of a Hilbert space, Xt is itself also a Hilbert space.

We denote by Πt−1 : Xt−→Gt−1 the conditional pricing rule, mapping pay-offs xt ∈ Xt into

their conditional price, Πt−1

(
xt

)
. Note that Πt−1

(
xt

)
is not constant, but itself a Gt−1-

measurable function. We assume that the pricing rule satisfies the ‘Law of One Price’, i.e.

that Πt−1 is a continuous and (conditionally) linear mapping. From the conditional version

of the Riesz representation theorem it then follows that there exists a unique element x∗t ∈ Xt

such that

Πt−1

(
xt

)
= E

(
x∗t · xt | Gt−1

)
for all xt ∈ Xt. (2)

The element x∗t is referred to as the stochastic discount factor (SDF) induced by Πt−1.
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2.2 Two Notions of ‘Return’

We now introduce two different notions of ‘return’, implicit in the analysis of Hansen and

Richard (1987). While these two concepts have been used separately in distinct strands of

the literature, our analysis unifies and clarifies the relation between them.

First, we define the concept of ‘conditional’ return. These are pay-offs that have unit price

conditionally, i.e. for every possible realization of the conditioning information. Specifically,

Rt = Π−1
t−1

{
1

}
=

{
rt ∈ Xt | Πt−1

(
rt

) ≡ 1
}
. (3)

This is the space in which Ferson and Siegel (2001) study the efficient portfolio frontier.

We are interested in the ex-ante efficiency of managed portfolios, rather than the ex-post

efficiency once conditioning information is known1. Therefore, we will focus on unconditional

efficiency: an element rm
t ∈ Rt with unconditional mean m ∈ IR is called ‘UC’ efficient

(unconditionally efficient with respect to the space of conditional returns), if it has minimum

unconditional variance among all elements rt ∈ Rt with the same mean m.

In contrast to conditional returns, ‘unconditional’ returns are those which have unit price

only in expectation, i.e. on average across all realizations of the conditioning information.

We follow the notation of Hansen and Richard (1987, Section 4) and define the function

Π̂
(
xt

)
= E

(
Πt−1

(
xt

) )
. It should be noted, however, that Π̂

(
xt

)
does not in general

1As Dybvig and Ross (1985) show, when portfolio managers possess information not known to outside

investors, their (conditionally efficient) strategies may seem conditionally inefficient to outsiders. Hence, the

notion of unconditional efficiency is a more appropriate measure of performance in this case.
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represent a true price of the managed portfolio xt, but merely its expected cost. Set

R̂t = Π̂−1
{

1
}

=
{

rt ∈ Xt | Π̂
(
rt

)
= 1

}
. (4)

The GHT bounds and their implementation by Bekaert and Liu (2001) are implicitly based

on the space of unconditional returns. In analogy to the preceding paragraph, an element

r̂m
t ∈ R̂t with unconditional mean m ∈ IR is called ‘UU’ efficient (unconditionally efficient

with respect to the space of unconditional returns), if it has minimum unconditional variance

among all elements r̂t ∈ R̂t with the same mean m.

Remark: Obviously, any conditional return is also an unconditional return2, since the

portfolio constraint for unconditional returns is weaker than that for conditional returns.

As a consequence, extending the return space to include unconditional returns expands the

ex-ante mean-variance frontier. However, it will in general not be the case that every UU

efficient return is automatically UC efficient or vice versa. This is because a given UU

efficient return will typically violate the sharper portfolio constraint for conditional returns,

while a given UC efficient return will in general not have minimal variance in the larger space

of unconditional returns. In fact, we show later that the portfolio weights of UU efficient

and UC efficient returns respond very differently to changes in conditioning information.

Despite these differences, all results we derive in this paper hold equally for conditional as

well as unconditional returns, and illustrate the power of the (conditional) Hilbert space

approach.

2In fact, R̂t is of co-dimension one in the pay-off space Xt, while Rt typically has infinite co-dimension.
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2.3 Orthogonal Representation of the Return Spaces

The purpose of this section is to provide an orthogonal representation of the two return

spaces, which leads to a natural parameterization of the unconditional efficient frontier. Al-

though the following results hold for both conditional and unconditional returns, we present

here, to save space, only the discussion for conditional returns.

We choose r∗t = x∗t /Πt−1

(
x∗t

)
as the benchmark return. Hansen and Richard (1987) show

(Lemma 3.1) that r∗t is the unique return with minimal second moment, and is (conditionally)

orthogonal to the space of excess (zero cost) returns,

Zt = Π−1
t−1

{
0

}
=

{
zt ∈ Xt | Πt−1

(
zt

) ≡ 0
}
. (5)

Since the difference between any two returns is necessarily an excess return, every return

rt ∈ Rt can be written in the form rt = r∗t + zt for some zt ∈ Zt. To decompose zt further,

we define z∗t ∈ Zt to be the Riesz representation of the (conditional) expectation function

on Zt. As a trivial implication, we have E
(
z∗t

2
)

= E
(
z∗t

)
. Moreover, it is straight-forward

to show that z∗t is the orthogonal projection of the unit pay-off onto the space of excess

returns, z∗t = proj( 1 |Zt ). In particular, if a risk-free asset is traded, 1 ∈ Xt, then z∗t takes

the particularly simple form, z∗t = 1− r∗t /rf .

Hansen and Richard (1987) show that any given return rt ∈ Rt with mean m = E
(
rt

)

admits a representation of the form,

rt = r∗t + w · z∗t + η, with w =
m− E

(
r∗t

)

E
(
z∗t

) ∈ IR, (6)

where η ∈ Zt is orthogonal to z∗t with E
(
η

)
= 0. Moreover, rt is unconditionally efficient

if and only if η ≡ 0. Intuitively, r∗t is the (efficient) benchmark return, z∗t adds mean
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(efficiently), while η adds variance and thus measures inefficiency. As a direct consequence

of the orthogonality we obtain,

Corollary 2.1 For given mean m ∈ IR, the efficient variance is given by,

σ2
(
rm
t

)
= E

(
r∗t

2
)

+

(
m− E

(
r∗t

) )2

E
(
z∗t

) −m2. (7)

In particular, if a risk-free asset is traded, this expression simplifies to,

σ2
(
rm
t

)
= − E

(
r∗t

)

E
(
r∗t

)− rf

· ( m− rf

)2
=:

(
m− rf

)2

λ2∗
(8)

From (8) it is clear that in the presence of a risk-free asset, the efficient standard deviation

is a linear function of the mean, so that the frontier has the familiar ‘wedge’ shape. In

particular, the maximum Sharpe ratio in this case is given by λ∗ in (8). This result also

follows from Equation (16) in Jagannathan (1996). Note that, by construction, r∗t is in fact

located on the lower half of the efficient frontier. Hence, E
(
r∗t

)
< rf , so that λ∗ is indeed

well-defined.

3 Discount Factor Bounds

In this section, we develop a generic approach to the construction of discount factor bounds.

We extend the Hansen and Richard (1987) framework to obtain a new orthogonal parame-

terization of the unconditionally efficient portfolio frontier in the absence of a risk-free asset.

As a consequence, we obtain a simple, generic methodology for the computation of discount

factor bounds. The power of this result can be seen from the fact that explicit implemen-
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tations of both an the UE bounds of Ferson and Siegel (2002), as well as the GHT bounds,

can be obtained as a simple application of Theorem 3.3.

3.1 Review of Discount Factor Bounds

We begin this section with a brief review of the theory of discount factor bounds. In general,

we do not assume the market spanned by Xt to be complete. As a consequence, while x∗t is

unique in the pay-off space Xt, it need not be unique in the larger space L2
t . Therefore, we

call any mt ∈ L2
t an admissible stochastic discount factor (SDF), if it prices all traded assets

(conditionally) correctly, that is if,

Πt−1

(
xt

)
= E

(
xt ·mt | Gt−1

)
for all xt ∈ Xt. (9)

We denote by Mt the space of all such admissible SDFs. If a risk-free asset is traded, it is

obvious that all discount factors must have the same mean, E
(
mt

)
= 1/rf for all mt ∈ Mt.

By a simple orthogonality argument, one can show that x∗t is the unique mean-variance

efficient discount factor in Mt. In other words, the variance of x∗t is a lower bound on the

variance of all potential discount factors.

However, more interesting is the case without risk-free asset. In this case, the expectation

E
(
mt

)
is not uniquely determined. Instead, every choice of ν = E

(
mt

)
corresponds to a

‘hypothetical’ risk-free return, 1/ν. It is the key insight of Hansen and Jagannathan (1991)

that the arguments outlined above can be used to construct a lower bound on the variance

of a discount factor as a function of its mean. To formalize this idea, for given mean ν ∈ IR,

we define M ν
t as the set of all mt ∈ Mt with E

(
mt

)
= ν.
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Theorem 3.1 For fixed ν = E( mt ), the Hansen-Jagannathan bound can be expressed as,

inf
mt∈Mν

t

σ
(
mt

)

ν
= sup

rt∈R̂t

E
(
rt

)− 1/ν

σ
(
rt

) =: λ̂∗( ν ) (10)

In other words, the HJ bounds can be found by calculating the maximum ‘hypothetical’

Sharpe ratio, corresponding to the shadow risk-free return 1/ν. We use this fact to construct

discount factor bounds in the following sections. The proof of this theorem is an extension

of the original derivation in Hansen and Jagannathan (1991). A similar argument can also

be found in Cochrane (2001).

Remark: Note that the supremum on the right-hand side of (10) is taken over the space

of all unconditional returns, R̂t. Since this space has co-dimension one in the augmented

pay-off space Xt, the resulting bounds are the sharpest possible for given choice of condi-

tioning instruments. Gallant, Hansen, and Tauchen (1990) (GHT) construct these bounds

by projecting the discount factor unconditionally onto the pay-off space. An alternative

approach to the construction of the GHT bounds, implicitly based on our Theorem 3.1, is

developed in Bekaert and Liu (2001). To construct their ‘optimally scaled bounds (OSB)’,

they determine an optimal scaling vector as a function of conditioning information, such that

the subspace obtained by scaling the base assets by scalar multiples of this vector attains

the maximum hypothetical Sharpe ratio in (10).

Ferson and Siegel (2002) use a similar approach in the construction of their ‘unconditionally

efficient (UE)’ bounds in that they compute the maximum hypothetical Sharpe ratio implied

by a shadow risk-free rate 1/ν. However, the maximum is taken over the smaller space Rt

of conditional returns. Hence, for the UE bounds the right-hand side of (10) is replaced by,

λ∗( ν ) := sup
rt∈Rt

E
(
rt

)− 1/ν

σ
(
rt

) < λ̂∗( ν ) (11)
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As a consequence, Ferson and Siegel’s UE bounds will in general plot below the GHT bounds,

and (10) in this case becomes an inequality. In other words, while the UE bounds are sharper

than the HJ bounds without conditioning information, they will reject fewer asset pricing

models than the (sharpest) GHT bounds.

3.2 Portfolio-Based Derivation of Discount Factor Bounds

Since the HJ bound is trivial in the case when a risk-free asset is traded, we consider only

the case without risk-free asset. To construct the bound for a given mean ν of the discount

factor, we need to find the portfolio that maximizes the hypothetical Sharpe ratio in (10). We

provide a generic construction of this portfolio, and an expression for the implied hypothetical

Sharpe ratio, and hence the discount factor bound. Ferson and Siegel’s UE bounds, as well

as Bekaert and Liu’s implementation of the GHT bounds, can now be obtained by applying

our result to the space of conditional and unconditional returns, respectively.

It is clear that the portfolio which attains the maximum hypothetical Sharpe ratio must

be unconditionally mean-variance efficient (in the space of risky asset returns). By (6), the

entire unconditionally efficient frontier can be parameterized by a single scalar weight, so

that the problem of constructing the bounds reduces to a univariate maximization problem.

However, the representation of the frontier in terms of r∗t and z∗t is motivated by orthogonality

arguments with respect to the second moment inner product. While this inner product is

the natural choice in the space L2
t , the focus on mean-variance efficiency suggests instead

the use of covariance as an inner product. While in general, the covariance function is only

positive semi-definite, it will be positive definite when restricted to a space that does not

contain a constant element. Thus, in the case without risk-free asset, the pay-off space Xt is
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a Hilbert space with respect to the covariance inner product. We use this fact to construct a

new covariance-orthogonal representation of the efficient frontier that greatly simplifies the

computation of discount factor bounds.

Recall that r∗t is defined as the unique efficient return that is orthogonal to the space Zt of

excess returns, with respect to the second moment inner product. Extending this argument,

we consider instead the unique efficient return r0
t that is orthogonal with respect to the

covariance inner product, i.e. cov
(
r0
t , zt

)
= 0 for all zt ∈ Zt. To obtain the representation of

r0
t in terms of the Hansen and Richard (1987) parameterization, we write r0

t = r∗t +w( r0
t )·z∗t .

Orthogonality then translates into,

0 = cov
(
r∗t + w( r0

t ) · z∗t , zt

)
(12)

= E
(
zt

) [
w( r0

t )
(
1− E

(
z∗t

) )− E
(
r∗t

) ]

Here, the last equality follows from the fact that z∗t is the Riesz representation of the uncon-

ditional expectation on Zt, so that E
(
z∗t zt

)
= E

(
zt

)
. Interestingly, the orthogonal efficient

return r0
t is in fact nothing other than the global minimum variance return. To see this, note

that the orthogonality condition (12), evaluated for zt = z∗t , is equivalent to the first-order

condition of the unconstrained variance minimization problem, since

∂

∂w
σ2

(
r∗t + wz∗t

)
= 2 · cov(

r∗t + wz∗t , z∗t
)
.

We summarize these findings in the following,

Lemma 3.2 In the case without risk-free asset, the global minimum variance return r0
t
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admits a canonical representation of the form3,

r0
t = r∗t + w( r0

t ) · z∗t , with w( r0
t ) =

E
(
r∗t

)

1− E
(
z∗t

) . (13)

Moreover, r0
t is the unique efficient return that is uncorrelated with all zt ∈ Zt.

To span the efficient frontier, we also need to choose an appropriate excess return z0
t ∈ Zt.

Recall that z∗t is chosen as the Riesz-representation of the unconditional expectation on the

space of excess returns. Extending this line of argument to the covariance inner product, we

seek to find z0
t = w( z0

t ) · z∗t such that, for all zt ∈ Zt,

E
(
zt

)
= cov

(
w( z0

t ) · z∗t , zt

)
(14)

= w( z0
t )E

(
zt

) [
1− E

(
z∗t

) ]
.

As before, the last equality follows from the fact the z∗t is the Riesz representation of the

expectation functional. As a direct consequence of (14), we obtain, σ2
(
z0

t

)
= E

(
z0

t

)
. Note

that, by construction, r0
t and z0

t span the mean-variance efficient frontier, since for κ ∈ IR,

r0
t + κ · z0

t = r∗t +
[
w( r0

t ) + κ · w( z0
t )

]
z∗t

Hence, we can use the representation of the efficient frontier in terms of r0
t and z0

t to calculate

the maximum hypothetical Sharpe ratio and thus the discount factor bound.

3While the derivation of the global minimum variance portfolio in the framework of Hansen and Richard

(1987) has been reported previously (e.g. Cochrane (2001)), the novel feature here is that this portfolio

arises naturally in an orthogonal representation of the efficient frontier.
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Theorem 3.3 For given ν = E
(
mt

)
, the maximum hypothetical Sharpe ratio λ∗( ν ) that

attains the discount factor bound in (10), admits a decomposition of the form,

λ2
∗( ν ) = λ2

0( ν ) + E
(
z0

t

)
, with λ0( ν ) =

E
(
r0
t

)− 1/ν

σ
(
r0
t

) . (15)

Moreover, the maximum hypothetical Sharpe ratio is attained by the return

r0
t + κ∗ν · z0

t , with κ∗ν =
σ2

(
r0
t

)

E
(
r0
t

)− 1/ν
. (16)

Note that, by construction, the portfolio constructed in (16) is the unique efficient portfolio

with zero-beta rate 1/ν.

Proof of Theorem 3.3: For arbitrary κ ∈ IR, consider the efficient return rt = r0
t +κ ·z0

t .

The objective is to find κ such as to maximize the implied hypothetical (squared) Sharpe

ratio, [
E

(
r0
t + κ · z0

t

)− 1/ν
]2

σ2
(
r0
t + κ · z0

t

) =

[
E

(
r0
t

)
+ κ · E(

z0
t

)− 1/ν
]2

σ2
(
r0
t

)
+ κ2 · E(

z0
t

)

The first-order condition for this maximization problem can be written as,

κ · E(
z0

t

) [
E

(
r0
t

)
+ κ · E(

z0
t

)− 1/ν
]

= E
(
z0

t

) [
σ2

(
r0
t

)
+ κ2 · E(

z0
t

) ]

The quadratic terms in this expression cancel, due to our choice of z0
t . Hence, the first-

order condition can be easily solved to obtain (16). To prove the decomposition (15) of the

maximum hypothetical Sharpe ratio, we re-write the first-order condition as,

λ2
∗( ν ) =

[
E

(
r0
t

)− 1/ν
]2

σ2
(
r0
t

) + E
(
z0

t

)
= λ2

0( ν ) + E
(
z0

t

)

This completes the proof of Theorem 3.3.
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This result, to our knowledge, is new. It provides not only a very simple way of constructing

discount factor bounds, but also a portfolio-based interpretation of these bounds. Also,

we would like to emphasize that the above approach to the construction of discount factor

bounds is valid even in the fixed-weight case, when there is no conditioning information. If a

risk-free asset is traded, Jagannathan (1996) shows that the maximum Sharpe ratio is given

by E
(
z∗t

)
/(1− E

(
z∗t

)
). On the other hand, our decomposition (15) can be re-written as,

λ2
∗
(
ν

)
= λ2

0

(
ν

)
+

E
(
z∗t

)

1− E
(
z∗t

) . (17)

Our result thus generalizes Equation (16) of Jagannathan (1996), which gives the HJ bound

in the case with risk-free asset. We extend this result to the case without risk-free asset,

providing an new decomposition of the HJ bounds. Using Theorem 3.1, we now obtain the

explicit expression for the discount factor bounds,

Corollary 3.4 For fixed ν = E( mt ), the Hansen-Jagannathan bound can be written as,

inf
mt∈Mν

t

σ2( mt ) ≥ ( γ2
1 + γ2γ3 ) · ν2 − 2γ1 · ν + 1

γ2

, (18)

where γ1, γ2 are the unconditional mean and variance of r0
t , respectively, and γ3 = E( z0

t ).

In other words, the lower bound on the variance of an SDF is simply a quadratic function

of its mean. Our characterization of this function in terms of the moments of the global

minimum variance (GMV) portfolio may be useful in implementing discount factor bounds.

Remark: While the results developed in this section are formulated for conditional returns,

all arguments are equally valid for unconditional returns, and even in the fixed-weight case

without conditioning information. In particular, for unconditional returns, one constructs

corresponding orthogonal elements r̂0
t and ẑ0

t , to obtain the respective version of Theorem
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3.3. However, it should be noted that in the case of unconditional returns, inequality (18)

becomes an equality, since the minimum on the left-hand side is attained by the GHT

projection, which can be normalized to become an unconditional return. However, since this

is not possible in the case of conditional returns, the implied bounds in this case are truly

portfolio-based bounds.

4 Case Without Risk-Free Asset

We now operationalize the results of the preceding section by constructing the weights of r∗

and z∗, for both conditional and unconditional returns. We thus recover the weights stated

in Ferson and Siegel (2001), and provide a characterization of the efficient frontier implicit

in Bekaert and Liu (2001). Using our results from Section 3, we obtain explicit expressions

for the UE bounds of Ferson and Siegel (2002) in terms of their ‘efficient set’ constants, and

Bekaert and Liu’s (2001) implementation of the GHT bounds. Our unified framework may

help clarify the relationship between these two sets of bounds.

We show that for conditional returns, the efficient weights respond ‘conservatively’ to ex-

treme outcomes of the conditioning instruments, similar to the behavior reported in Ferson

and Siegel (2001) in the case with risk-free asset. In contrast, the efficient weights for un-

conditional returns display a much more ‘aggressive’ response. This may have important

implications for the robustness of the bounds derived from these portfolios.
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4.1 Construction of Managed Portfolios

Suppose there are n risky assets, indexed k = 1 . . . n. We denote the (gross) return of

the k-th asset by rk
t ∈ L2

t . Let R̃t :=
(
r1
t . . . rn

t

)′
denote the vector of risky asset returns.

We define the augmented pay-off space Xt as the space of all xt = R̃′
tθt−1, where θt−1 are

Gt−1-measurable, IRn-valued functions such that xt ∈ L2
t . We interpret the elements of

this space as ‘managed’ pay-offs, since the weights θt−1 are functions of the conditioning

information. On this space, we define the conditional pricing function Πt−1

(
xt

)
= e′θt−1,

where e is an n-vector of ones. Following Section 2, the space Rt of conditional returns in

this framework is given by the set of all rt = R̃′
tθt−1 with e′θt−1 ≡ 1. Conversely, the space

R̂t of unconditional returns is defined by the (weaker) constraint E
(
e′θt−1

)
= 1. Denoting

the conditional moments of the return vector as,

µt−1 = E
(

R̃t | Gt−1

)
, and Λt−1 = E

(
R̃t · R̃′

t | Gt−1

)
, (19)

returns can be written in the form R̃t = µt−1 + εt, where µt−1 is the conditional expectation

of returns given conditioning information, and εt is the residual disturbance with variance-

covariance matrix Λt−1 − µt−1µ
′
t−1. This is the formulation of the model with conditioning

information used in Ferson and Siegel (2001).4

4Note however that our notation differs slightly from that used in Ferson and Siegel (2001), who define

Λt−1 to be the inverse of the conditional second-moment matrix.
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4.2 Constructing the Efficient Frontier

In this section, we construct the efficient frontier in the absence of a risk-free asset. To

simplify notation, we will drop the time index for the remainder of this section. We define

(conditional) ‘efficient set’ constants,

A = e′Λ−1e, B = µ′Λ−1e, D = µ′Λ−1µ (20)

Finally, we denote by the lowercase letters a, b, and d the unconditional expectations of the

quantities A, B, and D, respectively.5

Theorem 4.1 (Constructing r∗) In the case without risk-free asset,

(i) for conditional returns, r∗ = R̃′θ, with θ =
1

A
Λ−1e

In particular, E
(
r∗

)
= E

( B

A

)
and σ2

(
r∗

)
= E

( 1

A

)− E
( B

A

)2

(ii) for unconditional returns, r̂∗ = R̃′θ, with θ =
1

a
Λ−1e

In particular, E
(
r̂∗

)
=

b

a
and σ2

(
r̂∗

)
=

1

a
− ( b

a

)2

Proof: Appendix A.1.

Note in particular that the expressions for the weights in both cases are identical up to the

normalization constants, A and a, respectively. These constants ensure that the portfolio

5The constants a, b, and d are identical to those defined in Bekaert and Liu (2001) if the base asset prices

are normalized to one in their analysis.
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constraints are satisfied. Their difference reflects the fact that for conditional returns, the

constraint is required to hold for every realization of the conditioning information, while for

unconditional returns it is required to hold only in expectation.

Theorem 4.2 (Constructing z∗) In the case without risk-free asset,

(i) for conditional returns, z∗ = R̃′θ, with θ = Λ−1
(

µ− B

A
e

)

In particular, E
(
z∗

)
= E

(
D − B2

A

)

(ii) for unconditional returns, r̂∗ = R̃′θ, with Λ−1
(

µ− b

a
e

)

In particular, E
(
ẑ∗

)
= d− b2

a

Proof: Appendix A.2.

4.3 Conditional Returns and Discount Factor Bounds

We now study the properties of the efficient frontier for conditional returns, using our results

from the preceding section. Using our results from Section 3.2, we then characterize the

implied discount factor bounds for conditional returns. From this we obtain an explicit

expression for the ‘unconditionally efficient (UE)’ bounds considered in Ferson and Siegel

(2002), in terms of their efficient set constants.

(a) Efficient Portfolio Weights

Ferson and Siegel (2001) describe the efficient frontier in terms of ‘efficient set’ constants.

Following their notation, we can identify the moments in Theorem 4.1 (i) as E
(
r∗

)
= α2
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and σ2
(
r∗

)
= α1 − α2

2. In other words, α2 and α1 are the first and second moments of r∗,

respectively. Similarly, we find α3 = E
(
z∗

)
.

Lemma 4.3 The weights of the UC efficient return rm for given mean m ∈ IR are,

θ∗m = Λ−1
( 1− w∗

mB

A
e + w∗

mµ
)
, where w∗

m =
m− α2

α3

(21)

The above expression has an interesting economic interpretation, which enables us to ana-

lyze the behavior of the weights in response to changes in conditioning information. Similar

to the fixed-weight case, the efficient portfolio weights in (21) consist of two components, an

equally weighted ‘market’ portfolio whose weights are proportional to the unit vector e, and

a ‘managed’ component whose weights are proportional to the vector of conditional expected

base asset returns, µ. The first component responds uniformly across all assets to changes in

the conditioning instruments, while the weights of the second respond to information about

the return of individual assets. Motivated by this observation, we interpret the former as

a ‘market-timing’ component, while the latter captures effects of asset ‘selectivity’. The

market-timing component clearly reflects the more conservative part of the efficient port-

folio, while the selectivity component reflects a more aggressive response to conditioning

information.

The overall behavior of the efficient portfolio is determined by the allocation of weights

across these two components. From the definition of the conditional constant A, it follows

that the sum of weights on the market-timing component is simply 1 − w∗
mB. It is easy to

see that for extreme values of the conditioning instruments, B converges to zero. In other

words, the efficient portfolio responds to extreme information by shifting all weight into
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the conservative market-timing component.6 In Section 4.4, we will see that the efficient

weights for unconditional returns, from which Bekaert and Liu’s (2001) implementation of

the GHT bounds is constructed, display a more aggressive behavior, shifting all weight into

the selectivity component. This may have important implications for the robustness of

bounds constructed from these weights. In particular, the appearance of the vector µ in the

selectivity component will amplify any measurement errors of the conditional moments for

extreme values of the conditioning information.

(b) Discount Factor Bounds

Following Section 3, discount factor bounds can be obtained by maximizing the hypothet-

ical Sharpe ratio implied by a given ν = E
(
m

)
. Applying Corollary 3.4 to the space of

conditional returns, we can now give an explicit expression for Ferson and Siegel’s (2002)

UE bounds in terms of their ‘efficient set’ constants,

Corollary 4.4 (UE Bound) Necessary for a candidate m to be an admissible SDF is,

σ2( m ) ≥ (α1α3 + α2
2) · ν2 − 2α2 · ν + (1− α3)

α1(1− α3)− α2
2

, where ν = E
(
m

)
(22)

In other words, the UE bound takes the form of a second-order polynomial in ν, where the

coefficients are related to the efficient set constants. This formulation of the bounds should

be useful in practical implementations.

Proof: In terms of the ‘efficient set’ constants defined in Ferson and Siegel (2001), the mean

and variance of the global minimum variance return can be written as, γ1 = α2/(1−α3) and

6Ferson and Siegel (2001) report a similar result only in the case with risk-free asset. In Section 5.3, we

provide a theoretical explanation for these findings.
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γ2 = α1−α2
2/(1−α3), respectively. Similarly, we obtain γ3 = α3/(1−α3). Substituting this

into Equation (18) and re-arranging, we obtain the desired result.

Note that, since the space of conditional returns is smaller than the space of unconditional

returns, the UE bounds will not in general attain the highest possible discount factor bound,

and (22) will in general be a strict inequality. However, Ferson and Siegel (2002) show that

the UE bounds possess attractive empirical properties. First, they remain valid lower bounds

for the variance of stochastic discount factors even when the conditional moments are mis-

specified. Second, the conservative behavior of the weights of the portfolio that attains the

bounds may translate into robust sampling properties.

Remark: By Theorem 3.3, the portfolio that attains the discount factor bounds can be

written as, r0 + κ∗ν · z0. Using Theorems 4.1 (i) and 4.2 (i), the weights of this portfolio are,

θ∗ν = Λ−1
( 1− κ∗νB

A
e + κ∗νµ

)
, with κ∗ν =

α1ν − α2

α2ν − (1− α3)
(23)

From the preceding section, we can identify this as the weights of the efficient return for

mean α2 +α3 ·κ∗ν . The zero-beta rate associated with this portfolio is, by construction, 1/ν.

4.4 Unconditional Returns and Discount Factor Bounds

Gallant, Hansen, and Tauchen (1990) consider discount factor bounds in the space of uncon-

ditional returns. While their bounds are constructed by projecting the discount factor onto

the pay-off space, Bekaert and Liu (2001) use an approach based on maximizing the implied

hypothetical Sharpe ratio in the spirit of Theorem 3.1. Using our framework, we highlight

the implicit portfolio interpretation of their approach.

(a) Efficient Portfolio Weights
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Using Theorems 4.1 (ii) and 4.2 (ii), we obtain,

Lemma 4.5 The weights of the UU efficient return r̂m for given mean m ∈ IR are,

θ∗m = Λ−1
( 1− w∗

mb

a
e + w∗

mµ
)
, where w∗

m =
am− b

ad− b2
(24)

Note that, as in case for conditional returns, the efficient weight can be decomposed into a

conservative ‘market-timing’ part, and a ‘selectivity’ component. An argument similar to

that for conditional returns show that, for extreme values of the conditioning instruments,

the weight shifts away from the conservative component into the ‘selectivity’ part. Thus,

the efficient weights in the case of unconditional returns display a more aggressive response.

By Corollary 2.1, the efficient variance for given mean m is,

σ2
(
r̂m

)
=

d− 2bm + ( a− δ ) m2

δ
, with δ = ad− b2 (25)

This characterizes the efficient frontier implicit in the analysis of Bekaert and Liu (2001).

(b) Discount Factor Bounds

In this section, we provide an alternative derivation of the GHT bounds, applying Theorem

3.3 to the case of unconditional returns. While an expression for these bounds was also

derived by Bekaert and Liu (2001), we add to their analysis by providing a portfolio-based

interpretation.

Corollary 4.6 (GHT Bound) Necessary for a candidate m to be an admissible SDF is,

σ2( m ) ≥ d · ν2 − 2b · ν + (a− δ)

1− d
where ν = E

(
m

)
(26)
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This is Equation (25) in Bekaert and Liu (2001).

Proof: First, using the ‘efficient set’ constants of Bekaert and Liu (2001), the mean and

variance of the global minimum variance return r̂0 can be written as, γ1 = b/(a − δ) and

γ2 = (1− d)/(a− δ). Similarly, we obtain γ3 = δ/(a− δ). Applying Corollary 3.4 then gives

the desired result.

Note that (26) in this case is sharp, since the right-hand side is attained by the variance

of the GHT projection. Similar to the UE bounds, this expression also takes the form of a

second-order polynomial in ν. The methodology in Bekaert and Liu (2001) yields the OSB

as a quartic over a quadratic polynomial which, if moments are correctly specified, reduces

to the above expression.

Remark: In our analysis, the portfolio that attains the discount factor bound is given from

Theorem 3.3 as r̂0 + κ∗ν · ẑ0. Rewriting this using Theorems 4.1 (ii) and 4.2 (ii), we obtain

the weights of this portfolio as,

θ∗ν = Λ−1
( 1− d

a− δ − bν
· e +

b− ν

a− δ − bν
· µ )

(27)

It is straight-forward to show that these weights in fact coincide with the optimal scaling

vector given in Equations (22) and (23) of Bekaert and Liu (2001), suitably normalized.

5 Case With Risk-Free Asset

In this section, we construct the efficient frontier for conditional and unconditional returns

when there is a risk-free asset. This enables us to provide an explanation for the ‘conservative

response’ of the efficient weights for conditional returns, as reported in Ferson and Siegel
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(2001). In contrast, we show that the weights for unconditional returns exhibit a much more

aggressive behavior in that they may require extreme long and short positions in individual

assets. We also obtain explicit expressions for the maximum Sharpe ratios in both cases,

which we use in a separate paper to construct a portfolio-based test of whether asset return

predictability significantly expands the mean-variance frontier.

5.1 Constructing Managed Portfolios

As in Section 4, we consider the case where the pay-off space is ‘spanned’ by a finite set of

base assets. As before, we denote by R̃t :=
(
r1
t . . . rn

t

)′
the vector of risky asset returns.

However, we now consider the case in which a risk-free asset is traded. We denote its

(gross) return by rf . In this case, the augmented space of ‘managed’ pay-offs now consist

of elements of the form xt = θ0
t−1rf + ( R̃t − rfe )′θt−1. Note that we allow portfolios that

have have ‘managed’ positions in the risk-free asset, which themselves are hence no longer

risk-free, since the weight θ0
t−1 may vary with conditioning information.

Note that, in contrast to Section 4, the weights θt−1 on the risky assets are now applied to

their excess returns. As a consequence, the space Rt of conditional returns in this framework

is given by those pay-offs for which θ0
t−1 ≡ 1. However, the space R̂t of unconditional returns

is defined by the (less strict) constraint E
(
θ0

t−1

)
= 1. We define

Σt−1 = Var
(

R̃t | Gt−1

)
= Λt−1 − µt−1 · µ′t−1 (28)

Note that, in contrast to Ferson and Siegel (2001), we derive the efficient portfolio weights

in the case with risk-free asset in terms of the conditional variance-covariance matrix Σt−1

of returns, rather than the matrix of second moments Λt−1. This will enable us to derive an
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expression for the Sharpe ratio for unconditional returns, which is similar to Equation (16)

in Jagannathan (1996).

5.2 Constructing the Efficient Frontier

In this section, we derive the weights of r∗ and z∗ as functions of conditioning information,

for conditional and unconditional returns. This enables us to construct the efficient portfolio

frontier in both cases. To simplify notation, we will drop the time index for the remainder

of this section. We define,

H2 = ( µ− rfe )′ Σ−1 ( µ− rfe ), (29)

In analogy to Section 4, we denote by h2 = E
(
H2

)
the unconditional expectation of H2.

Note that, in the case of one risky and one risk-free asset, the quantity H2 is in fact the

maximum squared conditional Sharpe ratio.

Theorem 5.1 (Constructing r∗) In the case without risk-free asset,

(i) for conditional returns, r∗ = rf +
(
R̃− rfe

)′
θ,

with θ = − ( rf

1 + H2

) · Σ−1
(
µ− rfe

)

(ii) for unconditional returns, r̂∗ = θ0rf +
(
R̃− rfe

)′
θ,

with θ = − ( rf

1 + h2

) · Σ−1
(
µ− rfe

)
and θ0 =

( 1 + H2

1 + h2

)

Proof: Appendix A.3.
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Note that, for unconditional returns the risk-free asset is dynamically managed, in that its

weight θ0 is a function of conditioning information. The weights of z∗ can easily be derived

from the above expressions, since we know that in the case with risk-free asset, z∗ = 1−r∗/rf .

5.3 Efficient Frontier of Conditional Returns

We now calculate the efficient portfolio weights for conditional returns, thus providing a

constructive proof of the results stated in Theorem 2 of Ferson and Siegel (2001). In the

presence of a risk-free asset, Ferson and Siegel (2001) formulate their efficient portfolio

weights in terms of a quantity ζ (see Equation (11) in their paper), which may be interpreted

as a measure of the effect of return predictability on the mean-variance frontier. Using a

simple matrix identity, this quantity can be shown to equal,

ζ = E
( H2

1 + H2

)
(30)

As a consequence, we can rewrite the unconditional moments of r∗ as E
(
r∗

)
= rf ( 1 − ζ )

and σ2
(
r∗

)
= rfζ( 1 − ζ ). The explicit weights for r∗ and z∗, give us the weights of the

efficient return for a given mean m as,

θ∗m =
w∗

m − rf

1 + H2
· Σ−1

(
µ− rfe

)
, where w∗

m =
m− rf ( 1− ζ )

ζ
(31)

Using the same matrix identity, this expression can be shown to be identical to that stated in

Equation (12) of Ferson and Siegel (2001). Our expression (31), while similar to the efficient

portfolio weights in the absence of conditioning information, differs from the latter in that the

normalization factor 1+H2 is in fact time-varying. The presence of this time-varying quantity

is an artefact of the conditional portfolio constraint. For small values of the conditioning

information, the response of the weights is determined mainly by the numerator Σ−1( µ −
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rfe ), as the normalization coefficient is close to one. In contrast, for larger values of the

conditioning information, the normalization coefficient increasingly dominates the response.

This is illustrated in Figure 1 in Ferson and Siegel (2001), which graphs the portfolio weights

as a function of a conditioning variable in the case where the conditional mean µ is linear. In

contrast, in the case of unconditional returns, the normalization coefficient is unconditionally

constant and therefore does not affect the responsiveness of the weights (see Section 5.4 (a)).

Remark: Note that in the case with risk-free asset, the maximum Sharpe ratio is in fact

attained by r∗. From the results of the preceding sections, we find that the maximum

(squared) Sharpe ratio for conditional returns is given by,

λ2
∗ = E

( H2

1 + H2

)/
E

( 1

1 + H2

)
, (32)

which, in the notation of Ferson and Siegel (2001), can be written as λ2
∗ = ζ/(1− ζ).

5.4 Efficient Frontier of Unconditional Returns

In this section, we construct the efficient frontier for unconditional returns. The weights of

r̂∗ and ẑ∗ give us the risky asset weights for the efficient return for given mean m as,

θ∗m =
m− rf

h2
· Σ−1

(
µ− rfe

)
(33)

In the case without conditioning information, µ and Σ are constant, so that the above expres-

sion reduces to the familiar efficient weights in classical mean-variance theory. Note that, in

contrast to the Ferson-Siegel weights in (31), the normalization factor in this case is in fact

constant. As a consequence, these weights will not in general exhibit the ‘conservative re-

sponse’ of the Ferson-Siegel weights. In fact, in the linear regression specification considered
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in Ferson and Siegel (2001), the corresponding efficient weights for unconditional returns

will be linear! This implies that extreme portfolio positions are possible,7 which is due to

the less restrictive portfolio constraints. Moreover, measurement errors in the conditional

moments will be amplified linearly for extreme values of the conditional instruments, which

may have implications for the robustness of these weights.

Remark: As argued above, we can compute the maximum Sharpe ratio in this case directly

from the moments of r̂∗. Due to the unconditional normalization constants, the maximum

(squared) Sharpe ratio for unconditional returns takes the simple form,

λ2
∗ =

( h2

1 + h2

)/( 1

1 + h2

)
= h2 (34)

Note that this expression is very similar to that for the Sharpe ratio in the fixed-weight case

without conditioning information. In fact, h2 is simply the unconditional expectation of

the maximum squared conditional Sharpe ratio. While our result applies to multiple risky

assets, the case of a single risky asset has been analyzed in Cochrane (1999).

6 Conclusion

We provide a unified framework for the study of mean-variance efficiency and discount factor

bounds in the presence of conditioning information. First, we develop a new portfolio-based

framework for the implementation of discount factor bounds with and without conditioning

information. To do this, we construct a new, covariance-orthogonal parameterization of the

7The behavior of the weights is thus similar to the sensitivity of traditional fixed weight portfolios, see

also Green and Hollifield (1992) for a discussion of this issue.
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space of returns on managed portfolios. As a direct implication of our results, we obtain

a general, portfolio-based methodology for the implementation of discount factor bounds.

Our results connect various different approaches to the construction of such bounds, and

allow a direct comparison of their respective properties. Second, we explicitly construct the

weights of efficiently managed portfolios as functions of the conditioning information. This

enables us to characterize the optimal portfolios that maximize unconditional Sharpe ratios

and thus attain the sharpest possible discount factor bounds. Moreover, our formulation of

the weights facilitates the analysis of their behavior in response to changes in conditioning

information.

Our analysis has several important empirical applications. First, the expression for the

maximum Sharpe ratio in the presence of conditioning information can be used to study the

effect of return predictability. Second, the techniques developed in this paper can be used to

construct portfolio-based tests of conditional asset pricing models. Finally, our results can

also be used to construct measures of portfolio performance in the presence of conditioning

information, a topic we are currently investigating.
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A Appendix

A.1 Proof of Theorem 4.1:

Part (i): Conditional Returns

By Lemma 3.3 of Hansen and Richard (1987), the second moment minimization problem

for conditional returns can be solved conditionally. Thus, for any given realization of the

conditioning information, we seek to find θ such as to

minimize θ′Λθ subject to e′θ = 1

We set up the (conditional) Lagrangean,

L( θ ) =
1

2

(
θ′Λθ

)− α
(
e′θ − 1

)

where α is the Lagrangean multiplier for the conditional portfolio constraint. The first-order

condition with respect to θ for the minimization problem is,

Λθ = αe which implies θ = αΛ−1e

To determine the Lagrangean multiplier α, we use the portfolio constraint,

1 = e′θ = α( e′Λ−1e ) = αA which implies θ =
1

A
Λ−1e

To compute the moments of r∗, we use the law of iterated expectations to obtain,

E
(
r∗

)
= E

(
µ′θ

)
= E

( B

A
) and E

(
r∗2

)
= E

(
θ′Λθ

)
= E

( A

A2
)

This completes the proof for conditional returns.
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Part (ii): Unconditional Returns

We use calculus of variation. Suppose θ is a solution, and φ is an arbitrary vector of

(managed) weights. Define,

θε = ( 1− ε )θ + ε
φ

E
(
e′φ

)

By normalization, θε is an admissible perturbation in the sense that it generates a one-

parameter family of unconditional returns. Since θ solves the minimization problem, the

following first-order condition must hold,

d

dε

∣∣∣∣
ε=0

E
(
θ′εΛθε

)
= 0

which implies 0 = E
(
θ′Λ

[
E

(
e′φ

)
θ − φ

] )
= E

( [
E

(
θ′Λθ

)
e′ − θ′Λ

]
φ

)

Since this equation must hold for every φ, it implies,

θ = E
(
θ′Λθ

)
Λ−1e =: αΛ−1e

To determine the normalization constant α, we use the portfolio constraint,

1 = E
(
e′θ

)
= αE

(
e′Λ−1e

)
= αa which implies θ =

1

a
Λ−1e

To compute the moments of r̂∗, we use the law of iterated expectations to obtain,

E
(
r̂∗

)
= E

(
µ′θ

)
=

( b

a
) and E

(
r̂∗2

)
= E

(
θ′Λθ

)
=

( a

a2
)

This completes the proof of Theorem 4.1.
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A.2 Proof of Theorem 4.2:

Part (i): Conditional Returns

To determine z∗, we use the fact that it is the Riesz representation of the conditional

expectation on the space of excess returns. Since any excess return can be written as

z = ( z + r∗ )− r∗ =: r − r∗, this implies

E
(
( r − r∗ )( z∗ − 1 ) | G )

= 0 for all r ∈ R

Write z∗ = R̃′θ and r = R̃′φ/(e′φ) for some arbitrary vector of weights φ. Using the

conditional moments and the fact that z∗ is conditionally orthogonal to r∗, we obtain,

0 = E
(
rz∗ − ( r − r∗ ) | G )

=
θ′Λφ

e′φ
− µ′

( φ

e′φ
− 1

A
Λ−1e

)

which implies
[
Λθ − ( µ− B

A
e )

]′
φ = 0

Since this equation must hold for any φ, it implies,

θ = Λ−1
(
µ− B

A
e
)

To compute the expectation of z∗, we calculate,

E
(
z∗

)
= E

(
µ′θ

)
= E

(
µ′Λ−1( µ− B

A
e )

)
= E

(
D − B2

A

)

This completes the proof for conditional returns.

Part (ii): Unconditional Returns

For unconditional returns, ẑ∗ is the Riesz representation of the unconditional expectation

on the space of excess returns. Hence,

E
(
( r − r̂∗ )( ẑ∗ − 1 )

)
= 0 for all r ∈ R̂
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As before, we write ẑ∗ = R̃′θ and r = R̃′φ/E
(
e′φ

)
for some arbitrary φ. Using the law of

iterated expectations and the fact that ẑ∗ is orthogonal to r̂∗, we obtain,

0 = E
(
rẑ∗ − ( r − r̂∗ )

)
= E

( θ′Λφ

E
(
e′φ

) − µ′
( φ

E
(
e′φ

) − 1

a
Λ−1e

) )

which implies E
( [

θ − ( µ− b

a
e )

]′
φ

)
= 0

Since this equation must hold for any φ, it implies,

θ = Λ−1
(
µ− b

a
e
)

To compute the expectation of ẑ∗, we calculate,

E
(
ẑ∗

)
= E

(
µ′θ

)
= E

(
µ′Λ−1( µ− b

a
e )

)
=

(
d− b2

a

)

This completes the proof of Theorem 4.2.

A.3 Proof of Theorem 5.1:

We apply Theorem 4.1 to the case with risk-free asset. To do this, extend the vector of

base asset returns R̃+ = ( rf , R̃ )′. Denote by µ+ = ( rf , µ )′ the extended conditional mean

vector, and by Λ+ the corresponding second-moment matrix,

Λ+ =




r2
f rfµ

′

rfµ Λ




Using partitioned matrix inversion, we obtain,

Λ−1
+ =

1

r2
f




( 1 + µ′Σ−1µ ) −rf · µ′Σ−1

−rf · Σ−1µ r2
f · Σ−1



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Part (i): Conditional Returns

Let e+ = ( 1, e )′ denote the extended (n + 1)-vector of ‘ones’. Following Theorem 4.1, we

define the normalization constant,

A+ = e′+Λ−1
+ e+ =

1

r2
f

[
1 + (µ− rfe)

′Σ−1(µ− rfe)
]

=
1 + H2

r2
f

Write r∗ = θ0rf + R̃′θ and set θ+ = ( θ0, θ )′. From Theorem 4.1 (i), we obtain,

θ+ =
1

A+

Λ−1
+ e+ which implies θ = − rf

1 + H2
Σ−1

(
µ− rfe

)

and θ0 =
1 + µ′Σ−1( µ− rfe )

1 + H2
=

1 + H2 + rf · e′Σ−1( µ− rfe )

1 + H2
= 1− e′θ

To compute the moments of r∗, we define the analogue of the efficient set constant B for the

extended asset vector,

B+ = µ′+Λ−1
+ e+ =

1

rf

Using the moments from Theorem 4.1 (i), we obtain,

E
(
r∗

)
= E

( B+

A+

)
= E

( rf

1 + H2

)
and E

(
r∗2

)
= E

( 1

A+

)
= E

( r2
f

1 + H2

)

This completes the proof for conditional returns.

Part (ii): Unconditional Returns

For unconditional returns, the normalization constant becomes,

a+ = E
(
A+

)
=

1 + h2

r2
f

Write r̂∗ = θ0rf + R̃′θ and set θ+ = ( θ0, θ )′. From Theorem 4.1 (ii), we obtain,

θ+ =
1

a+

Λ−1
+ e+ which implies θ = − rf

1 + h2
Σ−1

(
µ− rfe

)
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and θ0 =
1 + µ′Σ−1( µ− rfe )

1 + h2
=

1 + H2 + rf · e′Σ−1( µ− rfe )

1 + h2
=

1 + H2

1 + h2
− e′θ

To compute the moments, note that b+ = E
(
B+

)
= 1/rf . Using the moments from Theorem

4.1 (ii), we obtain,

E
(
r̂∗

)
=

( b+

a+

)
=

( rf

1 + h2

)
and E

(
r̂∗2

)
=

( 1

a+

)
=

( r2
f

1 + h2

)

This completes the proof of Theorem 5.1.
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