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We examine the finite-sample properties of the variance ratio test of the random walk hypothesis
via Monte Carlo simulations under two null and three alternative hypotheses. These results are
compared to the performance of the Dickey—Fuller ¢ and the Box-Pierce Q statistics. Under the
null hypothesis of a random walk with independent and identically distributed Gaussian incre-
ments, the empirical size of all three tests are comparable. Under a heteroscedastic random walk
null, the variance ratio test is more reliable than either the Dickey—Fuller or Box—Pierce tests. We
compute the power of these three tests against three alternatives of recent empirical interest: a
stationary AR(1), the sum of this AR(1) and a random walk, and an integrated AR(1). By
choosing the sampling frequency appropriately, the variance ratio test is shown to be as powerful
as the Dickey—Fuller and Box-Pierce tests against the stationary alternative and is more powerful
than either of the two tests against the two unit root alternatives.

1. Introduction

Whether or not an economic time series follows a random walk has long
been a question of great interest to economists. Although its origins lie in the
modelling of games of chance, the random walk hypothesis is also an implica-
tion of many diverse models of rational economic behavior.! Several recent
studies have tested the random walk theory by exploiting the fact that the

*This paper has benefited considerably from the comments of an Associate Editor and two
referees. We thank Chris Cavanagh, John Huizinga, Whitney K. Newey, Ken Singleton, Mark
Watson, and seminar participants at M.IT., Northwestern University, Princeton University,
Stanford University, UCLA, University of Chicago, University of Michigan, and the University of
Pennsylvania for comments on an earlier draft. We are grateful to Stephanie Hogue, Elizabeth
Schmidt, and Madhavi Vinjamuri for preparing the manuscript. Research support from the
National Science Foundation (Grant No. SES-8520054) and the University of Pennsylvania
Research Fund is gratefully acknowledged. Any errors are of course our own.

ISee, for example, Gould and Nelson (1974), Hall (1978), Lucas (1978), Shiller (1981), Kleidon
(1986), and Marsh and Merton (1986).
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variance of random walk increments is linear in the sampling interval.?
Therefore the variance of, for example, quarterly increments must be three
times as large as the variance of monthly differences. Comparing the (per unit
time) variance estimates from quarterly to monthly data will then yield an
indication of the random walk’s plausibility. Such a comparison may be
formed quantitatively along the lines of the Hausman (1978) specification test
and is developed in Lo and MacKinlay (1988). Due to intractable nonlineari-
ties, the sampling theory of Lo and MacKinlay is based on standard asymp-
totic approximations.

In this paper, we investigate the quality of those approximations under the
two most commonly advanced null hypotheses: the random walk with inde-
pendently and identically distributed Gaussian increments, and with uncorre-
lated but heteroscedastic increments. Under both null hypotheses, the variance
ratio test is shown to yield reliable inferences even for moderate sample sizes.
Indeed, under a specific heteroscedastic null the variance ratio test is some-
what more reliable than both the Dickey—Fuller ¢ and Box—Pierce port-
manteau tests.

We also compare the power of these tests against three empirically interest-
ing alternative hypotheses: a stationary AR(1) which has been advanced as a
model of stock market fads, the sum of this AR(1) and a pure random walk,
and an ARIMA(1,1,0) which is more consistent with stock market data.
Although the Dickey-Fuller ¢ test is more powerful than the Box-Pierce Q
test against the first alternative and vice versa against the second, the variance
ratio test is comparable to the most powerful of the two tests against the first
alternative, and more powerful against the second two alternatives when the
variance ratio’s sampling intervals are chosen appropriately.

Since the random walk is closely related to what has come to be known as a
‘unit root’ process, a few comments concerning the variance ratio test’s place
in the unit root literature are appropriate. It is obvious that the random walk
possesses a unit root. In addition, random walk increments are required to be
uncorrelated. Although earlier studies of unit root tests [e.g., Dickey and
Fuller (1979, 1981)] also assumed uncorrelated increments, Phillips (1986, 1987),
Phillips and Perron (1986), and Perron (1986) show that much of those results
obtain asymptotically even when increments are weakly dependent.® There-
fore, the random walk model is a proper subset of the unit root null
hypothesis. This implies that the power of a consistent unit root test against
the random walk hypothesis will converge to the size of the test asymptoti-
cally.

ZSee, for example, Campbell and Mankiw (1987), Cochrane (1987a, b), Huizinga (1987), Lo and
MacKinlay (1988), and Poterba and Summers (1987).

*Dickey and Fuller (1979,1981) make the stronger assumption of independently and identically
distributed Gaussian disturbances.
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This is best 111ustrated in the context of Beveridge and Nelson’s (1981 )
decomposition of a unit root process into the sum of a random walk and a
stationary process.® Recent applications of unit root tests propose the null
hypothesis that the random walk component does not exist, whereas tests of
the random walk have as their null hypothesis that the stationary component
does not exist.’

Since there are some important departures from the random walk that unit
root tests cannot detect, the variance ratio test is preferred when the attribute
of interest is the uncorrelatedness of increments. Moreover, in contrast to the
dependence of the unit root test statistics’ distributions on nuisance parame-
ters, the variance ratio’s limiting distribution is Gaussian and independent of
any nuisance parameters.® Although we report simulation results for the
Dickey-Fuller ¢ and the Box—Pierce Q tests for comparison with the perfor-
mance of the variance ratio test, we emphasize that these three tests are not
direct competitors since they have been designed with different null hypothe-
ses in mind.

The paper is organized as follows. In section 2 we define the variance
ratio statistic, summarize its asymptotic sampling theory, and define the
Dickey~Fuller and Box—Pierce tests. Section 3 presents Monte Carlo results
for the three tests under two null hypotheses, and section 4 contains the power
results for the three alternative hypotheses. We summarize and conclude in
section 5.

2. The variance ratio test

Since the asymptotic sampling theory for the variance ratio statistic is fully
developed in Lo and MacKinlay (1988), we present only a brief summary here.
Let X, denote a stochastic process satisfying the following recursive relation:

X,=p+X,_,+¢, E[lg]=0, forallys, (1a)
or
AX,=p+e, AX,=X—X ., (1b)

“Also, see Cochrane (1987c) who uses this fact to show that trend-stationarity and difference-
stationarity cannot be distinguished with a finite amount of data.

*We are grateful to one of the two referees for this insight.

The usual regression ¢ statistic’s limiting distribution depends discontinuously on the presence
or absence of a non-zero drift [see Nankervis and Savin (1985), and Perron (1986)]. This
dependence on the drift may be eliminated by the inclusion of a time trend in the regression, but
requires the estimation of an additional parameter and may affect the power of the resulting test.
Section 4 reports power comparisons.
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where the drift u is an arbitrary parameter. The essence of the random walk
hypothesis is the restriction that the disturbances ¢, are serially uncorrelated or
that innovations are unforecastable from past innovations. We develop our
test under two null hypotheses which capture this aspect of the random walk:
independently and identically distributed Gaussian increments, and the more
general case of uncorrelated but weakly dependent and possibly heteroscedas-
tic increments.

2.1. The i.i.d Gaussian null hypothesis

Let the null hypothesis H; denote the case where the ¢,’s are i.i.d. normal
random variables with variance ¢2. Hence

H,: ¢ i.id. N(0,0%). (2)

In addition to homoscedasticity, we have made the assumption of independent
Gaussian increments as in Dickey and Fuller (1979,1981) and Evans and
Savin (1981a, b, 1984).” Suppose we obtain nq + 1 observations X,, Xj,..., X,y
of X,, where both n and g are arbitrary integers greater than one. Considering
the following estimators for the unknown parameters p and o%:

i nq[X X, ]—1[X X, ] (3)
“_"qk=1 k k-1 —nq ng of»

AZEL 3 [ X, — X, 1_ﬁ]2- (4)
“ong [T B

The estimator 62 is simply the sample variance of the first-difference of X;; it
corresponds to the maximum likelihood estimator of the parameter ¢ and
therefore possesses the usual consistency, asymptotic normality and efficiency
properties.

Consider the variance of gth differences of X, which, under H;, is ¢ times
the variance of first-differences. By dividing by ¢, we obtain the estimator
62(q) which also converges to 62 under H,, where

nq

1
65(")5? Y [ X— X, - ai]’. (5)
k=q

We have written 62(q) as a function of g (which we term the aggregation
value) to emphasize the fact that a distinct alternative estimator of ¢? may be

"The Gaussian assumption may, of course, be weakened considerably. We present results for
this simple case only for purposes of comparison to other results in the literature that are derived
under identical conditions. In section 2.2 we relax both the independent and the identically
distributed assumptions.
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formed for each q.2 Under the null hypothesis of a Gaussian random walk, the
two estimators 62 and 62(q) should be ‘close’; therefore a test of the random

walk may be constructed by computing the difference M,(q)=62(q) — 6?
and checking its proximity to zero. Alternatively, a test may also be based
upon the dimensionless centered variance ratio M,(q) = 62(q)/é2 — 1, which
converges in probability to zero as well.? It is shown in Lo and MacKinlay
(1988) that M,(q) and M, (g) possess the following limiting distributions
under the null hypothesis H;:

2(2¢g-1)(q-1) ,
3q 7P

Vg M,(q) ~ N(O,

Jna M,(q) = N(O, 2(2‘1—;()1(‘1 U )

An additional adjustment that may improve the finite-sample behavior of
the test statistics is to use unbiased estimators G’ and 7(q) in computing

fAlthough we have defined the total number of observations T'= ng to be divisible by the
aggregation value g, this is only for expositional convenience and may be easily generalized.

°The use of variance ratios is, of course, not new. Most recently, Campbell and Mankiw (1987),
Cochrane (1987a,b), French and Roll (1986), and Huizinga (1987) have all computed variance
ratios in a variety of contexts. However, those studies do not provide any formal sampling theory
for our statistics. Specifically, Cochrane (1987a) and French and Roll (1986) rely upon Monte
Carlo simulations to obtain standard errors for their variance ratios under the nuill. Campbell and
Mankiw (1987) and Cochrane (1987b) do derive the asymptotic variance of the variance ratio, but
only under the assumption that the aggregation value ¢ grows with (but more slowly than) the
sample size 7. Specifically, they use Priestley’s (1981, p. 463) expression for the asymptotic
variance of the estimator of the spectral density of A X, at frequency zero with a Bartlett window
as the appropriate asymptotic variance of the variance ratio. But Priestley’s result requires (among
other things) that ¢ » c0, T— o0, and ¢/7T — 0. In this paper, we develop the formal sampling
theory of the variance ratio statistics for the more general case.

Our variance ratio may, however, be related to the spectral density estimates in the following
way. Letting f(0) denote the spectral density of the increments 4 X, at frequency zero, we have the
following relation:

o0
7f(0)=y(0)+2- Y y(k),
k=1
where y(k) is the autocovariance function. Dividing both sides by the variance y(0) then yields
oo
mf*(0)=1+2- Y p(k),
k=1

where f* is the normalized spectral density and p(k) is the autocorrelation function. Now in
order to estimate the quantity #f*(0), the infinite sum on the right-hand side of the preceding
equation must obviously truncated. If, in addition to truncation, the autocorrelations are weighted
using Newey and West’s (1987) procedure, then the resulting estimator is formally equivalent to
our M,(q) statistic. Although he does not explicitly use this variance ratio, Huizinga (1987) does
employ the Newey and West (1987) estimator of the normalized spectral density.
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M,(q) and M, (q), where

=2
a

(nq—l) Z(Xk Xk~l_ﬁ)’ (7a)

1
5i(q)=— > (%X, aa). (7b)
k=q
with

mEq(nq—q—Fl)(l—%).

We denote the resulting adjusted specification test statistics M,(g) and
M (q). Of course, although the variance estimators 6 and 62(g) are unbi-
ased, only Md(q) is unbiased; M, (q) is not.

2.2. The heteroscedastic null hypothesis

Since there is already a growing consensus that many economic time series
possess time-varying volatilities, we derive a version of our specification test of
the random walk model that is robust to heteroscedasticity. As long as the
increments are uncorrelated, the variance ratio must still converge to one in
probability even with heteroscedastic disturbances. Heuristically, this is simply
because the variance of the sum of uncorrelated increments must still equal the
sum of the variances. Of course, the asymptotic variance of the variance ratios
will depend on the type and degree of heteroscedasticity present. By control-
ling the degree of heterogeneity and dependence of the process, it is possible to
obtain consistent estimators of this asymptotic variance. To relax the ii.d.
Gaussian restriction of the ¢,’s, we follow White’s (1980) and White and
Domowitz’s (1984) use of mixing and moment conditions to derive hetero-
scedasticity-consistent estimators of our variance ratio’s asymptotic variance.
We require the following assumptions on {¢,}, which form our second null
hypothesis:

H,: (Al) For all ¢, E[¢,] =0, E[¢,e,_,] =0 for any 7 # 0.

(A2) {¢,} is Y-mixing with coefficients (m) of size r/(2r—1) or is
a-mixing with coefficients a(m) of size r/(r — 1), r> 1, such that
for all ¢ and for any = > 0, there exists some & > 0 for which

Elee,,|*""P <A < co. (8)

1
(A3) hm — Z Ele?] = of < 0.
Tt 1

(A4) For all ¢, Ele,e,_;ee,_,] =0 for any non-zero j, k where j # k.
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Assumption (A1) is the essential property of the random walk that we wish to
test. Assumptions (A2) and (A3) are restrictions on the degree of dependence
and heterogeneity which are allowed and yet still permit some form of law of
large numbers and central limit theorem to obtain. This allows for a variety of
forms of heteroscedasticity including deterministic changes in the variance
(due, for example, to seasonal components) as well as Engle’s (1982) ARCH
processes (in which the conditional variance depends upon past information).'°
Assumption (A4) implies that the sample autocorrelations of ¢, are asymptoti-
cally uncorrelated.'’ Under the null hypothesis H,, we may obtain hetero-
scedasticity-consistent estimators ¢§( J) of the asymptotic variance 8( j) of the
autocorrelations 5(j) of AX,. Using the fact that the variance ratio may be
written as an approximate linear combination of autocorrelations [see (12)
below] yields the following limiting distribution for M,(g):12

M,(g) ~ N[0,¥(q)], (92)
where
a=1T2(g—-i) 1P ) g-1 -HTV .
ZOE> [—(‘—’q—”} e B )
j=1 j=1
(9b)
Zq (Xk_kal—nﬁ')z'(XkAj_kaj—l—aﬁ)z
5(j) = ; . (9¢)
kgl(Xk‘Xk—l_ﬁ)z

1n addition to admitting heteroscedasticity, it should be emphasized that assumptions (A2)
and (A3) also follow for more general heterogeneity and weak dependence. Our reason for
focusing on heteroscedasticity is merely its intuitiveness; it is more difficult to produce an
interesting example of, for example, an uncorrelated homoscedastic time series which is weakly
dependent and heterogeneously distributed.

"Although this assumption may be weakened considerably, it would be at the expense of
computational simplicity since in that case the asymptotic covariances of the autocorrelations
must be estimated. Specifically, since the variance ratio statistic is asymptotically equivalent to a
linear combination of autocorrelations, its asymptotic variance is simply the asymptotic variance
of the linear combination of autocorrelations. If (A4) obtains, this variance is equal to the
weighted sum of the individual autocorrelation variances. If (A4) is violated, then the autocovari-
ances of the autocorrelations must also be estimated. This is readily accomplished using, for
example, the approach in Newey and West (1987). Note that an even more general [and possibly
more exact] sampling theory for the variance ratios may be obtained using the results of Dufour
and Roy (1985). Again, this would sacrifice much of the simplicity of our asymptotic results.

2An equivalent and somewhat more intuitive method of arriving at (9¢) is to consider the
regression of the increments AX, on a constant and the jth lagged increment AX, . The
estimated slope coefficient is then simply the jth autocorrelation coefficient and the estimator 8( f)
of its variance is numerically identical to White’s (1980) heteroscedasticity-consistent covariance
matrix estimator. Note that White (1980) requires independent disturbances, whereas White and
Domowitz (1984) allow for weak dependence (of which uncorrelated errors is, under suitable
regularity conditions, a special case). Taylor (1984) also obtains this result under the assumption
that the multivariate distribution of the sequence of disturbances is symmetric.
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Tests of H, and H, may then be based on the normalized variance ratios z,(g)
and z,(q), respectively, where

_ _ -1/2
7,(q) = ngM,(q)- ( 224 ;()](q D ) 2 N(0,1), (10a)
2,(q) = yng M.(q) - V"1/*(g) ~ N(0,1). (10b)

2.3. Variance ratios and autocorrelations

To develop some intuition for the variance ratio, observe that for an
aggregation value ¢ of 2, the M, (qg) statistic may be re-expressed as

M,2) = 5(1) ~ s (K= Xo = 1+ (X, = Xouy— ). (11

Hence for g = 2 the M,(q) statistic is approximately the first-order autocorre-
lation coefficient estimator g(1) of the differences of X. More generally, we
have the following relation for g > 2:

2(g-1) 2(¢-2)
—p

M(q) - W+ =125+

+§ﬁ(q—l)+op(n_l/2), (12)

where o,(n~'/?) denotes terms which are of order smaller than n~'/? in
probability. Eq. (12) provides a simple interpretation for the variance ratio
computed with an aggregation value ¢: it is (approximately) a linear combina-
tion of the first ¢ — 1 autocorrelation coefficient estimators of the first dif-
ferences with arithmetically declining weights. Note the similarity between this
and the Box—Pierce (1970) Q statistic of order ¢ — 1,

0a=1=T T F (k) (13

which is asymptotically distributed as x? with g — 1 degrees of freedom.!?
Using (9c) we can also construct a heteroscedasticity-robust Box—Pierce statis-

BSince we include the Box—Pierce test only as an illustrative comparison to the variance ratio
test, we have not made any effort to correct for finite-sample biases as in Ljung and Box (1978).
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tic in the obvious way, which we denote by Q,(g — 1). Since the Box—Pierce Q
statistics give equal weighting to the autocorrelations and are computed by
squaring the autocorrelations, their properties will differ from those of the
variance ratio test statistics.

For comparison, we also employ the Dickey-Fuller ¢ test. This involves
computing the usual ¢ statistic under the hypothesis 8 =1 in the regression

X,=p+owt+BX,_,+v, (14)

and using the exact finite-sample distribution tabulated by Fuller (1976),
Dickey and Fuller (1979,1981), and Nankervis and Savin (1985).141°

3. Properties of the test statistic under the null hypotheses

To gauge the quality of the asymptotic approximations in section 2,
we perform simulation experiments for the M,(q) statistic under both the
Gaussian 1.i.d. null hypothesis and a simple heteroscedastic null. More exten-
sive simulation experiments indicate that tests based upon the unadjusted
statistic M,(q) generally yield less reliable inferences hence, in the interest of
brevity, we only report the results for M,(q). For comparison, we also report
the results of Monte Carlo experiments performed for the Box—Pierce Q
statistics and the Dickey-Fuller ¢ statistic. All simulations are based on 20,000
replications.!®

3.1. The Gaussian i.i.d. null hypothesis

Tables 1a and 1b report the results of simulation experiments conducted
under the independent and identically distributed Gaussian random watk null
H,. The results show that the empirical sizes of two-sided 5 percent variance
ratio tests based on either the z,(¢) and z,(g) statistics are close to their
nominal values for sample sizes greater than 32. Not surprisingly, for an
aggregation value g of 2 the behavior of the variance ratio is comparable to
that of the Box-Pierce Q statistic since M, (2) is approximately equal to the
first-order serial correlation coefficient. However, for larger aggregation values
the behavior of the two statistics differ.

“Due to the dependence of the ¢ statistic’s distribution on the drift u, a time trend  must be
included in the regression to yield a sampling theory for the ¢ statistic which is independent of the
nuisance parameter.

Yet another recent test of the random walk hypothesis is the regression test proposed by
Fama and French (1988). Since Monte Carlo experiments by Poterba and Summers (1987)
indicate that the variance ratio is more powerful than this regression test against several
interesting alternatives, we do not explore its finite-sample properties here.

'*Null simulations were performed in single-precision FORTRAN on a DEC VAX 8700 using
the random number generator GGNML of the IMSL subroutine library. Power simulations were
performed on an IBM 3081 and a VAX 8700 also in single-precision FORTRAN using GGNML.
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Tabie 1a shows that as the aggregation value ¢ increases to one-haif the
sample size, the empirical size of the Box-Pierce Q, test generally declines
well below its nominal value, whereas the size of the variance ratio’s z; test
seems to first increase slightly above and then fall back to its nominal value.
For example, with a sample size of 1024, the size of the 5 percent Q, test falls
monotonically from 5.1 to 0.0 percent as g goes from 2 to 512; the size of the 5
percent z; test starts at 5.2 percent when g =2, increases to 6.2 percent at
q = 256, and settles at 5.1 percent when ¢ = 512.

Although the size of the variance ratio test is closer to its nominal value for
larger ¢, this does not necessarily imply that large values of ¢ are generally
more desirable. To examine this issue, table la separates the size of the
variance ratio test into rejection rates of the lower and upper tails of the 1, 5,
and 10 percent tests. When ¢ becomes large relative to the sample size, the
rejections of the variance ratio test are almost wholly due to the upper tail.
One reason for this positive skewness of the z;(¢) statistic is that the variance
ratio is bounded below by zero, hence a related lower bound obtains for the

nnnnnnnnnnnnnnnnnn
ratio test, it has serious power implications and will be discussed more fully in
section 4.1.

Table 1b reports similar results for the heteroscedasticity-robust test statis-
tics z,(g) and @Q,. For sample sizes greater than 32, the size of the variance
ratio test is close to its nominal value when ¢ is small relative to the sample
size. As g increases for a given sample, the size increases and then declines, as
in table 1a. Again, the variance ratio rejections are primarily due to its upper
tail as ¢ increases relative to the sample size. In contrast to the Q, test, the
heteroscedasticity-robust Box—Pierce test Q, test increases in size as more
autocorrelations are used. For example, in samples of 1024 observations the
size of the 5 percent Q, test increases from 5.1 to 11.3 percent as g ranges
from 2 to 512. In contrast, the size of the variance ratio test starts at 5.2
percent when g =2, increases to 6.6 percent at ¢ =256, and falls to 5.8
percent at g = 512.

Tables 1a and b indicate that the empirical size of the variance ratio tests is
reasonable even for moderate sample sizes, and is closer to its nominal value
than the Box—Pierce tests when the aggregation value becomes large relative to
the sample size. However, in such cases most of the variance ratio’s rejections
are from its upper tail; power considerations will need to be weighed against
the variance ratio test’s reliability under the null.

Since the sampling theory for the Q and z statistics obtain only asymptoti-
cally, the actual size of any test based on these statistics will of course differ

"More direct evidence of this skewness is presented in table 4, in which the fractiles of the
variance ratio test statistic are reported. See also the discussion in section 4.1.



A.W. Lo and A.C. MacKinlay, Variance ratio test in finite samples 217

Table 2

Empirical quantiles of the (Dickey-Fuller) ¢ statistic associated with the hypothesis 8 =1 in the
regression X, = p + wr+ BX,_| +¢, where ¢ is 1.1.d. N(0,1). Each row corresponds to a separate
and independent simulation experiment based upon 20,000 replications.

Sample
size 0.005 0.010 0.025 0.050 0.100
32 ~4.767 —4.456 —4.043 -3.731 -3.361
64 —4.449 —4.188 —3.860 -3.570 —3.243
128 -4.324 —4.087 -3.777 —3.492 —3.186
256 —4.235 —3.990 —3.684 —3.424 —-3.135
512 -4.173 -3.973 —3.676 —3.424 -3.131
1024 -4.160 —-3.959 —3.663 —3.425 -3.130

Sample
size 0.900 0.950 0.975 0.990 0.995
32 -1.222 —0.887 —-0.598 —0.246 -0.013
64 -1.230 —0.9506 —-0.620 -0.279 -0.019
128 -1.241 ~-0.918 —-0.635 -0.273 —0.040
256 —1.241 -0.910 —0.649 —-0.276 —0.049
512 -1.233 —-0.903 —-0.611 -0.299 -0.032
1024 —1.252 —-0.951 —0.673 -0.319 —0.054

from their nominal values in finite samples. Although table 1 indicates that
such differences may not be large for reasonable aggregation values, it may
nevertheless seem more desirable to base tests upon the regression ¢ statistic
for which Fuller (1976), Dickey and Fuller (1979,1981), and Nankervis and
Savin (1985) have tabulated the exact finite-sample distribution. Due to the
dependence of the ¢ statistic’s distribution on the drift g, an additional
nuisance parameter (a time-trend coefficient) must be estimated to yield a
sampling distribution that is independent of the drift. Although it has been
demonstrated that the ¢ statistic from such a regression converges in distribu-
tion to that of Dickey and Fuller, there may be some discrepancies in finite
samples. Table 2 presents the empirical quantiles of the distribution of the ¢
statistic associated with the hypothesis 8 = 1 in the regression (14). A compari-
son of these quantiles with those given in Fuller (1976, table 8.5.2) suggests
that there may be some significant differences for small samples, but for
sample sizes of 500 or greater the quantiles in table 2 are almost identical to
those of Dickey and Fuller.

3.2. A heteroscedastic null hypothesis

To assess the reliability of the heteroscedasticity-robust statistic z,(g), we
perform simulation experiments under the null hypothesis that the disturbance
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e, in (1) is serially uncorrelated but heteroscedastic in the following manner.
Let the random walk disturbance e, satisfy the relation &, = o,A,, where A, is
ii.d. N(0,1) and o, satisfies

lno‘2=x,b-lno,2‘1+§,, §,~N(0,1). (15)

A, and {, are assumed to be independent. The empirical studies of French,
Schwert and Stambaugh (1987) and Poterba and Summers (1986) posit such a
process for the variance. Note that ¢ cannot be interpreted as the uncondi-
tional variance of the random walk disturbance ¢, since o is itself stochastic
and does not correspond to the unconditional expectation of any random
variable. Rather, conditional upon o2, ¢, is normally distributed with expec-
tation 0 and variance o2 If, in place of (15), the variance o were re-
parameterized to depend only upon exogenous variables in the time f—1
information set, this would correspond exactly to Engle’s (1982) ARCH
process.

The unconditional moments of ¢, may be readily deduced by expressing the
process explicitly as a function of all the disturbances:

t

e,=Aol 11 exp[%dz""fk]. (16)

k=1

Since oy, A, and {, are assumed to be mutually independent, it is apparent
that ¢, is serially uncorrelated at all leads and lags [hence assumption (Al) is
satisfied] but is non-stationary and temporally dependent. Moreover, it is
evident that E[e?e,_ &_x] =0 for all ¢ and for j + k. Hence assumption (A4)
is also satisfied. A straightforward calculation yields the moments of e,

E[¢?] = E[o27¥] - (w [P 11:?2} (17a)

E[e27*] =0, p=0,1,2,.... (17b)

From these expressions it is apparent that, for y € (0,1), ¢, possesses bounded
moments of any order and is unconditionally heteroscedastic; similar calcula-
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tions for the cross-moments verify assumption (A2). Finally,
inequality is easily deduced:

k=1

1z 5

- Ele?]| < — .

- Y E[¢?] exp[2(1_¢2):|<oo (18)
Thus assumption (A3) is verified. Note that the kurtosis of ¢, is

Elef] _,. E[of] >3, (19)

€2 (g[ev])

by Jensen’s inequality. This implies that, as for Engle’s (1982) stationary
ARCH process, the dlstnbutwn of &, 1s more peaked and possesses fatter talls
than that of a normal random variate. However, when ¢ = 0 or as ¢ increases
without bound, the kurtosis of ¢, is equal to that of a Gaussian process.

Table 3a reports simulation results for the z, Q and Dickey-Fuller ¢
statistics under the heteroscedastic null hypothesis with parameter ¢ = 0.50. It
is apparent that both the z; and Q, statistics are unreliable in the presence of
heteroscedasticity. Even in samples of 512 observations, the empirical size of
the 5 percent variance ratio test with ¢ = 2 is 14.7 percent; the corresponding
Box—Pierce 5 percent test has an empirical size of 14.6 percent. In contrast, the
Dickey-Fuller ¢ test’s empirical size of 4.9 percent is much closer to its
nominal value. This is not surprising since Phillips (1987) and Phillips and
Perron (1986) have shown that the Dickey~Fuller ¢ test is robust to hetero-
scedasticity (and weak dependence) whereas the z; and Q, statistics are not.
However, once the heteroscedasticity-robust z, and @, statistics are used,
both tests compare favorably with the Dickey—Fuller ¢ test. In fact, for the
more severe case of heteroscedasticity considered in table 3b [where i = 0.95],
the variance ratio and Box-Pierce tests using z, and Q, are both considerably
more reliable than the Dickey—Fuller test.!® For example, when ¢/7T is { in
sample sizes of 512 observations, the sizes of 5 percent tests using z, and Q,
are 4.7 and 5.7 percent, respectively; the size of the 5 percent Dickey—Fuller
test is 21.6 percent.

"8 This provides further support for Schwert’s (1987b) finding that, although the Dickey-Fuller
distribution is still valid asymptotically for a variety of non-i.i.d. disturbances, the ¢ statistic’s rate
of convergence may be quite slow.



A.W. Lo and A.C. MacKinlay, Variance ratio test in finite samples

220

1110 190°0 9100 4-d 8C1

ET0 180°0 Y100 0L00 7800 6500 8000 0500 0£0°0 e00 £00°0 9200 9 8TI
[4881} 160°0 9500 93800 ?90°0 L9070 £€0°0 $90°0 1200 8¢0°0 100 9¢0'0 [43 8C1
9600 L60°0 $60°0 9010 500 6500 SS00 £90°0 €100 LT00 0700 0€0'0 91 8T1
0600 010 vET0 8ET0 SP0°0 €500 0800 LLOO 8000 8100 ST00 8700 8 8TI
L80°0 9010 69T°0 YLTO 6£0°0 £50°0 €010 $01°0 LO00 £10°0 €00 ££0'0 v 8T1
8600 6010 P81°0 S61°0 32000 160°0 SI1°0 €Cro S00°0 LOOO 6£00 €900 4 8T1
9110 990°0 610°0 4-a 9
8110 7800 0200 1L0°0 1L0°0 190°0 100 6v0°0 ST00 £0°0 €000 9700 t Y9
1010 L60°0 1900 0600 9500 8900 9¢0°0 $90°0 9100 8€0°0 100 Se00 91 9
760°0 8010 660°0 6110 SP0°0 £90°0 £50°0 990°0 6000 8700 9100 0¢0'0 8 9
L80°0 91T 0 PET'O SS1°0 LEOO 190°0 8L00 8800 900°0 9100 £20°0 6200 14 ¥9
8600 3110 8ST°0 SLTO 6£0°0 $S0°0 60°0 LOT0 $00°0 8000 6200 LEQO 4 9
17480 £L00 £200 4-d [43
0010 6800 0700 0L00 500 §90°0 1100 LYO0 LT00 9¢0'0 €000 €200 91 e
L800 [4981] 7S0°0 8800 w0 SLOO 8700 ¥90°0 6000 6£0°0 8000 €00 3 [43
080°0 £e10 Y600 T o 00 9L0°0 LYO0 1L0°0 000 0£0°0 0100 8700 14 [43
8600 18280) €e1o 910 9¢0'0 1L0°0 6900 €600 £000 S10°0 P10°0 200 4 [43
0 (b)ez o] (b)'z 0 (b)ez e] (b)Iz to (h)tz o (b)'z b az1s
ordureg

1591 1udo1ad (] 1593 Judorad ¢ 159} Juaorad |

'suoneot[dar g00*0z uo paseq 1udwLRdxe uonenuIs yuapuadapur pue sjeredas e suuiog 5z1s
sdwres uaad B qitm SmoI Jo 198 Yorg 050 = F pue (T°0)N Pt Yy S + T2 lou f = Joul 4q waA18 ST Kjonsepaosoraay jo wioy oywads ayy ‘payiodar
os[e d1e (suonepuodoIne [ —b Jusn yloq) (9) 1ediaunod Jusisuoo-K1pusepadsoniay sit pue (I3) 1591 ¢ vsarg—xog papIs-auo aypy “(4—Qq)
189} 1 1[N ~AIT PapIs-om) oY1 Jo sazis [eourdws oy ‘uostredwon J0,J SIUSWANUL (Pare[a110oun 1ng) Judpuadap Apjesm PUE JHSEPIISOINI JO
SUONTPUOD [eI2UT 210W YY) 1apun (1 ‘)N A[reonordwdse stonsneis (b)%z sy e wopuer 'priay) 1apun (1 *0)N Areonordwisse st (£)1z susness oYL
'S30URQINISIP SNSEPIdSOINAY Yita sIsayodAy [nu Jfjes WOPUEI 3y} JO $1S9) ONBI DUBLIEA PIpIs-0m) 1U2d1ad (] pue *g ‘] [eunwou jo sazis [eourdurg

LEICLA



221

A.W. Lo and A.C. MacKinlay, Variance ratio test in finite samples

191°0
LETO
6110
LOT'0
w1
0010
$60°0

9600

6v1°0
8T1°0
111°0
010
8600
L60°0
600
010

Y10
9710
9010
L60°0
£60°0
63800
9600

080°0
€600
L60°0
6600
0010
1010
0010
001°0
L60°0

6L0°0
6300
9600
1010
£010
S0T°0
¥01°0
S01°0

6L0°0
L300
600
860°0
6600
101°0
010

SOT'0
0000
S10°0
1900
0010
(UARY
0910
£61°0
97T0
o

6600
000
0£0°0
LLOO
9110
10
£81°0
81¢°0
0TT0

111°0
S00°0
6v0°0
160°0
Le1ro
191°0
w610
0020

0L00
8800
9600
9010
6110
6¢10
L9T0
L6T0
(444

1L0°0
$80°0
L60°0
SIT0
9ET'0
6910
10T°0
Xaay

0L0°0
£80°0
9600
1o
sT0
£81°0
LOT'O

Y010
£80°0
890°0
LSOO
£60°0
150°0
900
6v00
900

$60°0
SLOO
090°0
$S0°0
0500
LY0'0
SY0°0
LY00

1600
£L0°0
LS00
000

woo
194000]

6500
8900
1900
500
150°0
0500
0500
0500
900

6500
$90°0
LSOO
950°0
500
Ts00
£60°0
6v0°0

8500
$90°0
$S00
500
0500
6¥0°0
LY0'0

500

6v0°'0

8600

0000
8000
££00
8500
€L0°0
$60°0
9110
810
8r1°0

1000
L10°0
w00
$90°0
980°0
eI1'0
8¢T°0
10

€000
LTO0
£50°0
£L0°0
9600
o
6710

s00
¥90°0
1900
LS00
£90°0
6L0°0
10T°0
8CT°0
8r10

500
900
8500
900
9L0°0
10T°0
ST1o
LY1°0

0500
£90°0
LSOO
L90°0
L300
(488"
Pe1°0

1700
LT00
6100
Y100
100
0100
8000
6000
8000

9£0°0
200
9100
100
0100
600°0
3000
LOO0

§e00
€200
9100
0100
6000
LOO0
LO00

P00
6£0°0
0£00
1200
§100
1100
0100
6000
8000

00
LEOO
9700
0200
9100
£100
1100
8000

00
LEOO
LT00
0200
¥10°0
0100
8000

1o

0100

100

0000
7000
6000
9100
oo
6200
6£0°0
LSOO
8500

0000
S000
£100
0200
6200
8¢00
1500
9500

1000
0100
8100
€200
£€00
P00
0500

8700
L£00
0€0°0
€200
0200
1200
1£0°0
Ly00
6500

LT00
§L00
LT00
¥20°0
9700
££00
900
8500

LT00
§¢e00
6200
§T00
6200
100
£50°0

A-ad
(489
9s¢
81
¥9
[43
91

4-d
95T
81

$01

P01
$To1
yaot
y01
$201
P01
$C01
¥201
$701

CIs

(459
[485
[4 59
(489
[483
(483
(489
(489

9s¢

9s¢
95t
96t
9t
96¢
9s¢
9s¢



A.W. Lo and A.C. MacKinlay, Variance ratio test in finite samples

222

£LT0 90T0 vero 4-d 8C1

£80°0 €L00 00 8800 300 £50°0 00 L90°0 8100 6700 €200 6£0°0 9 8T1
060°0 9L0°0 62¢°0 0T10 900 960°0 L9T0 £60°0 Y100 1€0°0 6910 0900 43 8C1
L80°0 £80°0 6850 6370 P00 8500 5050 9LTO 100 0£0°0 19¢°0 §80°0 91 8T1
¥80°0 L80°0 LLYO 00¥ 0 [0 20X0] LS00 9650 20¢0 6000 9700 vy o 0ST0 8 8T1
8L0°0 €010 8¢9°0 0st°0 €00 §S00 1232 99¢°0 S000 910°0 86¢£°0 1€C0 14 8C1
8800 9010 S0 L9Y0 1€0°0 €00 LLEO 16€£°0 7000 8000 7570 $9T°0 4 8C1
sTo 9810 9010 4-d 9
LLOO 1800 Yr00 680°0 ¥v0°0 6500 6200 990°0 910°0 €00 £10°0 LEOO [43 ¥9
9800 §80°0 1€T°0 SIT°0 SO0 7900 L9T°0 680°0 1100 SE00 80°0 LSOO 91 9
1300 6600 900 7970 6£00 9900 cIeo 8ST0 8000 €00 €LTO oo 8 9
9L0°0 LITO 6€V°0 €580 €00 890°0 ve0 8ST0 S00°0 oo €610 LTT0 14 9
8800 9710 LYE0 LLEO 100 6500 19C°0 88C°0 7000 Y100 wio 9910 4 ¥9
9170 6510 8800 A-a [43
PLOO $80°0 €00 8L0°0 (02021} 090°0 6100 €500 7100 00 9000 8200 91 [43
9L0°0 L60°0 PET0 $0T'0 LEOQO 0L0°0 £80°0 LLOO 8000 LEOO 1€0°0 900 8 [43
8900 (AN} STTO 6CC0 1£0°0 0800 f4 48] or1o S00°0 €00 $60°0 500 14 t
¥80°0 LSTO 1¢T0 6LT0 8700 0800 1ST0 9610 000 200 Y500 L800 4 [43
0 k= B BH o % (B B ()= 9 (hz b azs
= ojdureg
1593 Judorad 1 1593 Juaorad ¢ 189) Juaorad 1

‘suoneordal gpp*O7 uo paseq Juawrtadxo uone[nurs yuspusdapur pue ayeredss v swiioj 2z
o[dures uaA13 ® yjim Smo1 JO 338 YOrY 560 =/ pue (T'ON P11 'S 5 + 'Zoul t = oul £q uoA13 s1 A11onsEPaOs01AaY Jo U] dyads dy 1 -pariodar
os[e are (suonefuoeoone [ — b Jusn yoq) (0) 1redianunod JuLISISIEO-AIONSEPadsoIay s1t pue (G) 1531 @ 2IIg-X0og PIpIS-auo oyl (J—(I)
1891 1 Ia[{n{~KaxdI(] PapIs-om} Y Jo sazis [eourdwa ay ‘uosredwod 104 SIUSWAIUI {paje[orIooun Ing) juspusdap APfeom pue J1ISEPAOS0IAAY JO
SUOLIPUOd (213U 310w 2Y) Iapun (T Q)N AlreonordwiAse stonsnels (£)2z oy ypem wopues ‘p'r1ay: 1apun (10N A[eonorduse st (b)'z onsness ay
"SI0UBGINISIP INSEP0SOINI Yiim S1S3Y10dAY [[nU Y[em WOPUET 3G) JO SIS3) ONRI 0UBLIRA POPIS-0M] 1uadiad ()f pue s *T [eutwou Jo sazis [eourduryg

q¢ 919 L



223

A.W. Lo and A.C. MacKinlay, Variance ratio test in finite samples

10T°0
10T°0
$60°0
6800
£80°0
8800
$80°0
£80°0
6800

L60°0
00T°0
$60°0
0600
6800
£80°0
7800
0600

w600
600
8800
800
180°0
9L00
L800

1870
SLOO 500
$80°0 60¥°0
y80°0 Lo
0800 L06'0
1800 1L6°0
0800 8860
9800 7860
9600 1£6°0
1600 81L°0

800
SLOO 0900
180°0 yivo
180°0 T2L0
6L0°0 0680
0800 960
£80°0 Sv6'0
060°0 £L8°0
£60°0 0v9°0

6870
L0°0 0900
6L0°0 £88°0
180°0 8L9°0
7800 vg'o
LBOO 580
160°0 8LLO
$60°0 LSS0

0600
0ET'0
91L'0
yoro
£96°0
1£9°0
0890
Lo
61L°0

600
6C1'0
STE0
9S¥°0
10
0090
1€9°0
Y90

60°0
LTT'0
PIeo
(2444
¢15°0
e o
$95°0

090°0
6500
£50°0
900
w00
£v0°0
000
9¢0'0
££0°0

LS00
8500
1500
Y00
SY00
8¢0°0
SE00
P£0°0

$60°0
£50°0
LY00
£r00
ov0°0
£e00
1€00

1414V
§60°0 Y00
£90°0 9LE0
0900 689°0
8500 G880
950°0 096°0
£50°0 1860
6¥0°0 1L6°0
SY0°0 806°0
S€0°0 999°0

9170
§50°0 LY0'0
£90°0 YLED
0900 8L9°0
950°0 8680
$50°0 §76°0
160°0 1260
Sv0'0 0¢8°0
9¢0°0 186°0

£CT0
§S0°0 Ly0°0
0900 67L0
090°0 £29°0
8500 TLL0
$s0°0 w080
8v0°0 LILO
9¢0°0 L8Y0

0L0°0
€010
L6T0
$9¢°0
€890
§95°0
0290
1590
L99°0

oo
$0T1°0
9610
96¢°0
19%°0
8750
$95°0
850

¢Lo0
w010
£61°0
6240
6Tv'0
wro
£6v'0

¥200
1200
S10°0
100
0100
0100
6000
9000
£00°0

¥<00
6100
y10°0
1100
1100
8000
S000
€000

oo
6100
y10°0
1100
6000
9000
£00°0

LT1ro
1£0°0 ££00
9¢0°0 0TE0
1€0°0 129°0
6700 0£8°0
9200 1€6°0
$20°0 6560
6100 60
0100 1680
€000 SLSO

ve1o
00 1£0°0
LEOO 10£°0
£€00 y65°0
6700 98L°0
$200 89870
1200 86870
1100 ovL'o
£00°0 vLY0

vero
1£0°0 0£00
ce00 weo
1£0°0 £15°0
8700 990
oo 1690
£10°0 650

S00°0 65¢°0

£v00
L0
0010
8610
9te0

€150
6550
9LE0

00
£L0°0
6600
8810
L1E0
1000
13940
LY 0

£v00
1L0°0
9600
LLTO
$8T0
Eveo
L9¢°0

4-d
(489
95t
871
9
[43

N T 00 O
—

9sC
81
9
[43
91

4-a
81

|40

vo1
v701
y2o1
701
01
y01
y701
yTo1
PoT

(489

CIs
[45%
(459
[485
(489
[4589
(489
(489

95t

9s¢
95t
95t
95t
95t
9t
9¢¢



224 A.W. Lo and A.C. MacKinlay, Variance ratio test in finite samples

4. Power

Since a frequent application of the random walk has been in modelling
stock market returns, it is natural to examine the power of the variance ratio
test against alternative models of asset price behavior. We consider three
specific alternative hypotheses. The first two are specifications of the stock
price process that have received the most recent attention: the stationary
AR(1) process [as in Shiller (1981) and Shiller and Perron (1985)] and the sum
of this process and a random walk [as in Fama and French (1987) and Poterba
and Summers (1987)].1° The third alternative is an integrated AR(1) process
which is suggested by the empirical evidence in Lo and MacKinlay (1987).

Before presenting the simulation results, we consider an important limita-
tion of the variance ratio test in section 4.1. In section 4.2 we compare the
power of the variance ratio test with that of the Dickey—Fuller and Box—Pierce
tests against the stationary AR(1) alternative. Section 4.3 reports similar power
comparisons for the remaining two alternatives.

4.1. The variance ratio test for large g

Although it will become apparent in sections 4.2 and 4.3 that choosing an
appropriate aggregation value ¢ for the variance ratio test depends intimately
on the alternative hypothesis of interest, several authors have suggested using
large values of ¢ generally.?’ But because the variance ratio test statistic is
bounded below, when ¢ is large relative to T the test may have little power. To
see this, let the [asymptotic] variance of the test statistic M,(g) be denoted by
V, where we have from (6b)

Vv

2 (20)

q

22¢-1)(g=-1) 4 [g*—3g+1
3ng* T3 ’

Note that for all natural numbers g, the bracketed function in (20) is bounded
between 1 and 1 and is monotonically increasing in g. Therefore, for fixed n,
this implies upper and lower bounds V=4/3n and V|, =2/3n for the
variance V. Since variances must be non-negative, the lower bound for M,(q)
is —1 [since we have defined M,(q) to be the variance ratio minus 1]. Using

these two facts, we have the following lower bound on the [asymptotically]

"*The latter specification is, of course, not original to the financial economics literature but has
its roots in Muth (1960) and, more recently, Beveridge and Nelson (1981).

P For example, Campbell and Mankiw’s (1987) asymptotic sampling theory requires that g goes
to infinity as the sample size T goes to infinity (although ¢ must grow at a slower rate than 7).
Also, for a sample size of T Huizinga (1987) sets ¢ to 7 — 1.
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standard normal test statistic z,(¢) = M,(q)/VV :

, -1 1 3n]?
inf[z,(¢)] = inf[YV ] =~ \/7L = _[7] : (21)

Note that n is nor the sample size (which is given by nq), but is the number of
non-overlapping coarse increments [increments of aggregation value ¢] avail-
able in the sample and is given by T/q.

If g is large relative to the sample size 7, this implies a small value for n.
For example, if ¢/T = §, then the lower bound on the standard normal test
statistic z;(g) is —1.73; the test will never reject draws from the left tail at the
95 percent level of significance!

Of course, there is no corresponding upper bound on the test statistic so in
principle it may still reject via draws in the right tail of the distribution.
However, for many alternative hypotheses of interest the population values of
their variance ratios are less than unity,?! implying that for those alternatives
rejections are more likely to come from large negative rather than large
positive draws of z;(g). For this reason and because of the unreliability of
large-sample theory under the null when ¢/T is large, we have chosen ¢ to be
no more than one-half the total sample size throughout this study.

4.2. Power against a stationary AR(1) alternative

As a model of stock market fads, Shiller (1981) has suggested the following
AR(1) specification for the log-price process X:

X,=a+¢-[X,71—a]+£,, 81~N(0’a£2)’ (20)

where ¢ is positive and less than unity. To determine the power of the
variance ratio test against this alternative, we choose values of the parameters
(¢,0.7,0}) that yield an interesting range of power across sample sizes and
aggregation values. Since the power does not depend on «, we set it to zero
without loss of generality. Table 5a reports the power of the variance ratio,
Dickey—Fuller ¢ and Box-Pierce Q tests at the 1, 5 and 10 percent levels
against the AR(1) alternative with parameters (¢, 62) = (0.96,1). The critical
values of all three test statistics were empirically determined by simulation

2 For example, as g increases without bound the variance ratio (population value) of increments
any stationary process will converge to 0. For the sum of a random walk and an independent
stationary process, the variance ratio of its increments will also converge to a quantity less than
unity as ¢ approaches infinity.
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under the i.i.d. Gaussian null. In the interest of brevity, we report the
empirical critical values in table 4 for the variance ratio test only.??

For a fixed number of observations, the power of the variance ratio test first
increases and then declines with the aggregation value ¢. The increase can be
considerable; as the case of 1024 observations demonstrates, the power is 9.2
percent when ¢ = 2 but jumps to 98.3 percent when ¢ = 256. The explanation
for the increase in power lies in the behavior of the AR(1) alternative over
different sampling intervals: the first-order autocorrelation coefficient of AR(1)
increments grows in absolute value (becomes more negative) as the increment
interval increases. This implies that, although X, may have a root close to
unity (0.96), its first-differences behave less like random walk increments as the
time interval of the increments grows. It is therefore easier to detect an AR(1)
departure from the random walk by comparing longer first-difference vari-
ances to shorter ones, which is precisely what the variance ratio does for larger
g. However, as ¢ is increased further the power declines. This may be
attributed to the imprecision with which the higher-order autocorrelations are
estimated for a fixed sample size. Since the variance ratio with aggregation
value ¢ is approximately a linear combination of the first ¢ — 1 autocorrela-
tions, a larger value of ¢/T entails estimating higher-order autocorrelations
with a fixed sample size. The increased sampling variation of these additional
autocorrelations leads to the decline in power.?

Although the most powerful variance ratio test is more powerful than the
Dickey—Fuller ¢ test, the difference is generally not large. However, the
variance ratio test clearly dominates the Box—Pierce Q test. With a sample of
512 observations the power of a 5 percent variance ratio test is 51.4 percent
(g = 128) whereas the power of the corresponding Q test is only 7.1 percent.
However, with an aggregation value of ¢ =2 the variance ratio has compara-

2 Diebold (1987) tabulates the finite sample distributions of actual variance ratios under many
other null hypotheses of interest. Although we have not compared each of our empirical quantiles
with his, we have spot-checked several for consistency and have found discrepancies only in the
extreme tail areas. For example, with a sample size of 1024 and ¢ = 2, Diebold’s implied value for
the upper 0.5 percent quantile of our test statistic z; is 2.48 (using his table 16), whereas our value
in table 4 is 2.63. There are at least two possible causes for this discrepancy. First, Diebold’s
results are based on 10,000 replications whereas ours use 20,000. Second, we simulated the
bias-corrected statistic whereas Diebold employed the unadjusted variance ratio. For larger tail
areas, this discrepancy vanishes.

BIf the variance ratio test were performed using asymptotic critical values against the AR(1)
alternative, there is another cause of the power to decline as g increases. Under the AR(1) model,
it is apparent that the theoretical values of the variance ratios are all less than unity, implying that
the expectations of the z; statistics are negative. But it is shown in section 4.1 that the z; statistic
is bounded below when the asymptotic variance is used to form z;, and that the lower bound is an
increasing function of the ratio of ¢ to the sample size. Therefore, when the deviation of the
alternative from the random walk is in the form of negative draws of z; [as in the AR(1) case], the
variance ratio test cannot reject the null hypothesis when g is large relative to the number of
observations. This is yet another reason we choose g to be less than or equal to one-half the
sample size.
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ble power to the Box-Pierce test. Again, this is as expected since they are quite
similar statistics when ¢ = 2 (the variance ratio is approximately one plus the
first-order autocorrelation coefficient and the Box—Pierce statistic is the first-
order autocorrelation squared).

We conclude that, against the stationary AR(1) alternative, the variance
ratio test is comparable to the Dickey-Fuller ¢ test in power and both are
considerably more powerful than the Box—Pierce test.

4.3. Two unit root alternatives to the random walk

Several recent studies have suggested the following specification for the
log-price process X;:

X,=Y,+2, (21)

where Y, is a stationary process and Z, is a Gaussian random walk indepen-
dent of Y,.?* To be specific, let ¥, be an AR(1); thus:

Yy=a+¢-[Y,_—a]+e, ¢iid N(0,02), (22a)

Z,=Z,_,+v, v,iid.N(0,02). (22b)

Again, without loss of generality we set @ to 0; p is set to 0.96; o2 is
normalized to unity; and 072 takes on the values 0.50, 1.00 and 2.00 so that the
conditional variability of the random walk relative to the stationary compo-
nent is two, one, and one-half, respectively. Tables 5b-5d report the power of
the variance ratio, Dickey-Fuller ¢+ and Box-Pierce Q tests against this
alternative. Note that this specification contains a unit root [it is an
ARIMA(1,1,1)], and hence, asymptotically, the power of the Dickey—Fuller ¢
test should equal its size.”> However, since Schwert (1987a,b) has shown the
finite-sample behavior of the Dickey-Fuller test to be quite erratic, we report
its power for comparison.

Table Sb gives the power results for the z;, Q, and 1 statistics against this
ARIMA(1,1,1) alternative where the variance of the random walk innovation
is twice the variance of the AR(1) disturbance. Although none of the tests are
especially powerful under these parameter values, the variance ratio test seems
to dominate the other two. For a sample size of 1024, the power of the

*See, for example, Summers (1986), Fama and French (1988), and Poterba and Summers
(1987).

2To see this, observe that (21) has the following ARIMAC(1,1,1) representation:
(1-pL)(1~ L)X, = (1 ~AL),

where
A=po’+¢} and a,,ZE[(1+p2)052+2072]/(1+>\2).



Table 5a

Power of the two-sided variance ratio test [using the z;(q) statistic] against the stationary AR(1)

alternative X,=¢X _| +e, & 1id N{,1) and ¢$=096. For comparison, the power of the

one-sided Box-Pierce Q test (Ql) and the two-sided Dickey—Fuller ¢ test (D-F) are also
reported. Each set of rows with a given sample size forms a separate and independent simulation
experiment based on 20,000 replications.

1 percent test 5 percent test 10 percent test
Sample
size q 2(q) Q 21(q) ) 21(q) Q
32 2 0.008 0.009 0.047 0.047 0.093 0.097
32 4 0.009 0.009 0.049 0.045 0.101 0.096
32 8 0.009 0.010 0.048 0.048 0.096 0.098
32 16 0.009 0.010 0.049 0.050 0.101 0.099
32 D-F 0.010 0.050 0.098
64 2 0.009 0.008 0.048 0.048 0.097 0.100
64 4 0.009 0.009 0.046 0.050 0.093 0.099
64 8 0.008 0.010 0.044 0.051 0.093 0.107
64 16 0.008 0.010 0.043 0.050 0.086 0.101
64 32 0.009 0.010 0.044 0.051 0.088 0.104
64 D-F 0.009 0.042 0.084
128 2 0.010 0.010 0.047 0.050 0.100 0.106
128 4 0.010 0.011 0.051 0.053 0.102 0.106
128 8 0.011 0.011 0.050 0.054 0.102 0.104
128 16 0.012 0.009 0.053 0.056 0.102 0.112
128 32 0.010 0.009 0.053 0.054 0.103 0.112
128 64 0.010 0.009 0.046 0.053 0.088 0.108
128 D-F 0.008 0.047 0.095
256 2 0.011 0.012 0.057 0.062 0.111 0.115
256 4 0.017 0.013 0.061 0.062 0.121 0.120
256 8 0.021 0.013 0.079 0.066 0.146 0.123
256 16 0.028 0.013 0.101 0.060 0.180 0.121
256 32 0.030 0.012 0.123 0.059 0.217 0.118
256 64 0.031 0.012 0.130 0.060 0.227 0.114
256 128 0.026 0.011 0.103 0.054 0.189 0.110
256 D-F 0.025 0.118 0.207
512 2 0.016 0.017 0.066 0.070 0.125 0.131
512 4 0.023 0.019 0.090 0.082 0.165 0.150
512 8 0.038 0.020 0.140 0.087 0.227 0.162
512 16 0.075 0.020 0.225 0.088 0.341 0.161
512 32 0.144 0.019 0.341 0.083 0.491 0.158
512 64 0.203 0.017 0.469 0.079 0.640 0.140
512 128 0.196 0.016 0.514 0.071 0.686 0.130
512 256 0.097 0.014 0.345 0.064 0.517 0.124
512 D-F 0.189 0.478 0.654
1024 2 0.026 0.025 0.092 0.091 0.159 0.162
1024 4 0.053 0.033 0.165 0.114 0.257 0.206
1024 8 0.124 0.034 0.304 0.136 0.413 0.238
1024 16 0.272 0.038 0.497 0.146 0.632 0.254
1024 32 0.510 0.034 0.755 0.134 0.853 0.235
1024 64 0.769 0.025 0.928 0.107 0.970 0.197
1024 128 0.859 0.023 0.981 0.092 0.995 0.170
1024 256 0.855 0.019 0.983 0.080 0.997 0.155
1024 512 0.530 0.018 0.844 0.075 0.934 0.147

1024 D-F 0.915 0.993 0.999




Tabile 5b

Power of the two-sided variance ratio test [using the z,(q) statistic] against the ARIMA(1,1,1)

alternative X, =Y, + Z,, where Y,=0.96Y,_; +¢, ¢ iid N(O,1) and Z =Z,_, +¥, y, iid

N(0, 1). For comparison, the power of the one-sided Box-Pierce Q test (Q;) and the two-sided

Dickey—Fuller ¢ test (D-F) are also reported. Each set of rows with a given sample size forms a
separate and independent simulation experiment based on 20,000 replications.

1 percent test 5 percent test 10 percent test
Sample
size q 7(q) 1 z)(q) O z(q) 1
32 2 0.008 0.010 0.045 0.048 0.095 0.098
32 4 0.010 0.010 0.045 0.047 0.098 0.096
32 8 0.010 0.011 0.047 0.049 0.094 0.101
32 16 0.009 0.010 0.046 0.051 0.094 0.100
32 D-F 0.010 0.049 0.094
64 2 0.009 0.010 0.048 0.048 0.096 0.100
64 4 0.010 0.010 0.046 0.050 0.094 0.102
64 8 0.009 0.009 0.045 0.050 0.092 0.104
64 16 0.009 0.009 0.044 0.052 0.089 0.101
64 32 0.010 0.010 0.047 0.051 0.091 0.104
64 D-F 0.009 0.046 0.094
128 2 0.009 0.010 0.046 0.051 0.098 0.104
128 4 0.011 0.011 0.052 0.053 0.099 0.104
128 8 0.012 0.011 0.053 0.052 0.104 0.102
128 16 0.011 0.011 0.052 0.054 0.103 0.107
128 32 0.009 0.009 0.047 0.053 0.102 0.105
128 64 0.010 0.009 0.045 0.053 0.087 0.106
128 D-F 0.009 0.048 0.101
256 2 0.010 0.012 0.054 0.059 0.106 0.111
256 4 0.015 0.012 0.055 0.057 0.113 0.115
256 8 0.015 0.011 0.068 0.059 0.126 0.118
256 16 0.018 0.012 0.075 0.054 0.138 0.106
256 32 0.016 0.013 0.072 0.054 0.131 0.109
256 64 0.014 0.012 0.063 0.056 0.117 0.106
256 128 0.014 0.010 0.055 0.052 0.107 0.104
256 D-F 0.015 0.069 0.129
512 2 0.014 0.014 0.061 0.065 0.119 0.123
512 4 0.018 0.017 0.077 0.074 0.141 0.139
512 8 0.025 0.016 0.101 0.072 0.178 0.140
512 16 0.034 0.014 0.124 0.071 0.210 0.133
512 32 0.036 0.014 0.120 0.064 0.206 0.129
512 64 0.027 0.014 0.095 0.065 0.170 0.119
512 128 0.020 0.013 0.079 0.064 0.138 0.112
512 256 0.015 0.012 0.063 0.059 0.120 0.115
512 D-F 0.021 0.081 0.147
1024 2 0.024 0.023 0.085 0.085 0.150 0.153
1024 4 0.040 0.024 0.132 0.091 0.207 0.169
1024 8 0.065 0.023 0.196 0.097 0.290 0.177
1024 16 0.096 0.021 0.236 0.092 0.355 0.163
1024 32 0.094 0.017 0.241 0.079 0.355 0.144
1024 64 0.064 0.014 0.178 0.067 0.277 0.129
1024 128 0.030 0.013 0.118 0.061 0.197 0.120
1024 256 0.025 0.011 0.085 0.057 0.148 0.117
1024 512 0.021 0.012 0.074 0.057 0.132 0.112

1024 D-F 0.032 0.104 0173




Table 5¢

Power of the two-sided variance ratio test [using the z)(q) statistic] against the ARIMA(1,1,1)

alternative X, =Y, + Z,, where ¥,=096Y, | +¢, ¢ iid. N(@,1) and Z,=Z,_, +y, v, iid.

N(0,1). For comparison, the power of the one-sided Box-Pierce Q test (Q;) and the two-sided

Dickey—Fuller ¢ test (D-F) are also reported. Each set of rows with a given sample size forms a
separate and independent simulation experiment based on 20,000 replications.

1 percent test S5 percent test 10 percent test
Sample
size q 21(q) o 21(q) 2 21(q) o
32 2 0.008 0.010 0.049 0.049 0.095 0.099
32 4 0.010 0.010 0.046 0.051 0.093 0.102
32 8 0.009 0.012 0.045 0.052 0.092 0.106
32 16 0.008 0.012 0.045 0.053 0.094 0.102
32 D-F 0.009 0.049 0.096
64 2 0.010 0.010 0.048 0.049 0.096 0.102
64 4 0.008 0.009 0.048 0.054 0.100 0.105
64 8 0.009 0.009 0.047 0.054 0.099 0.111
64 16 0.010 0.009 0.048 0.054 0.095 0.105
64 32 0.010 0.009 0.047 0.052 0.093 0.107
64 D-F 0.009 0.045 0.092
128 2 0.010 0.012 0.049 0.056 0.102 0.113
128 4 0.012 0.013 0.062 0.058 0.115 0.113
128 8 0.014 0.013 0.062 0.061 0.122 0.115
128 16 0.016 0.012 0.068 0.060 0.125 0.118
128 32 0.013 0.012 0.060 0.059 0.117 0.115
128 64 0.012 0.012 0.053 0.058 0.098 0.112
128 D-F 0.012 0.056 0.114
256 2 0.013 0.015 0.060 0.065 0.114 0.122
256 4 0.021 0.015 0.073 0.071 0.142 0.136
256 8 0.027 0.015 0.103 0.072 0.178 0.137
256 16 0.034 0.013 0.120 0.062 0.212 0.122
256 32 0.026 0.013 0.120 0.058 0.207 0.117
256 64 0.023 0.014 0.092 0.062 0.165 0.118
256 128 0.019 0.012 0.072 0.056 0.133 0.112
256 D-F 0.024 0.098 0.175
512 2 0.022 0.023 0.087 0.092 0.151 0.159
512 4 0.036 0.026 0.129 0.106 0.209 0.188
512 8 0.058 0.024 0.191 0.100 0.294 0.186
512 16 0.088 0.021 0.251 0.093 0.377 0.169
512 32 0.095 0.019 0.257 0.081 0.387 0.153
512 64 0.067 0.018 0.194 0.076 0.311 0.136
512 128 0.044 0.017 0.146 0.070 0.224 0.129
512 256 0.028 0.014 0.106 0.064 0.171 0.124
512 D-F 0.053 0.155 0.241
1024 2 0.038 0.036 0.122 0.123 0.201 0.206
1024 4 0.085 0.046 0.230 0.156 0.337 0.261
1024 8 0.173 0.043 0.393 0.162 0.513 0.272
1024 16 0.285 0.035 0.513 0.142 0.654 0.245
1024 32 0.305 0.028 0.552 0.116 0.686 0.203
1024 64 0.213 0.021 0.426 0.091 0.571 0.169
1024 128 0.093 0.019 0.259 0.078 0.381 0.148
1024 256 0.062 0.014 0.169 0.068 0.262 0.134
1024 512 0.040 0.013 0.126 0.065 0.200 0.131

1024 D-F 0.078 0.200 0.292




Table 5d

Power of the two-sided variance ratio test [using the z,(g) statistic] against the ARIMA(1,1,1)

alternative X, =Y, + Z,, where Y,=0.96Y,_, +¢,, ¢ iid. N(O,1) and Z,=Z,_; +y, vy, iid.

N(0,2). For comparison, the power of the one-sided Box-Pierce Q test (Q,) and the two-sided

Dickey-Fuller ¢ test (D-F) are also reported. Each set of rows with a given sample size forms a
separate and independent simulation experiment based on 20,000 replications.

1 percent test 5 percent test 10 percent test
Sample
size q z1(9) A z(q) o z1(q) o
32 2 0.008 0.010 0.045 0.048 0.091 0.097
32 4 0.010 0.010 0.048 0.050 0.093 0.103
32 8 0.009 0.012 0.046 0.054 0.09 0.110
32 16 0.008 0.012 0.044 0.054 0.093 0.102
32 D-F 0.009 0.048 0.093
64 2 0.011 0.012 0.050 0.054 0.103 0.112
64 4 0.013 0.012 0.050 0.061 0.104 0.115
64 8 0.011 0.013 0.052 0.059 0.104 0.119
64 16 0.011 0.013 0.047 0.062 0.095 0.116
64 32 0.010 0.013 0.044 0.060 0.089 0.115
64 D-F 0.010 0.047 0.094
128 2 0.011 0.014 0.054 0.061 0.106 0.117
128 4 0.014 0.014 0.070 0.065 0.127 0.128
128 8 0.019 0.014 0.080 0.068 0.149 0.127
128 16 0.023 0.012 0.089 0.065 0.156 0.124
128 32 0.016 0.011 0.084 0.062 0.155 0.120
128 64 0.014 0.012 0.063 0.057 0.120 0.113
128 D-F 0.015 0.072 0.139
256 2 0.018 0.021 0.075 0.084 0.139 0.146
256 4 0.035 0.020 0.102 0.088 0.182 0.167
256 8 0.047 0.019 0.155 0.088 0.255 0.166
256 16 0.067 0.016 0.205 0.081 0.324 0.151
256 32 0.060 0.016 0.207 0.072 0.331 0.139
256 64 0.043 0.015 0.160 0.069 0.268 0.128
256 128 0.032 0.012 0.108 0.063 0.196 0.123
256 D-F 0.050 0.170 0.273
512 2 0.032 0.035 0.113 0.119 0.187 0.196
512 4 0.063 0.040 0.193 0.149 0.299 0.249
512 8 0.121 0.039 0.322 0.145 0.448 0.251
512 16 0.210 0.031 0.463 0.124 0.607 0.220
512 32 0.255 0.025 0.516 0.104 0.669 0.192
512 64 0.178 0.021 0.406 0.091 0.567 0.165
512 128 0.103 0.018 0.280 0.082 0.399 0.150
512 256 0.059 0.017 0.186 0.073 0.283 0.142
512 D-F 0.132 0.306 0.427
1024 2 0.068 0.065 0.187 0.187 0.282 0.287
1024 4 0.170 0.095 0.374 0.256 0.496 0.391
1024 8 0.371 0.092 0.638 0.292 0.745 0.440
1024 16 0.613 0.074 0.825 0.249 0.904 0.396
1024 32 0.711 0.053 0.898 0.184 0.951 0.304
1024 64 0.576 0.035 0.811 0.134 0.899 0.230
1024 128 0.281 0.028 0.559 0.110 0.699 0.192
1024 256 0.163 0.022 0.344 0.090 0.471 0.169
1024 512 0.100 0.021 0.239 0.086 0.339 0.159

1024 D-F 0.227 0.417 0.525




Table Se

Power of the two-sided variance ratio test [using the statistic z,(g)] against the ARIMA(1,1,0)

alternative AX, =«AX,_, +v, v iid. N(0,1), «=0.20. For comparison, the power of the

one-sided Box-Pierce Q test (Q;) and the two-sided Dickey~Fuller ¢ test (D-F) are also

reported. Each set of rows with a given sample size forms a separate and independent simulation
experiment based on 20,000 replications.

1 percent test 5 percent test 10 percent test
Sample
size q z1(q) Q 21(q) o 2(q) Q
32 2 0.057 0.037 0.176 0.128 0.270 0.213
32 4 0.046 0.021 0.141 0.094 0.226 0.167
32 8 0.029 0.022 0.098 0.086 0.168 0.157
32 16 0.026 0.023 0.095 0.085 0.166 0.147
32 D-F 0.143 0.240 0.301
64 2 0.148 0.119 0.342 0.292 0.463 0417
64 4 0.104 0.071 0.263 0.195 0.368 0.298
64 8 0.059 0.050 0.168 0.156 0.254 0.248
64 16 0.035 0.040 0.114 0.135 0.181 0.218
64 32 0.032 0.036 0.097 0.123 0.164 0.209
64 D-F 0.143 0.240 0.308
128 2 0.377 0.323 0.600 0.564 0.719 0.687
128 4 0.257 0.197 0.455 0.413 0.576 0.542
128 8 0.122 0.126 0.280 0.305 0.388 0.422
128 16 0.059 0.082 0.167 0.231 0.254 0.344
128 32 0.034 0.058 0.108 0.184 0.175 0.290
128 64 0.029 0.050 0.093 0.166 0.153 0.268
128 D-F 0.138 0.235 0.302
256 2 0.741 0.709 0.887 0.876 0.934 0.928
256 4 0.526 0.529 0.744 0.749 0.836 0.836
256 8 0.276 0.361 0.498 0.612 0.614 0.726
256 16 0.125 0.229 0.298 0.454 0.401 0.588
256 32 0.069 0.160 0.172 0.348 0.261 0.479
256 64 0.036 0.115 0.105 0.285 0.177 0.400
256 128 0.032 0.088 0.095 0.241 0.158 0.362
256 D-F 0.138 0.238 0.299
512 2 0.972 0.969 0.993 0.993 0.997 0.997
512 4 0.871 0.918 0.957 0.976 0.978 0.988
512 8 0.571 0.813 0.779 0.931 0.855 0.965
512 16 0.290 0.652 0.523 0.845 0.633 0.909
512 32 0.139 0.481 0.300 0.706 0.407 0.809
512 64 0.069 0.320 0.168 0.571 0.263 0.688
512 128 0.035 0.227 0.112 0.455 0.181 0.580
512 256 0.032 0.182 0.097 0.380 0.159 0.519
512 D-F 0.136 0.236 0.304
1024 2 1.000 1.000 1.000 1.000 1.000 1.000
1024 4 0.996 0.999 0.999 1.000 1.600 1.000
1024 8 0.893 0.995 0.969 0.999 0.985 1.000
1024 16 0.585 0.978 0.783 0.996 0.862 0.998
1024 32 0.301 0.918 0.509 0.976 0.629 0.989
1024 64 0.144 0.767 0.295 0.911 0.411 0.952
1024 128 0.061 0.581 0.176 0.792 0.265 0.874
1024 256 0.035 0.411 0.110 0.663 0.174 0.780
1024 512 0.028 0.334 0.093 0.586 0.157 0.710

1024 D-F 0.142 0.248 0.314
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variance ratio test is 24.1 percent for ¢ = 32 whereas the corresponding power
of the Dickey—Fuller and Box—Pierce tests are 10.4 and 7.9 percent, respec-
tively.

As in the case of the stationary AR(1) alternative, the power of the variance
ratio test also rises and falls with g against the ARIMA(1,1,1) alternative. In
addition to the factors discussed in section 4.2, there is an added explanation
for this pattern of power. For small to medium differencing intervals the
increments of X, behave much like increments of an AR(1), hence power
increases with ¢ in this range. For longer differencing intervals the random
walk component dominates. Hence the power declines beyond some aggrega-
tion value g.

As the variance of the random walk’s disturbance declines relative to the
variance of the stationary component’s, the power of the variance ratio test
increases. Table 5¢ reports power results for the case where the variances of
the two components’ innovations are equal, and in table 5d the variance of the
random walk innovation is half the variance of the AR(1) innovation. In the
latter case, the 5 percent variance ratio test has 89.8 percent power for g = 32
and T =1024 compared to 41.7 percent and 18.4 percent power for the
Dickey-Fuller and Box-Pierce tests, respectively. Although the qualitative
behavior of the three tests are the same in tables 5b—5d, the variance ratio test
is considerably more powerful than the other two when the variance of the
stationary component is larger than that of the random walk. Moreover, the
pattern of power as a function of ¢ clearly demonstrates that against this
alternative, it is not optimal to set ¢ as large as possible.?

Since both the stationary AR(1) and the AR(1) plus random walk are not
empirically supported by Lo and MacKinlay’s (1988) results for weekly stock
returns, we consider the power of the variance ratio test against a more
relevant alternative hypothesis suggested by their empirical findings: an in-
tegrated AR(1), i.e., an ARIMA(1,1,0). Specifically, if X, is the log-price
process, then we assume

(X,— X, )=x-(X,_1—X_,)+¢&, & iid.N(0,0?), (23)

where |k| < 1. Since this alternative obviously possesses a unit root, we expect
the standard unit root tests to have poor power against it. Nevertheless for
comparison we report the power of the Dickey—Fuller ¢ test along with the
power of the variance ratio and Box-Pierce tests. The parameters («, 0{2) are

%1n fact, the g for which the variance test has the most power for a given sample size will
depend on the ratio of the stationary component’s innovation variance to the variance of the
random walk’s disturbance. Unfortunately, this fact cannot be observed in our tables because we
have set g to be powers of 2 for computational convenience, If the variance ratio test’s power were
tabulated for g =2,3,4,..., T — 1, it would be apparent that against this ARIMA(1,1,1) alterna-
tive the optimal g changes with the ratio of the innovation invariances of the two components.

J.Econ -B
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set to (0.20,1) for all the simulations in table 5e. Unlike its behavior under the
stationary AR(1) alternative, against this integrated process the variance
ratio’s power declines as ¢ increases. With a sample size of 1024, the power of
a 5 percent test is 100 percent when ¢ =2, but falls to 9.3 percent when
q=512. In contrast to the AR(1), the behavior of the integrated process’s
increments is farthest from a random walk for short differencing intervals
[since the increments follow a stationary AR(1) by construction]. As the
differencing interval increases, the autocorrelation of the increments decreases
and it becomes more difficult to distinguish between this process and the
random walk.

Observe that for smaller aggregation values the variance ratio test is more
powerful than the Q test, but the Q test dominates when g is large. This result
is due to the fact that the Box—Pierce Q does not distinguish between the
upper and lower tails of the null distribution [since Q is the sum of squared
autocorrelations] whereas the variance ratio test does.

5. Conclusion

Our simulations indicate that the variance ratio test of the random walk
hypothesis generally yields reliable inferences under both the i.i.d. Gaussian
and the heteroscedastic null hypotheses. By selecting the aggregation value g
appropriately, the power of the variance ratio test is comparable to that of the
Box-Pierce and Dickey—Fuller tests against the stationary AR(1) alternative
and is more powerful than either of the two tests against the two unit root
alternatives. However, because of the variance ratio’s skewed empirical distri-
bution, caution must be exercised when g is large relative to the sample size.

These results emphasize dramatically the obvious fact that the power of any
test may differ substantially across alternatives. A sensible testing strategy
must consider not only the null hypothesis but also the most relevant alterna-
tive. Although the variance ratio test has advantages over other tests under
some null and alternative hypotheses, there are of course other situations in
which those tests may possess more desirable properties. Nevertheless, the
Monte Carlo evidence suggests that the variance ratio test has reasonable
power against a wide range of alternatives.”” The simplicity, reliability, and
flexibility of the variance ratio test make it a valuable tool for inference.
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