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We examine the finite-sample properties of the variance ratio test of the random walk hypothesis 
via Monte Carlo simulations under two null and three alternative hypotheses. These results are 
compared to the performance of the Dickey-Fuller t and the Box-Pierce Q statistics. Under the 
null hypothesis of a random walk with independent and identically distributed Gaussian incre- 
ments, the empirical size of all three tests are comparable. Under a heteroscedastic random walk 
null, the variance ratio test is more reliable than either the Dickey-Fuller or Box-Pierce tests. We 
compute the power of these three tests against three alternatives of recent empirical interest: a 
stationary AR(l), the sum of this AR(l) and a random walk, and an integrated AR(l). By 
choosing the sampling frequency appropriately, the variance ratio test is shown to be as powerful 
as the Dickey-Fuller and Box-Pierce tests against the stationary alternative and is more powerful 
than either of the two tests against the two unit root alternatives. 

1. Introduction 

Whether or not an economic time series follows a random walk has long 
been a question of great interest to economists. Although its origins lie in the 
modelling of games of chance, the random walk hypothesis is also an implica- 
tion of many diverse models of rational economic behavior.’ Several recent 
studies have tested the random walk theory by exploiting the fact that the 

*This paper has benefited considerably from the comments of an Associate Editor and two 
referees. We thank Chris Cavanagh, John Huizinga, Whitney K. Newey, Ken Singleton, Mark 
Watson, and seminar participants at MIT., Northwestern University, Princeton University, 
Stanford University, UCLA, University of Chicago, University of Michigan, and the University of 
Pennsylvania for comments on an earlier draft. We are grateful to Stephanie Hogue, Elizabeth 
Schmidt, and Madhavi Vinjamuri for preparing the manuscript. Research support from the 
National Science Foundation (Grant No. SES-8520054) and the University of Pennsylvania 
Research Fund is gratefully acknowledged. Any errors are of course our own. 

‘See, for example, Gould and Nelson (1974), Hall (1978) Lucas (1978), Shiller (1981), Kleidon 
(1986), and Marsh and Merton (1986). 
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variance of random walk increments is linear in the sampling interval.2 
Therefore the variance of, for example, quarterly increments must be three 
times as large as the variance of monthly differences. Comparing the (per unit 
time) variance estimates from quarterly to monthly data will then yield an 
indication of the random walk’s plausibility. Such a comparison may be 
formed quantitatively along the lines of the Hausman (1978) specification test 
and is developed in Lo and Ma&inlay (1988). Due to intractable nonlineari- 
ties, the sampling theory of Lo and Ma&inlay is based on standard asymp- 
totic approximations. 

In this paper, we investigate the quality of those approximations under the 
two most commonly advanced null hypotheses: the random walk with inde- 
pendently and identically distributed Gaussian increments, and with uncorre- 
lated but heteroscedastic increments. Under both null hypotheses, the variance 
ratio test is shown to yield reliable inferences even for moderate sample sizes. 
Indeed, under a specific heteroscedastic null the variance ratio test is some- 
what more reliable than both the Dickey-Fuller t and Box-Pierce port- 
manteau tests. 

We also compare the power of these tests against three empirically interest- 
ing alternative hypotheses: a stationary AR(l) which has been advanced as a 
model of stock market fads, the sum of this AR(l) and a pure random walk, 
and an ARIMA(l, 1,0) which is more consistent with stock market data. 
Although the Dickey-Fuller t test is more powerful than the Box-Pierce Q 
test against the first alternative and vice versa against the second, the variance 
ratio test is comparable to the most powerful of the two tests against the first 

alternative, and more powerful against the second two alternatives when the 
variance ratio’s sampling intervals are chosen appropriately. 

Since the random walk is closely related to what has come to be known as a 
‘unit root’ process, a few comments concerning the variance ratio test’s place 
in the unit root literature are appropriate. It is obvious that the random walk 
possesses a unit root. In addition, random walk increments are required to be 
uncorrelated. Although earlier studies of unit root tests [e.g., Dickey and 
Fuller (1979,1981)] also assumed uncorrelated increments, Phillips (1986,1987), 
Phillips and Perron (1986) and Perron (1986) show that much of those results 
obtain asymptotically even when increments are weakly dependent.3 There- 
fore, the random walk model is a proper subset of the unit root null 
hypothesis. This implies that the power of a consistent unit root test against 
the random walk hypothesis will converge to the size of the test asymptoti- 
cally. 

*See, for example, Campbell and Mankiw (1987), Cochrane (1987a. b), Huizinga (1987), Lo and 
Ma&inlay (1988), and Poterba and Summers (1987). 

‘Dickey and Fuller (1979,198l) make the stronger assumption of independently and identically 
distributed Gaussian disturbances. 
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The focus of random walk tests also differs from that of the unit root tests. 
This is best illustrated in the context of Beveridge and Nelson’s (1981) 
decomposition of a unit root process into the sum of a random walk and a 
stationary process.4 Recent applications of unit root tests propose the null 
hypothesis that the random walk component does not exist, whereas tests of 
the random walk have as their null hypothesis that the stationary component 
does not exist.5 

Since there are some important departures from the random walk that unit 
root tests cannot detect, the variance ratio test is preferred when the attribute 
of interest is the uncorrelatedness of increments. Moreover, in contrast to the 
dependence of the unit root test statistics’ distributions on nuisance parame- 
ters, the variance ratio’s limiting distribution is Gaussian and independent of 
any nuisance parameters.6 Although we report simulation results for the 
Dickey-Fuller t and the Box-Pierce Q tests for comparison with the perfor- 
mance of the variance ratio test, we emphasize that these three tests are not 
direct competitors since they have been designed with different null hypothe- 
ses in mind. 

The paper is organized as follows. In section 2 we define the variance 
ratio statistic, summarize its asymptotic sampling theory, and define the 
Dickey-Fuller and Box-Pierce tests. Section 3 presents Monte Carlo results 
for the three tests under two null hypotheses, and section 4 contains the power 
results for the three alternative hypotheses. We summarize and conclude in 
section 5. 

2. The variance ratio test 

Since the asymptotic sampling theory for the variance ratio statistic is fully 
developed in Lo and MacKinlay (1988) we present only a brief summary here. 
Let X, denote a stochastic process satisfying the following recursive relation: 

or 

x, = /.J + x,-i + Et, E[q] = 0, for all t, (Ia) 

AX, = j.t + q, AX, = X, - Xr_i, (Ib) 

4Also, see Cochrane (1987~) who uses this fact to show that trend-stationarity and difference- 
stationarity cannot be distinguished with a finite amount of data. 

5We are grateful to one of the two referees for this insight. 

6The usual regression t statistic’s limiting distribution depends discontinuously on the presence 
or absence of a non-zero drift lsee Nankervis and Savin (1985). and Perron (1986)l. This 
dependence on the drift may be elkninated by the inclusion of a time trend in the regress&n, but 
requires the estimation of an additional parameter and may affect the power of the resulting test. 
Section 4 reports power comparisons. 
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where the drift p is an arbitrary parameter. The essence of the random walk 
hypothesis is the restriction that the disturbances E~ are serially uncorrelated or 
that innovations are unforecastable from past innovations. We develop our 
test under two null hypotheses which capture this aspect of the random walk: 
independently and identically distributed Gaussian increments, and the more 
general case of uncorrelated but weakly dependent and possibly heteroscedas- 
tic increments. 

2.1. The i.i.d. Gaussian null hypothesis 

Let the null hypothesis H, denote the case where the E,‘S are i.i.d. normal 
random variables with variance u2. Hence 

Hi: E, i.i.d. N(0, u’). (2) 

In addition to homoscedasticity, we have made the assumption of independent 
Gaussian increments as in Dickey and Fuller (1979,198l) and Evans and 
Savin (1981a, b, 1984).7 Suppose we obtain nq + 1 observations X0, Xi,. . . , XRy 
of X,, where both n and q are arbitrary integers greater than one. Considering 
the following estimators for the unknown parameters /A and u2: 

estimator 62 is simply the sample variance of the first-difference of X,; it 
corresponds to the maximum likelihood estimator of the parameter u2 and 
therefore possesses the usual consistency, asymptotic normality and efficiency 
properties. 

Consider the variance of qth differences of X, which, under Hi, is q times 
the variance of first-differences. By dividing by q, we obtain the estimator 
c?;(q) which also converges to u2 under Hi, where 

(5) 

We have written &f(q) as a function of q (which we term the aggregation 
ualue) to emphasize the fact that a distinct alternative estimator of u2 may be 

‘The Gaussian assumption may, of course, be weakened considerably. We present results for 
this simple case only for purposes of comparison to other results in the literature that are derived 
under identical conditions. In section 2.2 we relax both the independent and the identically 
distributed assumptions. 
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formed for each q.’ Under the null hypothesis of a Gaussian random walk, the 
two estimators 15: and &i(q) should be ‘close’; therefore a test of the random 
walk may be constructed by computing the difference M,(q) = S;(q) - 6: 

and checking its proximity to zero. Alternatively, a test may also be based 
upon the dimensionless centered variance ratio M,(q) = &j?(q)/$i - 1, which 

converges in probability to zero as well9 It is shown in Lo and Ma&inlay 
(1988) that M,(q) and M,(q) possess the following limiting distributions 
under the null hypothesis Hi: 

fiwi(q) ” N 
i 
0, 

wq - Nq - 1) o4 

% I3 
&M,(q) ” N(0, 2(2q-;$q-1’ 1, 

(64 

w 

An additional adjustment that may improve the finite-sample behavior of 
the test statistics is to use unbiased estimators CO2 and Z;(q) in computing 

*Although we have defined the total number of observations T= nq to be divisible by the 
aggregation value 4, this is only for expositional convenience and may be easily generalized. 

‘The use of variance ratios is, of course, not new. Most recently, Campbell and Mankiw (1987) 
Cochrane (1987a,b), French and Roll (1986), and Huizinga (1987) have all computed variance 
ratios in a variety of contexts. However, those studies do not provide any formal sampling theory 
for our statistics. Specifically, Cochrane (1987a) and French and Roll (1986) rely upon Monte 
Carlo simulations to obtain standard errors for their variance ratios under the null. Campbell and 
Mankiw (1987) and Cochrane (1987b) do derive the asymptotic variance of the variance ratio, but 
only under the assumption that the aggregation value 4 grows with (but more slowly than) the 
sample size T. Specifically, they use Priestley’s (1981, p. 463) expression for the asymptotic 
variance of the estimator of the spectral density of AX, at frequency zero with a Bartlett window 
as the appropriate asymptotic variance of the variance ratio. But Priestley’s result requires (among 
other things) that 4 + cc, T-, cc, and q/T+ 0. In this paper, we develop the formal sampling 
theory of the variance ratio statistics for the more general case. 

Our variance ratio may, however, be related to the spectral density estimates in the following 
way. Letting f(0) denote the spectral density of the increments A X, at frequency zero, we have the 
following relation: 

nf(O) =y(O) + 2. c Y(k), 

k=l 

where y(k) is the autocovariance function, Dividing both sides by the variance y(O) then yields 

rf”(O)=1+2. E P(k)> 
k-l 

where f* is the normalized spectral density and p(k) is the autocorrelation function. Now in 
order to estimate the quantity r!*(O), the infinite sum on the right-hand side of the preceding 
equation must obviously truncated. If, in addition to truncation, the autocorrelations are weighted 
using Newey and West’s (1987) procedure, then the resulting estimator is formally equivalent to 

our p,(q) statistic. Although he does not explicitly use this variance ratio, Huizinga (1987) does 
employ the Newey and West (1987) estimator of the normalized spectral density. 
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M,(q) and M,(q), where 

(7’4 

with 

m=q(nq-q+1) 1-G . 
i i 

We denote the resulting adjusted specification test statistics M,(q) and 
M,(q). Of course, although the variance estimators IY~ and C;(q) are unbi- 

ased, only M,(q) is unbiased; M,(q) is not. 

2.2. The heteroscedastic null hypothesis 

Since there is already a growing consensus that many economic time series 
possess time-varying volatilities, we derive a version of our specification test of 
the random walk model that is robust to heteroscedasticity. As long as the 
increments are uncorrelated, the variance ratio must still converge to one in 
probability even with heteroscedastic disturbances. Heuristically, this is simply 
because the variance of the sum of uncorrelated increments must still equal the 
sum of the variances. Of course, the asymptotic variance of the variance ratios 
will depend on the type and degree of heteroscedasticity present. By control- 
ling the degree of heterogeneity and dependence of the process, it is possible to 
obtain consistent estimators of this asymptotic variance. To relax the i.i.d. 
Gaussian restriction of the E,‘s, we follow White’s (1980) and White and 
Domowitz’s (1984) use of mixing and moment conditions to derive hetero- 
scedasticity-consistent estimators of our variance ratio’s asymptotic variance. 
We require the following assumptions on {Ed}, which form our second null 
hypothesis: 

Hz: (Al) 

(AZ) 

(A3) 

(A4) 

For all t, E[E~] = 0, E[E~E~_~] = 0 for any 7 # 0. 

{et} is +mixing with coefficients I/I(~) of size r/(2r - 1) or is 
a-mixing with coefficients a(m) of size r/(r - l), r > 1, such that 
for all t and for any r 2 0, there exists some 6 > 0 for which 

EIe,eJ 2(r+S) < A < 00. (8) 

rlimm f $ E[E:] = IJ~ < co. 
t-1 

For all t, E[E,E,_~E,E,_~] = 0 for any non-zero j, k where j # k. 
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Assumption (Al) is the essential property of the random walk that we wish to 
test. Assumptions (A2) and (A3) are restrictions on the degree of dependence 
and heterogeneity which are allowed and yet still permit some form of law of 
large numbers and central limit theorem to obtain. This allows for a variety of 
forms of heteroscedasticity including deterministic changes in the variance 
(due, for example, to seasonal components) as well as Engle’s (1982) ARCH 
processes (in which the conditional variance depends upon past information).” 
Assumption (A4) implies that the sample autocorrelations of E, are asymptoti- 
cally uncorrelated. l1 Under the null hypothesis H,, we may obtain hetero- 
scedasticity-consistent estimators b(j) of the asymptotic variance S(j) of the 
autocorrelations 6(j) of AX,. Using the fact that the variance ratio may be 
written as an approximate linear combination of autocorrelations [see (12) 
below] yields the following limiting distribution for M,(q): l2 

where 

.6(j), 

(9b) 
“q 

c (Xk-Xk-l-P)2+&,-XX-,-1-P)2 

s^( j) = k=/+l 

(x,-x,&&q* 2 1 
(9c) 

“In addition to admitting heteroscedasticity, it should be emphasized that assumptions (A2) 
and (A3) also follow for more general heterogeneity and weak dependence. Our reason for 
focusing on heteroscedasticity is merely its intuitiveness; it is more difficult to produce an 
interesting example of, for example, an uncorrelated homoscedastic time series which is weakly 
dependent and heterogeneously distributed. 

“Although this assumption may be weakened considerably, it would be at the expense of 
computational simplicity since in that case the asymptotic covariances of the autocorrelations 
must be estimated. Specifically, since the variance ratio statistic is asymptotically equivalent to a 
linear combination of autocorrelations, its asymptotic variance is simply the asymptotic variance 
of the linear combination of autocorrelations. If (A4) obtains, this variance is equal to the 
weighted sum of the individual autocorrelation variances. If (A4) is violated, then the autocovari- 
antes of the autocorrelations must also be estimated. This is readily accomplished using, for 
example, the approach in Newey and West (1987). Note that an even more general [and possibly 
more exact] sampling theory for the variance ratios may be obtained using the results of Dufour 
and Roy (1985). Again, this would sacrifice much of the simplicity of our asymptotic results. 

‘*An equivalent and somewhat more intuitive method of arriving at (SC) is to consider the 
regression of the increments AX, on a constant and the jth lagged increment AX,_,. The 
estimated slope coefficient is then simply the jth autocorrelation coefficient and the estimator 6(j) 
of its variance is numerically identical to White’s (1980) heteroscedasticity-consistent covariance 
matrix estimator. Note that White (1980) requires independent disturbances, whereas White and 
Domowitz (1984) allow for weak dependence (of which uncorrelated errors is, under suitable 
regularity conditions, a special case). Taylor (1984) also obtains this result under the assumption 
that the multivariate distribution of the sequence of disturbances is symmetric. 
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Tests of H, and H, may then be based on the normalized variance ratios zr( q) 

and z2( q), respectively, where 

z,(q) s GM,(q). 

-l/2 

” N(O, I), (lOa> 

zZ(q) = &M,(q). f-“*(q) ” N(0,l). (lob) 

2.3. Variance ratios and autocorrelations 

To develop some intuition for the variance ratio, observe that for an 
aggregation value q of 2, the M,(q) statistic may be re-expressed as 

w(2) = 60) - & [(x,-x,-P)2+(X2n-X2n-1-P)2]. (11) 
0 

Hence for q = 2 the M,(q) statistic is approximately the first-order autocorre- 
lation coefficient estimator 6(l) of the differences of X. More generally, we 
have the following relation for q 2 2: 

w(q) = 
2(q - 1) r;(l) 2(q-2) + #G(2) + ... 

4 4 

+ ;;(q- 1) + op(.-1’2), (12) 

where op(, -112) denotes terms which are of order smaller than n - ‘/* in 
probabrhty. Eq. (12) provides a simple interpretation for the variance ratio 
computed with an aggregation value q: it is (approximately) a linear combina- 
tion of the first q - 1 autocorrelation coefficient estimators of the first dif- 
ferences with arithmetically declining weights. Note the similarity between this 
and the Box-Pierce (1970) Q statistic of order q - 1, 

4-l 

Q,(q - 1) = T c B’(k), (13) 
k=l 

which is asymptotically distributed as X2 with q - 1 degrees of freedom.13 
Using (SC) we can also construct a heteroscedasticity-robust Box-Pierce statis- 

13Since we include the Box-Pierce test only as an illustrative comparison to the variance ratio 
test, we have not made any effort to correct for finite-sample biases as in Ljung and Box (1978). 
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tic in the obvious way, which we denote by Q2( LJ - 1). Since the Box-Pierce Q 
statistics give equal weighting to the autocorrelations and are computed by 
squaring the autocorrelations, their properties will differ from those of the 
variance ratio test statistics. 

For comparison, we also employ the Dickey-Fuller t test. This involves 
computing the usual t statistic under the hypothesis p = 1 in the regression 

x, = p + wt + px,_, + y,, 04 
and using the exact finite-sample distribution tabulated by Fuller (1976) 
Dickey and Fuller (1979,1981), and Nankervis and Savin (1985).14s15 

3. Properties of the test statistic under the null hypotheses 

To gauge the quality of the asymptotic approximations in section 2, 
we perform simulation experiments for the a,(q) statistic under both the 
Gaussian i.i.d. null hypothesis and a simple heteroscedastic null. More exten- 
sive simulation experiments indicate that tests based upon the unadjusted 
statistic M,(q) generally yield less reliable inferences hence, in the interest of 
brevity, we only report the results for M,(q). For comparison, we also report 
the results of Monte Carlo experiments performed for the Box-Pierce Q 
statistics and the Dickey-Fuller t statistic. All simulations are based on 20,000 
replications.16 

3.1. The Gaussian i.i.d. null hypothesis 

Tables la and lb report the results of simulation experiments conducted 
under the independent and identically distributed Gaussian random walk null 
Hr. The results show that the empirical sizes of two-sided 5 percent variance 
ratio tests based on either the z,(q) and z2(q) statistics are close to their 
nominal values for sample sizes greater than 32. Not surprisingly, for an 
aggregation value q of 2 the behavior of the variance ratio is comparable to 
that of the Box-Pierce Q statistic since a,.(2) is approximately equal to the 
first-order serial correlation coefficient. However, for larger aggregation values 
the behavior of the two statistics differ. 

t4Due to the dependence of the t statistic’s distribution on the drift ~1, a time trend t must be 
included in the regression to yield a sampling theory for the t statistic which is independent of the 
nuisance parameter. 

“Yet another recent test of the random walk hypothesis is the regression test proposed by 
Fama and French (1988). Since Monte Carlo experiments by Poterba and Summers (1987) 
indicate that the variance ratio is more powerful than this regression test against several 
interesting alternatives, we do not explore its finite-sample properties here. 

i6Null simulations were performed in single-precision FORTRAN on a DEC VAX 8700 using 
the random number generator GGNML of the IMSL subroutine library. Power simulations were 
performed on an IBM 3081 and a VAX 8700 also in single-precision FORTRAN using GGNML. 
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Table la shows that as the aggregation value q increases to one-half the 
sample size, the empirical size of the Box-Pierce Q, test generally declines 

well below its nominal value, whereas the size of the variance ratio’s zi test 
seems to first increase slightly above and then fall back to its nominal value. 
For example, with a sample size of 1024, the size of the 5 percent Q, test falls 
monotonically from 5.1 to 0.0 percent as q goes from 2 to 512; the size of the 5 
percent zi test starts at 5.2 percent when q = 2, increases to 6.2 percent at 
q = 256, and settles at 5.1 percent when q = 512. 

Although the size of the variance ratio test is closer to its nominal value for 
larger q, this does not necessarily imply that large values of q are generally 
more desirable. To examine this issue, table la separates the size of the 
variance ratio test into rejection rates of the lower and upper tails of the 1, 5, 
and 10 percent tests. When q becomes large relative to the sample size, the 
rejections of the variance ratio test are almost wholly due to the upper tail. 
One reason for this positive skewness of the z,(q) statistic is that the variance 
ratio is bounded below by zero, hence a related lower bound obtains for the 
test statistic.‘7Although this is of less consequence for the size of the variance 
ratio test, it has serious power implications and will be discussed more fully in 

section 4.1. 
Table lb reports similar results for the heteroscedasticity-robust test statis- 

tics zZ(q) and Q,. For sample sizes greater than 32, the size of the variance 
ratio test is close to its nominal value when q is small relative to the sample 
size. As q increases for a given sample, the size increases and then declines, as 
in table la. Again, the variance ratio rejections are primarily due to its upper 
tail as q increases relative to the sample size. In contrast to the Q, test, the 
heteroscedasticity-robust Box-Pierce test Q2 test increases in size as more 
autocorrelations are used. For example, in samples of 1024 observations the 
size of the 5 percent Q2 test increases from 5.1 to 11.3 percent as q ranges 
from 2 to 512. In contrast, the size of the variance ratio test starts at 5.2 
percent when q = 2, increases to 6.6 percent at q = 256, and falls to 5.8 
percent at q = 512. 

Tables la and b indicate that the empirical size of the variance ratio tests is 
reasonable even for moderate sample sizes, and is closer to its nominal value 
than the Box-Pierce tests when the aggregation value becomes large relative to 
the sample size. However, in such cases most of the variance ratio’s rejections 
are from its upper tail; power considerations will need to be weighed against 
the variance ratio test’s reliability under the null. 

Since the sampling theory for the Q and z statistics obtain only asymptoti- 
cally, the actual size of any test based on these statistics will of course differ 

“More direct evidence of this skewness is presented in table 4, in which the fractiles of the 
variance ratio test statistic are reported. See also the discussion in section 4.1. 
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Table 2 

Empirical quantiles of the (Dickey-Fuller) t statistic associated with the hypothesis /I = 1 in the 
regression X, = p + wr + /?X,_ 1 + E,, where E, is i.i.d. N(O,l). Each row corresponds to a separate 

and independent simulation experiment based upon 20,000 replications. 

Sample 
size 0.005 0.010 0.025 0.050 0.100 

32 - 4.161 - 4.456 - 4.043 - 3.731 - 3.361 
64 - 4.449 -4.188 - 3.860 - 3.570 - 3.243 

128 - 4.324 - 4.087 - 3.117 - 3.492 - 3.186 
256 - 4.235 - 3.990 - 3.684 - 3.424 - 3.135 
512 -4.173 - 3.973 - 3.616 - 3.424 - 3.131 

1024 - 4.160 - 3.959 - 3.663 - 3.425 - 3.130 

Sample 
size 0.900 0.950 0.975 0.990 0.995 

32 ~ - 1.222 - 0.887 - 0.598 0.246 -0.013 
64 - 1.230 - 0.906 - 0.620 - 0.279 - 0.019 

128 - 1.241 -0.918 - 0.635 - 0.273 - 0.040 
256 - 1.241 - 0.910 ~ 0.649 - 0.276 - 0.049 
512 - 1.233 - 0.903 - 0.611 - 0.299 - 0.032 

1024 - 1.252 - 0.951 - 0.673 - 0.319 ~ 0.054 

from their nominal values in finite samples. Although table 1 indicates that 
such differences may not be large for reasonable aggregation values, it may 
nevertheless seem more desirable to base tests upon the regression t statistic 
for which Fuller (1976), Dickey and Fuller (1979,1981), and Nankervis and 
Savin (1985) have tabulated the exact finite-sample distribution. Due to the 
dependence of the t statistic’s distribution on the drift p, an additional 
nuisance parameter (a time-trend coefficient) must be estimated to yield a 
sampling distribution that is independent of the drift. Although it has been 
demonstrated that the t statistic from such a regression converges in distribu- 
tion to that of Dickey and Fuller, there may be some discrepancies in finite 
samples. Table 2 presents the empirical quantiles of the distribution of the t 
statistic associated with the hypothesis p = 1 in the regression (14). A compari- 
son of these quantiles with those given in Fuller (1976, table 8.5.2) suggests 
that there may be some significant differences for small samples, but for 
sample sizes of 500 or greater the quantiles in table 2 are almost identical to 
those of Dickey and Fuller. 

3.2. A heteroscedastic null hypothesis 

To assess the reliability of the heteroscedasticity-robust statistic zz(q), we 
perform simulation experiments under the null hypothesis that the disturbance 
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E, in (1) is serially uncorrelated but heteroscedastic in the following manner. 
Let the random walk disturbance E, satisfy the relation et = qX,, where X, is 
i.i.d. N(O,l) and a, satisfies 

lnu,2=~~lnu;“_,+~,, 5,-N(O,I). (15) 

h, and 5; are assumed to be independent. The empirical studies of French, 
Schwert and Stambaugh (1987) and Poterba and Summers (1986) posit such a 
process for the variance. Note that at cannot be interpreted as the uncondi- 
tional variance of the random walk disturbance E, since at2 is itself stochastic 
and does not correspond to the unconditional expectation of any random 
variable. Rather, conditional upon q2, E, is normally distributed with expec- 
tation 0 and variance u,~. If, in place of (15), the variance ut2 were re- 
parameterized to depend only upon exogenous variables in the time t - 1 
information set, this would correspond exactly to Engle’s (1982) ARCH 
process. 

The unconditional moments of E, may be readily deduced by expressing the 
process explicitly as a function of all the disturbances: 

Since uO, A, and lk are assumed to be mutually independent, it is apparent 
that E~ is serially uncorrelated at all leads and lags [hence assumption (Al) is 
satisfied] but is non-stationary and temporally dependent. Moreover, it is 
evident that E[E$_~E,_~] = 0 for all t and for j # k. Hence assumption (A4) 
is also satisfied. A straightforward calculation yields the moments of E,: 

E[+‘+‘] =O, p=0,1,2 ,.... (17b) 

From these expressions it is apparent that, for 4 E (0, l), E, possesses bounded 
moments of any order and is unconditionally heteroscedastic; similar calcula- 



A. W. L.o and A.C. MacKinlay, Variance raiio test infinite samples 

tions for the cross-moments verify assumption (A2). Finally, the 
inequality is easily deduced: 

Thus assumption (A3) is verified. Note that the kurtosis of E, is 

W E[ @‘I 

(E[E;])~ =3’ (E[0;“])2 r3’ 

219 

following 

(18) 

(19) 

by Jensen’s inequality. This implies that, as for Engle’s (1982) stationary 
ARCH process, the distribution of E, is more peaked and possesses fatter tails 
than that of a normal random variate. However, when Ic, = 0 or as t increases 
without bound, the kurtosis of E, is equal to that of a Gaussian process. 

Table 3a reports simulation results for the z, Q and Dickey-Fuller t 
statistics under the heteroscedastic null hypothesis with parameter 1c, = 0.50. It 
is apparent that both the zr and Qr statistics are unreliable in the presence of 
heteroscedasticity. Even in samples of 512 observations, the empirical size of 
the 5 percent variance ratio test with 4 = 2 is 14.7 percent; the corresponding 
Box-Pierce 5 percent test has an empirical size of 14.6 percent. In contrast, the 
Dickey-Fuller t test’s empirical size of 4.9 percent is much closer to its 
nominal value. This is not surprising since Phillips (1987) and Phillips and 
Perron (1986) have shown that the Dickey-Fuller t test is robust to hetero- 
scedasticity (and weak dependence) whereas the zr and Q, statistics are not. 
However, once the heteroscedasticity-robust z2 and Q2 statistics are used, 
both tests compare favorably with the Dickey-Fuller t test. In fact, for the 
more severe case of heteroscedasticity considered in table 3b [where I,L = 0.951, 
the variance ratio and Box-Pierce tests using z2 and Q2 are both considerably 
more reliable than the Dickey-Fuller test.18 For example, when q/T is : in 
sample sizes of 512 observations, the sizes of 5 percent tests using z2 and Q2 
are 4.7 and 5.7 percent, respectively; the size of the 5 percent Dickey-Fuller 
test is 21.6 percent. 

‘“This provides further support for Schwert’s (1987b) finding that, although the Dickey-Fuller 
distribution is still valid asymptotically for a variety of non-i.i.d. disturbances, the t statistic’s rate 
of convergence may be quite slow. 
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4. Power 

Since a frequent application of the random walk has been in modelling 
stock market returns, it is natural to examine the power of the variance ratio 
test against alternative models of asset price behavior. We consider three 
specific alternative hypotheses. The first two are specifications of the stock 
price process that have received the most recent attention: the stationary 
AR(l) process [as in Shiller (1981) and Shiller and Perron (1985)] and the sum 
of this process and a random walk [as in Fama and French (1987) and Poterba 
and Summers (1987)].19 The third alternative is an integrated AR(l) process 
which is suggested by the empirical evidence in Lo and Ma&inlay (1987). 

Before presenting the simulation results, we consider an important limita- 
tion of the variance ratio test in section 4.1. In section 4.2 we compare the 
power of the variance ratio test with that of the Dickey-Fuller and Box-Pierce 
tests against the stationary AR(l) alternative. Section 4.3 reports similar power 
comparisons for the remaining two alternatives. 

4.1. The variance ratio test for large q 

Although it will become apparent in sections 4.2 and 4.3 that choosing an 
appropriate aggregation value q for the variance ratio test depends intimately 
on the alternative hypothesis of interest, several authors have suggested using 
large values of q generally. 2o But because the variance ratio test statistic is 
bounded below, when q is large relative to T the test may have little power. To 
see this, let the [asymptotic] variance of the test statistic M,(q) be denoted by 
V, where we have from (6b) 

I/_ 2(2q- Nq- 1) 4 q2-$q+l 

3nq2 = G’ [ 1 q2 

Note that for all natural numbers q, the bracketed function in (20) is bounded 
between 5 and 1 and is monotonically increasing in q. Therefore, for fixed n, 
this implies upper and lower bounds Vu = 4/3n and V,_ = 2/3n for the 
variance I/. Since variances mu? be non-negative, the lower bound for E,.(q) 
is - 1 [since we have defined M,(q) to be the variance ratio minus 11. Using 
these two facts, we have the following lower bound on the [asymptotically] 

“The latter specification is, of course, not original to the financial economics literature but has 
its roots in Muth (1960) and, more recently, Beveridge and Nelson (1981). 

“For example, Campbell and Mankiw’s (1987) asymptotic sampling theory requires that 4 goes 
to infinity as the sample size T goes to infinity (although 4 must grow at a slower rate than T). 
Also, for a sample size of T Hukinga (1987) sets 4 to T- 1. 
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standard normal test statistic zi( q) = M,(q)/ @: 

inf[Gdl = Y--$-J$ = 
3n “* _L&-T . 

[ 1 (21) 

Note that n is not the sample size (which is given by nq), but is the number of 
non-overlapping coarse increments [increments of aggregation value q] avail- 
able in the sample and is given by T/q. 

If q is large relative to the sample size T, this implies a small value for n. 
For example, if q/T = +, then the lower bound on the standard normal test 
statistic z,(q) is - 1.73; the test will never reject draws from the left tail at the 
95 percent level of significance! 

Of course, there is no corresponding upper bound on the test statistic so in 
principle it may still reject via draws in the right tail of the distribution. 
However, for many alternative hypotheses of interest the population values of 
their variance ratios are less than unity,‘l implying that for those alternatives 
rejections are more likely to come from large negative rather than large 
positive draws of z,(q). For this reason and because of the unreliability of 
large-sample theory under the null when q/T is large, we have chosen q to be 
no more than one-half the total sample size throughout this study. 

4.2. Power against a stationary AR(l) alternative 

As a model of stock market fads, Shiller (1981) has suggested the following 
AR(l) specification for the log-price process X,: 

X,=“+~‘[X,_,-cY]+E,, q-N(O,$), (20) 

where $I is positive and less than unity. To determine the power of the 
variance ratio test against this alternative, we choose values of the parameters 

(& e,‘, u,,?) that yield an interesting range of power across sample sizes and 
aggregation values. Since the power does not depend on LY, we set it to zero 
without loss of generality. Table 5a reports the power of the variance ratio, 
Dickey-Fuller t and Box-Pierce Q tests at the 1, 5 and 10 percent levels 
against the AR(l) alternative with parameters (+, ufi2) = (0.96,l). The critical 
values of all three test statistics were empirically determined by simulation 

*‘For example, as 4 increases without bound the variance ratio (population value) of increments 
any stationary process will converge to 0. For the sum of a random walk and an independent 
stationary process, the variance ratio of its increments will also converge to a quantity less than 
unity as 4 approaches infinity. 
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under the i.i.d. Gaussian null. In the interest of brevity, we report the 
empirical critical values in table 4 for the variance ratio test only.22 

For a fixed number of observations, the power of the variance ratio test first 
increases and then declines with the aggregation value q. The increase can be 
considerable; as the case of 1024 observations demonstrates, the power is 9.2 
percent when q = 2 but jumps to 98.3 percent when q = 256. The explanation 
for the increase in power lies in the behavior of the AR(l) alternative over 
different sampling intervals: the first-order autocorrelation coefficient of AR(l) 
increments grows in absolute value (becomes more negative) as the increment 
interval increases. This implies that, although X, may have a root close to 
unity (0.96) its first-differences behave less like random walk increments as the 
time interval of the increments grows. It is therefore easier to detect an AR(l) 
departure from the random walk by comparing longer first-difference vari- 
ances to shorter ones, which is precisely what the variance ratio does for larger 
q. However, as q is increased further the power declines. This may be 
attributed to the imprecision with which the higher-order autocorrelations are 
estimated for a fixed sample size. Since the variance ratio with aggregation 
value q is approximately a linear combination of the first q - 1 autocorrela- 
tions, a larger value of q/T entails estimating higher-order autocorrelations 
with a fixed sample size. The increased sampling variation of these additional 
autocorrelations leads to the decline in power.23 

Although the most powerful variance ratio test is more powerful than the 
Dickey-Fuller t test, the difference is generally not large. However, the 
variance ratio test clearly dominates the Box-Pierce Q test. With a sample of 
512 observations the power of a 5 percent variance ratio test is 51.4 percent 
(q = 128) whereas the power of the corresponding Q test is only 7.1 percent. 
However, with an aggregation value of q = 2 the variance ratio has compara- 

22Diebold (1987) tabulates the finite sample distributions of actual variance ratios under many 
other null hypotheses of interest. Although we have not compared each of our empirical quantiles 
with his, we have spot-checked several for consistency and have found discrepancies only in the 
extreme tail areas. For example, with a sample size of 1024 and ~7 = 2, Diebold’s implied value for 
the upper 0.5 percent quantile of our test statistic z1 is 2.48 (using his table 16), whereas our value 
in table 4 is 2.63. There are at least two possible causes for this discrepancy. First, Diebold’s 
results are based on 10,000 replications whereas ours use 20,000. Second, we simulated the 
bias-corrected statistic whereas Diebold employed the unadjusted variance ratio. For larger tail 
areas, this discrepancy vanishes. 

231f the variance ratio test were performed using asymptotic critical values against the AR(l) 
alternative, there is another cause of the power to decline as 4 increases. Under the AR(l) model. 
it is apparent that the theoretical values of the variance ratios are all less than unity, implying that 
the expectations of the Z, statistics are negative. But it is shown in section 4.1 that the z1 statistic 
is bounded below when the asymptotic variance is used to form zl, and that the lower bound is an 
increasing function of the ratio of ~7 to the sample size. Therefore, when the deviation of the 
alternative from the random walk is in the form of negative draws of z1 [as in the AR(l) case], the 
variance ratio test cannot reject the null hypothesis when 4 is large relative to the number of 
observations. This is yet another reason we choose a to be less than or equal to one-half the 
sample size. 
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ble power to the Box-Pierce test. Again, this is as expected since they are quite 
similar statistics when q = 2 (the variance ratio is approximately one plus the 
first-order autocorrelation coefficient and the Box-Pierce statistic is the first- 
order autocorrelation squared). 

We conclude that, against the stationary AR(l) alternative, the variance 
ratio test is comparable to the Dickey-Fuller t test in power and both are 
considerably more powerful than the Box-Pierce test. 

4.3. Two unit root alternatives to the random walk 

Several recent studies have suggested the following specification for the 
log-price process X,: 

x,= r,+z,, (21) 

where Y, is a stationary process and Z, is a Gaussian random walk indepen- 
dent of Y1.24 To be specific, let Y be an AR(l); thus: 

z, = z,-1+ Yt, yt i.i.d. N(O,e;). (22b) 

Again, without loss of generality we set cx to 0; p is set to 0.96; CT;’ is 
normalized to unity; and cry’ takes on the values 0.50, 1.00 and 2.00 so that the 
conditional variability of the random walk relative to the stationary compo- 

nent is two, one, and one-half, respectively. Tables 5b-5d report the power of 
the variance ratio, Dickey-Fuller t and Box-Pierce Q tests against this 
alternative. Note that this specification contains a unit root [it is an 
ARIMA(l, 1, 1)], and hence, asymptotically, the power of the Dickey-Fuller t 
test should equal its size. 25 However, since Schwert (1987a, b) has shown the 
finite-sample behavior of the Dickey-Fuller test to be quite erratic, we report 
its power for comparison. 

Table 5b gives the power results for the zi, Q, and t statistics against this 
ARIMA(l, 1,l) alternative where the variance of the random walk innovation 
is twice the variance of the AR(l) disturbance. Although none of the tests are 
especially powerful under these parameter values, the variance ratio test seems 
to dominate the other two. For a sample size of 1024, the power of the 

24See, for example, Summers (1986), Fama and French (1988), and Poterba and Summers 
(1987). 

“To see this, observe that (21) has the following ARIMA(l, 1,l) representation: 

where 
(l-pL)(l-L)X,=(l-XL)v,, 

h = pa<2 + 0,’ and u,‘= [(l+p*)0,2+20;]/(1+X*). 



Table 5a 

Power of the two-sided variance ratio test [using the z,(q) statistic] against the stationary AR(l) 
alternative X, = $X,_ 1 + E,, E, i.i.d. N(O,l) and $ = 0.96. For comparison, the power of the 
one-sided Box-Pierce Q test (Q,) and the two-sided Dickey-Fuller r test (D-F) are also 
reuorted. Each set of rows with a given samDIe size forms a seoarate and independent simulation 

1 

experiment based on 20,000 replications. 

Sample 
size 

1 percent test 

4 z,(q) Q, 

32 2 
32 4 
32 8 
32 16 

32 D-F 

64 2 
64 4 
64 8 
64 16 
64 32 

64 D-F 

128 2 
128 4 
128 8 
128 16 
128 32 
128 64 

128 D-F 

256 2 
256 4 
256 8 
256 16 
256 32 
256 64 
256 128 

256 D-F 

512 2 
512 4 
512 8 
512 16 
512 32 
512 64 
512 128 
512 256 

512 D-F 

1024 2 
1024 4 
1024 8 
1024 16 
1024 32 
1024 64 
1024 128 
1024 256 
1024 512 

1024 D-F 

0.008 0.009 
0.009 0.009 
0.009 0.010 
0.009 0.010 

0.010 

z,(q) Q, z,(q) Q, 

0.047 0.047 0.093 0.097 
0.049 0.045 0.101 0.096 
0.048 0.048 0.096 0.098 
0.049 0.050 0.101 0.099 

0.050 0.098 

0.009 0.008 0.048 0.048 0.097 0.100 
0.009 0.009 0.046 0.050 0.093 0.099 
0.008 0.010 0.044 0.051 0.093 0.107 
0.008 0.010 0.043 0.050 0.086 0.101 
0.009 0.010 0.044 0.051 0.088 0.104 

0.009 0.042 0.084 

0.010 0.010 0.047 0.050 0.100 0.106 
0.010 0.011 0.051 0.053 0.102 0.106 
0.011 0.011 0.050 0.054 0.102 0.104 
0.012 0.009 0.053 0.056 0.102 0.112 
0.010 0.009 0.053 0.054 0.103 0.112 
0.010 0.009 0.046 0.053 0.088 0.108 

0.008 0.047 0.095 

0.011 0.012 0.057 0.062 0.111 0.115 
0.017 0.013 0.061 0.062 0.121 0.120 
0.021 0.013 0.079 0.066 0.146 0.123 
0.028 0.013 0.101 0.060 0.180 0.121 
0.030 0.012 0.123 0.059 0.217 0.118 
0.031 0.012 0.130 0.060 0.227 0.114 
0.026 0.011 0.103 0.054 0.189 0.110 

0.025 0.118 0.207 

0.016 0.017 0.066 0.070 0.125 0.131 
0.023 0.019 0.090 0.082 0.165 0.150 
0.038 0.020 0.140 0.087 0.227 0.162 
0.075 0.020 0.225 0.088 0.341 0.161 
0.144 0.019 0.341 0.083 0.491 0.158 
0.203 0.017 0.469 0.079 0.640 0.140 
0.196 0.016 0.514 0.071 0.686 0.130 
0.097 0.014 0.345 0.064 0.517 0.124 

0.189 0.478 0.654 

0.026 0.025 0.092 0.091 0.159 0.162 
0.053 0.033 0.165 0.114 0.257 0.206 
0.124 0.034 0.304 0.136 0.413 0.238 
0.272 0.038 0.497 0.146 0.632 0.254 
0.510 0.034 0.755 0.134 0.853 0.235 
0.769 0.025 0.928 0.107 0.970 0.197 
0.859 0.023 0.981 0.092 0.995 0.170 
0.855 0.019 0.983 0.080 0.997 0.155 
0.530 0.018 0.844 0.075 0.934 0.147 

0.915 0.993 0.999 

5 percent test 10 percent test 



Table 5b 

Power of the two-sided variance ratio test [using the z,(q) statistic] against the ARIMA(1,l.l) 
alternative X, = V, + Z,, where y =0.96yj_, + q, q i.i.d. N(O,l) and Z, = Z,_, + y,, 6 i.i.d. 
N(0, $). For comparison, the power of the one-sided Box-Pierce Q test (Q,) and the two-sided 
Dickey-Fuller t test (D-F) are also reported. Each set of rows with a given sample size forms a 

separate and independent simulation experiment based on 20,000 replications. 

Sample 
size 

1 percent test 

4 z,(q) Q, 

5 percent test 

Zl(Y) Ql 

10 percent test 

Zl(cl) PI 

32 
32 
32 
32 

2 
4 
8 

16 

32 D-F 

64 2 
64 4 
64 8 
64 16 
64 32 

64 D-F 

128 2 
128 4 
128 8 
128 16 
128 32 
128 64 

128 D-F 

256 2 
256 4 
256 8 
256 16 
256 32 
256 64 
256 128 

256 D-F 

512 2 
512 4 
512 8 
512 16 
512 32 
512 64 
512 128 
512 256 

512 

1024 
1024 

D-F 

i 
8 

16 
32 
64 

128 
256 
512 

1024 
1024 
1024 
1024 
1024 
1024 
1024 

1024 D-F 

0.008 0.010 
0.010 0.010 
0.010 0.011 
0.009 0.010 

0.010 

0.009 0.010 
0.010 0.010 
0.009 0.009 
0.009 0.009 
0.010 0.010 

0.009 

0.009 0.010 
0.011 0.011 
0.012 0.011 
0.011 0.011 
0.009 0.009 
0.010 0.009 

0.009 

0.010 0.012 
0.015 0.012 
0.015 0.011 
0.018 0.012 
0.016 0.013 
0.014 0.012 
0.014 0.010 

0.015 

0.014 0.014 
0.018 0.017 
0.025 0.016 
0.034 0.014 
0.036 0.014 
0.027 0.014 
0.020 0.013 
0.015 0.012 

0.021 

0.024 0.023 
0.040 0.024 
0.065 0.023 
0.096 0.021 
0.094 0.017 
0.064 0.014 
0.030 0.013 
0.025 0.011 
0.021 0.012 

0.032 

0.045 0.048 
0.045 0.047 
0.047 0.049 
0.046 0.051 

0.049 

0.048 0.048 
0.046 0.050 
0.045 0.050 
0.044 0.052 
0.047 0.051 

0.046 

0.046 0.051 
0.052 0.053 
0.053 0.052 
0.052 0.054 
0.047 0.053 
0.045 0.053 

0.048 

0.098 0.104 
0.099 0.104 
0.104 0.102 
0.103 0.107 
0.102 0.105 
0.087 0.106 

0.101 

0.054 0.059 0.106 0.111 
0.055 0.057 0.113 0.115 
0.068 0.059 0.126 0.118 
0.075 0.054 0.138 0.106 
0.072 0.054 0.131 0.109 
0.063 0.056 0.117 0.106 
0.055 0.052 0.107 0.104 

0.069 0.129 

0.061 0.065 
0.077 0.074 
0.101 0.072 
0.124 0.071 
0.120 0.064 
0.095 0.065 
0.079 0.064 
0.063 0.059 

0.081 

0.119 0.123 
0.141 0.139 
0.178 0.140 
0.210 0.133 
0.206 0.129 
0.170 0.119 
0.138 0.112 
0.120 0.115 

0.147 

0.085 0.085 0.150 0.153 
0.132 0.091 0.207 0.169 
0.196 0.097 0.290 0.177 
0.236 0.092 0.355 0.163 
0.241 0.079 0.355 0.144 
0.178 0.067 0.277 0.129 
0.118 0.061 0.197 0.120 
0.085 0.057 0.148 0.117 
0.074 0.057 0.132 0.112 

0.104 0.173 

0.095 0.098 
0.098 0.096 
0.094 0.101 
0.094 0.100 

0.094 

0.096 0.100 
0.094 0.102 
0.092 0.104 
0.089 0.101 
0.091 0.104 

0.094 



Table 5c 

Power of the two-sided variance ratio test [using the z,(q) statistic] against the ARIMA(l,l,l) 
alternative X, = I: + Z,, where y = 0.96y_, + E,, E, i.i.d. N(O,l) and Z,= Z,_, +v,, y, i.i.d. 
N(O,l). For comparison, the power of the one-sided Box-Pierce Q test (Q,) and the two-sided 
Dickey-Fuller t test (D-F) are also reported. Each set of rows with a given sample size forms a 

separate and independent simulation experiment based on 20,000 replications. 

Sample 
size 

1 percent test 

9 z,(q) Ql 

32 2 
32 4 
32 8 
32 16 

32 D-F 

64 2 
64 4 
64 8 
64 16 
64 32 

64 D-F 

128 2 
128 4 
128 8 
128 16 
128 32 
128 64 

128 D-F 

256 2 
256 4 
256 8 
256 16 
256 32 
256 64 
256 128 

256 D-F 

512 2 
512 4 
512 8 
512 16 
512 32 
512 64 
512 128 
512 256 

512 D-F 

1024 2 
1024 4 
1024 8 
1024 16 
1024 32 
1024 64 
1024 128 
1024 256 
1024 512 

1024 D-F 

5 percent test 

z,(q) Ql 

10 percent test 

z,(q) PI 

0.008 0.010 
0.010 0.010 
0.009 0.012 
0.008 0.012 

0.009 

0.010 0.010 
0.008 0.009 
0.009 0.009 
0.010 0.009 
0.010 0.009 

0.009 

0.010 0.012 
0.012 0.013 
0.014 0.013 
0.016 0.012 
0.013 0.012 
0.012 0.012 

0.012 

0.013 0.015 
0.021 0.015 
0.027 0.015 
0.034 0.013 
0.026 0.013 
0.023 0.014 
0.019 0.012 

0.024 

0.022 0.023 
0.036 0.026 
0.058 0.024 
0.088 0.021 
0.095 0.019 
0.067 0.018 
0.044 0.017 
0.028 0.014 

0.053 

0.087 0.092 
0.129 0.106 
0.191 0.100 
0.251 0.093 
0.257 0.081 
0.194 0.076 
0.146 0.070 
0.106 0.064 

0.155 

0.387 0.153 
0.311 0.136 
0.224 0.129 
0.171 0.124 

0.241 

0.038 0.036 0.122 0.123 0.201 0.206 
0.085 0.046 0.230 0.156 0.337 0.261 
0.173 0.043 0.393 0.162 0.513 0.272 
0.285 0.035 0.513 0.142 0.654 0.245 
0.305 0.028 0.552 0.116 0.686 0.203 
0.213 0.021 0.426 0.091 0.571 0.169 
0.093 0.019 0.259 0.078 0.381 0.148 
0.062 0.014 0.169 0.068 0.262 0.134 
0.040 0.013 0.126 0.065 0.200 0.131 

0.078 0.200 0.292 

0.049 0.049 
0.046 0.051 
0.045 0.052 
0.045 0.053 

0.049 

0.095 0.099 
0.093 0.102 
0.092 0.106 
0.094 0.102 

0.096 

0.048 0.049 0.096 0.102 
0.048 0.054 0.100 0.105 
0.047 0.054 0.099 0.111 
0.048 0.054 0.095 0.105 
0.047 0.052 0.093 0.107 

0.045 0.092 

0.049 0.056 0.102 0.113 
0.062 0.058 0.115 0.113 
0.062 0.061 0.122 0.115 
0.068 0.060 0.125 0.118 
0.060 0.059 0.117 0.115 
0.053 0.058 0.098 0.112 

0.056 0.114 

0.060 0.065 
0.073 0.071 
0.103 0.072 
0.120 0.062 

0.114 0.122 
0.142 0.136 
0.178 0.137 
0.212 0.122 
0.207 0.117 
0.165 0.118 
0.133 0.112 

0.175 

0.120 0.058 
0.092 0.062 
0.072 0.056 

0.098 

0.151 0.159 
0.209 0.188 
0.294 0.186 
0.377 0.169 



Table 5d 

Power of the two-sided variance ratio test [using the z,(q) statistic] against the ARIhIA(l,l,l) 
alternative X, = y + Z,, where Y, = 0.96y_, + E,, e, i.i.d. N(O,l) and Z, = Z,+, + yI, y, Cd. 
N(0,2). For comparison, the power of the one-sided Box-Pierce Q test (Q,) and the two-sided 
Dickey-Fuller r test (D-F) are also reported. Each set of rows with a given sample size forms a 

separate and independent simulation experiment based on 20,000 replications, 

Sample 
size 4 

1 percent test 5 percent test 10 percent test 

r,(q) Q, z,(q) Q, z,(q) PI 

32 2 0.008 0.010 
32 4 0.010 0.010 
32 8 0.009 0.012 
32 16 0.008 0.012 

32 D-F 0.009 

64 2 0.011 0.012 
64 4 0.013 0.012 
64 8 0.011 0.013 
64 16 0.011 0.013 
64 32 0.010 0.013 

64 D-F 0.010 

128 2 0.011 0.014 
128 4 0.014 0.014 
128 8 0.019 0.014 
128 

128 64 

16 

128 D-F 

256 

128 32 

2 
256 4 
256 8 
256 16 
256 32 
256 64 
256 128 

256 D-F 

512 2 
512 4 
512 8 
512 16 
512 32 
512 64 
512 128 
512 256 

512 D-F 

1024 2 
1024 4 
1024 8 
1024 16 
1024 32 
1024 64 
1024 128 
1024 256 
1024 512 

1024 D-F 

0.014 0.012 

0.023 

0.015 

0.018 

0.012 

0.021 
0.035 

0.016 

0.020 
0.047 

0.011 

0.019 
0.067 0.016 
0.060 0.016 
0.043 0.015 
0.032 0.012 

0.050 

0.032 0.035 
0.063 0.040 0.193 0.149 0.299 0.249 
0.121 0.039 0.322 0.145 0.448 0.251 
0.210 0.031 0.463 0.124 0.607 0.220 
0.255 0.025 0.516 0.104 0.669 0.192 
0.178 0.021 0.406 0.091 0.567 0.165 
0.103 0.018 0.280 0.082 0.399 0.150 
0.059 0.017 0.186 0.073 0.283 0.142 

0.132 0.306 

0.068 0.065 0.187 0.187 
0.170 0.095 0.374 0.256 
0.371 0.092 0.638 0.292 
0.613 0.074 0.825 0.249 
0.711 0.053 0.898 0.184 
0.576 0.035 0.811 0.134 
0.281 0.028 0.559 0.110 
0.163 0.022 0.344 0.090 
0.100 0.021 0.239 0.086 

0.227 0.417 

0.045 0.048 
0.048 0.050 
0.046 0.054 
0.044 0.054 

0.048 

0.091 0.097 
0.093 0.103 

0.050 0.054 
0.050 0.061 
0.052 0.059 
0.047 0.062 
0.044 0.060 

0.047 

0.096 0.110 
0.093 0.102 

0.093 

0.103 0.112 
0.104 0.115 
0.104 0.119 
0.095 0.116 
0.089 0.115 

0.094 

0.054 0.061 0.106 0.117 
0.070 0.065 0.127 0.128 
0.080 0.068 0.149 0.127 
0.089 0.065 0.156 0.124 
0.084 0.062 0.155 0.120 
0.063 0.057 0.120 0.113 

0.072 0.139 

0.075 0.084 0.139 0.146 
0.102 0.088 0.182 0.167 
0.155 0.088 0.255 0.166 
0.205 0.081 0.324 0.151 
0.207 0.072 0.331 0.139 
0.160 0.069 0.268 0.128 
0.108 0.063 0.196 0.123 

0.170 0.273 

0.113 0.119 0.187 0.196 

0.427 

0.282 0.287 
0.496 0.391 
0.745 0.440 
0.904 0.396 
0.951 0.304 
0.899 0.230 
0.699 0.192 
0.471 0.169 
0.339 0.159 

0.525 



Table Se 

Power of the two-sided variance ratio test [using the statistic z,(q)] against the ARIMA(1,l.O) 
alternative AX,=KAX,_~+V,, Y, i.i.d. N(O,l), K = 0.20. For comparison, the power of the 
one-sided Box-Pierce Q test (Q,) and the two-sided Dickey-Fuller t test (D-F) are also 
reported. Each set of rows with a given sample size forms a separate and independent simulation 

experiment based on 20,000 replications 

Sample 
size 

1 percent test 

4 r,(4) Q, 

32 2 0.057 0.037 
32 4 0.046 0.021 
32 8 
32 16 

32 D-F 

64 2 
64 4 
64 8 
64 16 
64 32 

64 D-F 

128 2 
128 4 
128 8 
128 16 
128 32 
128 64 

128 D-F 

256 2 
256 4 
256 8 
256 16 
256 32 
256 64 
256 128 

256 D-F 

512 2 
512 4 
512 8 
512 16 
512 32 
512 64 
512 128 
512 256 

512 D-F 

1024 2 
1024 4 
1024 8 
1024 16 
1024 32 
1024 64 
1024 128 
1024 256 
1024 512 

1024 D-F 

0.029 0.022 
0.026 0.023 

0.143 

z,(q) Q, 

0.176 0.128 
0.141 0.094 
0.098 0.086 
0.095 0.085 

0.240 

0.148 0.119 0.342 0.292 
0.104 0.071 0.263 0.195 
0.059 0.050 0.168 0.156 
0.035 0.040 0.114 0.135 
0.032 0.036 0.097 0.123 

0.143 0.240 

z,(q) PI 

0.270 0.213 
0.226 0.167 
0.168 0.157 
0.166 0.147 

0.301 

0.463 0.417 
0.368 0.298 
0.254 0.248 
0.181 0.218 

0.377 0.323 0.600 0.564 
0.257 0.197 0.455 0.413 
0.122 0.126 0.280 0.305 
0.059 0.082 0.167 0.231 
0.034 0.058 0.108 0.184 
0.029 0.050 0.093 0.166 

0.138 0.235 

0.164 0.209 

0.308 

0.719 0.687 
0.576 0.542 
0.388 0.422 
0.254 0.344 
0.175 0.290 
0.153 0.268 

0.302 

0.741 0.709 0.887 0.876 0.934 0.928 
0.526 0.529 0.744 0.749 0.836 0.836 
0.276 0.361 0.498 0.612 0.614 0.726 
0.125 0.229 0.298 0.454 0.401 0.588 
0.069 0.160 0.172 0.348 0.261 0.479 
0.036 0.115 0.105 0.285 0.177 0.400 
0.032 0.088 0.095 0.241 0.158 0.362 

0.138 0.238 0.299 

0.972 0.969 
0.871 0.918 

0.993 0.993 0.997 0.997 
0.957 0.976 0.978 0.988 
0.779 0.931 0.855 0.965 
0.523 0.845 0.633 0.909 
0.300 0.706 0.407 0.809 
0.168 0.571 0.263 0.688 
0.112 0.455 0.181 0.580 
0.097 0.380 0.159 0.519 

0.236 0.304 

0.571 0.813 
0.290 0.652 
0.139 0.481 
0.069 0.320 
0.035 0.227 
0.032 0.182 

0.136 

1.000 1.000 
0.996 0.999 
0.893 0.995 
0.585 0.978 
0.301 0.918 
0.144 0.767 
0.061 0.581 
0.035 0.411 
0.028 0.334 

0.142 

5 percent test 

1.000 1.000 
0.999 1.000 
0.969 0.999 
0.783 0.996 
0.509 0.976 
0.295 0.911 
0.176 0.792 
0.110 0.663 
0.093 0.586 

0.248 

10 percent test 

1.000 1.000 
1.000 1.000 
0.985 1.000 
0.862 0.998 
0.629 0.989 
0.411 0.952 
0.265 0.874 
0.174 0.780 
0.157 0.710 

0.314 
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variance ratio test is 24.1 percent for q = 32 whereas the corresponding power 
of the Dickey-Fuller and Box-Pierce tests are 10.4 and 7.9 percent, respec- 
tively. 

As in the case of the stationary AR(l) alternative, the power of the variance 
ratio test also rises and falls with q against the ARIMA(l, 1,l) alternative. In 
addition to the factors discussed in section 4.2, there is an added explanation 
for this pattern of power. For small to medium differencing intervals the 
increments of X, behave much like increments of an AR(l), hence power 
increases with q in this range. For longer differencing intervals the random 
walk component dominates. Hence the power declines beyond some aggrega- 
tion value q. 

As the variance of the random walk’s disturbance declines relative to the 
variance of the stationary component’s, the power of the variance ratio test 

increases. Table 5c reports power results for the case where the variances of 
the two components’ innovations are equal, and in table 5d the variance of the 
random walk innovation is half the variance of the AR(l) innovation. In the 
latter case, the 5 percent variance ratio test has 89.8 percent power for q = 32 
and T = 1024 compared to 41.7 percent and 18.4 percent power for the 
Dickey-Fuller and Box-Pierce tests, respectively. Although the qualitative 
behavior of the three tests are the same in tables 5b-5d, the variance ratio test 
is considerably more powerful than the other two when the variance of the 
stationary component is larger than that of the random walk. Moreover, the 
pattern of power as a function of q clearly demonstrates that against this 
alternative, it is not optimal to set q as large as possible.26 

Since both the stationary AR(l) and the AR(l) plus random walk are not 
empirically supported by Lo and Ma&inlay’s (1988) results for weekly stock 
returns, we consider the power of the variance ratio test against a more 
relevant alternative hypothesis suggested by their empirical findings: an in- 
tegrated AR(l), i.e., an ARIMA(l, LO). Specifically, if X, is the log-price 
process, then we assume 

(23) 

where IK( -c 1. Since this alternative obviously possesses a unit root, we expect 
the standard unit root tests to have poor power against it. Nevertheless for 
comparison we report the power of the Dickey-Fuller t test along with the 
power of the variance ratio and Box-Pierce tests. The parameters (K, uf) are 

261n fact, the q for which the variance test has the most power for a given sample size will 
depend on the ratio of the stationary component’s innovation variance to the variance of the 
random walk’s disturbance. Unfortunately, this fact cannot be observed in our tables because we 
have set q to be powers of 2 for computational convenience. If the variance ratio test’s power were 
tabulated for q = 2,3,4, , T - 1, it would be apparent that against this ARMA(l,l, 1) altema- 
tive the optimal q changes with the ratio of the innovation invariances of the two components. 

JEcon B 
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set to (0.20,l) for all the simulations in table 5e. Unlike its behavior under the 
stationary AR(l) alternative, against this integrated process the variance 
ratio’s power declines as q increases. With a sample size of 1024, the power of 
a 5 percent test is 100 percent when q = 2, but falls to 9.3 percent when 
q = 512. In contrast to the AR(l), the behavior of the integrated process’s 
increments is farthest from a random walk for short differencing intervals 
[since the increments follow a stationary AR(l) by construction]. As the 
differencing interval increases, the autocorrelation of the increments decreases 
and it becomes more difficult to distinguish between this process and the 
random walk. 

Observe that for smaller aggregation values the variance ratio test is more 
powerful than the Q test, but the Q test dominates when q is large. This result 
is due to the fact that the Box-Pierce Q does not distinguish between the 
upper and lower tails of the null distribution [since Q is the sum of squared 

autocorrelations] whereas the variance ratio test does. 

5. Conclusion 

Our simulations indicate that the variance ratio test of the random walk 
hypothesis generally yields reliable inferences under both the i.i.d. Gaussian 
and the heteroscedastic null hypotheses. By selecting the aggregation value q 

appropriately, the power of the variance ratio test is comparable to that of the 
Box-Pierce and Dickey-Fuller tests against the stationary AR(l) alternative 
and is more powerful than either of the two tests against the two unit root 
alternatives. However, because of the variance ratio’s skewed empirical distri- 
bution, caution must be exercised when q is large relative to the sample size. 

These results emphasize dramatically the obvious fact that the power of any 
test may differ substantially across alternatives. A sensible testing strategy 
must consider not only the null hypothesis but also the most relevant alterna- 
tive. Although the variance ratio test has advantages over other tests under 
some null and alternative hypotheses, there are of course other situations in 
which those tests may possess more desirable properties. Nevertheless, the 
Monte Carlo evidence suggests that the variance ratio test has reasonable 
power against a wide range of alternatives. 27 The simplicity, reliability, and 
flexibility of the variance ratio test make it a valuable tool for inference. 
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