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Imperfect Information and
Cross-Autocorrelation
among Stock Prices

KALOK CHAN*

ABSTRACT

I develop a model to explain why stock returns are positively cross-autocorrelated.
When market makers observe noisy signals about the value of their stocks but
cannot instantaneously condition prices on the signals of other stocks, which
contain marketwide information, the pricing error of one stock is correlated with the
other signals. As market makers adjust prices after observing true values or
previous price changes of other stocks, stock returns become positively cross-
autocorrelated. If the signal quality differs among stocks, the cross-autocorrelation
pattern is asymmetric. I show that both own- and cross-autocorrelations are higher
when market movements are larger.

SHORT-HORIZON EQUITY PORTFOLIO or index returns are shown in the literature
to be positively autocorrelated (Fisher (1966), Scholes and Williams (1977),
Dimson (1979), Cohen et al. (1980), Perry (1985)). Since autocorrelations
in individual stock returns are only weakly positive or negative (Fama
(1965), French and Roll (1986), Lo and MacKinlay (1990a)), positive cross-
autocorrelations among stock returns are largely responsible for the
positive index return autocorrelation.

While cross-autocorrelation among stock returns is well documented, its
sources are puzzling. The most common explanation is that the time series of
stock prices are not sampled simultaneously, but rather nonsynchronously,
which induces spurious cross-effects among stocks. Several researchers (e.g.,
Atchison, Butler, and Simonds (1987) and Lo and MacKinlay (1990b)) point
out, however, that while some of the cross-autocorrelations may be due
to nonsynchronous trading problems, claiming all of them would require
unrealistically thin markets.

In this paper I develop a model to explain cross-autocorrelations among
stock returns. I assume that in each period each market maker observes a
noisy signal about the value of his stock but cannot instantaneously observe
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signals about the value of other stocks.! Each signal contains marketwide
information and uncorrelated noise, so that an extra signal diversifies the
noise and provides more precise marketwide information. When market
makers condition prices only on their signals, the pricing error of one stock is
correlated with signals of other stocks. Further, although each stock price
is an unbiased estimate of the true stock value conditional on its own sig-
nal, the aggregate of stock prices (the index price) is not an unbiased esti-
mate of the true aggregate value conditional on all signals. Consequently, if
market makers correct pricing errors based upon additional signals inferred
from previous price changes of other stocks, stock returns will be positively
cross-autocorrelated.

The intuition behind cross-autocorrelation can be illustrated with a simple
example. Suppose there are two stocks, A and B. In the first period, the
market maker in stock A receives a favorable signal about his stock but
cannot observe the signal about stock B. Since the signal is noisy, the market
maker adjusts his stock’s price only partially upward in response to the
favorable information. In the second period, he examines previous price
movement of stock B because it also contains marketwide information. If it
increases, he is more confident about the favorable information and adjusts
his stock’s price further upward. If it decreases, he is less confident about the
favorable information and revises the stock’s price downward. Therefore,
the price change of stock A in the second period is positively correlated
with the price change of stock B in the first period.

The model has several implications. First, stock returns are serially uncor-
related individually but positively cross-autocorrelated. Second, assuming
that the signal quality of large firms is better than that of small firms, the
covariances of current returns of small firms with past returns of large firms
are larger than the covariances of current returns of large firms with past
returns of small firms. Third, both own- and cross-autocovariances are larger
when market movements are larger. Existing empirical evidence supports the
first two implications, which can supplement nonsynchronous trading as an
explanation for observed cross-autocorrelations. I provide empirical evidence
consistent with the third implication. Using data from the Center for Research
in Security Prices (CRSP) daily stock price files from 1980 to 1989, I find that
both the own- and cross-autocorrelation coefficients of daily stock returns are
significantly higher under large market movements than under small market
movements.

Section I develops the model and discusses the implications. I demonstrate
how this leads to positive cross-autocorrelation among securities in a mul-
tiperiod framework when market makers readjust prices after observing
true values or previous price changes of other stocks. Section II presents evi-

! This model is related to papers by Bossaerts (1991), Caballe and Krishnan (1992), and
Bhasin (1992), who study strategic informed trading in a multiple-correlated asset environment
in which market makers condition prices on order flows. In this paper, volume is not explicitly
modeled, although the signals can be thought of as representing order flows.
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dence on own- and cross-autocorrelation patterns. A conclusion follows in
Section III.

I. The Model
A. One-Period Model

Assume N stocks are traded in the market. The value of each stock is given
by:

V,-=v+W+S;,, i=12...N,

where

a constant, normalized to be the same for each stock,

a marketwide information component that affects all stocks, which is
normally distributed with mean zero and variance 0,2, and

; = a stock-specific information component that affects stock i, which is
normally distributed with mean zero, variance ¢,%, and E(S;,S;) = 0,
1 # .

=
I

»n
I

W is uncorrelated with S;.

There are N market makers, one for each stock. Each market maker
observes a noisy signal about the value of his stock, ; = W + S, + ¢, where
¢, is normally distributed with mean zero, variance ¢, and E(e;, ¢;) = 0.
Note that market makers do not observe separately the marketwide and
stock-specific information components. This assumption is plausible because
Seyhun (1988) finds that even insiders cannot always distinguish between
the two. The assumption is made for convenience and is not crucial for
deriving the implications of the model. Essential to the model, however, is the
assumption that market makers do not instantaneously observe signals about
other stocks. This is defensible because market makers naturally receive
information about their stocks more quickly, and further, the costs of process-
ing price information prevents them from instantaneously retrieving other
signals from current prices.

If market makers earn zero expected profits, each stock price will be set
equal to the expected value conditional on their signals:

P; = E(V6,)
Cov(V,, 6,)

= BV)+ Var(6,)

(0, — E(6,)

— v+ ko,
— 0+ R(W+S,+¢) (1)

where

(J'w2+a's2
k=

2 2 2
o, +o0°+ o,
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The price adjustment coefficient %2 is between zero and one, reflecting the
partial price adjustment made by market makers in response to the noisy
signals. If the signal contains no noise (g,2 = 0), £ will be equal to one, and
prices will adjust completely to the signals.? Unlike the real world, where
trades by informed traders determine prices, the model here assumes that
market makers set prices based on their own information. Thus, the model is
related to Kyle’s (1985), where market makers do not observe information
directly, but instead observe order flows composed of an informed traders
component and a liquidity traders random component, and determine prices
conditional on those order flows.

Two results occur when market makers condition prices on their own
signals. First, the pricing error of one stock is correlated with signals of other
stocks. The pricing error in stock i is e; =V, — P, = (1 — kXW + S)) — ke,.
The linear projection rule ensures that the pricing error is orthogonal to its
own signal, i.e., Cov(e;, 6,) = 0. However, the pricing error is correlated with
signals of other stocks, Cov(e;, 6;) = (1 — k)a?, i + j, because of the par-
tial price adjustment to the marketwide component. Second, although each
stock price is an unbiased estimate of the true stock value conditional on its
own signal, the aggregate of stock prices is not an unbiased estimate of the
true aggregate value conditional on all signals. Without loss of generality,
suppose there are only two stocks. If market makers condition prices on two
signals separately, as in equation (1), the aggregate of stock prices is

P, + P, = E(V,16,) + E(V,]6,)

=2v+ k(0, + 0,) (2)
However, if they condition prices on two signals simultaneously, the aggre-
gate of stock prices is

P, + P, = E(V, +V,l|6,,6,)
=2v+k'(6, + 6,) 3)

where
20’w2 + 0'52

= 2 2 2"
20, + 0 + o,

’

The proof is in Appendix A. Since %' > k, the aggregate of stock prices
conditional on two signals separately in equation (2) is not equal to that con-
ditional on two signals simultaneously in equation (3). When the signals
contain a common marketwide component with uncorrelated noise, two sig-
nals are more precise than one. Consequently, if market makers observe an
extra signal, they will adjust prices more aggressively.?

2 Since the signals are identically distributed for all stocks, the partial adjustment coefficient %
is the same for all stocks. This restriction is relaxed later in the section.

3 The difference between conditioning prices on one signal versus two signals is analogous to
the difference between simple regression and multiple regression. Unless the independent
variables (signals) are orthogonal to each other, the slope coefficients from a simple regression
will not equal those from a multiple regression.
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B. Multiperiod Model

The model is extended to multiple periods to examine the implications of
the pricing rules for intertemporal return relations. The stocks are traded
over T' periods, and the stock value in period ¢ is given by

t
v+ ) AV, (4)
7=1

where

AV, , =W, +5,

Note that AV, = represents the change in the value at period 7. W, and S, ,
are serially uncorrelated, mutually independent, and multivariate normally
distributed with zero mean and variances 0,2 and o,2. At period ¢ — 1, the
market maker in stock i does not observe AV,, ; directly, but instead
observes the signal 6, , ; = AV, , ; + ¢, ;. At period ¢, he observes addi-
tional information about AV, ,_, and readjusts prices. The additional infor-
mation can be modeled in two scenarios. In the first, market makers observe
the true value of AV, ,_, at period ¢. This scenario is similar to the model in
Admati and Pﬂelderer (1988), where signals are assumed useful for only one
period. In the second scenario, market makers at period ¢ retrieve additional
signals about AV, , , from previous price changes of other stocks; signals are
therefore useful for two periods. The first scenario requires that market
makers observe AV, , , perfectly at period ¢, whereas the second scenario
requires only that market makers observe AV, ,_;, more precisely at period ¢.

B.1. First Scenario: Observing True Values Subsequently

Assume that at period ¢, the market maker observes the true values of
AV, =1,2...t — 1, and a current signal 6, ,. Conditional on his informa-

1, T

tion set, the market maker sets the price as

t—1
P ,=v+ Y AV, .+ ko, ,
7=1
t—1
=v+ Yy W, +S;, ) +k(W,+8S,,+¢,) (5)

T=1

where % is defined as in equation (1). The second term on the right-hand side
of (5) reflects the publicly available information at period ¢, and the last term
is similar to that in (1), reflecting the partial price adjustment made by
market makers in response to current signals. The price change at period ¢,
AP, ,=P,, — P, ,,is equal to

l

AP, , = QA —-k)W,_, +8,,.1) — ke, 1 +R(W, +S, , +¢,) (6)
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The own- and cross-autocovariance of the price changes can now be calculated
and the expression evaluated by substituting for %,

Cov(AP, ,,AP;, ) =k(1 — k)02 + 02) —k%2=0 i=j
= k(1 - k)o? i+j (D

Wh1le the own-autocovariances are zero, the cross-autocovariances are posi-
tive.? This result follows from the earlier result that the pricing error of one
stock is correlated with signals of other stocks. Consequently, when market
makers revise pricing errors, the price readjustments are correlated with past
price changes (signals) of other stocks.

Two conditions are critical for positive cross-autocorrelation. The first
is that signals of different stocks contain positively correlated true values
(marketwide information) and uncorrelated noises. The second is that market
makers cannot instantaneously condition prices on signals of other stocks. If
market makers condition prices on all signals instantaneously, the cross-
autocorrelation is zero.®

B.2. Second Scenario: Observing Previous Price Changes

The assumption that market makers update prices based on observing the
true values of AV, ,_; at period ¢ may not be reasonable if the period is short
(for example, an hour or a day), where uncertainty about information may not
be resolved in a single period. Even if true values are never revealed, positive
cross-autocorrelation occurs if market makers can update prices based on
signals inferred from previous price changes of other stocks.

At period ¢, the market maker observes his current signal 6, , and a past
price series {P1 t-1--- P11, Py sy Pyyoo. Py q ... Py}, from which he
can retrieve past price changes of other stocks to obtaln more precise infor-
mation about the marketwide component. Therefore, the market maker
conditions the stock pr1ce not only on his current signal, but also on the past
prices of other stocks.®

* Although the theoretical section of the paper is developed in terms of price changes, the
model can be developed in terms of returns. Assuming initially that the logarithm of true stock
values is normally distributed, the linear projection rule can be applied to determine the
logarithm of stock prices. The changes in (logarithm of) stock prices are stock returns. Conse-
quently, stock price changes and stock returns are synonymous in this paper.

% Suppose there are two stocks, and each market maker conditions prices on both signals. The
aggregate of stock price (index price) changes is

AP, ,+ APy , = (1 - kDCW,_, +8;,1+85,_1)
— k(e o1+ €5,,-1) + R'QCW, + Si,e+ Sy, + €, +e,)

where &’ is defined as in equation (3). The autocorrelation of index price changes is equal to zero
(i.e., cross-autocovariance is zero).

® The formulation is similar to Kumar and Seppi’s (1989) framework where they examine how
market makers in the stock market and index futures market update prices based on profiles of
lagged prices from other markets, and analyze the statistical properties of the arbitrage gap
between futures and index prices.
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This analysis is related to the information aggregation models of Grossman
(1976), Diamond and Verrecchia (1981), and Admati (1985), in which each
trader receives a piece of diverse information, and equilibrium prices
are aggregates of different pieces of information. Each trader can therefore
extract other traders’ information from equilibrium prices. However, while
these models use a one-period framework and analyze the efficiency of
equilibrium prices, the model here uses a multiperiod framework and ana-
lyzes the intertemporal relation among stock returns.

To form the pricing strategies, assume without loss of generality there are
only two stocks, stocks 1 and 2. The market maker in stock 1 can observe past
prices of stock 2, and vice versa. To simplify the analysis, we can represent
the conditioning information set faced by the market makers in terms of past
price innovations. Define A P}, as the price innovation of stock 1, set by the
market maker to be equal to the expected change in stock value cond1t10nal
on the signal at time ¢, so that AP}, = E(AV, ,16, ) =k6, ,, where & is
defined as in equation (1). Similarly, define APJ , as the price innovation of
stock 2, set to be equal to k6, ,. As we will see later, the information set

={AP}, ,,APf, o...APf,; APy, |,AP5, ,...A%,} is identical to the
information set ¢ ={AP;, ;,AP;, ,...AP, ;; APy, ,APy, »...AP, },
that is, the information provided by past price innovations is equivalent to
the information provided by past price changes. The pricing strategy of the
market maker in stock 1 can therefore be represented as

P, ,=E(V, |6, AP}, |...AP} ,AP§, ;... AP} )
t—1
= v+ E(AV, 10, ) + Y. E(AV, |APf AP}, (8)

=1

Equation (8) is stated as a sum of expectations of AV, . because AV, , is
serially independent. The expectation of AV, , 7=1,...¢ — 1, is conditional
on APf_ and APjJ , which contain relevant 1nformat10n for inferring the
true value of AV, .. P, , ;, can be represented similarly, and the relation
between P, , and Pl’t,1 can be expressed as

Py ,=P,, +EWV,,[0,,)+EQV,, ||AP}, |,AP}, ;)
_E(Avl,t—lwl,t—l) 9

P, , consists of three components: (1) P, ,_,, the information incorporated in
the past price; (2) E(AV, 16, ,), the price innovation made in response to the
current signal 6, ;; and 3) E(AVM AP, 1, APY, ) — E(AV, , 416, , 1),
the price revision after observing the past price innovation of stock 2. The last
term captures the difference between projections based on two signals and
those based on one signal.

Equation (9) can be simplified as follows

AP, ,= AP}, + NAPf,_, — (1 - m)AP}, ] (10)
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where
A= 1 -k)g?
k(a2 + 02+ ma?)
02+ o’
m =

T3 2 2
g, + o7 +o

The proofis in Appendix B. Therefore, stock price changes can be decomposed
into (1) a price innovation component, AP} ,, the price adjustment based
on its own signal; and (2) a price revision component, Al APy, -1 —-m)
APf,_,], the price readjustment based on the past price innovation of stock
2. The price revision coefficient, A, varies inversely with both & and m. The
intuition is as follows. The noise-to-signal ratio is (1 — £). An increase in the
proportion of noise (a smaller k) increases the effectiveness of an extra signal
in reducing noise and improving information quality, so that prices adjust
more. The marketwide information-to-signal ratio is (1 — m). An increase in
the proportion of marketwide information (a smaller m) increases the effec-
tiveness of an extra signal in improving marketwide information quality, so
that prices adjust more.

Equation (10) demonstrates how the past price innovations of the stocks
become observable and can be used in the information set in (8). Since the
coefficients, A and m, are publicly known, the previous price innovation of
stock 1 can be retrieved by subtracting the previous price revision component
from the previous price change of stock 1: AP}, = AP, ,— NAPy, , —(1 -
m)APY,_,]. Through recursive substitutions, all past price innovations can
be retrieved. Therefore, observing past price changes is identical to observing
past price innovations.

Similarly, the market maker in stock 2 sets the price such that AP, , =
APF, + NAPY,_; — (1 — m)AP§,_,). The autocovariances of price changes
are computed by evaluating the variance and covariance, and producing

Cov(AP, ,,AP, , ;) = MCov(AP},_,, APy, ) — (1 —m)Var(AP}, )}

=0
Cov(AP, ,,AP, , ;) = MVar(AP}, ;) — (1 - m)Cov(AP;, |, AP5, 1)}
=k(1 - k)o? (11

Again, the own-autocovariance of stock price changes is zero, but the cross-
autocovariance among stock price changes is positive. Therefore, even though
the true values are not known, market makers can infer additional informa-
tion from previous price innovations of other stocks, which results in positive
cross-autocorrelation.

The model described for two securities can be generalized to a multisecu-
rity model. When there are N securities, the price change behavior for stock 1
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is
N
AP, ,=APf,+ 6 Y [APF,, — (1 —m)AP}, 4] (12)
i=2
where
1-k)a?

5=
k(a? + a2+ (N - Dma?)

The proof is in Appendix C. The coefficient & is the price revision parameter
in the multisecurity model. The own- and cross-autocovariances of stock price
changes can be verified to be identical to the results in equation (11).

C. Heterogenous Signal Quality

In previous sections, the variances of the noise of each signal are assumed
to be equal so that the quality of the observed signals is homogeneous across
all stocks. However, Ho and Michaely (1988) suggest that large firms may
have higher-quality information than small firms because the marginal
information costs to large firms may be lower. In this section the assumption
of homogeneous signal quality is relaxed, allowing a richer framework for
examining the temporal relationship across securities.

Suppose the variance of ¢; is o-i?é, 1 =1,2...N, and (rfE can be different
from ofe, i # j. Thus, the noise-to-signal ratio can vary across stocks. The
signal quality is better when the variance of ¢; is lower. Implications for the
first scenario, i.e., when true values are publicly available next period, are
examined. Implications for the second scenario, i.e., when signals are retrieved
from previous price changes, are not discussed since the results are identical.

If the signal quality varies across stocks, an equation similar to (6) can be
derived for price changes of stock i as follows:

AP, , = (X - kD)W, +8;, 1) — ki, 1 +kW,+S;,,+¢, (13)
where

0'w2 + 0'32
ki=—5 2 2
o, t o+ o,
The partial price adjustment coefficient %2, now varies across stocks. If the
signal quality is better (a smaller o;%,), the market maker will adjust
the price more in response to his signal (a higher k;). Based on the time
series of stocks i and j, the autocovariances of price changes are

Cov(AP, ,,AP;, ) = k(1 -k)(o) + 0}) —kic?. =0 i=J

= k(1 — k)2 i#j (14)

Price changes of individual stocks remain serially uncorrelated, and the
cross-autocovariances among securities remain positive. However, since k;
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and k; are not the same, Cov(AP; ,,AP +-1) # Cov(AP; ,, AP, ,_,); the co-
variance of current price changes of i w1th past price changes of J is not the
same as the covariance of current price changes of j with past price changes
of i. If 0;”, > 0%, (the signal quality of stock i is lower than that of stock j),

then k; > k,, so that

Cov(AP, ,,AP,, ) =k;(1 — ko2 > Cov(AP, ,,AP, , ) = k;(1 — k)02
(15)

Therefore, if the quality signal of large firms is assumed to be better than
that of small firms, the covariances of current returns of small firms with
past returns of large firms will be larger than the covariances of current
returns of large firms with past returns of small firms. This is consistent with
Lo and MacKinlay (1990a), who find that the returns of large firms generally
lead the returns of small firms.”

D. Conditional Autocovariances

In previous sections, implications about unconditional autocovariances are
developed. This section shows that own- and cross-autocovariances vary with
the size of the market movement. First, rewrite equation (12) as

N
AP, , = AP}, + 8 Y [APF,_, — (1 - m)AP}, ]
i=2

:APT,t+5'{sz—1+ Z[Sll 1t €&

N-1 i=2
_(1 - m)(Sl’t_l + elyt_l)] (16)
where
8" =(N-1)ék

where N is large, X(S; ;_; + € ,_,)/(N — 1) approaches zero, equatlon (16)
can be reduced to

AP, , = AP}, + 8 {mW,_, — (1 —m)(S, ,_, + € ,_ )} an

and the first-order own- and cross-autocovariances of stock price changes
conditional on the information at period ¢ are

2 2 2
E[AP, ,,AP,, ] = a'k{mEz[Wzﬂ] -1 - m)[Et[Sl,t-1] + Et[el,t-ll]}
E[AP, ,,AP,, ] = 8'k{mE,[W2,]} (18)
" Lo and MacKinlay (1990b) show that if securities have different probabilities of nontrading,
an asymmetry of cross-autocorrelation among securities returns is induced. Empirically, they

demonstrate that when securities are grouped according to size (which is a proxy for relative
market thinness), weekly returns of large firms lead those of small firms.
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Equation (18) demonstrates that when the time series are partitioned based
on the size of market movement at period ¢ — 1, first-order autocovariance
coefficients vary. This is obvious for the cross-autocovariance, which is simply
a function of E,[W,2 |]. When the market movement at period ¢ — 1 is larger,
E[W2,] is higher so that the cross-autocovariance is higher. The own-
autocovariance coefficients also vary positively with the size of market move-
ment. Further, when the market movement is small (or large), E[AP, ,,
AP, , ,]is likely to be negative (or positive). In other words, price reversal is
more likely when the market movement is small, while price continuation
is more likely when the market movement is large. To see this, note that at
period ¢t — 1 market makers partially adjust prices based on their own noisy
signals. At period ¢, their signals can be verified by the past price changes of
other stocks (or, simply, past market price movement). If the market move-
ment is small at period ¢ — 1, it is more likely that the market makers’ own
signals at that period are false. Therefore, there is a price reversal at period ¢
to correct the pricing errors. On the other hand, if the market movement is
large at period ¢ — 1, it is more likely that the market makers’ own signals at
that period are correct. Therefore, there is a price continuation at period ¢ to
reinforce previous price movement. A similar implication holds for own- and
cross-autocorrelations, which are autocovariances standardized by the vari-
ances of stock price changes, calculated from equation (17). Comparative
statics show that own- and cross-autocorrelations increase when E,[W,? ] is
larger, holding E,[S?2 ;] and E,[€ ] constant.

If market makers could continually retrieve signals from past price innova-
tions of other stocks, the intraday cross-autocorrelation pattern would be
uniform throughout the day. However, the New York Stock Exchange closes
overnight. The behavior at its opening is different from the rest of the day.
Amihud and Mendelson (1987, 1991) find higher volatility at the opening;
Stoll and Whaley (1990) report a tendency for price reversal. An important
feature about the opening is that it resembles a call auction market, where
all market and limit orders are submitted to specialists who accumulate them
and determine opening prices. The specialists see only the demand and
supply for their stocks, not the orders for other stocks. The inability of a
specialist in one stock to observe the simultaneous opening of other stocks
may induce higher cross-autocorrelation at the opening. From equation (18),
if there is more marketwide information accumulated overnight, it will
appear as a higher E,[W,2 ], so that the cross-autocovariance is larger. The
effect on cross-autocorrelation, however, is not clear. If E,[S? ;] and E,[€? ]
do not increase overnight, the cross-autocorrelation at the opening will
increase unambiguously. If E,[S2 ;] and E,[€? ] increase, the effect on the
cross-autocorrelation is ambiguous.

II. Empirical Evidence

To determine whether own- and cross-autocorrelations vary with the size
of market movement, I obtain data from the CRSP daily stock price files
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from 1980 to 1989 and sort stocks into ten size deciles based on their equity
values at the beginning of each year. For each stock, the first-order own-
autocorrelation of daily returns p(R, ,, R, ,_;) and cross-autocorrelation with
past returns p(R, ,, R, , ;) are computed,® where R, , and R,, , are daily
returns of individual stocks and of the CRSP value-weighted market index,
respectively. Averages of p(R,,,R;, ;) and p(R,,, R, , ;) are calculated
for each size decile, and grand averages are calculated for the full ten years.
Since Froot and Perold (1990) report that the time series properties of stock
market indexes have changed in recent years, grand averages are also
computed separately for two subperiods, 1980 to 1984 and 1985 to 1989, to
check the consistency of the data.

The own- and cross-autocorrelations are presented in Table I. Results
indicate that the own-autocorrelation coefficient is —9.87 percent for decile
1 (smallest firms) and 4.85 percent for decile 10 (largest firms) from 1980
to 1989. This may be due to larger bid-ask errors for small firms. Results
also show that the own-autocorrelation in all deciles decreases between the
1980 to 1984 and 1985 to 1989 subperiods. For example, the autocorrelation
coefficient decreases from —8.14 to —11.62 percent in decile 1, and from 6.87
to 2.80 percent in decile 10.

The cross-autocorrelation coefficients are significantly positive in all deciles.
Results indicate that the cross-autocorrelation decreases between the 1980 to
1984 and 1985 to 1989 subperiods. The coefficient decreases from 7.41 to 5.75
percent in decile 1, and from 7.23 to 3.00 percent in decile 10. This is
consistent with Froot and Perold (1990), who document a decrease in the
autocorrelation of stock market indexes. They suggest that new trading
practices have improved the processing of marketwide information.

To investigate the own-autocorrelation patterns conditional on the size of
marketwide movement at period ¢ — 1, I sort trading days into five quintiles
based on the magnitude of market movement at period ¢ — 1, which is
measured by absolute CRSP (value-weighted) market returns. Quintile 1
contains trading days with the lowest 20 percent absolute market returns,
representing small market movements at period ¢ — 1; quintile 5 contains
trading days with the highest 20 percent absolute market returns, repre-
senting large market movements at period ¢ — 1. I then compare own-
autocorrelations under small and large market movements. Since stock price
fluctuations are affected by factors of the trading mechanism—such as
bouncing between bid and ask prices (Roll (1984)), random arrival of orders to
the market (Mendelson (1982)), and the transitory state of dealers’ inventory
position (Amihud and Mendelson (1980))—the own-autocorrelation may also
be affected. However, so long as the effect of these factors is the same under
small and large market movements, own-autocorrelations under large market
movements will still be larger than those under small market movements.

8 Although the theoretical discussion is in terms of autocovariances, the implications also hold
for autocorrelations. Empirical results are presented only for autocorrelations since results are
similar for autocovariances.
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Table I

Grand Averages of Own- and Cross-Autocorrelations
Grand averages of first-order own-autocorrelations p(R, ,, R, ,_;) and cross-autocorrelations
p(R, ,, R, , ) of daily returns in ten deciles of New York Stock Exchange and American Stock
Exchange stocks from 1980 to 1989, where R, , and R, , are daily returns of individual stocks
and the CRSP value-weighted market index at day ¢. Values in parentheses are standard errors.

Own-Autocorrelations (in %) Cross-Autocorrelations (in %)
Size P(Rz,z»Rz,t—l) p(RL,t’Rln,t—l)
Decile 1980-84 1985-89 1980-89 1980-84 1985-89 1980-89

1 —-8.14 —11.62 —9.87 741 5.75 6.59
(Small) (0.45) (0.50) (0.34) (0.23) (0.28) (0.18)

2 —-3.87 —-5.89 —4.87 8.50 8.10 8.30
(0.42) (0.47) (0.32) (0.23) (0.32) (0.20)

3 -191 —4.89 -3.39 9.68 8.85 9.27
(0.40) (0.46) (0.31) (0.24) (0.33) (0.21)

4 0.35 —-3.06 —-1.34 10.87 9.32 10.10
(0.41) (0.46) (0.31) (0.26) (0.34) (0.21)

5 1.29 —-1.22 0.05 11.35 9.59 10.48
(0.40) (0.43) (0.29) (0.28) (0.32) (0.21)

6 3.16 0.40 1.79 12.78 10.85 11.82
(0.35) (0.39) (0.26) 0.27) (0.33) (0.22)

7 3.40 2.27 2.84 12.46 11.23 11.85
(0.33) (0.39) (0.26) (0.29) (0.34) (0.22)

8 490 241 3.67 13.12 9.56 11.35
(0.31) (0.36) (0.24) (0.29) (0.34) (0.23)

9 6.49 3.79 5.15 11.85 7.80 9.84
(0.28) (0.31) (0.21) (0.29) (0.33) (0.22)

10 6.87 2.80 4.85 7.23 3.00 5.13
(Large) (0.29) (0.28) 0.21) (0.29) (0.31) (0.22)

All 1.26 —-1.50 -0.11 10.53 841 9.48
(0.12) (0.14) (0.09) (0.09) (0.11) (0.07)

Table II presents first-order own-autocorrelations p(R,,, R, , ;) condi-
tional on small and large market movements at period ¢ — 1. In all deciles,
the own-autocorrelation is larger under large market movements. The differ-
ences between own-autocorrelations under large and small market move-
ments are positive in all but one decile (decile 10 in the 1980 to 1984
subperiod). The difference is largest in the intermediate deciles and smallest
in decile 10. The ¢-test shows that most of the differences are significant at
the 0.01 percent level. A Wilcoxin signed-rank test examines for differences
and confirms that the significance levels are robust.

Table III reports first-order cross-autocorrelations p(R, ,,R,, , ;) condi-
tional on small and large market movements. The cross-autocorrelation is
larger under large market movements than under small market movements,
and the differences are significant at the 0.01 percent level. Similar to the
results for own-autocorrelation, the difference in cross-autocorrelations is
largest in the intermediate deciles and smallest in decile 10. This provides
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Table II

Own-Autocorrelations Conditional on the
Size of Market Movement
Grand averages of first-order own-autocorrelations p(R; ,, R; ,_;) of daily returns of individual
stocks in ten size deciles, conditional on the size of market movement at day ¢ — 1. Small (or
large) market movement is taken from the quintile of the lowest 20 percent (or highest
20 percent) absolute CRSP returns at day ¢ — 1.

Own-Autocorrelations

Small Large Test for the Difference

Market Market t-Test Wilcoxon

Size Sample Movement Movement Difference p-Value  p-Value
Decile  Period (%) (%) (%) t-Statistic (%) (%)
1 1980-84 -9.81 -7.02 2.79 4.03 0.01 0.01
(Small) 1985-89 -13.38 -11.10 2.28 2.89 0.39 0.17
2 1980-84 -5.08 —-2.46 2.62 3.76 0.01 0.01
1985-89 -17.70 —4.02 3.68 4.63 0.01 0.01
3 1980-84 —3.67 1.63 5.29 7.73 0.01 0.01
1985-89 —-6.41 —-3.26 3.15 3.88 0.01 0.02
4 1980-84 —-0.92 3.85 4.78 7.34 0.01 0.01
1985-89 -6.05 -0.53 5.52 6.83 0.01 0.01
5 1980-84 0.10 5.23 5.13 7.45 0.01 0.01
1985-89 -4.15 1.78 5.93 7.46 0.01 0.01
6 1980-84 1.11 7.50 6.39 9.55 0.01 0.01
1985-89 —4.00 4.40 8.40 10.64 0.01 0.01
7 1980-84 1.43 7.37 5.94 8.49 0.01 0.01
1985-89 —-1.44 5.82 7.26 9.29 0.01 0.01
8 1980-84 2.63 9.27 6.65 10.31 0.01 0.01
1985-89 -0.20 5.38 5.57 7.29 0.01 0.01
9 1980-84 4.95 10.42 5.47 8.28 0.01 0.01
1985-89 2.44 5.35 291 3.73 0.02 0.01
10 1980-84 5.61 7.16 1.56 2.50 1.24 1.26
(Large) 1985-89 3.78 1.67 -2.11 -2.69 0.72 1.88
All 1980-84 -0.36 4.30 4.66 21.92 0.01 0.01
1985-89 -3.71 0.55 4.26 16.97 0.01 0.01

indirect evidence that variations of own- and cross-autocorrelations across
deciles are closely related.

III. Conclusion

In this paper I develop a model to explain why stock returns are positively
cross-autocorrelated. In the model market makers observe noisy signals
about their stocks, but cannot instantaneously condition prices on the sig-
nals of other stocks, which contain marketwide information. As a result,
the pricing error of one stock is correlated with signals of other stocks. In
addition, although each stock price is an unbiased estimate of the true stock
value conditional on one signal, the aggregate of stock prices (the index price)
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Table IIT

Cross-Autocorrelations Conditional on the

Size of Market Movement
Grand averages of first-order cross-autocorrelations p(R; ,, R,, ,_;) of daily returns of individ-
ual stocks with market returns of the previous day in ten size deciles, conditional on the
magnitude of market movement at day ¢ — 1. Small (or large) market movement is taken from
the quintile of the lowest 20 percent (or highest 20 percent) absolute CRSP returns at day ¢ — 1.

Cross-Autocorrelations

Test for the Difference

Small Large

Market Market t-Test Wilcoxon

Size Sample Movement Movement Difference p-Value  p-Value
Decile  Period (%) (%) (%) ¢-Statistic (%) (%)
1 1980-84 3.34 14.01 10.67 17.71 0.01 0.01
(Small) 1985-89 -0.69 10.33 11.02 15.31 0.01 0.01
2 1980-84 4.36 15.62 11.25 19.19 0.01 0.01
1985-89 0.07 14.15 14.07 1991 0.01 0.01
3 1980-84 4.20 17.85 13.65 22.02 0.01 0.01
1985-89 -0.31 14.98 15.29 20.69 0.01 0.01
4 1980-84 5.62 19.66 14.04 23.39 0.01 0.01
1985-89 -1.17 15.68 16.85 22.83 0.01 0.01
5 1980-84 5.25 20.35 15.10 24.48 0.01 0.01
1985-89 0.88 16.20 15.32 20.66 0.01 0.01
6 1980-84 6.75 21.91 15.15 23.99 0.01 0.01
1985-89 -0.78 18.56 19.33 25.87 0.01 0.01
7 1980-84 7.14 21.61 14.47 22.32 0.01 0.01
1985-89 0.40 18.48 18.08 23.63 0.01 0.01
8 1980-84 7.27 21.77 14.50 23.29 0.01 0.01
1985-89 0.19 15.65 15.46 19.95 0.01 0.01
9 1980-84 6.67 19.30 12.63 20.70 0.01 0.01
1985-89 —-0.44 12.19 12.63 16.16 0.01 0.01
10 1980-84 5.78 11.41 5.63 9.57 0.01 0.01
(Large) 1985-89 —-0.24 3.98 4.22 5.46 0.01 0.01
All 1980-84 5.64 18.35 12.71 65.01 0.01 0.01
1985-89 -0.21 14.02 14.23 59.31 0.01 0.01

is not an unbiased estimate of the true aggregate value conditional on all
signals.

I extend the model to multiple periods to analyze the implications of this
pricing rule for intertemporal return relations under two scenarios. In the
first, true stock values are known subsequently, and market makers readjust
prices upon observing true values. In the second scenario, true stock values
are never revealed, but market makers condition prices on past prices of
other stocks. I show under both scenarios that stock returns are serially
uncorrelated individually but positively cross-autocorrelated.

The model here supplements nonsynchronous trading as an explanation for
cross-autocorrelations among securities. Even if no measurement error occurs,
economic reasons can account for the zero autocorrelation of individual stock
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returns and positive cross-autocorrelation among securities. Further, if the
signal quality of large firms is assumed to be better than that of small firms,
the covariance of current returns of small firms with past returns of large
firms is larger than the covariance of current returns of large firms with past
returns of small firms. Thus, the model can explain why large firm returns
tend to lead small firm returns. Another implication is that the autocorrela-
tions vary with the size of market movement. This is supported by the
evidence that both the own- and cross-autocorrelation coefficients of daily
stock returns are significantly higher under large market movements than
under small market movements. The evidence therefore suggests a link
between index return serial correlation and market volatility.

Appendix A
Derivation of Equation (3)

Since E(V, + V,16,, 6,) is a linear projection of (V, +V,) on 6, and 6,,
multiple regression gives the slope coefficients as E(V, + V4164, 6,) = B, +
B,0, + B, 0,, where

B, =E(V, +V,)
Cov(V, + V,, 6,)Var(6,) — Cov(V, + V,, 6,)Cov(8,, 6,)
Var(6,)Var(6,) — [Cov(6,, §,)]°
Cov(V, + V,, 0,)Var(6,) — Cov(V; + V,, 6,)Cov(6,, 6,)

B, = 5 (A1)
Var(6,)Var(6,) — [Cov(6,, 6,)]

Evaluating the slope coefficients yields,

B 3 202 + crsz (A2)
1 2 2U'w2 4 0_32 + 0.62
Appendix B

Derivation of Equation (10)
Let X' = (AV,, ,,AP}, AP}, }), and ¥ be the 3 X 3 variance-

covariance matrix of X with the elements Y;;. Define L3,=%, -1,
L3a' Loss Lazz = Lagg — Ly Lag' L, then
E(AV, , AP, 1, APF, )
=E(AV,,_4|AP}, ) + L5, LagolAPF, | — E(AP;, 1|APY, )]
(B1)
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Substitute the above expression into (9), and define AP, , =P, , — P, , .,
AP}, =E(AV, 6, ) to obtain

AP, , = AP}, + L3, Y3so[APS,_, — E(AP}, 1|AP, )] (B2)
Substituting the following expressions into (B2) gives equation (11):

Y30 = Cov(AV, ,_,APS, ;)
Cov(AV, , |, AP}, )Cov(AP}, ,AP}, )
Var(APY, ;)
k(o2 + 02)k%2
T ko + o + 02)
=k -B)o; (B3)
[Cov(AP}, ,, AP;J?l)]Z
Var(APf, )

— b2
= ko

Y50 = Var(AP}, ;) —

(k%)

k2(a? + 02 + a.?)

=k%2(c?+ a2+ a?)

=k%2(0% + g? + ma?) (B4)
Cov(APY, |,AP;, )
Var(APf, )

E(AP;, (AP}, ) = (APf, 1 — E(APY, 1)

k%2
= * AP
Rl + of + o) b
=1 -m)APf, (B5)
Appendix C

Derivation of Equation (12)

In the multisecurity case, market makers retrieve marketwide information
from lagged price changes of the other N — 1 securities. I examine the price
behavior of a representative security, say stock 1. Let X' =(AV,, |,
AP}, |, AP} ), where AP} = (AP, |,AP5, ,...APy, ). If ¥ repre-
sents the (N + 1) X (N + 1) variance-covariance matrix of X, the elements of
Y are

Yii Lz Lig
r= 221 Z"22 z"23
231 z"32 z"33

where L, X5, Loy, Loy are scalars; L5, Log are 1 X (N — 1) vectors; Lgq, Lgs
are (N — 1) X 1 vectors, and Y45 is an (N — 1) X (N — 1) matrix. A version
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equivalent to equation (B2) for representing the price adjustment of stock 1
in a multisecurity model can be expressed as

AP, , = AP, + Xi5.5 L33- o AP}, — E(AP/_||APF, )] (C1)
Yi3.2> Lag.2, and E(AP} ,|AP¥, ) are evaluated as follows:
Yis.o = Lyz — Lia 2521 Las
Cov(AV, , 1, APF, ) |

Cov(AV, , ,APF, ) Cov(AV, ,_,APF, )
. Var(APf, ;)

Cov(AV, , 1, AP , )

Cov(AP}, 1, AP, D

Cov(APY, |,AP5, ;)
X .

Cov(AP¥, |, AP}, 1)

k(a2 + 02)
k%2(o2 + 02 + 0?)

— k(1 = B) g1’ (C2)

=k0'w21' — kza'wzl'

Tas.2 = Lag — Laz Loz Lag- Lgg is the (N — 1) X (N — 1) covariance matrix of
AP}, and the ijth element of L4 is: a;; = k*(¢,} + 0> + %), i =j; a;; =
k%02, i #j. Loy = Var(AP},_|) = k% (02 + 0,2 + o). Since L,, is a scalar,
Ys2 Log Log = Lag Lz Lag- The elements in the matrix Yy, Xog are (k%,2)%.
Therefore, Ygp Yop Yo3 = k%2(1 — m)o,211'. Evaluating Yg3.5 = Lg3 — Lgs

-1
Z22 Z:23’

- B2
Lgg.g =k
(02 + 02 + ma?) ma? . . ma?2
2 2 2 2 2
mao,; (0 + d*+ma;) mo,
X
2 2 . 2 2 2 2
ma, may, ma, (0°+ 0+ mo))

To find Yl ,, note that Yg5., = k%[(0®2 + 0.>)I + mo,211']. Define A =
[k%2(a?2 + 0.°)] ' X35.5, then A =1 + h11', where b = ma,2/(0,® + 0.2). The
inverse of A is known tobe A™! =1 + g11’,

where

—h —ma?
1+ (N-Dh o2+ 02+ (N-Dmg?

g



Cross-Autocorrelation among Stock Prices 1229

The inverse of ¥33., can be found,

Tits = [£2(a? + 2] AT
2
mao,
_ 9 9 + 9 -1 . w 1 ’
[k2(0? + a®)] |1 02+’ + (N - Dmo? !
(C3)
E(APE, )
) . E(APY, 1) AP}, , — E(APF, )
E(APt_liApl,t—l) = : Var(AP¥, ;)
) 1,¢-
E(APE, )
COV(APik,tfl;AP;,t—l)
Cov(APf, ,,AP3, )
X .
Cov(APf,_ , AP} , 1)
k20w2 AP* 1
= kz(a-w2+0's2+0'€2) 1,t-1
— (1-m)AP}, 1 (C4)

Substituting (C2), (C3), and (C4) into (C1) yields equation (12).
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