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Researchers investigating the possibility of mean reversion in stock prices with statistics based on 
multiyear returns have noted difficulties in drawing inferences from these statistics because the 
approximating asymptotic distributions perform poorly. We develop an alternative asymptotic 
distribution theory for statistics involving multiyear returns. These distributions diPier markedly 

from those implied by the conventional theory. The alternative theory provides substantially 

better approximations to the relevant finite-sample distributions. It also leads to empirical 
inferences much less at odds with the hypothesis of no mean reversion. 

1. Introduction 

Starting with Fama and French (1988) and Poterba and Summers (1988), a 
flurry of recent research has tested the random-walk model of stock prices 
using multiyear returns. The intuitively appealing motivation for this work is 
that it is easier to uncover low-frequency correlations in the data, such as a 
slowly mean-reverting component of stock prices, if one examines the long- 
term properties of returns. This research finds statistical evidence of long-run 
negative correlation in stock returns. The degree of statistical significance has 
generally been assessed using conventional asymptotic theory, for example, 
by checking whether the estimates lie within two standard errors of the null. 
A number of recent authors, however, have concluded from Monte Carlo 
experiments that, for the sample sizes encountered in practice, the usual 
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asymptotic distribution theory provides a poor approximation to the sampling 
distribution. The question, therefore, remains: is the mean-reversion evi- 
dence due to a slowly reverting component of stock prices or to the poor 
performance of the asymptotic theory in finite samples? 

This paper adopts a different perspective on the problem of assessing the 
significance of these statistics, primarily variance ratios and autocorrelations 
of multiyear returns. A commonly recognized feature of these statistics is that 
even though the sample may be large, the number of nonoverlapping obser- 
vations can still be small. On an informal level, this suggests that there is not 
much independent information in a long time series of multiyear returns, 
which in turn suggests that conventional large-sample approximations to 
sampling distributions might perform poorly in practice. This paper formally 
implements this intuition. The key difference between our approach and the 
standard theory is that we treat the overlap in the data (denoted by J) as 
tending to a fixed nonzero fraction (6) of the sample size T, whereas the 
conventional theory treats J as fixed so that J/T tends to zero. 

Although the !ixed J and the J/T --) 6 theories both provide large-sample 
approximations that rely on versions of the central limit theorem, the two 
approaches yield sharply different qualitative results. For example, the fixed 
J theory implies that the more widely used multiyear correlation statistics, 
such as variance ratios and sample autocorrelations, are consistent; in con- 
trast, the J/T+ 6 theory implies that these statistics will not be consistent. 
Under the fixed J theory, the statistics, when standardized by v’?, have 
asymptotic normal distributions; under the J/T - S theory, they have limit- 
ing distributions that are typically not normal, but rather have representa- 
tions in terms of functionals of Brownian motion. 

An attractive feature of the fixed J theory is that it is easy to use in 
practice. Similarly, even though the J/T + 6 theory implies that the limiting 
distributions of the statistics are not normal, we show that their representa- 
tion under the null hypothesis that returns are unpredictable does not 
depend on any unknown parameters. Therefore, it is straightforward to 
compute their distributions by Monte Carlo methods. For example, to ap- 
proximate the distribution of a particular statistic computed using, say, J = 50 
and T = 150, the asymptotic results suggest performing a sequence of Monte 
Carlo simulations in which T increases and, for each T, J is set at J = fT. 

Even though these two theories imply different distributions, they are both 
correct in their own regard. Whether or not the econometrician actually had 
a nonzero 6 in mind when choosing a particular J is irrelevant. The major 
practical value of asymptotic theory is to provide a robust approximation to 
the small-sample distribution of the statistics. Which theory is most appropri- 
ate, therefore, is really an empirical question. Using Monte Carlo simulations 
of the multiyear statistics, we find that the J/T -, 6 theory provides a much 
better approximation to the sampling distributions than the conventional 
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fixed J theory. For example, suppose that a Xl-statistic is used to test the 
joint hypothesis that the J-period autocorrelations for J = 2, 4, 6, 8, 10, 12, 
16, 20 are all zero, with 120 observations [these are the ratios of J/T used by 
Fama and French (198811, and suppose that single-period stock returns are 
standard normal random variates. Using the usual ~5 asymptotic 5% critical 
value of 15.5, this statistic would in fact reject the null 18% of the time; using 
the J/T + 6 asymptotic 5% critical value of 25.2 would result in 4.8% 
rejections. 

This paper is organized as follows. Section 2 examines the variance-ratio 
statistics and section 3 considers multiyear correlations, Section 4 presents a 
Monte Carlo study comparing the asymptotic approximations of the J/T + S 
theory with those of the fixed J theory. Section 5 applies the results to the 
question whether stock prices show mean reversion. Section 6 concludes. 

2. Variance-ratio statistics 

As Cochrane (1988), Poterba and Summers (19881, and others emphasize, 
variance-ratio statistics provide an intuitively appealing way to search for 
mean reversion. If returns are serially uncorrelated, the variance of the 
J-period return will increase linearly with J, but if there is mean reversion - so 
that returns are negatively correlated - the variance of the J-period return 
will increase less than linearly.’ 

In this section we develop the alternative J/T + 6 approach to obtaining 
the asymptotic approximation to the null distribution of the variance-ratio 
statistic. Throughout, we assume that returns R, are unpredictable from 
their past values, except for a constant mean p. That is, 

R,=P +&t, l,...,T, (1) 

E(E~~E,_,,E,_~ ,... , E,) = 0. The returns are allowed to be conditionally 
heteroskedastic, as long as the average conditional heteroskedasticity tends 
to a constant variance. 
EKl/T)C;= ,hJ + u* 

That is, let h, = E(E:]E~_,,E,_~ ,..., E,); then 
as T + = by assumption, where u* > 0. Also, assume 

that sup, E(E:) < SC. 
Two variance-ratio statistics are considered here. The first, A(J), is 

computed using nonoverlapping data; the second, M,(J), is computed using 
overlapping data. Lo and Ma&inlay (1988,1989) analyze the asymptotic 
properties of both when J is fixed and T + co, and their notation is adopted 

‘For additional see Campbell Mankiw (1987). and Eichenbaum 
Cochrane and (1988). Faust Huizinga (1987). Lo and 

(1988). 
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here. Both variance-ratio statistics are constructed using the J-period return, 

J-1 

x,(J) = c K-j 
i=O 

When constructed using the T/J nonoverlapping observations, the statistic is 

AJ)={(&)(f)i (x,(J) -Jj$ + (L,(J) -J/q2 

+ ... +(x,(J) -JG)‘ij 
/ 

I$, 

where 

(2) 

uR= _: ; (R&i)', A2 p=$& 
t, 

t=1 t=i 

and where it is assumed in (2) that T/J is an integer. The M,(J) statistic is 
constructed using overlapping observations on J-period returns: 

M,(J) = 
i 
+i,(x,(J) -J@>’ 

ii 
G. (3) 

In the usual fixed .I asymptotic treatment, under the null hypothesis the 
numerator and denominator converge in probability to var( R,), so that RP(J) 
and M,(J) converge in probability to one. Lo and MacKinlay (1988, 1989) 
study the fixed J asymptotic distribution of A(J) and M,(J). They assume 
that (R,} are i.i.d. with a normal distribution and show that 

\/T(A(J) - 1) 5 N(O,2(J- I)), (4) 

fl(hfr(J) - 1): N 0, 2(2J-;;(J- l’). i (5) 

Lo and MacKinlay (1989) find that these approximations work well when J 
is small and T is large. They emphasize, however, that this large-sample 
normal approximation is unsatisfactory for large J. For example, they show 
that for J = $T, the r-statistic constructed using the approximation (5) will 
never be less than - 1.74 for all T. The poor performance of the fixed .I 



M. Richardson and J. H. Stock, Assessing statistics based on multiyear returns 327 

asymptotic approximation when J is large in relation to T indicates a need 
for an alternative approach in which J/T is explicitly recognized as large. 

In the nonoverlapping case [i.e., A(J)], such an alternative approximation 
is in fact easy to develop. To simplify exposition, temporarily assume (unreal- 
istically) that 1 is known to equal zero so that R, = E, and the terms 
involving fi can be dropped from (2). In this case, when T/J is an integer 

A(J) can be rewritten as 

2?(J) &[( ~~l~t)2+ (-$,J 

i 
T 2 

+ ... + $,-,_,+*&t 

c Ill/ 4$ (6) 

If J/T+6 as T-)=q the number of nonoverlapping observations used to 
construct A(J) remains fixed at T/J = l/6. (Note that as T increases T/J 
will not remain an integer: for (6) formally to apply, take the limit along the 
sequence T=J/6, J= 1,2,3 ,..., where l/S is an integer.) This results in a 
simple limiting distribution for k(J). Because J + x as T ---) r, each of the 
partial sums in (6) converges in distribution to independent N(0, uz) variates. 
Upon dividing by 3: (which is consistent for a*>, one finds directly that this 
statistic has a limiting chi-squared distribution: 

(7) 

This simple result highlights three key features that typically distinguish 
the J/T + S asymptotic approximations from the fixed J approximations. 
First, this variance-ratio statistic is not consistent, but rather has a nondegen- 
erate limiting distribution without first scaling by 0. Second, this limiting 
distribution is not the normal distribution in (41, but is nonnormal - here, a 
x:,~, divided by its degrees of freedom. Third, this result holds even if there 
is nonnormality and heteroskedasticity of the type permitted following (1). 

The key observation used to obtain the alternative distribution (7) is that, 
when J is large in relation to T, the multiyear return behaves more like a 
random walk than a stationary process. To see this, it is useful to contrast the 
behavior of x,(J) in the fixed J and J/T + 6 cases. In the fixed J case, x,(J) 
is a random variable with its distribution on the real line and with variance 
Ja’. Thus (x,(J)) is treated as a stationary stochastic process. In contrast, in 
the J/T -) 6 > 0 case the variance of x,(J) tends to infinity. In fact, 

(l/@)x,(J) obeys a central limit theorem: (l/fi>x,(J> 3 NCO, Sa2). Be- 
cause in this nesting the variance of x,(J) increases without bound, (x,(J)} 
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cannot be treated as a stationary stochastic process. Hence the analogy 
between x,(J) and a random walk: as T gets large, the variance of each tends 
to infinity, but resealed by l/ fi (or l/ 0) they each obey a central limit 
theorem. 

The argument used to obtain the limiting distribution of M,(J) when 
J/T + 6 involves an additional technical difficulty. For now, continue to 
assume that p is known to equal zero. Although the usual central limit 
theorem applies to (l/~‘?)x,U) for a fixed r, it does not apply to 
((l/fi)x,(J)] treated as a stochastic process in t - i.e., it does not apply 
simultaneously for all t. Fortunately, however, there is an alternative limit 
theory that can be used to develop an asymptotic characterization of x,(J) in 
the J/T -+ 6 nesting. This theory - alternatively referred to as the functional 
central limit theorem (FCLT), Donsker’s theorem, or the invariance princi- 
ple, and discussed in more detail in the appendix - implies that, treated as a 
stochastic process, partial sums of returns converge to a Brownian motion 
process on the unit interval. This form of convergence is denoted by ‘ =j ‘. To 
make this precise, let [a] denote the greatest lesser integer function. Then the 
FCLT states that, as T + =, 

(8) 

where W(A) is standard Brownian motion restricted to the unit interval. 
The result (8) is the key ingredient in deriving the J/T + S asymptotic 

result. Write (l/ JT)x,(J) as 

If t/T + A > 0 and if J/T + 6 > 0, then (t - J)/T -th - 6 and, from (8) 
and (91, 

1 
~x&J) -dW(A) - W(A -6)). (10) 
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The distribution of the variance-ratio statistic M,(J) can now be obtained 
by applying (10). First consider the numerator: 

9 -#u2(W(A) - W(h -8))‘dh. 
8 

The denominator in M,(J), which involves only the one-period return. 
converges in probability to u2. Thus, when ,u is known to equal zero, M,(J) 
has the limiting representation, 

M,(J) 2 &,+‘(A) - W(h -6))‘dh. 

In practice, p is unknown and all the data are used to construct the 
variance ratio; thus the empirically relevant statistic to examine is M,(J) in 
(3) including the term in pi. Incorporating ji is conceptually straightforward 
but complicates the algebra somewhat. The limiting representation of M,(J) 
when p is estimated, which is derived in the appendix, is 

(11) 

where 

Y,(A) = W(A) - W(A -6) -6W(l). 

These results warrant some remarks. First, while M,(J) converges in 
probability to one under the fixed J treatment, in (11) it has a limiting 
distribution. An intuitive interpretation of this result is that, in the J/T + S 
nesting, the overlap in the data is so large that one is left with only a finite 
number l/S of nonoverlapping sets of J-period returns. Second, the limiting 
distribution of M,(J) is not normal, but rather has a representation in terms 
of functionals of Brownian motion. Because this representation does not 
depend on any unknown parameters of the problem, however, it is straight- 
forward to compute this distribution by Monte Carlo methods (this is done in 
section 4). Finally, note that the details of the argument and the final 
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representation change if the statistic is computed by deviating returns from 
their sample average. The latter procedure is of course appropriate in 
practice. 

3. Multiyear autocorrelation statistics 

Fama and French (1988) examine the autocorrelation of multiyear returns 
using the regression 

x,+,(J) -4J) +i%J)x,(J) +Et_,(J), (12) 

where, as in section 2, x,(J) denotes the J-period return. The multiyear 
correlation is estimated by the ordinary least-squares estimator j(J). 

The usual asymptotic approximation to the distribution of p(J) is obtained 
by holding J fixed and letting T + 30. Under the null hypothesis p(J) = 0, 
Richardson and Smith (1989) use this approach to show that 

\iT?=-%i-j(J)$N 0 3~ ( T2J2+11 
where T - 2J -t 1 is the number of observations used to compute p(J). Thus 
the distribution of dT - 23 + 1 j(J) is approximated by a normal with a 
variance that increases with J. 

When J is large, the reasoning @ading to the J/T + 6 approach in section 
2 suggests a similar treatment of p(J). The method of calculation is similar 
to that used for the overlapping-data variance-ratio statistic. The result, 
derived in the appendix, is that in the limit p(J) has the same distribution as 
a functional of Brownian motion: 

where 

X;(A) =&(A) - [l/(1 -26)$-6X,(s)ds, 

X;(A) =&(A) -[l/(1 -28)]j’-%,(s+S)ds, 
6 

(13) 

and where 

X,(A)=W(A)-W(A-6). 
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This limiting representation of p(J) depends only on 6 and the standard 
Brownian motion process W(A), not on p or any of the nuisance parameters 
describing the conditional or unconditional distributions of E,. Therefore, it 
is easy to compute its distribution by Monte Carlo methods. 

There are several extensions of the result (13) that have practical value. In 
particular, it is reasonable to want to test the hypothesis that several 
myltiye?r correlations simultaneously equal zero using a F-test. Let p = 
@(.I,) pU,> . . * /I(J, where J, <J, < . . . <JK are the K periods over 
which the multiperiod returns are computed. Suppose that each of the 
elements of fi is estimated using all the data available for that element, i.e., 
T - 25, + 1 observations. Let Vr = V,(J,, . . . , JK) denote the fixed J asymp- 

totic covariance matrix of the vector {~~&J,)I under the null 
hypothesis provided by Richardson and Smith (1989).’ Then a natural test 
statistic is the Wald statistic: 

where 

Although FT does not have the usual large-sample xi distribution if 
J/T + 6 C/i? is nonnormally distributed), F7. provides a simple way to check 
whether the restrictions on the multiperiod correlations apply simultane- 
ously. If V,(J,, . . . , JK) is evaluated for J,/T + ai, 0 < 8, < S2 < . . . < 6, < 1, 
then rf’V,Yf’ --f Y*.3 With this observation in hand, the J/T --) 6 asymp- 
totic representation for F, obtains directly from (13): 

FT=Q?*(S,,..., s,)‘v*-‘p*(s I,..., S,), 

where p*(S ,, . . . ,a,> is a column vector with the ith element given by p$ as 
expressed in (13) with ai replacing S. 

A related statistic is the sum of the multiyear correlations. A heuristic 
motivation for considering this statistic is that, although any individual 
multiyear correlation might not differ significantly from zero, if there is mean 
reversion in stock prices over a long horizon the sum of the correlations 
might be significantly negative. If there are a fixed number K of autocorrela- 
tions under consideration, this statistic is R, = c,“, , &J,). Adopt the same 

‘Richardson and Smith (1989) show that vi = (ZJ,’ + 1)/3J, and. for Jk >J,, yI; = [s(J,, Jk) + 
J,‘]/J,Jk, where s(l,,Jk) = Zci,\(J, - m)min(l,, Jk -m). 

‘Specifically, 52 = 2(6,6, (1 - 26,)( 1 - 28,) j-‘/$x min(3,, 6, - 6, +x)dr for 0 < 6, < 6, 

and qi* = 28,/3(1 - 26,). 
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notation as in the case of the F-statistic. Then, as J,/T + Si, i = 1,. . . , K. 

Rr = cFs, pz. Like the individual estimators of the multiyear correlations. 
R, does not converge in probability to zero under the null but rather has a 
nonnormal limiting distribution. Alternative statistics with a similar motiva- 
tion are the maximum correlation, maxi $<J,), the minimum correlation, or 
the maximum absolute correlation. These statistics are handled the same way 
as the sum R,. 

As a final note, Fama and French (198$ followed the conventional 
practice of computing standard errors for p(J) taking into account the 
moving average structure of the errors Ed in (12) induced by the use of 
overlapping data. The procedure they use is that propounded by Hansen and 
Hodrick (1980). Because this estimator is commonly used in related applica- 
tions in finance with moving-average errors in regression models, it is of 
interest to consider the large-sample properties of the Hansen-Hodrick 
estimator when J/T --) 6. 

The differing behavior of J(J) under the fixed J and the J/T --) S limits 
suggest the limiting behavior of the Hansen-Hodrick estimator might also 
differ in the two asymptotic nestings. In the ftxed J treatment, the 
Hansen-Hodrick estimator G(J)* of the variance of p(J) converges in 
probability to the true variance of the estimator, in this case, (25’ + 1)/3J. 
In contrast, with the assumption that J/T -) 6, in the appendix we show that 
&;(J)* does not converge in probability to a constant but rather, after dividing 
by T, converges weakly to a functional of Brownian motion. Note that the 
Hansen-Hodrick estimator uses a specific set of weights on the sample 
autocovariances of the errors and regressors. The same qualitative results 
hold for estimators based on alternative weighting functions. 

4. Monte Carlo evidence 

The purpose of this section is twofold. The first objective is to show how to 
calculate the asymptotic distribution of the statistics under the J/T -+ S 
theory. The asymptotic results of sections 2 and 3 provide limiting represen- 
tations of estimators and test statistics as functionals of Brownian motion. 
These random functionals typically do not have a standard distribution, so 
the usual approach of looking up previously tabulated critical values will not 
work. However, these limiting representations provide a clear recipe for 
obtaining asymptotic critical values using Monte Carlo simulations. The 
results imply that estimators generated from any null model (1) will have the 
same distribution as J/T + S and T -* 30. Thus, to approximate the distribu- 
tion of a particular statistic using (for example) J = 60 and T = 360, the 
asymptotic results suggest performing a sequence of Monte Carlo simulations 
in which T increases and, for each T, J is set at J = :T. Just how large T 
must be in the Monte Carlo simulation to provide accurate numerical 
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approximations to the limiting distribution will vary across statistics, but can 
be determined by checking when the percentiles from the .Monte Carlo 
distributions converge as T gets large.J The second, related objective is to 
compare the large-sample J/T + 6 approximation with the fixed J normal 
approximation. Specifically, in the controlled environment of Monte Carlo 
experiments, we wish to ascertain which theory (fixed J or J/T -) 6) provides 
a better approximation to the finite-sample distribution of the multiyear 
statistics. In these Monte Carlo experiments, the one-period returns are 
generated according to model (1) where E, is i.i.d. N(O,a’) and, without loss 
of generality, u = 1 and /.L = 0. 

4.1. The cariance-ratio statistic 

The first statistic considered is the variance ratio M,(J) with S = f.’ 
Various percentiles of the distribution of M,([T/3]) are given in table 1. The 
first two rows present the asymptotic percentiles based on iixed J normal 
approximations. The first row presents the normal distribution (5), where the 
variance 0*(s) = 45/3 is the limit of the sequence of variances [2(2J - 1) 
x (J - 1)]/3JT as T -+ m and J/T + 8. In deriving this result, Lo and 
MacKinlay (1988, 1989) suggest an alternative, ‘bias-adjusted’ approximation 
in which the normal distribution is scaled by the factor b,(J) = [(T-J + 1) 
(T - J)]/[(T - l)T]. As T -+ 5: and J/T + 6, this factor has the limit b,(J) 
+ (1 -S>‘= b(6). This approximation is presented in the second row of 
table 1. The remaining rows in table 1 contain Monte Carlo results for the 
indicated sample sizes, with J evaluated at T/3. 

Three aspects of these results are noteworthy. First, and most important, 
the convergence of the Monte Carlo percentiles appears rapid: there is little 
difference between the T = 60 and T = 2880 simulation results. Thus the 
J/T -+ S asymptotic distribution (the limit of the sequence of these Monte 
Carlo distributions) seems to yield a satisfactory approximation to the distri- 
bution of the variance ratio even for a relatively small value of T. Second, the 
percentiles based on the tied J approximation differ substantially from the 
Monte Carlo percentiles. As noted by Lo and Ma&inlay (1989) and Poterba 
and Summers (1988), the sampling distribution is skewed, with its mean well 
below one and its median below the mean. These authors’ results indicate 

‘This approach to the numerical evaluation of nonstandard asymptotic distributions (by a 
sequence of Monte Carlo simulations) is increasingly common in the empirical ‘unit roots’ 
literature. See, for example, Perron (1989). Stock (1988). and Stock and Watson (1989). 

‘6 = f lies in the range of values found in the empirical literature. At one extreme, Huizinga 
(1987) reports this statistic for J = 1.2,. . , 8 T. Poterba and Summers (1988) consider J/T 
ranging from $ to & for U.S. data, and as large as & for foreign data. Cochrane and 
Sbordone (1988) consider J/T up to f. In their Monte Carlo simulations, Lo and MacKinlay 
(1989) compute /M,(J) for J ranging from 1 to +T. 
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Table 1 

Distribution of the variance-ratio statistic M,([87]) for 8 = f: Conventional tixed J asymptotics. 
J/T - 6 asymptotics, and Monte Carlo results.” 

Percentile 

Mean 2.5% 5% 10% 50% 90% 95% 97.5% 

Fixed J asymptotics 

Not bias-adjusted 
Ntl, R*(S)) 

Bias-adjusted 
N(b(8), b(6)‘R*(6)) 

1.00 -0.31 -0.10 0.15 1.00 1.85 2.10 2.31 

0.44 -0.14 -0.04 0.06 0.44 0.82 0.93 I .03 

Monte Carlo results 

J/T-+6, T= 60 0.46 0.10 0.12 0.15 0.36 0.89 1.10 1.32 
120 0.45 0.09 0.11 0.14 0.36 0.88 1.09 1.32 
180 0.45 0.09 0.11 0.14 0.36 0.87 1 .OY 1.32 
360 0.44 0.09 0.11 0.14 0.35 0.86 1.09 1.29 
720 0.45 0.09 0.11 0.14 0.35 0.88 1.11 1.35 

1440 0.44 0.09 0.11 0.14 0.35 0.86 1.09 1.33 
2880 0.45 0.09 0.11 0.14 0.35 0.88 1.09 1.33 

aThe first two rows report conventional (i.e.. fixed J, T + 30) large-sample approximations to 
the distribution of the variance-ratio statistic :W,,(J) = varfx,(l))/(J var(x,fl))), where x,(l) is 
the J-period cumulative return. The first distribution is normal with mean one and variance 
R*(6) = 4S/3. The second distribution, taken from Lo and MacKinlay (1988, 1989). adjusts for 
small-sample bias by scaling the first distribution by b(6) = (1 - 15)~. The remaining rows 
summarize the results of a sequence of Monte Carlo simulations, in which M,(J) is evaluated for 
I = [ST], where [x] denotes the greatest integer less than x. Because 6 = f, for T = 60, 3 = 20; 
for T = 120, J = 40; etc. The Monte Carlo results are computed using i.i.d. NfO, 1) returns with 
8000 replications for each T. The ‘J/T 4 6’ asymptotic distribution is the limit (as T - p, i.e., 
reading down the table) of this sequence of Monte Carlo distributions. 

that this skewness persists for values of 6 less than f; see for example 
Poterba and Summers (1988, fig. 1) for S = 0.133. Third, the first fixed J 
normal distribution provides a clearly unsatisfactory approximation to the 
percentiles of the variance-ratio statistic. The second approximation is an 
improvement; the limiting functional (11) can be shown to have the same 
mean as this approximation, (1 - 6)‘. This approximation, however, fails to 
capture the skewness of the Monte Carlo distributions and incorrectly puts 
substantial mass below zero (indeed, the lower 5% one-sided critical value is 
negative). 

4.2. The multiyear correlation F-test 

The next statistic considered is the Wald statistic (14) for tests of the 
hypothesis that p(J,> = 0, i = 1,. . , , K. The {I,} correspond to the multiyear 
correlations examined by Fama and French (1988): with 720 monthly obser- 
vations, they examine l-, 2-, 3-, 4-, 5-, 6-, 8-, and lo-year returns, correspond- 
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Table 2 

Distribution of the multiyear correlation Wald statistic F,: Conventional fked J asymptotic% 
J/T + 6 asymptotics. and Monte Carlo results.a 

Percentile 

Mean 2.5% 5% 10% SO% 90% 95% 97.5% 

Fixed J asymptotics 

Xxi 

Monte Carlo results 

8.00 2.18 2.73 3.49 7.3-I 13.4 15.5 17.5 

J/T-+& T= 60 10.37 2.40 3.00 3.83 S.38 18.6 24.4 30.6 
120 10.67 2.5 1 3.16 3.94 Y.64 19.2 24.7 31.6 
180 10.77 2.54 3.13 3.99 3.77 19.1 24.9 30.8 
360 10.96 2.48 3.13 1.00 5.79 19.7 25.6 32.6 
720 10.77 2.51 3.17 4.00 3.75 19.6 25.0 30.6 

1440 11.12 2.49 3.17 4.08 S.98 20.2 25.7 32.3 
2880 10.92 2.54 3.13 3.94 8.S5 19.8 25.2 31.6 

“Each row reports a different approximation to the distribution of the Wald statistic F, 
testing the joint hypothesis that each of eight multiyear correlations [PC/,). i = 1,. .:,8] is zero. 

Each /,-month correlation is estimated by the ordinary least-squares estimator PC/,) in the 
regression x,+,,(J,)=a(Jili)+P(J,)x,(J,)+el+,, (J,); the F7 statistic is a quadratic form in these 

eight individual correlations, weighted by the inverse of their (fiued J asymptotic) variance- 
covariance matrix. The first row reports the conventional (ked J. T 4 r) large-sample xi 
approximation to the distribution of F,. The remaining rows summarize Monte Carlo simula- 
tions in which FT is evaluated for (J,. . , J,) = [T6]. where 6 = CL r r L L L I ‘1. The h(l’1,,* 21,’ I. ,z. ,119 7>, h 
design of the Monte Carlo experiment is described in the note to table 1. The ‘J/T -6’ 
asymptotic distribution is the limit (as T -+ 2) of this sequence of Xlonte Carlo distributions. 

ing to S = (” J- I A I I I ‘>. The distributions are summarized in ho 1 30 1 20 ’ I, 9 I2 9 10 7 7.2 9 6 

table 2. Consistent with the large-sample theory, the Monte Carlo percentiles 
converge, although the convergence is slower than in table 1. The Monte 
Carlo 10% and 5% critical values differ substantially from the percentiles of 
the conventional xj distribution: the J/T -+ 6 distribution places more 
weight in the right tail. There is little difference between the Monte Carlo 
distribution for T = 120 and that for T = 2880. Evidently, the J/T -+ S 
asymptotic distribution provides a better approximation to the distribution of 
the F-statistic than does the fixed J distribution. Inferences drawn using the 
,& approximation would reject (1) far too often. 

4.3. The multiyear correlation sum statistic 

A third, related statistic is the sum of these multiyear correlation coeffi- 
cients, R,= xi”=, $J,), for the Fama-French choice of (6,). The fixed J 

1 d 
normal approximation is based on ?‘,p -+ N(0, V,>, where b, TT, an-d VT are 
defined as in (14). Let L be the K-vector, L = (1 . . . I)‘. Then R, = ~‘p has the 
fixed J approximation N(0, T;), where 7: = r’(T; ‘V,r; ‘)L. When J/T + 6 
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Table 3 

Distribution of the sum RT of multiyear correlations: Conventional tixed J asymptotics, 
J/T 4 8 asymptotics, and Monte Carlo resultsa 

Mean 2.5% 5% 

Percentile 

10% 50% 90% 95% 97.5% 

Fixed I asymptotics 

NfO, rz) 0.00 - 3.08 - 2.58 - 2.01 0.00 2.01 2.58 3.08 

Monte Carlo results 

//7-S, T= 60 - 1.00 -3.11 - 2.87 - 2.55 - 1.13 0.72 1.25 1.69 
120 - 1.02 -3.12 - 2.89 - 2.59 - 1.13 0.70 1.25 1.75 
180 - 1.01 -3.15 -2.91 - 2.60 - 1.11 0.71 1.27 1.76 
360 - 1.05 -3.13 - 2.92 - 2.61 - I.16 0.67 1.23 1.65 
720 - 1.01 -3.11 - 2.89 - 2.58 - 1.14 0.76 1.28 1.75 

1440 - 1.04 -3.17 - 2.94 - 2.63 - 1.15 0.70 1.27 1.79 
2880 - 1.01 - 3.12 - 2.91 - 2.60 - 1.12 0.76 1.30 1.77 

aEach row reports a different approximation to the distribution of the sum statistic R,= 
If_, @f&T]), where 6 = fL L L _!- r r L !-). This statistic tests the hypothesis that the 601 30, 101 IS, ,I> I”? 7.57 b 
sum of the eight multiyear correlations p(J,) is zero, for J, = [T&l. Each Ii-month correlation is 
estimated by the regression described in the note to table 2. The first row reports the 
conventional (ftxed J, T + p) large-sample NfO, 7’) approximation to the distribution of RT, 
where ~z is given in section 4.3 of the text. The remaining rows summarize the Monte Carlo 
simulations of R, under the null hypothesis. The design of the Monte Carlo experiment is 
described in the note to table 1. The ‘J/T - 6’ asymptotic distribution is the limit (as T * a) of 
this sequence of Monte Carlo distributions. 

and T + 50, ;+ ---) L’V*L = 72, so the fixed J approximating distribution is 
N(0, T*>. The results, presented in table 3, indicate that the J/T -+ 6 approxi- 
mation is substantially better than the fixed J normal approximation, even 
for T as low as 60. Interestingly, the distribution of R, is skewed and has a 
negative mean: 79% of the mass of the J/T + 6 asymptotic distribution falls 
below zero. 

4.4. Implications 

These simulations indicate substantial differences in the two competing 
asymptotic distributions for these statistics. These differences are largest in 
the tails. In each case, the J/T + 6 limiting distribution provides a better 
approximation to the sampling distributions for small T than does the fixed J 
approximation. The convergence to the asymptotic limit typically occurs 
quickly, arguably by T = 120. Although this last finding presumably is sensi- 
tive to the errors used to construct the pseudo-data, its implication is that 
Monte Carlo experiments with relatively few observations can be used to 
approximate numerically the J/T asymptotic distributions. 
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These simulations suggest a different perspective on these multiyear return 
statistics. Under the fixed J asymptotics, ,NlZO) (for example) would be 
considered an estimator of the lo-year autocorrelation. From the perspective 
of empirical inference, howevef, with 720 observations these results suggest it 
is more fruitful to think of /3(120) as the ith sample autocorrelation. In 
particular, it is misleading to use the fixed J consistency to guide one’s 
intuition when interpreting the point estimates. 

In general, these statistics have nonnormal limits. It thus makes little sense 
to report standard errors, except perhaps as a measure of the spread of the 
distribution. Because most readers of empirical research are in the habit of 
using the ‘two standard error’ rule-of-thumb, however, reporting standard 
errors is likely to be misleading. A preferable procedure is to report asymp- 
totic p-values. The asymptotic p-values are readily constructed by a sequence 
of Monte Carlo simulations. Moreover, although it might be tempting to use 
a fixed J approximation that entails a correction for small-sample bias [Lo 
and Ma&inlay (1988,1989), Cochrane (198811, these results suggest that in 
general doing so will not provide a satisfactory approximation.6 

It is tempting to interpret this J/T - 6 nesting as representing what the 
researcher would do were he or she faced with a larger sample. Indeed, some 
articles contain explicit discussions of how J might be changed with T. 
However, this interpretation is tangential to this application of asymptotic 
theory, which is best understood simply as a device for approximating the 
sampling distribution for fixed J and T. The issue here is not what the 
researcher would have done with different T. Rather, the point is to approxi- 
mate the distribution of these statistics obtained by repeated samples of the 
same length T generated by the same null model. The asymptotic results 
show that these J/T + 8 approximations are valid even if the returns are 
nonnormal and conditionally heteroskedastic, subject to the weak restrictions 
following (1). 

5. Empirical results 

This section examines two key sets of empirical findings about mean 
reversion in U.S. stock prices: the multiyear correlations reported by Fama 
and French (1988) and the long-horizon variance-ratio statistics reported by 
Poterba and Summers (1988). The analysis is based on point estimates 
reported in the respective papers. 

6Poterba and Summers (1988) perform what this theory suggests is the correct Monte Carlo 
simulation, and report selected Monte Carlo p-values in the text. In their tables, however, they 
focus on standard errors of bias-adjusted point estimates. 
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5.1. Results 

5.1. I. Correlations of multiyear returns 

Table 4 presents point estimates and corresponding J/T + 6 asymptotic 
p-values for autocorrelations of multiyear returns on value-weighted, equal- 
weighted, and size portfolios, based on monthly returns on the New York 
Stock Exchange (NYSE) from 1926 to 1985. The return horizons, portfolios, 
and OLS estimates of p(J) are taken from Fama and French (1988, table 2). 
The values of the cumulative J/T -+ S distribution are given in parentheses; 
these are the asymptotic p-values for testing the null hypothesis (1) against 
the one-sided alternative that the true coefficient is negative. The asymptotic 
distribution is computed by Monte Carlo simulation with T = 720, although 
the results of section 4 suggest that a numerically satisfactory approximation 
could be achieved with a smaller T, say T = 360. It should be emphasized 
that although T = 720 corresponds to the sample size, the interpretation of 
this simulation is not to correct for small-sample bias, but to evahrate the 
J/T --, 6 asymptotic distribution. 

As Fama and French (1988) emphasize, the point estimates are generally 
consistent with mean reversion. They assess the statistical significance of 
these autocorrelations by (i> computing the Hansen-Hodrick standard errors; 
(ii) performing a Monte Carlo simulation of the uncorrelated null (1) with 
T = 720 to obtain mean ‘biases’ of the OLS estimators: (iii) subtracting this 
‘bias’ from the point estimates; and (iv) checking whether the ‘bias;adjusted’ 
point estimates are two (Hansen-Hodrick) standard errors away from zero. 
For the portfolios in table 4, the Fama-French procedure leads to 19 of the 
96 bias-adjusted point estimates being more than 2 standard errors away 
from zero. 

The J/T + 6 asymptotic p-values present a different picture. One way to 
perform a 5% two-sided hypothesis test of (1) is to reject if the point estimate 
falls in the extreme 2.5% of either tail; such point estimates are indicated by 
an asterisk in table 4. Using the J/T -+ S asymptotic p-values, this results in 
3 rejections at the 5% level rather than 19. Of course, many of the p-values 
remain small, so some evidence of mean reversion in the individual coeffi- 
cients remains. Richardson and Smith (1989) and Richardson (1989) argue, 
however, that, because the individual point estimates are highly correlated, it 
is inappropriate to emphasize any single b(J) or its t-statistic. We therefore 
consider the average of the point estimates for each portfolio as well; this 
statistic and its (one-sided) p-value are reported in the final column. (As 
discussed in section 4, the motivation for considering this statistic is that, by 
preserving the signs of the point estimates, it might show improved power 
against the mean-reverting alternative.) For either the equal-weighted or 
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Table 4 

Multiyear correlations of returns on size and composite portfolios of New York Stock Exchange 
stocks: Point estimates, 1926-1985 (J/T + 6 asymptotic p-values).” 

Return horizon (months) 

Portfolio 12 24 36 48 60 72 96 120 Average 

Decile 
1 

2 

3 

4 

8 

9 

10 

-0.01 -0.18 - 0.30 - 0.46 - 0.45 -0.21 0.13 0.27 -.151 
(0.546) (0.186) (0.105) (0.034) (0.074) (0.426) (0.882) (0.949) (0.480) 

- 0.01 -0.16 - 0.32 -0.51‘ -0.58’ -0.42 - 0.24 - 0.20 - 0.305 
(0.546) (0.227) (0.085) (0.017) (0.017) (0.145) (0.485) (0.628) (0.141) 

- 0.06 - 0.20 - 0.34 - 0.46 - 0.48 - 0.35 - 0.30 - 0.33 -0.315 
(0.360) (0.154) (0.067) (0.034) (0.055) (0.222) (0.407) (0.463) (0.125) 

- 0.04 - 0.23 - 0.37 - 0.48 - 0.52 - 0.39 - 0.30 -0.24 -0.321 
(0.433) (0.113) (0.045) (0.026) (0.036) (0.176) (0.407) (0.578) (0.115) 

- 0.08 - 0.27 - 0.37 - 0.42 - 0.46 - 0.32 - 0.23 -0.16 - 0.289 
(0.294) (0.069) (0.045) (0.056) (0.068) (0.264) (0.491) (0.675) (0.170) 

- 0.07 -0.25 - 0.38 -0.41 -0.41 - 0.26 -0.18 -0.16 - 0.265 
(0.328) (0.089) (0.040) (0.061) (0.106) (0.350) (0.565) (0.675) (0.217) 

- 0.09 - 0.32 - 0.42’ - 0.38 - 0.35 -0.18 -0.10 -0.12 - 0.245 
(0.263) (0.032) (0.023) (0.069) (0.167) (0.471) (0.667) (0.719) (0.262) 

- 0.08 - 0.28 -0.37 - 0.30 - 0.26 -0.10 - 0.07 -0.13 -0.199 
(0.294) (0.061) (0.045) (0.167) (0.285) (0.591) (0.701) (0.708) (0.366) 

- 0.06 - 0.26 - 0.34 - 0.24 -0.14 0.05 0.08 - 0.04 -0.119 
(0.360) (0.079) (0.067) (0.254) (0.483) (0.789) (0.844) (0.794) (0.556) 

- 0.08 - 0.27 - 0.35 - 0.20 - 0.08 0.09 0.12 - 0.03 -0.100 
(0.294) (0.069) (0.059) (0.318) (0.584) (0.829) (0.875) (0.845) (0.598) 

Value- - 0.05 - 0.24 - 0.32 -0.19 - 0.07 0.09 0.10 -0.08 - 0.095 
weighted (0.369) (0.101) (0.085) (0.334) (0.600) (0.829) (0.860) (0.757) (0.609) 

Equal- - 0.07 - 0.26 - 0.39 - 0.46 - 0.47 - 0.29 -0.14 - 0.06 - 0.268 
weighted (0.328) (0.079) (0.035) (0.034) (0.061) (0.306) (0.618) (0.775) (0.211) 

“The first eight columns report the sample correlations j(J) of the J-month return with its 
J-month lag, for values of J from 12 months to 120 months; these estimates, computed for the 
indicated decile and composite portfolios, are taken from Fama and French (1988, table 2). 
Fama and French’s data are monthly returns for all New York Stock Exchange (NYSE) stocks 
for 1926-1985 from the Center for Research in Security Prices (CRSP). Decile 1 contains the 
smallest 10% of firms, ranked by market value of equity; decile 10 contains the largest 10% of 
firms. The equal-weighted return is the return on a portfolio in which funds are allocated equally 
among NYSE stocks, while the value-weighted return is on a portfolio in which funds are 
allocated in proportion to the market value of the NYSE firms. The final column reports the 
average of these eight correlations, ix;_, PC/,). The p-values are computed using the asymp- 
totic ‘J/T -B 6’ approximation to the distribution of these statistics. The ‘J/T -+ 6’ null distribu- 
tion is computed by Monte Carlo: p(J,), . , p(Js) and their average are computed for T = 720 
and J = 12,24,. . , 120 using i.i.d. N(O, 1) monthly returns, with 25,000 replications. The p-value 
reports the fraction of these 25,000 Monte Carlo draws that are less than the observed value of 
the relevant statistic. Based on the results in tables 2 and 3. these Monte Carlo distributions 
provide accurate approximations to the corresponding J/T -B 6 asymptotic distributions. An 
asterisk indicates rejection at the (two-sided) 5% level. 
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value-weighted portfolios, the hypothesis that the true value of this sum is 
zero cannot be rejected at the (two-sided) 40% significance level. 

5.1.2. Ratios of cariances of long differences. Point estimates and one-sided 
p-values of variance ratios are presented in table 5. The point estimates are 
based on those in Poterba and Summers (1988, table 3>.’ The p-values are 
computed using the J/T-f S asymptotic distribution, numerically approxi- 
mated by Monte Carlo simulation. 

The evidence about the mean-reversion hypothesis in table 5 is at best 
mixed. Consistent with Poterba and Summers’ (1988) interpretation, the 
‘average’ statistic in panel A provides evidence of mean reversion in real 
returns (at the 10% level using a two-sided test). In both panels A and B, 
however, the F+tatistic indicates rejection at the 10% level only for equal- 
weighted excess returns. The only 5%-level two-sided rejection in these 
summary statistics is for equal-weighted excess returns in panel B. Here, the 
pattern is not so much one of mean reversion (all variance ratios below one), 
but of too high ratios (positive autocorrelation) followed by too low ratios. 

5.2. Discussion 

This analysis has emphasized the reporting of asymptotic p-values. In 
practice, these are just the fraction of times that pseudo-data generated 
under (1) produces point estimates or test statistics more adverse to the null 
than the one computed from the data. The J/T + S distribution theory 
therefore provides a formal justification for doing what many researchers 
might consider ‘natural’ in these situations, evaluating statistical significance 
by Monte Carlo simulation. The conclusions drawn using these p-values are 
typically weaker than the inferences drawn using conventional standard 
errors. Poterba and Summers (1988) argue that it is appropriate to use a less 
conservative criterion than the 5% level used here. The choice of test level is 
an issue on which we do not take a stand; the point is that, for any level test, 
there are substantially fewer rejections using the J/T ---) S asymptotics than 
using the fixed J asymptotics. 

‘Poterba and Summers (19S8) report ‘bias-adjusted’ ratios of the J-month variance over the 
12-month variance. Their bias adjusted estimates are obtained by dividing the point estimates of 
the variance ratios by the mean from a Monte Carlo simulation of these statistics under an i.i.d. 
Gaussian null model. The point estimates in our panel A of table 5 are ‘bias-unadjusted’: the 
estimates are the Poterba-Summers ‘bias-adjusted’ estimates, multiplied by the mean from an 
identical Monte Carlo simulation (which is also the Monte Carlo simulation used to compute 
p-values). For this table, sampling variances are scaled by (I”- J)-’ rather than r-r. The 
estimates in panel B are obtained from the point estimates in panel A. The first column in panel 
B is the inverse of the values in the first column of panel A. For the next 7 columns, the panel B 
entry is the entry in the correspondin g column in panel A, divided by the panel A, column 1 
entry for that portfolio. 
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Table 5 

Variance-ratio statistics for multiyear returns on composite portfolios of New York Stock 

Exchange stocks: Point estimates, 1926-1985 (J/T - 6 asymptotic p-values).a 

Portfolio 

Value-weighted 
real returns 

Value-weighted 
excess returns 

Equal-weighted 
real returns 

Equal-weighted 
excess returns 

A. [va~x,(J))/J]/[va~x,(12))/12] 

Return horizon (months) 

1 24 36 48 60 72 84 96 Avgt l-96) 

0.826 0.950 0.836 0.702 0.615 0.553 0.502 0.501 

(0.06) (0.40) (0.25) (0.14) (0.11) (0.10) (0.09) (0.12) 

0.792 1.012 0.947 0.862 0.789 0.708 0.613 0.590 

(0.03) (0.63) (0.49) (0.39) (0.3-t) (0.34) (0.15) (0.22) 

0.838 0.941 0.800 0.700 0.592 0.473 0.356’ 0.305’ 

(0.08) (0.37) (0.19) (0.14, (0.09) (0.04) (0.01) (0.01) 

0.513 0.987 0.556 0.825 0.725 0.555 0.433 0.370 

(0.05) (0.54) (0.35) (0.33) (0.24) (0.13) (0.04) (0.03) 

0.686 

(0.05) 

0.759 
(0.25) 

0.626 
(0.04) 

0.704 
(0.11) 

FT 

7.72 

(0.55) 

10.50 

(0.35) 

10.99 
to.321 

17.52 

(0.08) 

B. [var(x,(J))/Jl/vari.r,(l)) 

Portfolio 12 24 

Return horizon (months) 

36 48 60 72 54 

Value-weighted 
real returns 

Value-weighted 
excess returns 

Equal-weighted 
real returns 

Equal-weighted 
excess returns 

1.211 1.150 1.012 0.850 0.715 0.669 0.605 

(0.93) (0.50) (0.62) (0.42) (0.33) (0.28) (0.24) 

1.262 1.278 1.196 1.059 0.996 0.894 0.774 

(0.96) (0.92) (0.82) (0.72) (0.6-l) (0.54) (0.45) 

1.193 1.123 0.955 0.835 0.706 0.564 0.425 

(0.92) (0.77) (0.54) (0.44) (0.25) (0.16) (0.07) 

1.229 1.213 1.058 1.01-l 0.891 0.722 0.532 
(0.95) (0.87) (0.71) (0.64) (0.51) (0.33) (0.16) 

96 

0.607 
(0.27) 

0.745 
(0.42) 

0.368 

(0.05) 

0.455 

(0.11) 

Avgt12-96) Fr 

0.857 11.20 
(0.44) (0.28) 

1.029 16.79 
(0.65) (0.11) 

0.771 15.51 
(0.31) (0.13) 

0.893 26.49* 
(0.18) (0.02) 

“The point estimates in panel A are from Poterba and Summers (1955. table 2) after 
eliminating Poterba and Summers’ ‘ bias adjustment’, in which they divide their point estimates 
by the mean variance ratio computed from a IMonte Carlo simulation under the null hypothesis. 
Their data are monthly returns on the value-weighted and equal-weighted NYSE portfolios 
(CRSP). Excess returns are returns minus the risk-free rate as measured by the Treasury bill 
yield, and real returns are returns minus inflation as measured by the Consumer Price Index. 
The variance ratios in panel A follow Poterba and Summers (1958) by normalizing by the 
12-month variance. The ratios in panel B are the conventional variance-ratio statistics M,(J). 
i.e., normalized by the one-month variance. The ‘Avg’ column presents the average of the 
individual variance-ratio statistics in that row. The final column reports the F-statistic testing the 
hypothesis that all the variance ratios in that row equal one. The p-values are computed using a 
Monte Carlo simulation to approximate the large-sample ‘J/T + 6’ distribution under the null 
hypothesis. The Monte Carlo simulation uses N(0, 1) monthly returns, T= 720, and 10,000 draws. 

An asterisk indicates rejection of the null at the (two-sided) 5% level based on the J/T + 6 
asymptotic distribution. 

As Richardson (1989) and Richardson and Smith (1989) emphasize, the 
statistics considered here are far from independent. Thus, the combined 
results across portfolios, horizons, and statistics provide little new evidence 
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beyond the results for individual statistics or individual portfolios. This 
suggests putting the greatest weight on overall summaries such as the sum 
statistic. In most cases, these statistics do not reject the null at the 10% level; 
the one exception is the lO%-level rejection of the Poterba-Summers equal- 
weighted real ‘average’ statistic. Individually, each of these two argu- 
ments - the use of J/T + 6 distribution theory and the Richardson and 
Smith (1989) emphasis on overall summary statistics - weakens the case 
against the null hypothesis. When they are taken together, little evidence 
remains against the no-reversion null. 

Kim, Nelson, and Startz (1988) reach similar substantive conclusions using 
what at first might appear to be a quite different approach to approximating 
sampling distributions. They compute p-values by a technique closely related 
to the bootstrap, in which pseudo-data are computed by shuffling the original 
returns. Their motivation is that the underlying returns are arguably nonnor- 
mally distributed, and they suggest that this might be one reason conven- 
tional asymptotic delivers inadequate approximations. In view of the J/T -+ 6 
asymptotic results, what Kim, Nelson, and Startz (1988) detect with their 
reshuffling scheme is simply the difference between the fixed J and the 
J/T --, 6 limiting distributions. In fact, on a computational level their scheme 
and the one used here are closely related. The asymptotic p-values reported 
in tables 4 and 5 are computed by Monte Carlo simulation with pseudo-ran- 
dom Gaussian returns. The ‘reshuffling’ critical values reported by Kim, 
Nelson, and Startz (1988) are also computed by Monte Carlo, except that the 
returns used to construct the pseduo-data are a shuffled version of the 
original returns. Because the asymptotic theory indicates that nonnormality is 
unimportant for the ultimate asymptotic distribution, one would expect the 
two procedures to provide similar p-values, and indeed they do.8 

6. Conclusion 

This work has two main practical implications. First, the J/T + 6 ap- 
proach to asymptotics is simple to implement. Although some of the limiting 
expressions may seem daunting, they typically are just the continuous-time 
counterparts of the moments computed using the discrete-time data, evalu- 

sAs a methodological point, the reshuffling scheme of Kim, Nelson, and Startz (1988) does not 
address the possibility that the usual approximation is unsatisfactory because of conditional 
heteroskedasticity (any conditional heteroskedasticity in returns is destroyed by the reshuffling). 
In contrast, the asymptotic results reported in sections 2 and 3 handle this possibility and suggest 
that conditional heteroskedasticity is not the culprit in the performance of the conventional 
approximations. This statement applies to heteroskedasticity that ‘averages out’ in the sense 
following (1). Much of the variance in returns comes from the Depression period, however, 
suggesting a nonstationarity of the conditional variances. This is reinforced by the findings of 
Pagan and Schwert (1989) for this period, An interesting, open question is what happens when 
the results of sections 2 and 3 are extended to more persistent forms of heteroskedasticity. 
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ated using the various limiting continuous-time stochastic processes. In 
practice, the primary role of these limiting expressions is simply to show that 
a J/T * 6 limiting distribution exists and that it can be approximated 
numerically by a sequence of Monte Carlo simulations with the appropriate 
J/T nesting. Second, the difference in performance between the conven- 
tional and the J/T--f 6 asymptotic approximations can be substantial; at 
least for the estimators considered here, the J/T + 8 approach represents a 
considerable improvement. 

Although we have focused on multiyear correlations and variance-ratio 
statistics, this approach can be extended to other statistics based on multiyear 
returns. An example is the regression of one-month returns onto J-month 
returns as suggested by Jegadeesh (1989). The extension of this approach to 
multivariate statistics, such as the regression of multiyear returns on lagged 
dividend-price ratios, is a topic of continuing research. 

These alternative limiting distributions present a revised picture of the 
evidence for mean reversion in the U.S. data. For example, with the J/T -+ 6 
asymptotic distribution, the number of multiyear correlations significant at 
the 5% level is reduced substantially from the number reported by Fama and 
French (1988). The conclusion from this analysis is that the case for mean 
reversion is less pronounced when the evidence is interpreted in light of the 
J/T+ 6 rather than fLved J approximations. A more general conclusion 
concerns alternatives that are detectable only by examining a statistic based 
on a horizon that is a fixed fraction of the sample size. For such alternatives, 
statistics such as those considered here cannot provide decisive evidence: the 
multiyear autocorrelation and variance-ratio statistics are not consistent 
under this alternative nesting, but rather have nondegenerate limiting distri- 
butions. Thus the data ought not be expected to provide many insights into 
economic theories in which mean reverison at long horizons plays a central 
role. 

Appendix 

The two key results used repeatedly below are the FCLT and the continu- 
ous mapping theorem. The FCLT is a central limit theorem for standardized 
partial sums of E[, treated as random elements of the space of functions on 
the unit interval that are right continuous with left limits, D[O, 11. Let 

and set S, = 0. The FCLT states that the random function ((l/afl)St,,t), 
A E [0, 11, converges (weakly) to a standard Brownian motion process on the 
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unit interval, W(A): as T * =, 

(A.1) 

That is, as T --)I q the distribution of the random function (l/~&).St,, E 
D[O, 11 converges to the distribution of W(A). The continuous mapping 
theorem states that, if g is a continuous function from D[O, 11 to Sk, then 

g & h (- i -g(WA)). (A.?) 

More generally, (A.2) holds if g is measurable and has discontinuities on a 
set A, such that Pr(WE Ag) = 0 [Hall and Heyde (1980, theorem A.3)].9 

Autocorrelation of muftiyear returns 

The OLS estimator of the sample autocorrelation of J-period returns is 

T-J T-J 

B(J) = c 4Y0~~~,,(0 c 4vO~, (A.3) 
t=J t=J 

where 

x:(J) =x,(J) - ,-:,+ 1 y.w 
t-J 

and 

d+,(J) =x,+,(J) - T_ :,+ 1 T~‘“r+,w 
I==/ 

The J/T ---) S > 0 nesting is handled by noting that, as in (8), Cl/ @>xp(J) 
and (l/Js’>x:(J> can be written in terms of partial sums of (E,} which obey 

‘See Billingsley (1968) or Hall and Heyde (1980) for an introduction to functional central limit 
theory. Additional technical conditions on E, [beyond cl)] are available to ensure the conver- 
gence (A.l). For discussions of these and alternattve conditions and of convergence on D[O. I], 
see Herrndorff (1983, corollary I), Ethier and Kurtz (1986). or Phillips (1987). For applications of 
the FCLT and continuous mapping theorem to inference in the presence of a unit root, see 
(among others) Solo (1983), Phillips (1987), Chan and Wei (1988). and Sims. Stock. and Watson 
(1990). 
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the FCLT. Thus, for A 2 6, 

3-G 

where 

-Ti(A) =&(A) - j&$6X,j(r+8)d~, 
6 

and where 

X,(A) = W(h) - W(A -6). 

Upon scaling by l/T’, the denominator of (A.3) can be written 

= ‘dA. (A.5) 

The argument (l/~)xt”,.,,([TS]) converges by (A.4), and the integral in the 
final expression of (AS) is a continuous mapping from D[O, 11 to 8. Thus the 
FCLT and the continuous mapping theorem imply that, as T-+ z and 
J/T + 6, 

~‘~‘~~(J)2~~2~i-bX~(A)2dA. 
r-3 6 

A similar argument applies to the numerator, so 
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which is the desired result (13). Note that p$ has a simple interpretation. 
The random functions X:(A) and Xi(A) are continuous-time stochastic 
processes on the unit interval. The expression p$ shows that, in the limit, the 
estimator of the cross-covariance between the discrete-time processes ,v,! and 
$ with lag J is a cross-covariance between their corresponding limiting 
continuous-time processes with lag 6 on the transformed time scale. 

Variance ratios 

Let y,(J) =x,(J) - Ji;. Then straightforward algebra and the FCLT imply 
that, for A 16, 

-ayd(A), (A.6) 

where 

Y,(A) = W(A) - W(A -6) -SW(l). 

Under (l), the denominator of M,(J) converges in probability to CT’. By the 
continuous-mapping theorem and (A.6), if follows that 

M,([T6]) = #Y,ih)‘dA, 
8 

which is the desired result (11). 

Hansen-Hodrick standard errors 

Let k,(i/T, J/T) be a weighting function. Then the weighted 
Hansen-Hodrick estimator &j(J)* of the variance of $(.I> is 

(A.71 
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where 

1 T-J 

9,(i) = c 4w~P-,,,(J>~ 
T- 2J+ 1 f=,+ ,i’ 

1 T-J 

k,(i) = c ~r+/(J)~t+,- ,,,(.a 
T- 25 + 1 I=,+ iii 

fit+,(J) =x;+/ (J) -&J)xl(0. 
The weight function k,(i/T,J/T) is assumed to satisfy k,(i/T.J/T) + 
k(p, 6) as i/T + p, J/T + 6, and T + 2. This formulation includes the cases 
found in practice, e.g., equal weights as in Hansen-Hodrick (k, = 1 for 
ji[ <J) and linearly declining (Fejer) weights (k, = (1 - lil /J) --f (1 - Ipl /a)). 

The results (13) and (A.4) imply that, for A 2 26, 

1 . 

where 

(/,(A) =X;(A) -P$Xi(A -6) for A 226. 

For i/T + p, (A.8) and the continuous-mapping theorem therefore imply 

X;(A)X;(A - lpl)dA. (A.9) 

&(A +6)U,(A +6- Ip()dA. (A.lO) 

It follows from (A.7), (A.9), and (A.lO) and the continuous-mapping theorem 
that 
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