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This paper investigates transitory componeats in stock prices. After showing that statistical tests
have little power to detect penisicat deviations between market prices and fundamental values, we
consider whether prices are mean-reverting, using data from the United States and 17 other
rejected at conventional statistical levels. Snbstantial movements in required returns are needed to
account for these corrclation patterns. Fersistent, but transitory, disparities between prices and
fundamental values could also explain our findings.

1. Introduction

The extent to whic: stock prices exhibit mean-reverting behavior is crucial
in assessing assertions such as Keynes’ (1936) that ‘all sorts of considerations
enter into market valuation which are in po way rcicvani i ihe prespeciive
yield’ (p. 152). If market and fundamental values diverge, but beyond some
range the differences are eliminated by speculative forces, then stock prices
will revert to their mean. Returns must be negatively serially correlated at
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some frequency if ‘erroneous’ market moves are eventually corrected.! Merton
(1987) notes that reasoning of this type has been used to draw conclusions
about market valuation from failure to reject the absence of negative serial
correlation in returns. Conversely, the presence of negative autocorrelation
may signal departures from fundamenial values, although it could also arise
from variation in risk factors over time.

Our investigation of mean reversion in stock prices is organized as follows.
Section 2 evaluates alternative statistical tests for transitory price components.
We find that variance-ratio tests of the type used by Fama and French (1986a)
and Lo and MacKinlay (198%) are close to the most powerful tests of the null
hypothesis of market efficiency with constant required reiurns against plausi-
ble alternative hypotheses such as the fads model suggested by Shiller (1984)
and Summers (1986). These tests nevertheless have little power, even with
monthly data for a 60-year period. We conclude that a sensible balancing of
Type I and Type Il errors suggests using critical values above the conventional
0.05 level.

Section 3 examines the extent of mean reversion in stock prices. For the
U.S. we analyze monthly data on real and excess New York Stock Exchange
{NYSE) retumns since 1926. as well as annual returns data for the 1871-1985
period. We also analyze 17 other equity markets and study the mean-reverting
behavior of individual corporate securities in the U.S. The results consistently
suggest the presence of transitory components in stock prices, with returns
showing positive autocorrelation over short periods but negative autocorrela-
tion over longer periods.

Section 4 uses our variance-ratio estimates to gauge the sigmificance of
transitory price components. For the U.S. we find the standard deviation of
the transitory price componeni varies between 15% and 25% of value, depend-
ing on our assumption about its persistence. The point estimates imply that
transitory components account for more than hal: of tke monthly return
variance, a finding confirmed by internationai eviuerce.

Section 5 investigates whether observed patterns of mean reversion and the
associated movements in ex ante returns are better explained by shifts in
required returns due to changes in interest rates or market volatility or as
byproducts of noise trading.> We argue that it is difficult to account for
observed transitory components on the basis of changes in discount rates. The

'Stochastic speculative bubbies, considered by Blanchard and Watson (1982), could create
deviations between market prices and fundamental values without negative serial correlation in
returns. In the piesence of any limiis oa valuaiion etrors sei by speculators or real investment
opportunities, however, such bubbles could aot exist.

*Noise traders are investors whose demands for securities are best treated as exogenous, rathet
than the result of maximizing a conventional utility function using rational expectations of the
return distribution. Black (1986), Campbell and Kyle (1986), DeLong et al. (1987), and Shiller
(1984) discuss a variety of possible models for noise trader behavior.



J.M. Foreria and L., Summers, Mean reversion it siock prices P

conclusion discusses some implications of our results and directions for future
research,

2. Methodological issues involved in tesiing for transitory components

A vast literature dating at least to Kendall (1953) has tested the efficient-
markets /constant-required-returns model by examining individual autocorre-
lations in security returns. The early literature, surveyed in Fama (1970),
found little evidence of patterns in security returns and is frequently adduced
in support of the efficient-markets hypothesis. Recent work by Shiller and
Perron (1985) and Summers (1986) has shown that such tesis have relatively
little power against interesting slternatives io the null hypothesis of market
efficiency with constant required returns. Several recent studies using new tests
for serial dependence have nonetheless rejected the random-walk model.?

This section begins by describing several possible tests for the presence of
stationary stock-price components, including those used in recent studies. We
then present Monte Carlo evidence on each test’s power against plausible
alternatives to the null hypothesis of serially independent returns. Even the
most powerful tests have little power against these alternatives to the random
walk when we specify the conventional size of 0.05. We conclude with a
discussion of test design when the data can only weakly differentiate alterna-
tive hypotheses, addressing in particular the degree of presumption that should
be accorded to cur mu!! hypothesis of sorially independent returns.

2.1. Test methods

Recent studies use different buti related tests for mean reversion. Fama and
French (1986a) and Lo and MacKinlay (1988) compare the relative variability

of returns over difierent hoiizons using variance-ratio tests, Fama and French
(1988b) use regression tests that also involve studying the serial correlation in
multiperiod returns. Campbell and Mankiw (1987) study the importance of
transitory components in real output using parametric ARMA models. Each
of these approaches invoives using a particular function of the sample autocor-
relations to test the hypothesis that all autocorrelations equal zero.

The variance-ratio test exploits the fact that if the logarithm of the stock
price, including cumulated dividends, follows a random walk, the return

Fama (1976) acknowledges the difficulty of distinguishing the random-walk model from some
altemnative specifications. In additicn to the recent work of Fama and French (1988b) and Lo and
MacKinlay (1988), O’Brien (1987) demonstrates the presence of negative serial correlaticn at very
long (up to twenty-year) horizons. Huizinga (i987) provides a spectral interpretaton of the
variance-ratio estimator and reports evidence that exchange rates also show long-horizon devia-
tions from random-walk behavior.

JFE—B
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variance should be proportional to the return horizon.* We study the variabil-

ity of returns at different horizons, in relatior to the variation over a one-year
period.’ For monthly returns, the variance-ratio statistic is therefore

var( R¥) / var( R1?)
k 12 °

VR(k)= (1)

where

k-1
Rf = Z R,_;
i=0

R, denoting the total return in month ¢. This statistic converges to unity if
returns are uncorrelated through time. If some of the price variation is due to
transitory factors, however, autocorrelations at some lags will be negative and
the variance ratio will fall below one. The statistics reported below are
corrected for small-sample bias by dividing by E[VR(k)].¢

The variance ratio is closely related to earlier tests based on estimated
autocorrelations. Using Cochrane’s (1988) result that the ratio of the k-month
return variance to . times the one-month return variance is approximately
" equal to a linear combination of sample autocorrelations, (1) can be written

. k=1(k—j 12— j

The vanance iaiio places increasing positive weight on autocorrelations up to
and including lag 11, with declining positive weight thereafter. Our variance
ratios for k-period annual returns place declining weight on all antocorrela-
tions up to order k.

A second iesi for mean reversion, used by Fama and French (1938b),
regresses multiperiod returns on lagged multiperiod veturns. If R* denotes the

“Testing the relationship between the variabilitv of returns at different horizons has a long
tradition: see Osborne (1959) and Alexandcr (1951).

>We use twelve-month returns in the denominator of the variance ratio to permit comparability
with our results using annual returns data. With annual data, the variance-ratio denominator is
var( R,).

®Kends¥ and Stuart (1976) show that under weak restrictions, the expected value of the jth
sample autocorrelation is ~1/(T — ). Using this result, we compute E[VR(%)). When thc horizon
of the variance ratio is large in relation ic the sample size, this can be substantially less than unity.
For example, with T =720 and k = 60, the bias is —0.069. It rises to —0.160 it k£ =120, Detailed
Monte Carlo analysis of the variance ratis staiisiic may be found in Lo and MacKinlay (1988).
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de-meaned k-period return, the regression coefficient is

b= T (RR.)] T (R G)

t=2k t=2k

This siatistic applies negative weight to autocorrelations up to order 2k/3,
followed by increasing positive weight up to lag k&, followed by decaying
positive weights.” Fama and French (1988b) report regression tests because
they reject the null hypothesis of serially independent returns more strongly
than the vaniance-ratio test. This is the resuit of the actual properties of the
returns data, not a gencral rule about the relaiive power of the two tests. We
show below that returns display positive, then negative, serial correlation as
the horizon lengthens. In this case the regression test, by virtue of i‘s negative,
then positive, weights on sample autocorrelations, will reject the nuit hypothe-
sis of serial independence more often than the variance-ratio test.

A third method of detecting mean reversion involves estimating parametric
time-series models tor returns, or computing likelihood-raiio tests of the null
hypothesis of serial independence against particular parametric alternatives.
Because returns are nearly white noise under both the null hypothesis and the
alternatives we consider, standard ARMA techniques often fail.® When they
are feasible, however, the Neyman-Pearson lemma dictates that the likeli-
hcsd-ratic test is the most powerful test of the null of serial independence
against the particular alternative that generated the data, so its Type II error
rate is a lower bound on the error rates that other tests with the same size
could achieve. In practice, this bound is unlikely to be achieved, since we do
not know the precise data-generation process.

2 2. Power calculations

We analyze the power of tests for transitory components against ihe
alternative hypotheses that Summers (1986) suggests, where the logarithm of
stock prices ( p,) embodies both a permanent (p,*} and a transitory ()

"Further details on the relationship between regression tests and the sample autocorrelogram
are presented in an carlier draft, available on request.

8We tricd estimating ARMA models for the pseudo-returns generated in our Montc Carlo
study. Although these data were generated by an ARMA(1, 1) model with first-order autoregres-
sive aud woving-average coefficients of roughly equal but opposite signs, standard ARMA
estimation packages (ie., RATS) had difficuity recovering this process. For example, with
three-quarters of the variation in retums due to transitery faciors, ine estimation package
éncountered noninvertibilities in the moving-average polynomial and therefore broke down in
more than a third of ail Monte Carlo runs. Less than 10% of the cases led to well-estimated
parameters that were close to those from the data-generation process.
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component. We assume that p,=p* + u,. If the stationary component is an

¥4 BY -

AKRI(1) process
B, =Pyl F 8y (4)

and g, =pF —p¥, Jdenotes the in~ovation to the nonstationary component,
then

Ap,=e,+(1-L)1-pL) s, (5)

If », and ¢, are independent, Ap, follows an ARMA (1,1) process.’ This
description of returns allows us to capture in a simple way the possibility that
stock prices contain trancitory, but persistent. components. The parameter p,
determines the persistence of the iransitory component, and the share of
return variation due to transitory factors is determined by the relative size of
o2 and o2

We perform Monte Carlo experiments by generating 25,000 sequences of
720 returns, the number of monthly observations in the Center for Research in
Securities Prices (CRSP) data base.l® We set ¢2=1 so that the variance of
returns (4 p,) equals 1 + 262/(1 + p,) and set parameters for the return-gener-
ating process by choosing p, and &=202/(1 + p, + 202). The parameter 8
denotes the share of return variance accounted for by the stationary compo-
nent; § and p, determine 6. We comsider cases where 8 equals .25 and 0.75.
We set p, equal to 0.98 for both cases, implying that innovations in the
transitory price component have a half-life of 2.9 years.

In evaluating Type 1l error rates, the probability of failing to reject the null
hypothesis when it is false, we use the empirical distribution of the test statistic
generated with 8 =0 to determine the critical region for a one-sided 0.05 test
of the random-walk aull against the mean-reverting alternative. The panels of
table 1 report Type Il error rates for each test when the data are generated by
the process indicated at the column head. The mean value of the test statistic
under the alternative hypothesis is also reported.

The first row in table 1 analyzes a test based on the first-order autocorrela-
tion coefficient. As Shiller and Perron (1985) and Summers (1986) observe, this

*The parameters of the ARMA(L, 1) model (1 — $L)Ap, = (1 + OL)w, are
¢=P15
- 2 2 2 3312 2
0= { —(1+6}) - 262+ (1~ p)[4a + L+ m)]] " J (202 +20),
a5 = —(p +2a7)/0.

e 1) practice we draw 720 pairs of random variables, associate them with (e, #,), and then
construct 4 p,.
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Tablel
Simulated Type 11 error rates of alternative tests ior iraisitory components in security retumns.
Each row describes the statistical properties of a particular test for mean reversion. All tabulations
&ic baced on one eei of 25,000 Monte Carlo experiments using 720 monthly returns generated by
the process described at the column heading. Boih underlving procesces are ARMA(L, 1), with
parameters set by 8, the share of ictum variation due to wansisory components, and p,, the
monthiy serial correlation of the transitory component. Each test we analyze has size 0.03.

Parameters of retum-generating process
=098 8§=025 «558 §=«0.75

F25t statisic b b
and return Type Il Mean value Type I Mean value
measuremet efror of test error of test
interval rate statistic rate statistic
First-order

autocorrelation o9 -0.002 0.924 -0.007
Variance ratio

24 months 0.933 0973 0.863 0.927

36 months 0.931 0.952 0.844 0.867

48 months 0.929 0.935 0839 0818

60 months 0.927 0920 0820 0.771

72 months 0.925 0.906 0.814 0.733

84 months 0.927 0.893 0.814 0.700

96 months 0.929 0.884 0.813 0670
Retum regression

12 months 0933 —0044 0.363 -0.089

24 months 0.929 -0.080 0342 —0.158

36 months o.o0 -0112 0241 -0.210

48 months 0934 -0.141 0.856 -0.250

60 months 0934 -0.167 0.868 —-0.282

72 months 0.941 -0.194 0.887 —-0.308

84 months 41 -0221 0.903 -0.332

96 months 0.943 -0.250 0.914 -0.354
LR test 0924 1.244 0.760 4497

test has minimal power against the alternative hypotheses we consider. The
Type II error rate for a size 0.05 test is 0.941 (0.924) when one-quarter
(three-quarters) of the variation in returns is from the siationary component
(ie., =025 and 8§ =0.75).

The next panel ir. table 1 considers variance-ratio tests comparing return
variances for several different horizons, indexed by k, with one-period return
variances. The variance-ratio tests are more powerful than tests based on
first-order autocorreiation cocicients, but they still have little puwer to detect
persistent, but transitory, rctuin componsnts. When one-quarter of the return
variation is due 1o transitory factors (8 = 0.25), the Type II error rate never
faiis below 0.81. It is useful in comsidering the empirical results below to note
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that when the transitory component in prices has a half-life of less than ihree
years and accounts for three-quarters of the variation in returns (8 = 0.75), the
variance ratio at 96 months is 0.67.

The next panel in table 1 shows Type II error rates for the long-horizon
regression tests. The results are similar to those for variance ratios, although
the regression tests appear 10 be somewhat less powerful against our alterna-
tive hypotheses. For example, the best variance-ratio test agaiast the &= 025
case has a Type Il emor rate of 0.925, compared with 0.929 for the most
powerful regression test.

The final panel of the table presents results on likelihood-ratio tests.!!
Although these are more powerful than the variance-ratio tests, with Tvpe Ii
error rates of 0.922 in the § =0.25 case and 0.760 in the §=0.75 case, the
error rates are still high. Even the best possible tests therefore have little power
to distinguish the random-walk model of stock prices from .. rnatives that
imply highly persistent, yet transitory, price components.

One potential shortcoming of our Monte Carlo analysis is our assumption
of homoskedasticity in the return-generating process. To investigate its impor-
tance, we fit a first-order autoregressive model to inonthly data on the
logarithm of volatility.'* We expand our Monte Carlo experiments to allow ¢?
to vary through time according to this process. The Type II error calculaiions
from the resulting simulations are similar to those in table 1. Fig. 1 illustrates
this, showing the empirical distribution function for the 96-month variance
ratio in both the homoskedastic and heteroskedastic cases.

2.3. Evaluating statistical significance

For most of the iests described above, the Type Il error rate would be
between 0.85 and 0.95 if the Type I error rate were set at the conventional 0.05
level, Leamer (1978) echoes a point made in most statistics courses when he
writes that ‘the {popular] rule of thumb, setting the significance level arbi-
trarily at 0.05, is...deficient in the sense that from every reasonable viewpoint
the significance level should be a decreasing function of sample size’ (p. 92).
For the case where three-quarters of the return variation is due to transitory

"' The likelihood value under cach hypothesis is evaluated using Harvey’s (1981) exact maximom
litelihood method. Because estimating the mean induces a small-sampie bias toward negative
autocorreiations, even under the null hypothesis of serial independence the mean likelihood ratios
for each aiternative hypothesis are above one.

2The estimated volatility process that we use for our simulations is
log(0?) = —2.243 + 0.7689 +log{ 02, ) + w,

when_e,w, has a normal distribution with mean zero and standard deviation 0.691. The monihiy
volatility data are described in Frenci:, Schwert, and Stambaugh (1987).



J.M. Poterba and L. H. Summers, Mean reversion in stock prices 35

e B ma e S ——
2 ——Hatnoskedastic Returns |
-===Helerosiedastic Returns’]
&I
>
s 8
S 6
L
2
NEPETO N B
0 [o1.3 1 15 -4
Varionce Ratio
Fig. 1. Empirical distribution of 96-month variance-1siio statistic with homoskedastic and hetero-
skedastic returns,
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indcpendent draws from an identical distribution. The broken cusrve presents a similar empirical
distribution calculated from the same number of Monte Carlo draws, but allowing for hetero-
skedasticity in the simuloted returns. The logarithm of the simulated retum variance evolves

through time as noted in footnote 12.
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Fig. 2. Type Il versus Type I error rates for three alternative tests of mean reversion.

Each curve displays the tradeoff between Type I and Type II error rates for a particular test of
mean reversion in stock retumns. Critical regions for each test are found using simulated empirical
distributions for the variance-ratio, regression-beta, and likelihood-ratio tests under the null
nypothesis of serially independent, homoskedastic returns. The Type IT error rate for each test
under the alternative hypothesis of 8§ = 0.75, p, = 0.98 is calcnlated using arother set of simulated
empirical distributions. Under both the null and the alternative hypothesis, the empirical distribu-
tions are calculated using 25,00 replications of 720-observation time series for synthetic returns.
For variance-ratio, regression-beta, and likelihood-ratio tests with given Type I error rates shown
along the horizontal axis, the figure shows the associated Type II error rate against the alternative
hypothesis.
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factors, fig. 2 depicts the attainable tradeofl between Type I and Type Il errors
for the most powerful variance-ratio and regression tests, as well as for the
likelihood-ratio test. The Type II error curve for the variance-raiio test lies
between the frontiers attainable using regression and likelihood-ratio tests. For
the variance-ratio test, a 0.40 significance level is appropriate if the goal is to
minimize the sum of Type I and Type I errors. To justify using the conven-
tional 0.05 test, one would have to assign three times as great a cost to Type 1
as to Type II errors.

Since there is little theoretical basis for strong attachment to the null
hypothesis that stock prices follow a random walk, significance levels in excess
of 0.05 seem appropriate in evaluating the importance of transitory compo-
nents in stock prices. Many asset-pricing models, involving rational and
irrational behavior, suggest the presence of transitory components and time-
varying returns. Furthermore, the same problems of statistical power that
plague our search for transiiory components complicate investors® lives, so it
may be difficult for speculative behavior to eliminate these components. The
only solution to the problem of low power is the collection of more data. In
the next section, we bring to bear as much data as possible in evaluating the
importance of transitory components.

3. Statistical evidence on mean reversion

This section uses variance-ratio tests 1o analyze the importance of stationary
components in stock prices. We analyze excess and real returns using four
major data sets: morthly returns on the NYSE for the period since 1926,
annual returns on the Standaré and Poor's-Cowles stock pnice indices for the
period since 1871, post-World War II monthiy stock returns for 17 stock
markets outside the U.S,, and returns on individual firms in the U.S. for the
post-1926 period.

3.1. Monthly NYSE returns, 1926—1985

We begin by analyzing monthly returns on both the value-weighted and
equal-weighted NYSE indices from the CRSP data base frr the 1926-1985
period. We consider excess returns with the risk-free rate measured as the
Treasury bill yield, as well as real returns measured using the Consumer Price
Index (CPI' inflation rate. The variance-ratio statistics for these series are
shown in tavle 2. We confirm the Fama and French (1988b) finding that both
real and excess returns at long horizcas show negative serial correlation.
Eight-year returns are about four rather than eight times as variable as

one-year returns. Despite the low power of our tests, the null hypothesis of

serial independence is rejected at the 0.08 level for valuc-weighted excess
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Table 2
Variance ratios for U.S. monthly data, 1926-1985.

Calculations are based on the monthly returns for the value-weighted and equal-weighted NYSE

portfolios, as reported in th> CRSP monthly returns file. The variance-ratio statistic is defined as

VR(k) = (12/k)+var(R*) /var( R'?), where R/ denotes returns over a j-period measurement

interval. Values in parentheses are Monte Carlo estimates of ihe siandard error of the variance

ratio, based on 25,000 replications under the null hypothesis of serially independent returns. Each

variance ratio is corrected for small-sample bias by dividing by the mean value from Monte Carlo
experiments under the null hypothesis of no serial correlation.

Return measurement interval
Annual retumn
standard 1 24 36 48 60 T2 84 9
Data series devigtion month months months months months months months months
Value-weighted 20.6% 0797 0973 0873 0.747 0667 0610 0565 0575
real returns (0.150) (0.108) (0.177) (0.232) (0.278) (0.320) (0.358) (G.394)
Value-weighted 20.7% 0764 1036 0989 0917 0855 0781 0689 0677
excess retumns (0150) (0.108) (0.177) (0.232) (0.278) (0.320) (0.358) (0.394)

Equal-weighted 29.6% 0809 0963 0835 0745 0642 052 0400 0.353
real returns (0.150) (0.108) (0.177) (0.232) (0.278) (0.320) (0.358) (0.394)

Equal-weighted  206% 0785 1010 0925 0878 0.786 0649 0487 0425
eXCess returns (0.150) (0.108) (0177) (0232) (D278) (0.320) (0358) (0.394)

returns and at the 0.005 levei for equal-weighted excess returns’’ Mean
reversion is more pronounced for the equal-weighted than for the value-
weighted returns, but the variance ratios at long horizons are well below unity
for both.

The variance ratios also suggest positive return autocorrelation at horizons
shorter than one year. The variance of the one-month return on the equai-
weighted index is only 0.79 times as large as the variability of twelve-month
reiurns implies it should be. A similar conclusion applies to the value-weighted
index. This finding of first positive then negative serial correlation parallels Lo
and MacKinlay’s (1988) result that variance ratios exceed unity in their weekly
data, whereas variance ratios fall below one in other studies concerned with
longer horizons.!*

One potential difficulty in interpreting our finding of positive serial correla-
tion at short horizons concerns nontrading effects. if some of the securities in

13These p-values are calculated from the empirical distribution of our test statistic, based on
Monte Carlo results. They permit rejection at lower levels than would be possible using the
normal approximation to the distribution of the variance ratio, along with the Monte Carlo
estimates of the standard deviation of the variance ratio. Further details are available on request.

14Erench and Roll (1986) apply variance-ratio tests to daily returns for a s2mpie of NYSE and
AMEX stocks for the pericd 1963-1982. They find evidence of negative serial coErglauon:
especially amnna gmaller securities. The divergence beiween dheir findings and those of Lo and
MacKinlay (1988) is presumably due to differences in the two data sets.
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the market index trade infrequently, returns will show positive serial correla-
tion. We doubt this expianation of our results since we are analyzing monthly
returns. Nontrading at this frequency is likely to affect only a small fraction of
securities, whereas accounting for the degree of positive correlation we observe
would require that one security in ten typically did not trade in a given month.
We also investigated the incidence of nontrading in a portfolio simiiar to the
value-weighted index by analyzing daily returns on the Standard ana Poor’s
Index [see Poterba and Summers (1986)] for the period 1928-1986. The
first-order autocorrelation coefficient for daily returns is only 0.064, and
grouping returns into nonoverlapping five-day periods yields a first-order
autocorrelation coefficient of —0.009. This suggests that autocorrelation pat-
terns in monthly returns are not likely to be due to infrequent trading.

A second issue that arises in analyzing the post-1926 data is the sensitivity
of the findings to inclusion or exclusion of the Depression years. A number of
previous studies, such as Officer (1973), have documented the unusual behav-
ior of stock price volatility during the early 1930s. One could argue for
excluding these years from analyses designed to shed light on current condi-
tions, although the sharp increase in market volatility in the last quarter of
1987 undercuts this view. The counterargument suggesting inclusion of this
period is that the 1930s, by virtue of the large movements in prices, contain a
great deal of information about the persistence of price shocks. We explored
the robustness of our findings by truncating the sample period at both the
beginning and the end. Excluding the first ten ycars weakens the evidence for
mean reversion at long horizons. The results for both equal-weighted real and
excess reiurns are robust to the sample choice, with variance ratios of 0.587
and 0.736 at the 96-month horizon, but the long-horizon variance ratios on the
value-weighted index rise to 0.97 and 1.10, respectively. The one-month
variance ratios are not substantially changed by treatment of the carly years.
For the post-1936 period, the one-month variance ratios are 0.782 and 0.825
for value- and equal-weighted real returns and 0.833 and 0.851 for value- and
equal-weighted excess returns.!® Truncating the sample to exclude the last ten
years of data strengthens the evidence for mean reversion.

3.2. Historical data jor the United States

The CRSP data are the best available for analyzing recent U.S. experience,
but the low power of available statistical tests and data-mining risks stressed
by Merton (1987) suggest the value of examining other data as well. We

SWe also experimented with crude techniques for accounting for time-varying stock market
volatility in estimating variance ratios. Estimating sample autocorrelations with a heteroskedastic-
ity correction based on French, Schwert, and Stambaugn's (1987) estimate of the previous month's

return volatility effeciively reduces the weight of the early Depression years, yielding variance-ratio
estimates cloger to unity,
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Table 3
Variance ratios for U.S. data, 1871-1985.

Each entry is a bias-adjusted variance ratio with a mean of unity under the null hypothesis. The
variance-ratio statistic is defined as VR(k) = (12/k)=var( R*)/var( R'?), where R/ denotes the
return measured over a j-month interval. Values in parentheses are Monte Carlo standard
deviations of the variance ratio, based on 25,000 replications under the null hypothesis of serial
independence. The underlying data are annual returns on the Standard and Poor’s composite
stock index, backdated to 1871 using the Cowles data as reported in Wilson and Jones (1987).

Return measurement interval
Annual return
standard 24 36 4% 60 72 84 96
Data series deviation months months months months months months months
Excess returns 16.2% 0215 0612 0591 0601 0464 0425 0441
1871-1925 (0.140) (0.210) (0.265) (0.313) (D.358) (0.395) (0.436)
Real retums 17.2% 099 0767 0806 0847 0737 0737 0807
1871-1925 0.140) (©217 (0.265) 0.313) (0.358) (0.398) (0435
Excess retarns 189% 1047 0922 0929 0913 085 0821 0833
1871-1985 0095) (0.143) (0179 (0211) (0.240) (0.266) (0.290)
Real returns 19.0% 1.035 082 0876 0855 0797 06769 .78l
1871-1985 (0.095) (0.143) (0.179) (0.211) (0.240) (0.266) (0.290)

therefore consider real and excess returns based on the Standard and
Poor’s—Cowles Commission stock price indices, revised by Wilson and Jones
(1987), which are available beginning in 1871. These data have rarely been
used in studies of the serial correlation properties of stock returms, although
they have been used in some studies of stock market velatility, such as Shiller
(1%81).

The results are presented in table 3. For the pre-1925 period, excess returns
display negative serial correlation at long horizons. For real returns, however,
the pattern is weaker. Although the explanation for this phenomenon is
unclear, it appears to result from the volatility of the CPI inflation rate in the
years before 1900. This may make the ex post inflation rate an unreliable
measure of expected inflation during this period. The two lower rows in table 3
present results for the full 1871-1985 sample period. Both series show negative
serial correlation at long lags, but real and excess returns provide less evideace
of mean reversion than the monthly post-1925 CRSP data.'¢

3.3. Equity markets outside the United States

Additionai evidence on mean reversion can be obtained by analyzing the
behavior of equity markets outside the U.S. We analyze returns in Canada for

1 The variance ratio for the full sample (1871-1985) period is not a simple weighted average of
the variance ratios for the two subperieds, pre- and post-1526. The 56-monih variance ratios for
the post-1926 period excess and real S&P data, for example, are 0.463 and 0.731, respectively.
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the period since 1919, in Britain since 1939, and in 15 othé naiions for a
shorter postwar period.

The Canadian data consist of monthly capital gains on the Toronto Stock
Exchange. The British data are monthly returns, inclusive of dividends, on the
Financia! Tiries—Actuaries Share Price Index. The first two rows of table 4
show that both markets display mean reversion at long horizons. The 96-month
variance ratio for the Canadian dzia is 0.585, while for the Brtish data it is
0.794. Both markets also display statistically significant positive serial correla-
tion at lags of less than 12 months. For Canada, the one-month variance is
0.718 times the value that would be predicted on the basis of the 12-month
variance. For Britain, the comparable value is 0.832.

"“he variance ratios for the 15 other stock markets are calculated from
monthly returns based on stock price indices in the International Monetary
Fund’s International Financial Statistics. The IMF does not tabulate dividend
yields, so the reported returns correspond to capital gains alone. To assess the
importance of this omission, we reestimated the variance ratios to¢ dividead-
exclusive CRSP and British stock market retuins. The resulis, available from
the authors on regucsi, show orly minor differences as a result of dividend
omission. For example, the 96-month variance ratio for real value-weighted
CRSP returns irclusive of dividends is 0.575 and that for dividend-exclusive
returns is 0.545. We suspect that yield-inclusive data, although superior to the
returns we use, wonld affect onr results in only minor ways.!”

Table 4 presents the variance ratios for individual countries, based typically
on data starting in 1957. Most of the countries display negative serial correla-
tion at iong horizons. In Germany, for example, the 96-month variance ratio is
$.462; in France it is 0.438. Cuiy three of the fifteen countries have 96-month
variance ratios that exceed unity, and many are substantialiy below one.
Evidence of positive serial correlation at short horizons 1s also pervasive. Only
one country, Colombia, has a one-month variance ratio greater than unity. The
short data samples, and associated large standard errors, make it difficult to
rejeci the null hypothesis of serial independence for any individual cocuniry.
The similarity of the results across nations nevertheless supports our earlier
finding of substantial transitory price components.

Average variance ratios are shown in the last three rows of the table for all
countries, all countries except the U.S., and all countries except the U.S. and
Spain. The mean Y6-month variance ratio is 0.754 when all countries are

In some cases, the monthly stock index data from the IFS are time averages of daily or weskly
index values. Working (1960) showed that the first difference of a time-averaged random walk
wiould exhibit nocitive cerial correlation with 2 first order autccairclation coeflicieni of G.25 as we
number of observations in the average becomes large. This will bias our estimated variance ratios.
For the countries with time aggrepaied data we therefore modify our smali-sample bias correction.
Instead of takimp the expected value of the first-order autocorrelation to be —1/(7 — 1) when
evaluating E{VR(k)] we use 0.25-1/(T—1). The reporicd variance ratios have been bias-
adjusted by dividing by the resulting expected value.

L A L Sl T
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aggregated and 0.653 when we exclude Spain, an outhicr because of the
unusual pattern of hyperinflation followed by deflation that it experienced
during our sample period. By averaging across many countries, we also obtain
a more precise estimate of the long-horizon variance ratio, although the
efficiency gain is attenuated because the results for different countries are not
independent.!®

3.4. Individual firm: data

Arbitrageurs should be betier at trading in individual securities to correct
mispricing than at taking positions in the entire market to offset persistent
micaluations. Although we expect transitory compouents to be less likely in
the relative prices of individual stocks than in the market as a whole, some
previous work has suggested that individual stock returns may show negative
serial correlation over some horizons [Lehmann (1987), DeBoadt and Thaisr
(1985)). We examine the 82 firms in the CRSP monthly masier file that have
no missing return information between 192€ and 1985. This is a biased sample,
weighted toward large firmrs that have been traded actively over the entire
period. Firms that went bankrupt or begar truding during the sample period
are necessarily excluded.

We compute variance ratios using both real and excess returns for these 82
firms, Because the returns for differeni firms are not independent, we also
examine the returns on portfolios formed by buying one dollar of each firm
and short-selling $82 of the aggregate market. That is, we examine properties
of the time series R, ~ R, where R, is the value-weighted NYSE return.
Table 5 reports the mean values of the individual-firm variance ratios, along
with standard errors that take account of cross-firm correlation. The results
suggest some long-horizon mean reversion for individual stock prices in
relation to the overall market or a risk-free asset. The point estimaies suggest
that 12% of the eight-year variance in excess returns is due to stationary
faciors, and the increased precision gained by studving returns for many
independent firms enables us to reject the null hypothesis that all of the price
variaiion arises from nonstationary factors. The last row, which reports
variance-ratio calculations using the residuals from market-model equations
estimated for each firm (assuming a constant 8 for the entire period), shows

18The standard errors for the cross-country averages allow for corrclation between the variance
rat.us for different countries. If all nations have a constant pairwise correlation 7 between their
variance ratios and these variance ratios hav :2actant variancs of, then the expected vaiue of the
sainpic varance of ibe variance-ralio SIRuUSHCS 18 iqS;)=or(l - 7). Repluang the expected
sample variance with the actual value, we estimate 7 as 1 —’s,ffaf. The variance of the sarpie
mean for N observativns, each with the same variance o but constani cross-correlation 7,
is 62[1 + (N — 1)7)/N. We use cur estimate of v 10 evaluate this expression, seneralized to aliow
for different sampling variances for different variance ratios on the basis of our Monte Carlo
standard errors from table 4.
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less evidence of serial correlation than the results that subtract the market
return. These results suggest that transitory factors account for a smaller share
of the vasiance in relative returns for individual stocks than for the market as a
whole.

3.5. Summary

Our point estimates generally suggest that over long horizons return vari-
ance increases less than proportionally with time, and in many cases they
imply more mean reversion than cur examples in the last section, where
transitory factors accounted for three-fourths of the variation in returns. Many
of the results reject the null hypothesis of serial independence at the 0.15 level,
a level that may be appropriate given our previous discussion of size versus
power tradeoffs. Furthermore, each of the different types of daia we analyze
provides evidence of departure from serial independence in stock returns.
Taken together, the results are stronger than any individual finding, although
not by as much as they wouid be if the various data sets were independent.

There is some tendency for more mean reversion in less broad-based and
sophisticated equity markets. The U.S. data before 1925 show greater evidence
of mean reversion than the post-1926 data. The egqual-weighted portfolio of
NYSE stocks shows more mean reversion than the value-weighted portiolio.'?
In recent years, mean reversion is rnore nronounced in smaller foreign equity
markets than in the U.S.

4. The substantive importance of fransitory components in stock prices

This section assesses the substantive importance of mean reversion in stock
prices. One possible approach would involve calibrating models of the class
considered in the first section. We do not follow this strategy because our
finding of positive autocorrelation over short intervals implies that the AR(1)
specification of ihe transitory component is inappropriate and because of our
difficulties in estimating the ARMA(1,1) models implied by this approach.
Instead, we use an approach that does not require us to specify a process for
the transitory component, but nevertheless allows us to focus on its standard
deviation and the fraction of the one-period return variance that can be
attributed to it.

9We conjectured that the greater raean reversion in the equal-weighted than the value-weighted
portfolio might be because the less heavily traded equal-weighted portfolio experieaced larger
swings in required returns or fluciuated more in relation to fundamental values than the
value-weighted portfolio. Assuming similar-sized movements in the permanent component of the
two indices, this conjecture can be tested by analyzing the degree of mean reversion in the relative
returns on the two indicis, These returns show positive serial correlation at all lags, contrary to
our conjécture,
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We treat the logarithm of the stock price as the sum of a permanent and a
transitory component. The permanent component evolves as a random walk
and the transitory component follows a stationary process. This decomposi-
tion may be given two (not necessarily exclusive) interpretations. The transi-
tory component may reflect fads — speculanon-induced deviauons ui prces
from fundamental values — or it may be a consequeiice of changes in required
returns. In either case, describing the stochastic properties of the stationary
price component is a way of characterizing the part of stock price movements
that cannot be explained by changing expectations about future cash flows.

Given our assumptions, the variance of 7-period returns is

or=To? + 2(1 — pr)o2, (6)

where ¢ is the variance of innovations to the permanent price component, o
is the variance of the stationary component, and p, is the T-period autocorre-
lation of the xwationary component. Given data on the variance of returns over
two horizons T and T* and assumptions about p, and py., a pair of equations
with the form (6) can be solved to yield estimates of ¢’ and ¢2. Using o2 for
the variance of one-period returns, and VR(T) for the T-period variance ratio
in relation 1o one-period retwns, estimaies of o2 and o are given by

»_ 9&[VR(T)(1 = p7)T - VR(T')1 - p7)T']

Fa

° (1-p7)T- (1~ p,)T ’ (72)

oiT'[VR(T) - VR(T)IT
= 200 -6 )= (1 - pp)T] " (70)

Many pairs of variance ratics and assumptions about the serial correlation
properties of u, could be analyzed by using (7a)-(7b). We begin by postulat-
ing that u, is serially uncorrslated at the horizon of 96 months. For various
degrees of scrial correlation at other horizons, we can then estimate the
v riance of the transitory component, 2, and the share of the return variation
due to tramsitory components, 1 — /o2, We present estimates based on
values of 0,0.35, and 0.70 for p,,, the twelve-month autocoicelation in «,. The
findings are incensitive to our choice of pg; we report values of 0, 0.15, and
0.30.

Table 6 presents estimates of ithe standard deviation of the tramsitory
component in stock prices for the value-weighted and equal-weighted NYSE
portfolios over the period 1926-1985 for various values of s,,, assuming
ps = 0. For the equal-weighted portiolio, the transitory component accounts
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Table 6
Permanent and transitory reture components, U.S. monthly data.

Euch entry reports the standard deviation of the tramsitory component of prices, measured at
annual faies (0.}, as well as the share of return variaiion dus {o transitory factors, calculated from
eqs. {7a) and {7b) to match the observed pattern of variances in long- ~nd short-horizon returns.
The variance-ratio estimates that underlie this table are drawn from the entires for 96-month
variance ratios for excess returns in table 2. The different cases of p,, {pyg) correspond to different
assumntions ahou' the 12-month (96-month) autocorrelation in the transitory ptice component.

B2 = 00 . o= Q.35 Byz = 0.70

2 .2
S, 1~ G, /[OR e, I- oezll Gg G, i- Gszll 65%

Value-weighted excess returns

Bog = 0.0 9.7% 0.369 125% 0.400 21.6% 0.554

o, = 0.15 - - i2.3% 0.336 20.5% 0.508

Py = 0.30 - - 12.1% 0.373 19.6% 0.456
Equal-weighted excess returns

Pog = 0.00 16.8% 0.657 21.7% 0.712 371.71% 0.986

P3e =015 - - 21.4% 0.687 35.8% 0.8%0

Pgg = £.30 - - 21.0% 0.664 34.2% 0.812

for between 43% and 99% of the variance in equal-weighted monthly returns,
depending on our serial correlation assumption, and °t has a standard devia-
ticn of betwsen 14% and 37%. Results for valuc-weighied returns alsc suggest
a substanual, though smaller, transitory component. Since other nations and
historical periods show paiterns of variance-ratio decline similar to those in
U.S. data, we do not present parailel calculations for them. As one would
expect, nations with 96-month variance ratios lower than those for the U.S.
have larger ‘ransitory components.

Table 6 indicuies that increasing the assumed persistence of the transitory
component raises both its standard deviation and its contribution to the return
variance. More persistent transitory components are less able to accouni for
declining variance ratios at long horizons, To rationalize a given 'ong-horizon
variance ratio, increasing the transitory component’s pessistence scguires in-
creasing the weight on the transitory component in relation to the permanent
component. Sufficiently persistent transitory componenis will be unable to
aceouni for fow fong-horizon variance railos, evei if they accouni fui all Of i<
return variation. A transitory component that is almost as pessisient as a
random walk, for example, will be urable to explain very much long-horizon
mnean reversion.

Which cases in table 6 a:e most relevant? As an a priori matter, it is difficuit
to argue for assuming that transitory components should die out rapidly.
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Pzevious claims that there are fads in stock prices have typically suggested
half-lives of several years, implying that the elements 1n the table correspond-
ing to p,,=0.70 are most relevant. With geometric decay, this suggests a
huif-lifr of two years. One other consideration supports large values for p,.
For given values of o2 and o2, eq. {6) permits us to calculate p; over any
horizon. A reasonable restriction, that p, not be very negative over periods of
up to 96 months, is satisfied only for cases where p,, is large. For example,
with pg, =0, imposing p,; =0.35 yields an implied autoc..relation for the
stationary component of —0.74¢ at 36 months, —1.27 ar 60 months, and
—0.274 at 84 months. In contrast, when p,, = 0.70 and pg = 0, the implied
values of p;, and pg, are 0.168 and —0.173, respectively. Similar results obtain
for other large values of p,,. This i1s becairse actoal variance ratics decline
between long and longer horizons, and as eq. (6) demonstrates, rationalizing
this requires declining values of py. If p, starts small, it must become negative
to account for the observed pattern. Larger autocorrelations at short horizons
do not necessitate such patterns.

Insofar as the evidence in the last section and in Fama and French (1988b)
is persuasive in suggesting the presence of tramsitory components in stock
prices, this section’s results confirm Shiller’s (1981) conclusion that models
assuming constant ex anie returns cannot account for all of the variance in
stock market reiurns. Since oui analysis does not rely on the present-value
relation between stock prices and expected future dividends, it does not suffer

from some of the problems that have been highlighted in the volatility-test
debate.*

5. The source of the transitory component in stock prices

Transitory components in stock prices imply variation: in ex anfe returns.?!
Any stochastic process for the transitory price component can be mapped into
a stochastic process for ex anie returns, and 2ry pattern for ex ante returns
can be represented by describing the associated transitory price component.
The central issue is whether variations in ex anfe returns are better explained

2001, . . ) . .
Shiller’s conclusion that market returne are {00 volatile to be reconciled with valuation models
assuming constant required retuens is controversial; see West (1988) for 2 «irvey of recen work.

'Several recent studies have considered the extent to which equity returns can be predicted
using various information sets. Keim and Stambaugh (1986) find that between 8% and 13% of the
variation in returns for a porifolio of stocks in the bottom quintile of the NYSE can be predicted
using lagged information. A much smailer share of the vanation in rewms 10 lage: conipamics
can be accounted for in this way. Campbell (1987) finds that approximately 11% of the variation
In excess returns can be explained on the basis of iagged information derived from the term

structure. Fama and French (1988a) find that lagged dividend yields can predict 2 much higher
fraction of returns over longer hicrizons.



J.M. Poterba and L.H Summers, Mean reversion in stock prices &9

by changes in interest rates and volatility, or in: 228 as byproducts of price
deviations caused by noise traders.”? This section notes iwo considerations
that incline us toward the latter view,

First, we calibrate the variation in expected retures that risk factors would
have to generate to account for the ohserved transitory components in stock
prices. We assume for simplicity that the transitory component follows an
AR(1) process as posiulated in Summers (1986). This has the virtue of
tractability, although it is inconsistent with the observation that actual returns
show positive, then negative, serial correlation. If required returns show
positive autocorrelation, then an innovation that raises required returns will
reduce share prices. This wil! induce a holding period loss, followed by higher
returns. The appendix shows that when required returns follow an AR(1)
process,” ex post returns (R,) are given by

e

-R=
R T

Q+7) 7' +3) _
- ("r+l_r}+§n (8)

I+7—p{l+g)

where §,, a serially uncorrelated innovation that is orthogonal to innovations
about the future path of required returns (£,), reflects revisions in expected
future dividends. The average dividend yieid and dividend growth rate are d
and g, respectively; in steady state, F =d + g.

If changes in required returns and profits are positively correlated, then the
assumption that & and { are orthogonal will undersiate tae variance in
ex ante returns needed to rationalize mean reversion in stock prices. It is
possible to construci theoretical examples in which profits and interest rates
arc nogatively related, as in Campbell (1986), but the empirical finding of weak

2L ucas (1978) and Cox, Ingersoll, and Ross (1985) study the pricin: of assets with time-varying
required returns. Several recent papers, including Black (1986), Campbell and .Kyle {19856),
DeLong et al. (1987), and Shiller (1984), have discussed the possibie influence of noise tx:aders on
security prices and required returns. Fama and French (1986b) show that the negative sex:xa]
coridation v different siocks may be attributable to a common factor, and interpret this finding
as support i, the time-varying returns view of mean reversion.

BThe pecsiality of negative expected excess returns is ap usaitracuve icaiwc of e simple
model we have analyzed. In principie the anaiysis could be repeated using Mciion's (1980) modei,
which requires the expected excess return 10 be positive, The exact parailel between the time-vary-
ing returns moxiel and the fads model would not hold in this case, however.
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positive correlation between bond and stock returns suggests « el pusitive ui
weak negative correlation between shocks to cash flows ana requircd returns. 24

Our assumption that required returns are given by r,—7=(1-p, L)',
enables us to rewrite (8), defining

£= -£ 0+ +8Y /1 +7-p,0 +8)],

(1=p L) R, - Ry =§,+{,~ 1+ )., - piSi. {9)

The first-order auiccovariance of the expression on the right-hand side of
(9) is nonzero, but all higher-order autocovariances equal zero.?® Provided
o£2 >0, returns follow an ARMA(L,1) process; if af ={, then returns are
white noise.

The simple model of stationary and nonstationary price components sum-
marized in eq. (5) also yields an ARMA(1, 1) representation for returns. This
allows us to calculate the variation in required retwrns that is needed to
generate the semo time-series process for observed returns as fads of various
sizes. In the appendix we show that ihe required return variance corresponding
to a given f~d variance is

, [1+7-p,(1+2)]°Q-p) (1 +7)* |
o = - — o, .
{(1 +d )1+ p}) —91[1 +{i+d) }}(1 +g)

(10)

Table 7 reports calculations based on (10). It shows the sicucard deviation
of required excess returns, measured on an annual basis, implied by a variety
of 1ad models. We calibrate the calculations using the average excess return
(.9% per year) on the NYSE equal-weighted share price index over the
19261985 period. The dividend yield on these shares averages 4.5%, implying
an average dividend growth rate of 4.4%. We use cstimates of the variance
ratio at 96 months to calibrate the degree of mean reversion.

Substantial variability in required returns is needed to explain mean rever-
sion in prices. For example, if we postulate that the standard deviation of the
transitory price component is 20%, then even when required return shocks
have a half-life of 2.9 yeais, the standard deviation of ex ante returns must be
5.8% per annum. Even larger amounts of required return variation are needed

EdiCa.mpl:\ell {1987) estimates that the corrclation between excess returns on long-term bounds and
corporate equities was 0.22 for the 1959-1979 period and 0.36 for the more recent 1979-1983
pericd.

“Anslev, Spivev. and Wrobiesii {1377} pauve iGat an antocorvelngram with zeio entries bevond
order & implies an MA(k) process.
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Table 7
Amount of variation in required returns needed to account for mean reversion in stock prices.

Bach entry answers the guestion: ‘If both required retures and price fads follow first-order
autoregressions with half-lives indicated in the row margin, and the amount of mean reversion in
oboo. ¥ L Lamns is noasistent with a price fad with a standard deviation (e,) given in the column
heading, what would the standard deviation of required returns need to be to generate the same
time-series process for ex pest returns? Our calculations employ the fact that with AR(I) required
returns, the ex post returns process is given by eq. (8). Similarly the price fad is assumed to follow
an ARQ) that yields a process like (5) for ex post rewurns. We then ask what valve of ¢ v
implicitly o,) is needed to gemerate a given s'ze transitory price pattern implied by ¢,. The
calculations are calibrated using data on excess returns for the equal-weighted NYSE index over
the 1926-1985 period and are based on eq. (10) in the exi. The average caccss retura for this
period is 8.9% per year, with a dividend yield of 4.5%.

Standard deviadon of transitory component

Half-life 15.0% 200% 250% 300%
1.4 years 79% 10.6% 13.2% 15.8%
1.9 years 61% 8.2% 10.2% 12.3%
2.9 years 44% 58% 1.3% 8.7%

to explain the same size price fads when required return shocks are less
persistent. These estimates of the standard deviation of required returns are
large in relation to the mean of ex post excess returns and ‘mrly that if ex anze
returns are never acgative they musi frequently exceed 20%.

It is difficult to think of risk factors that could account for such variation in
required returns, Campbell and Shiller (1987), using data on real interest rates
and market volatilities, find no evidence that stock prices help to forecast
futme movements in discount rates, as they should if stock price movements
are caused by fluctuations in these factors.?® Although they show that stock
prices do forecast consumption fluctuations, e siga is counter to the theory’s
prediciicn. On the other hand, if the transitory components are viewed as
reflection of mispricing, they are also large in relation to traditional views of
market efficiency.

The second difficulty in explaining the observed correiation patierns with
models of time-varying returas arises from our finding of positive followed by
negative serial correlation. Models with first-order auioregressive transitory
components can rationalize the second but not the first of these observations.
It is instructive to consider what type of expected reiurns behavior is necessary
to account for both observations.

*Contrary evidence suggesting that stock returns do predict Puure voiatility patierns is
provided by French, Schwert, and Stambaugh (1987).
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There are two potential explanations for the positive autocorrelation in
observed returns at short lags. First, contrary to our maintained specification,
shocks to required returns and to prospective dividends may be positively
correlated. This could lead to positive autocorrelation at short horizons
because increases in expected dividends, which would raise share prices, would
be foliowed by higher ex ante returns. We explored this possibility by forming
monthly ‘dividend innovations’ (JDIV,) tor the 19261985 period as the
residuals from a regression of real dividends (on the value-weighted NYSE
portfolio) on twelve lagged values of real dividends, a time trend, and a set of
monthly dummy variables. We then regressed real returns on the value-
weighted index on lagged values of JDIV,. A representative equation, includ-
ing six lagged valwes is shown below. R, is measured in percentage poinis and
siandard errors are given in parentheses:

R,= 1.568 + 0.844 «IDIV,_,~ 0.109 «IDIV,_,
(0.040)  (1.380) (1.380)

~ 3.667 «IDIV,_,— 0904 +IDIV,_,

(1.380) (1.380)
— 1.061 «IDIV,_— 1.769 IDIV,_,
(1.377) (1.374)

R2=0.037, 1927:7-1985:12.

The coefficienis on lagged values of I’V should be positive if required
returns and prospective dividends are positively correlated, but the results
provide no support for this view. If amwihing they suggest = negative but
statistically insignificant relationship between dividerd innovations and subse-
quent returns. This woueld suggest that positive dividend news is followed by
lower required returns, a pattern that should be reflected in negative autocorre-
lation of ex post returns over short horizons.

The second potential explanation for positive serial correlation is that the
autocorrelogram of ex post returns refiects the dynamics of required returns.
Sors2 required-return processes could generate positive, foilowed by negative,
return autocorrelation. The required-return processes with this feature that we
have identified all show increasing coefficients in some part of their moving
average representation.?’” We are unaware of evidence suggesting that observ-

Two examples of required return processes are rwel.in-orde - wioving-average processes with
the following coefficients: 1, —1.5, —0.75. —0.5, —0.5, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 0.7
and i.1.5.2.25. 3,35 4,45, 5,4, 3, 2, 1. The aulocorrelogram of the former process displays
positive, then negative, correlation in reguired returns, while the second process exhibits positive
autocorrelation av all lags. Both processes gencratc positive, then negative, autocorreiadoa in
ex post Telurns.
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able proxies for required returns display such stochastic properties. Studies of
volatility such as French, Schwert, and Stambaugh (I%‘?} or Poterba and
Summers (1986) suggest that shocks are persistent but that their nioving-aver-
age representations show declining coefficienis. An alternative possibifity is
that mwemmsmmumd msm&mwmmm@mmwd&xmmﬁ
@f noise traders. For example, assume that the required mmm of sophisticated
raders is equal to & + 35;,, wm 3. is the fraction of the outstanding common
M@ek that these luvestors mast h@&é Equity demands of noise waders gwﬁm‘s
in equilibrium must equal 1 — §,) that follow a moving-average process similar
to one of those for required returns that generate positive, then negative,
avtovoiiciation in ex post retums will also gemerate this pattern in ex post
returns. The notion that noise trading impulses intensify and then declive
comports with qualitative discussions of fads, but further work &5 cleariy
necessary to evaluate this coniecture.

Our results suggest that stock returns show positive serial correlation over
short periods and negative correlation over longer intervals. Tiis conclusion
emerges from data on equal-weighted and valoe-weighted NYSE returns over
the 1926-1985 perind, and is corroborated by data from other nations and
time periods. Although individual data sets de not consistently permit rejec-
tion of the random-walk hypothesis at high significance levels, the various data
sets together strengthen the case against its validity. Our point estimates
suggest that transitory price components account for a substantial part of the
variance in raturns.

Our finding of significant transitory price components has potentially im-
portant implications for financial practice. If stock price movements contain
large transitory components, then for long-horizon investors the stock market
may be less risky thaa it appears to oe when the variance of single-period
returns is extrapolated using the random-walk model. Samuelson (1988) dem-
onstrates that in the presence of mean reversion, an investor’s horizon will
influence his portiolio decisions. If the investor’s relative risk aveisiwou i3
greater (less) than unity, as his horizon lengthens he will invest more (less) in
equities than he would with serially independent returns. The presence of
transitory piicc components also suggests the desirability of investment
strategies, such as those considered by DeBondt and Thaler (1985), involving
the purchase of securities that have recently declined in value. It may also
iustify some institutions’ practice of spending on the basis of a weighted
average of their past endowment values, rather than current market value.

Althcugh the temptation to apply more sophisticated statistical techniques
to stock return data in an effort to extract more information zbout the
magnitude and structure of transitory components is ever present, we doubt
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that a great deal can be learned in this way. Even the broad characteristics of
the data examined in thi* paper cannot be estimated precisely. As the debate
over volatility tests has illustrated, sophisticated stat’stical results are often
very semsitive to maintained assumptions that are difficult to evaluate. We
have validated the statistical procedures in this paper by applying them to
pseudo data conforming to the random-walk model. Gur suspicion, supported
by Kleidon’s (1986) results, is that such Monic Carlo analysis of much of the
more elaborate work on stock-price volatility would reveal poor statistical
properties.

We suggest in the paper’s final section that noise trading, trading by
investors whose demand for shares is determined by factors other than their
expected return, provides a plaucible explanation for ... iraasitory compa-
nents in stock prices.”® Pursuing this will involve constructing and testing
theories of noise trading, as well 2 thec-+~ »f changing risk factors, that could
account for the characteristic st~ | *elirn autocorrelogram docuimentei heie.
Evaluating such theoric: is likeiy to require information other thaa stock
returns, such as data on fundamental values, pioxies for noise trading such as
the net purchases by odd-lot traders, turnover, or the ievel of participation in
investment clubs, and indicators of risk factors such as ex anfe volatilities
implied by stock options. Only by comparing models based on the presence of
noise traders with models based on changing risk factors can we judge whether
financial markets are efficient in t= sens2 of rationally valuing assets, as well
as precluding the generation of exces: profits.

Appendix

Derivation of ex pusi return process when required returns are AR(1)

The price of a common stock, P, equals

o (/-1 T )
P1=Et{ Z H(1+’}+i}—1(1 1 gl+i) !‘}?}’ (Al)

wiclt r,,; denotes the required real return in period ¢ + i, D, is the dividend
paid in period ¢, g,,; is the real dividend growth rate between periods 7+ i
and ;+i+1, and E,{-} designates expectations formed using information
available as of period ¢. We linearize inside the expectation operator in r,, ,

*Cutler, Poterba, and Summers (1988) dowument the difficulty of explaining a significant

fraction of return variagiion on the asis of cbservable news about future cash flows or discount
Faies.
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(A.2)

_D0+H) __Da+E) {Zﬁ[m, }}

Jj=0

D, 2 _
+ ;"_'EE:{ )y ﬁ’[gﬂj*g}L

j=0 J

where 8= (1 + g)/(1 + ). We denote D(1 +F7)/(F—g) as I_’, In the special
case of

('}-F)=pl(r:—1_?}+£zs iA:‘;)

we can simplify the second term in (A.2) to obtain

= _ -D(l+g) =
PoRE G- BPele]
{ oo
l e | , (“:}
+ 2ok 5 B[, )
-D(1+g)Mr—F) D, 2 '
eyt g L)

Now recall that the holding period return, R, is giver by

Pt+l+D:___

! Pt
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It can be linearized sround P, and P, as foilows:

5{‘%34_ P;+1m‘é+§ ] {Pr-ﬂjﬁ:;
7

(P~ P}, (A.6)

-]

where P, = (1 + §3P and B = #(1 + §)/(1 + 7). Substituting (A 4) into (A.6)
vields

- - ﬂﬁ«l{i ¥ g}

R?“Rﬁm—m - 74
ﬁ(rﬂg)ilwmmiﬁg)!{ =7
e ppe——
P(#” g) }%ﬁﬁ Ea#i{gwlﬂ g}
i‘p‘i‘?}‘i £) N
EMl+F-odi+g ;;‘r’“r)
D(l +F) 2 |
P(F‘ -, jgoﬁﬁ{gwg g} (A‘?}
Thes can be rewritien as
na+ gy

R-R=z -

Plr-§)1+F-p,(1+7))
X{(#y=F) = BN n—F)] +,

B(+ g
1+F=py(l +g)

(A8)

i

X g“ - plz‘)-—igi'-i-i - B(1- @ll‘)ulézl +{

where {, reflects changes in evoected future dividend growth rates between
and 7+ 1, and the last expression exploits the fact that (1 - p,LYr,—F) = é,

Now defining {1+ DAL +7-p(1+ D¢, —£,. we can multiply
through by (1 — p,L) so that

. N A TN : \ o £
U —plg‘ﬂ\fiyuﬁﬁ }§1—1+35“§'«:—1- (Ag}

IIE
A
Jasb
.+..
001
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This yields an ARMA(]L 1} represeatation of returns. Since {1l + )1+ g =
{i + &}, this is eg. (8) 1 the texi.

We now explore the paraliel between the time-varying returns model and
the fad model, which postulates that returns evolve according o

{i-pLYR,~ Zé} Te, = e, F B F. {A.10)

For this ARMA{1L 1) process to be the same

i a5 (A9}, two restrictions must be
satisfied. We find t

m by equating the variances and first-order autocovari-

ance of the nght-hand sides of (A9) and {(A.10)
{E +{i+ éfﬂ@g +{1+p})ef =207+ {1 +pl}o}. {A.11}
{i %&}agw&@-&@gw@f + Gyl {A.12)

Using (A.12) to eliminate @g from {A.11) we find

2 ““ﬁx}z 5
ggm e fa o 2 ‘ =2 %y -
(1 +d)1+p}) -piii +{1+d) j

(A.13)

Recall that the variance of the fad, o, equals 9/(1 — p). Using this and the
definition of £, we find from (A.13) that the variance of required returns
corresponding to 2 given fad variance is

= . 5) Teg yE 14 s 2
o} : {1:’:‘2’ a1 21 ﬁnjﬂ } —3 2, (A.14)
[+ d)1+al) -l + @+ Y]} (1 +2)

This leads immediately to (10) in the text.
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