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ABSTRACT

Sample evidence about the predictability of monthly stock returns is considered from
the perspective of a risk-averse Bayesian investor who must allocate funds between
stocks and cash. The investor uses the sample evidence to update prior beliefs about
the parameters in a regression of stock returns on a set of predictive variables. The
regression relation can seem weak when described by usual statistical measures, but
the current values of the predictive variables can exert a substantial influence on the
investor’s portfolio decision, even when the investor’s prior beliefs are weighted
against predictability.

INVESTORS IN THE STOCK market are interested in predicting future stock returns,
and the academic literature offers numerous empirical investigations of stock-
return predictability. Many of these investigations report the results of esti-
mating linear time-series regressions of stock returns on one or more predic-
tive variables, and considerable effort has been devoted to assessing the
strength and reliability of this regression evidence from a statistical perspec-
tive. Given that the regression coefficients are estimated with error, confront-
ing the investor with what is commonly termed “estimation risk,” to what
extent might the regression evidence influence a rational, risk-averse inves-
tor’s portfolio decision?

Consider an investor who, on December 31, 1993, must allocate funds
between the value-weighted portfolio of the New York Stock Exchange (NYSE)
and one-month Treasury bills. The investor is given the results of estimating
the following regression using monthly data from January 1927 through De-
cember 1993,

re=x,_1b + ¢, (1)

* Recanati Graduate School of Business Administration, Tel-Aviv University and The Wharton
School, University of Pennsylvania (Kandel) and The Wharton School, University of Pennsylvania
and National Bureau of Economic Research (Stambaugh). The authors are grateful for comments
by René Stulz, three anonymous referees, and workshop participants at Baruch College (CUNY),
Duke University, Northwestern University, Ohio State University, Rutgers University, the Uni-
versity of North Carolina, the University of Pennsylvania, the University of Rochester, the
University of Washington, and Washington University in St. Louis. We also wish to thank
participants in the NBER 1995 Summer Institute, especially Bill Schwert, the discussant for the
paper.

385



386 The Journal of Finance

where r, is the continuously compounded NYSE return in month ¢, in excess of
the continuously compounded T-bill rate for that month, x,_; is a vector of
“predictive” variables that are observed at the end of month ¢ — 1, b is a vector
of coefficients, and ¢, is the regression disturbance in month ¢. Suppose that the
unadjusted sample R-squared for the regression in (1) is equal to R% = 0.025,
which is fairly typical of values reported in studies using monthly data begin-
ning in 1927.1 The investor is provided that value along with the vector of OLS
coefficient estimates, b, and other summary statistics often published in the
academic literature.

In addition to the regression results, the investor is given the most recent
vector of the predictive variables, x;, where December 1993 is denoted as
month T. To what extent does the investor’s asset allocation decision depend
on x,? The average excess monthly return (7) for the entire 804-month sample
period is 49 basis points (bp). Suppose that the fitted regression prediction for
the excess return in January 1994, x1- b, is equal to —40 bp, which is less than
7 by 89 bp. The sample standard deviation of excess returns (4,) for the
804-month period is equal to 560 bp, so 89 bp represents one sample standard
deviation of the regression’s fitted values (VR25, = 89 bp). If the investor
would allocate 61 percent to stocks if x}?) were equal to the average excess
return of 49 bp, how much less does the investor allocate to stocks when x7. b
is actually 89 bp lower than that long-run average? How much does the
investor value the ability to allocate less than 61 percent to stocks in this case?

Answers to these questions could provide a metric by which to assess the
economic significance of the regression evidence on stock-return predictability.
This study explores such questions from the perspective of a Bayesian investor
who uses the sample evidence to update prior beliefs about the regression
parameters. The investor then uses these revised beliefs to compute the
optimal asset allocation.2 OQur analytical framework, although simplified in a
number of respects, proves tractable in addressing the questions posed above
and illustrates the potential insights offered by this type of approach.

We find that the economic significance of the sample evidence is not readily
conveyed by standard statistical measures. For example, an investor who uses
the regression results can assign an important role to the predictive variables,
and yet those same regression results can produce a large p-value for the null
hypothesis that the coefficients on the predictive variables are jointly equal to
zero. With an unadjusted R-squared of 0.025, as given above, a large p-value
can be obtained by recognizing that, even though one might compute a low
p-value when the number of regressors is small, say 3 or 4, the p-value must

! For example, Campbell (1991) reports RZ = 0.024 in a regression of the continuously com-
pounded real return to the value-weighted NYSE on the lagged return, the dividend-price ratio,
and the one-month T-bill rate minus its past twelve-month average.

2 The revised beliefs can be examined without exploring their implications for investment
decisions. For example, Lamoureux and Zhou (1995) use data on the value-weighted NYSE
portfolio to compute revised beliefs (Bayesian posterior distributions) about various predictability
measures, such as variance ratios and autocorrelation coefficients, but they do not explore the
implications of these posterior beliefs for an asset-allocation decision.
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be increased if those regressors are selected ex post from a larger number of
variables, say 25.3 If the unadjusted R-squared in the regression on all 25
variables is still only 0.025, the worst case, then the standard regression F
statistic, computed based on 25 regressors, implies a p-value of about 75
percent. Even when the investor observes such a result, however, the fitted
regression prediction influences the investor’s asset-allocation decision. In
fact, returning to the questions posed in the example, we find that an investor
whose coefficient of relative risk aversion equals 2 and who possesses vague
prior beliefs about the parameters in that 25-variable regression will, after
updating those beliefs using the regression evidence, allocate no funds to
stocks when x7.b is equal to —40 bp, whereas the same investor would indeed
allocate about 61 percent to stocks if x-6 were instead equal to the long-run
average of 49 bp. The ability to allocate 0 percent instead of 61 percent is worth
about 29 bp to the investor, valued in terms of differences in a certainty-
equivalent monthly return. If an investor’s prior beliefs, instead of being
vague, are weighted against predictability to a degree equivalent to having
observed over 162 years of prior data in which the sample R-squared is exactly
zero, then that investor still allocates about 30 percent less to stocks when the
fitted value is —40 bp than when the fitted value is the long-run average of 49
bp, and the ability to do so is still worth about 4 bp in certainty-equivalent
monthly return to that investor.

The article proceeds as follows. Before turning to the Bayesian regression
framework used to obtain the type of results cited above, we first outline the
basic principles of the conditional Bayesian decision approach that we employ,
and we highlight some differences between this approach and others. Much of
this discussion, contained in Section I, is organized around an example of the
asset-allocation decision within a simple two-state, two-outcome setting. Sec-
tion II then gives the details of our analysis of the asset-allocation problem
within the regression setting. Although the specification we adopt omits some
potentially important features of the data, such as heteroskedasticity, which
might be interesting to include in future efforts, we find that using this fairly
standard Bayesian regression model allows us to analyze the asset-allocation
decision for a wide variety of sample characteristics and regression outcomes.
In particular, we are able to compare the economic significance of the regres-
sion evidence with standard characterizations of the evidence based on regres-
sion statistics, and we find that the contrast is often a sharp one. Section III
concludes the paper and suggests directions for future research.

I. Analyzing the Asset-Allocation Decision: General Approach
A. The Investor’s Allocation Decision

We consider a risk-averse investor with a one-month investment horizon who
must allocate funds between stocks and riskless cash. Let w denote the fraction

3 See Foster and Smith (1994).
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of the investor’s portfolio allocated to stocks, where 0 =< w =< 1. For an allocation
of w in stocks at the end of month T, the investor’s wealth at the end of month
T+ 1is

Wr = Wl exp{rr + iz} + (1 — o) expl{iri}], (2)

where W; is the investor’s wealth at the end of month T; i, is the continu-
ously compounded riskless rate on cash for month T' + 1, observed at the end
of month T, and ry, ; is the stock’s continuously compounded return in month
T + 1in excess of i1, ;. The investor chooses w so as to maximize the expected
value of the utility function

1
—— W'4 forA>0 and A#1
v(W)=4{1-4 (3)

InW for A =1.

The parameter A in the iso-elastic utility function in (3) is commonly referred
to as the investor’s coefficient of relative risk aversion. We entertain three
values of A—one, two, and five—which produce a wide range of optimal asset
allocations in the results reported later. We wish to stress, however, that our
analysis does not address issues of market equilibrium, and the investor in this
asset-allocation setting should not necessarily be viewed as a representative
investor.

Let ®, denote the data set observed by the investor through the end of
month 7, and let p(r;.,|/® ) denote the density of r;, ; conditional on ®;. The
investor is assumed to solve

maxfU(WT+1)P(’”T+1|¢T)d7'T+1~ (4)

O=w=1

Given the form of the utility function in (3), the optimal stock allocation w*
does not depend on the value of W, which we simply set to 1.0.

In assessing the conditional distribution of r,, , the investor follows prin-
ciples of conditional Bayesian analysis.4 In deriving p(r;_1|® 1), known in this
Bayesian framework as the predictive probability density function (pdf), the
investor updates beliefs about a vector of parameters 6 € ®, where 6 is
assumed to be random. After observing the data, the investor’s beliefs about 6
are summarized by the posterior pdf of 6, which can be written as®

p(6|®r)xp(0)p(Dr|6), (5)

where p(®;|60) is the pdf for the observations given the parameters, known
also as the likelihood function of 6, and p(6) denotes the prior pdf for 6. The

4 This conditional Bayesian decision approach is discussed further in subsection D. See also
Berger (1985).
5 See Zellner (1971, p. 14.)
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prior pdf represents the investor’s knowledge about the parameter vector
before observing the sample information. Since it is impossible to specify one
prior that would be appropriate for all investors, in this study we consider a
number of prior distributions, including noninformative as well as informative
priors.® To obtain the predictive pdf for r;.,, the posterior in (5) is first
multiplied by p(r;, 1|6, ®;) the likelihood function for the future observation,
to obtain

P(rri1,0/®7) = p(reiq|0,®7) - p(0|Dy). (6)

Integration of this joint density in (6) with respect to 6 then gives the desired
predictive pdf,

p(rrer, 6|CDT)d0 :f P("T+1|9, q)T)'p(GICDT)dO,

0

P("T+1|CDT) = f
®

(7)

which does not depend on 6.

The expected-utility maximization in (4) is a version of the general Bayesian
one-period control problem.” Beginning with Klein and Bawa (1976), a number
of studies have computed optimal portfolios in a one-period conditional Bayes-
ian framework where the investor uses a model (likelihood function) in which
returns are assumed to be identically and independently distributed (i.i.d.).8
This study analyzes a portfolio decision where the investor instead uses a
model in which returns can possess predictability.

B. Economic Significance of Stock-Return Predictability

Our principal approach to assessing the economic significance of the sample
evidence on predictability is to analyze the sensitivity of the optimal allocation
to the value of the most recent observation of the predictive variables included
in @. In other words, the optimal allocation w*, the solution to (4), is compared
to a suboptimal allocation ”, the solution to (4) when the sample ®; is
replaced by a different hypothetical sample ®%. The most recent observation of
the predictive variables in ®% is different from that in @, but ®%is essentially
identical to ®; in other respects, in the sense that

p(6|®%) = p(6|Dy). (8)

% For a review of noninformative and informative priors see, for example, Judge et al. (1985).

7 See Zellner (1971, pp. 320-327).

8 See also Brown (1979), Jobson, Korkie, and Ratti (1979), Jobson and Korkie (1980), Jorion
(1985, 1986, 1991), and Frost and Savarino (1986). Another approach is explored by Grauer and
Hakansson (1992), who maximize expected utility using a historical series of returns as the
possible outcomes in a discrete predictive distribution, where each historical outcome is mean-
adjusted using a Bayesian estimator of expected returns.
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Differences between w* and w® reveal the degree to which the sample evidence
about stock-return predictability plays a role in the investor’s asset-allocation
decision.

Additional insight into the economic significance of the sample evidence can
be obtained by comparing the investor’s expected utility associated with the
optimal allocation w* to the expected utility associated with the suboptimal
allocation w®. The expected utilities for both allocations are computed using
the single predictive pdf, p(Rr, | ®r), and these expected utilities are com-
pared in terms of the investor’s certainty equivalent return (CER) for each
allocation.? A previous use of certainty-equivalent comparisons to assess the
economic significance of empirical evidence is provided by McCulloch and
Rossi (1990), who employ a conditional Bayesian decision framework in an
investigation of the Arbitrage Pricing Theory (APT) of Ross (1976). They
compare an investor’'s CER for a portfolio that is optimal under beliefs that a
linear factor-pricing model holds exactly to the CER for a portfolio that is
optimal under beliefs that allow for departures from an exact linear pricing
relation. In each case, they compute an optimal portfolio and CER using the
predictive pdf obtained under the given set of beliefs. In other words, they
compare expected utilities computed using two different probability distribu-
tions, and their approach differs from ours in that key respect. We compute
certainty equivalents for the optimal and suboptimal portfolio allocations
using one common probability distribution, since it is difficult to interpret
differences in expected utilities (or certainty equivalents) computed under
different distributions.

C. A Simple Example

In this subsection, we use a simple example to illustrate the manner in
which the results of the asset-allocation decision can reveal the economic
significance of sample evidence about return predictability. This example is
also used in the next subsection in a discussion of the differences between the
conditional Bayesian decision approach and other approaches often used to
characterize the sample evidence.

Consider an investor with logarithmic utility (A = 1). Assume that the
riskless rate is zero and that the simple rate of return on the stock in any
month ¢, R,, is either 40 percent or —40 percent. In addition to past stock
returns, the investor’s sample contains realizations of a random state variable,
s,_1. We label the two possible realizations of this state variable as s, ; = 1
(“state 1”) and s,_; = 2 (“state 2”). The parameter vector is given by 6 = (6,, 6,),

9 A CER is interpreted as the monthly rate of return on wealth that, if earned with certainty,
would provide the investor with utility equal to the expected utility v for the given allocation. In
general, the CER is obtained by solving the equation

v(Wr(1 + CER)) = v,

where v is the utility function in (3).
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where 6; is the probability that, conditional on observing s,_; = i at the
beginning of month ¢, the subsequently observed stock return in month ¢ will
be 40 percent. The investor assumes that 6, and 6, are constant over time. The
state variable s,_; is assumed to be identically and independently distributed
over time, independent of past returns, and drawn from a binomial distribu-
tion whose parameter is independent of the 6,’s.

The investor’s prior joint distribution assumes the parameters 6; and 6, are
independent, p(6,, 6,) = p(6;) - p(6,), and the marginal prior distribution
for each 6; is given by

0;(1 - 6;)]!
p(6;) = [—(BW))*]—, i=1,2, (9)
where ¢ = 1 and B( - ) is the “Beta” function. The prior joint distribution for 6,
and 6, implies a prior distribution for the difference (6; — 6,), and the latter
distribution reflects the investor’s prior beliefs about the extent to which stock
returns can be predicted using the state variable. We consider three values of
c for the prior distribution in (9):¢ = 1,¢ = 6, and ¢ = 21. When ¢ = 1, the prior
distribution for each of the 6,’s is the Bayes-Laplace uniform prior on (0, 1). As
c increases, the prior distribution becomes more concentrated around 0.5. The
implied prior distributions of (6; — 6,), for the three values of ¢, are numeri-
cally evaluated and displayed as dashed curves in Figure 1. The larger is ¢, the
more concentrated around zero is this prior distribution, and the more
weighted against predictability are the investor’s beliefs.
The investor’s data set @, consists of ¥, a sample of T pairs of past
realizations of the state variable and the subsequent stock return, and s, the
state observed at the end of the most recent month T

®Op={¥r, s}. (10)

In our example, the sample ¥, includes T = 16 pairs with 7, = 8 months for
each state, and these sample data can be represented by a 2 X 2 contingency
table:

State 1 State 2

R =40% 6 4
R =-40% 2 4

Conditional on observing state i at the beginning of each of T; months, the
probability that the 40 percent stock return will be realized in M, of those
months is given by the binomial likelihood function,

T.
p(Mi|0i7 TI,) = (ML) 9?4,(1 - ei)T’7M17 l = 17 2 (11)
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Figure 1. Prior and posterior distributions for (8, — 6,). The plot displays, forc = 1,¢ = 6,
and ¢ = 21, the prior distribution (dashed curve) and the posterior distribution (solid curve) for the
quantity (8; — 6,). In the two-state, two-outcome example, 6; is the probability of the high-return
(40 percent) outcome, conditional on observing state i, and the parameter ¢ determines the
strength of the prior beliefs that 6, = 6, = 0.5.

Combining the prior distribution in (9) with the likelihood function in (11)
yields the marginal posterior distribution for 6;, a Beta distribution:10

p(0i|ch) =p(6i|WT) =p(9i|Mi, T;)

9ML+C_1( 1 -0 ) T,—M,+c—1

T B((M; +¢), (T;— M, + ¢))’

i=1,2. (12)

10 See Zellner (1971, p. 39).
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The investor’s posterior beliefs about the predictability of stock returns are
reflected in the implied posterior distributions for the difference (6, — 6,).
These distributions are numerically evaluated and displayed, for the three
values of ¢, by the solid curves in Figure 1. All of these posterior distributions
center at positive values, but, the larger is ¢, the closer is the posterior
distribution of (8; — 6,) to the prior distribution (which is centered at zero).

Conditional on observing state j at time T, the predictive distribution of the
stock return at time T' + 1 is a binomial distribution, where p denotes the
predictive probability that the return will be 40 percent. To obtain p, first note
that

P(Rpi1=40%|Pr={¥y, sp=j}, 6) = 0, (13)
and then substitute (13) into (7) to get

p=pRr,= 40%|CI)T ={¥r, sr =Jjb

= jp(RT+l = 40%|®r, 6,) - p(0/Pr)d6; (14)

= Jej'p(GA(I)T)dOJ

(T + 2¢)°

With this binomial predictive distribution for Ry, ;, the investor’s optimization
problem in (4) becomes

max [p In(1 + 0.4w) + (1 — p)In(1 — 0.4w)], (15)

O=w=1

and its solution is

0 if(2p-1)=0
2% — 1\ . )
w* = W if0<(2p—-1)<0.4 (16)
1 if(2p—1)=0.4.

In the sample ¥, given in our example, My, = 4 and T, = 8, and we see from
(14) that, when s; = 2, p = 0.5 for all values of ¢ in the prior. Since the
predictive distribution of the stock return in this case is symmetric around
zero, any risk-averse investor refrains from investing any money in stock when
sy = 2. (Recall that the riskless rate is zero.) It is easily verified from (16) that
o*=0atp = 0.5.
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If s; = 1, however, then the predictive probability p is greater than 0.5, and
the optimal stock allocation w* is positive. Specifically, since M; = 6 and T; = 8
in the sample ¥, we see from (14) that p = (6 + ¢)/(8 + 2¢). This value of
P is given below for each value of ¢, along with the optimal allocation w* from
(16), the expected stock return

Rpy= E{Rpa|®g} = p- 40% + (1 - p) - (~40%), (17)

and the corresponding expected monthly return on the optimal portfolio,

Rp = w*'RT+1. (18)
¢ p Ry, o R, ACER
1 070 0.16 100 0.16 0.0858
6 060 008 050 0.04 0.0203
21 054 0032 020 0.0064 0.0032

The values in the last column will be discussed later.

The above results demonstrate the potential economic significance of stock
return predictability. Although the investor’s prior beliefs about the 6;’s are the
same for the two states, and although the sample contains only eight obser-
vations for each state, the investor’s optimal portfolio differs significantly
across the two states. For a prior with ¢ = 1, the sample evidence leads the
investor to choose a stock allocation of 100 percent if state 1 is observed but
zero if state 2 is observed. As ¢ increases, so that prior beliefs become weighted
more heavily against predictability, the stock allocation for state 1 decreases,
but it is still 20 percent for ¢ = 21.

In this two-state example, the certainty-equivalent comparison discussed
earlier is conducted as follows. For a given state s; = j, we compare the
investor’s CER for the optimal allocation to the investor’s CER for a subopti-
mal allocation, where the latter allocation would have been optimal had state
i # j occurred. The CER for both allocations is computed under the same
probability distribution, the predictive pdf for s; = j. We report this compar-
ison here for s; = 1, so in the notation introduced in the previous subsection,
Qr={Vp, 57 =1} and ®F = (¥, sy = 2}. It is easily verified from (12) that
the condition in (8) is satisfied. The allocation w*, optimal when s; = 1, is
compared to a suboptimal allocation of »® = 0 (the optimal allocation if s = 2).
The difference between the CER of w* and the CER of »® is given above as
ACER for each of the three values of ¢. This measure ranges from 8.58 percent
when ¢ = 1 to 0.32 percent when ¢ = 21. In all three cases, however, ACER is
more than half of the expected return on the optimal portfolio, providing an
illustration of the potential economic significance of sample evidence on stock-
return predictability.
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D. Economic Significance, Statistics, and Conditional Bayesian Decisions

In academic research, empirical evidence about the predictability of stock
returns is often evaluated in terms of standard test statistics.l! In general,
these test statistics are defined with respect to the point null hypothesis that
returns are unpredictable, and the strength of the empirical evidence is often
assessed by examining a test’s p-value. Some readers of a published study
might wish to make a formal accept/reject decision about a hypothesis, but we
suggest that the p-value is probably more often interpreted as a continuous
measure of the strength or reliability of the evidence.l? Similarly, in our
analysis, the investor’s allocation decision does not involve accepting or reject-
ing a specific hypothesis or, more generally, selecting a model from a set of
possible models. The investor’s problem is to select a portfolio, not a model.
Moreover, we doubt that our approach would be very helpful to a researcher
whose goal is hypothesis testing or model selection, whether from a Bayesian
or frequentist perspective.13 Rather, our objective, as stated earlier, is simply
to use the asset-allocation decision as a metric by which to assess the economic
importance of the empirical evidence on predictability, and we find that such
an assessment often contrasts with those based on p-values or other standard
statistical measures.14

Interpretations of p-values no doubt differ across readers, with some readers
attaching more importance than others to reported p-values of, say 1 percent,
but we suggest that p-values of 30 percent or more, if published, would
probably not be taken seriously by many readers as evidence of stock-return
predictability. The potential contrast between such a p-value and an outcome
of a conditional Bayesian asset-allocation decision is easily illustrated in the
context of the simple example presented above. Fisher’s exact test for the 2 X 2
contingency table is used to construct a p-value associated with the null
hypothesis of no predictability, 6; = 6,.15 This test is based on the conditional
distribution of M; (the number of periods with a 40 percent return following
state 1) given the two-way table’s row and column sums. A one-tailed p-value
is computed as the probability of getting M; = 6, which equals 0.304 in the
previous example. The typical interpretation of such a p-value contrasts

1 For a recent review of the literature on stock-return predictability, see Kaul (1995).

'2 Reporting the p-value as a flexible measure of the evidence, as opposed to rejecting or
accepting a null versus an alternative, is generally associated with the views of R. A. Fisher, in
contrast to the views of Neyman and Pearson generally associated with the accept/reject decision.
See Fisher (1973). .

13 For a Bayesian approach to testing the hypothesis of return predictability, see Kothari and
Shanken (1995).

14 A separate issue regarding the interpretation of p-values arises in a contrast between
Bayesian and frequentist approaches to hypothesis testing. For example, Shanken (1987) presents

.a scenario in which any p-value less than 0.46 would, based on a Bayesian posterior-odds ratio,
constitute evidence against a null hypothesis of portfolio efficiency. See Lindley (1957) for an early
discussion of this issue.

5 See Kendall and Stuart (1979).
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sharply with the economic significance of stock-return predictability as re-
flected in the investor’s asset allocation decisions.6

Another example of a contrast between a p-value and the economic signifi-
cance of sample evidence can be constructed using results reported by Brown
(1979), who examines asset-allocation in an i.i.d. setting. In a stocks-versus-
cash allocation decision, Brown compares wg, the optimal stock allocation
chosen by a Bayesian investor with noninformative prior beliefs, to w, the
allocation that would be optimal if sample estimates were simply treated as
true parameters. For example, if the Sharpe ratio of stocks computed using a
sample of 16 monthly (simple) returns is 0.2, Brown reports that wg/ws =
0.82.17 Brown does not examine measures of statistical significance, but it is
easily seen that, with a sample Sharpe ratio of 0.2 and 16 observations, the
t-statistic for the hypothesis of a zero expected excess stock return is equal to
V16 - (0.2) = 0.8, and the one-sided p-value is 0.22. This p-value contrasts
sharply with the economic significance of the unconditional equity premium as
reflected in the investor’s asset allocation decision. That is, even though the
sample evidence for a non-zero unconditional equity premium seems weak,
when judged by the p-value, the investor, rather than allocating his entire
portfolio to cash, chooses a stock allocation equal to 82 percent of the allocation
that would be chosen if the true Sharpe ratio were known to be 0.2. Although,
to our knowledge, the potential contrast between p-values and asset alloca-
tions in an i.i.d. setting has not been previously noted, such a comparison is
distinct from the question of whether the most recent values of a set of
predictive variables should impact the investor’s asset allocation, which is the
question we address in assessing the economic significance of stock-return
predictability.

In computing optimal asset allocations and comparing certainty equivalent
returns, we compute expected utility with respect to the Bayesian investor’s
predictive pdf. Thus, expected utility is as perceived by the investor, condi-
tional on the data set @, and the relative desirability and optimality of an
allocation is judged based on that conditional expected utility. Given the
investor’s prior beliefs, the optimal allocation w* is determined by the data,
and we can denote such a dependence as w*(®;). Intentionally omitted from
our investor’s asset-allocation decision, however, is a consideration of the
“typical performance” of w*(®,) when applied repeatedly to data sets gener-
ated randomly from a given distribution. The performance in repeated samples
of the decision rule w*(®;), where the data set ®,is viewed as random, invokes
the frequentist concept of “risk.” The risk function of a decision rule, defined on

16 The contrast between the p-value and economic significance in that example is not restricted
to cases where the number of observations is small. If, instead of the 16-observation sample, there
are T = 200 observations with T; = 100 observations per state, M, = 56, and M, = 50, then the
one-tailed p-value is 0.24. The stock-allocation is 0 percent in state 2, whereas the stock allocation
in state 1 ranges from 29 percent when ¢ = 1 to 21 percent when ¢ = 21.

17 This result obtains with both the quadratic and negative exponential preferences considered
by Brown. The Sharpe ratio is defined as the ratio of expected excess return to the standard
deviation of the return.
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the parameter space 0, is equal to the expected utility (or loss) with respect to
the joint probability distribution of ®, and r;.;, as determined by a given
value of 6.

The frequentist risk function is often used to compare the performance of
decision rules, or to compare models that give rise to different rules. For some
values of 6, such as when 6; and 6, in the previous example are sufficiently
close to each other, an asset-allocation decision rule based on an i.i.d. model,
wherein the investor ignores the predictive state variable and simply pools the
returns data, might have lower frequentist risk than the decision rule in (16)
based on the two-state model. For other values of 6, where 6; and 6, are
sufficiently far apart, the two-state decision rule might have lower frequentist
risk. In general, selecting the decision rule with the lowest frequentist risk
requires knowledge about the parameter vector 6, and neither we nor the
investor know the true value of 6. The frequentist repeated-sampling criterion
can be related to a conditional Bayesian decision in the following sense.
“Averaging” the frequentist risk function over different values of 6, or more
formally, integrating the risk function over the prior pdf for 0, gives the Bayes
risk of the decision rule. If this integral is finite, then the conditional Bayesian
decision rule will also minimize Bayes risk.!8

II. Asset Allocation Based on Regression Evidence
A. The Conditional Distribution of the Stock Return

The continuously compounded excess stock return r, is the dependent vari-
able in the regression

re=xi1b + €, (19)

where x;_; = (1 y,_,), and the N X 1 vector y,_; contains N “predictive”
variables that are observed at the end of month ¢+ — 1. The disturbances
g, t =12 ..., T, are assumed to be independent mean-zero draws from a
normal distribution with variance o>. Although we assume E{¢,|x,_;} = 0, the
vector y,_; is in general stochastic, and some elements of y,_; can be correlated
with past disturbances.'® Such correlation obviously arises when y,_; contains
lagged values of r,, but it is likely to arise more generally for many variables
commonly used to predict stock returns. For example, numerous previous
studies specify y,_; to include the dividend yield at the end of month ¢t — 1,
which is likely to be negatively correlated with the unexpected return in that
month, €, ;.20 Thus, the regression in (19) departs somewhat from the stan-

'8 See Berger (1985) for extensive discussions and comparisons of frequentist and Bayesian
decision principles.

19 See Stambaugh (1986) and Nelson and Kim (1993) for treatments of this problem in a
frequentist setting.

20 The first study to investigate the ability of dividend yields to predict stock returns is, to our
knowledge, Rozeff (1984). Later studies include Fama and French (1988) and Goetzmann and
Jorion (1995).
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dard Bayesian regression framework, in which y,_; is assumed to be either
nonstochastic or stochastic but distributed independently of the disturbances
with a distribution involving neither 4 nor o_.2!

Our approach to allowing for the stochastic properties of the regressors is to
assume that r, is the first element of y, and then to model y, as a first-order
vector autoregression (VAR). That is, we assume

Ye=xi4B + uy, (20)

where B is an (N + 1) X N matrix of regression coefficients whose first column
is b, and u, is an N-vector of disturbances whose first element is €, Such a VAR
representation was proposed previously by Kandel and Stambaugh (1987) to
model the predictability of stock returns.22 We assume that the vectors u,, t =
1, ..., T, are independent mean-zero draws from a multivariate normal
distribution with a covariance matrix equal to Z. The T observations for this
VAR are represented in the matrix notation,

Y =XB + U, (21)
where
Y1 Yo uh
Yo Y us
Y=|- |, X=]|- - |, andU=| - |. (22)
v 1 yp uh

The joint probability density function for the elements of U is given by
" 1
p(U|2)x|Z|" T2 exp[ —g tr U’UE‘I], (23)

where “tr” denotes the trace operator. Following an approach common to many
Bayesian time-series models, our analysis takes the initial observation y, as
effectively nonstochastic.28 In other words, we essentially assume that the
investor’s prior beliefs about the model’s parameters do not depend on y,, even
though the investor’s information set @, includes both the “pre-sample” ob-
servation y, as well as the “sample” observations y;, . . ., yr. (Note that, other
than y, and a vector of ones, X simply contains the first 7' — 1 rows of Y.) A
change of variables from U to Y gives the likelihood function,

1
p(Y|B, 2, xo)x|=| ™2exp ) tr (Y - XB)'(Y — XB)E”] , (24)

21 See, for example, Zellner (1971, page 59) for the assumptions in the standard Bayesian
regression model.

22 See also Campbell (1991) and Hodrick (1992).

23 See, for example, Hamilton (1994, p. 358).
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since the Jacobian of the transformation from U to Y is equal to unity.?*
The following sample statistics for the above model are useful in the subse-
quent analysis:

Ly
r=m 2, T (25)
Tt=1 ‘
1 T
6l= 2 (r,— 13, (26)
T t=1
1 T-1
Y= 2 Yis (27)
T t=0 t
R 1 T-1
Vi=7 2 (0 =3:=9), (28)
t=0
b=X'X) X'y = [r_if y} (29)
(r — Xb)'(r — Xb)
2 _

and r is the first column of Y.

The remaining assumption necessary in obtaining the conditional distribu-
tion of the stock return is the specification of the investor’s prior beliefs about
the model’s parameter values. We consider two alternative specifications. In
the first, we assume that the investor’s beliefs are given by the “diffuse” prior,

p(B, Z)x|Z|~ W22, (81)

which is intended to represent vague or noninformative prior beliefs about the
parameters.25 With this prior distribution and the likelihood function in (24),
the predictive pdfis easily obtained from known results (see Appendix, part A).

24 Define the TN X 1 vectors & = vec(U) and § = vec(Y), where vec( ) creates a column vector
by stacking the (transposed) rows of the matrix. It is then easily verified that the Jacobian of the
transformation from U to Y equals unity, since the TN X TN matrix di'/3y is lower triangular with
all diagonal elements equal to unity.

25 This prior specification for B and X can be found, for example, in Zellner (1971, chapter 8),
who discusses its foundations in the invariance theory due to Jeffreys (1961). As Zellner also
discusses, one result often obtained using such priors is that confidence regions for parameter
values obtained from the posterior distribution correspond closely to frequentist confidence regions
for parameter estimators.
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When T > 2N + 1, the predictive pdf for r;,., is given by a Student ¢
distribution and can be written in terms of y, and the above sample statistics:

v+ 1)/2]/ 1 V2 1 \(rpey — pp)?] 002
prral®n) = FEmF(w2)\ (v = z)(@) [1 * (V = 2) ; ]

’

ar
(32)
where
pr = E{rr.|®q = é r—%), (33)
2 T R?
0T=var{rT+1]<DT}=m(l R?»| 1 +—(1 +q) (34)
q= (yT_&),V;l(yT_&), and (35)
v=T—-2N. (36)

In the second specification of the investor’s prior beliefs, we construct the
prior distribution as a posterior distribution for the parameter values that
would result from combining the diffuse prior in (31) with a hypothetical
“prior” sample of size T, in which the sample R-squared is exactly equal to zero.
Except for this no-predictability feature, the hypothetical prior sample is
assumed to be otherwise similar to the actual sample, in that the prior sample
is assumed to produce the same values as the actual sample for the statistics
corresponding to 7, 62, ¥, and V 26 With this “no-predictability” informative
prior, the predictive pdf for ;. 1s by basic principles of Bayesian analysis, the
same as that obtained using the diffuse prior and a sample of size T* =T + T,
that combines the actual sample with the hypothetical prior sample. Thus, the
predictive pdf is in precisely the same form as (32), where u,, o2 and v,
although redefined, are still written in terms of y, and the same sample
statistics in (25) through (28):

T\ .
pr= E{re| & =7 + (ﬁ) B'(yr—3), (37)

C T T \? ) 1 s
o%=var{rT+1|®T}=m 1- ﬁ R 1+ﬁ(1+q) oy, (38)
v=T%*—2N. (39)
Note that, since y and Vy are assumed to be the same in the actual and

hypothetical samples, q is still defined as in (35).

26 Using statistics from the actual sample to supply some of the parameters for the prior
distribution can be termed “empirical Bayes,” at least under the broad interpretation of that
classification. See, for example, Maritz and Lwin (1989, p. 14).



On the Predictability of Stock Returns 401

The strength of the “no-predictability” prior is determined by T, the size of
the hypothetical prior sample. In Part B of the Appendix, we report an inves-
tigation of the marginal prior distribution of R?, the true population R-squared
for the excess-return regression in (19). When T, is held fixed across different
values of N, we find that, as N increases, the prior assigns greater mass to
higher values of R2. In the analysis below, we investigate the asset-allocation
decision across a range of values for N. It seems desirable that the results
based on the informative prior not be driven by differences in prior beliefs that
depend on N. Thus, our objective is to specify T, such that the implied priors
for R? are similar across various specifications of N. We find that this objective
is satisfied better by specifying T, as an increasing function of N, calculated as
follows. The number of distinct parameters in B and T is equal to 32NN + 1),
and the number of data entries in the hypothetical prior sample of 7\, months
is N+ Ty. In all of the calculations reported below, we set T, = 75+ (N + 1),
which is equivalent to 50 data entries per parameter. The number of variables
that we consider ranges from 2 to 50, so the size of the hypothetical prior
sample ranges from 225 months (18.75 years) to 3825 months (318.75 years).

It is easily verified that the quantities B'(y; — ) and q = (yp — y)’v; 1
(y7 — y) are invariant with respect to nonsingular linear transformations of y,.
Therefore, under either specification of the prior distribution, w;, or, and
hence the predictive pdf for r;,,, are invariant with respect to nonsingular
linear transformations of y, in which the first element of the transformed
vector remains r,. In other words, the predictive pdf for r;, ; is unaffected by
the degree of contemporaneous correlation among the N predictive variables.

The predictive variance 0%, in both (34) and (38), incorporates uncertainty
about parameter values, i.e., estimation risk.2” Suppose that we hold constant
the values of the sample statistics in (25) through (30). Given the number of
predictive variables, N, and their most recent values, y;, the predictive vari-
ance o% approaches (1 — R%)62 as T becomes large. In a finite sample, the
positive difference between o% and that limiting value reflects the presence of
estimation risk. Uncertainty about the parameters also results in a positive
relation between o7 and the distance of y, from the sample mean y, as
measured by q. In this sense, the predictive pdf for r;, ; exhibits conditional
heteroskedasticity. This source of heteroskedasticity is distinct, however, from
conditional heteroskedasticity incorporated in the likelihood function (regres-
sion model). The latter extension would be an interesting direction for future
research. Finally, note that, given T and y,, the predictive variance is increas-
ing in N, due to the presence of the term —2(IN + 1) in the denominator of both
(34) and (38). This effect is analogous to that in the standard frequentist
setting for a multiple regression with N + 1 regressors (including the inter-

27 A number of previous studies investigate the economic significance of stock-return predict-
ability by examining the performance of asset-allocation strategies constructed by essentially
treating sample parameter estimates as true values. See, for example, Breen, Glosten, and
Jagannathan (1989), Solnik (1993), and Lo and MacKinlay (1995).
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cept), where the unbiased estimate of the residual variance is obtained by
dividing the sum of the squared fitted residuals by 7' — N — 1.

B. Computing Optimal Asset Allocations

The predictive pdf in (32) is the conditional distribution used in computing
expected utility, E{v(W,,,)|®;}. To our knowledge, this study is the first to
report calculations of optimal portfolio allocations in a non-i.i.d. setting using
a regression-based predictive pdf. Such a calculation was proposed much
earlier, however. Zellner and Chetty (1965) suggest using a regression-based
predictive pdf to compute investment portfolio weights that maximize expected
utility, although they do not specify a utility function or perform such calcu-
lations.28 We discuss in this subsection a number of issues related to comput-
ing the optimal asset allocations.

Given the Student ¢ form for the conditional distribution p(r;,;|®;), the
integration in (4) extends from —o to «. As noted earlier, we restrict attention
in this study to asset allocations that do not involve short selling either the
risky or riskless asset, i.e., the stock allocation w obeys 0 = w = 1. When A >
1, expected utility is equal to —o when o = 1, although the optimal w can be
very close 1.22 We simply restrict o = 0.99 throughout. The maximization
problem is solved numerically, since we are unaware of an exact analytic
solution.3? In virtually all cases, however, the optimal allocation to stocks is
well approximated by

_ M 1
v RETY

Nk

(40)

28 In fact, Zellner and Chetty (1965) specify a multivariate regression model with a diffuse prior
identical to (31). In their framework, however, all regressors are assumed to be nonstochastic, and
the N equations in the multivariate regression result from the consideration of N assets. In our
single-asset framework, the N equations reflect the use of N stochastic regressors.

29 When o < 1, wealth is bounded above zero, so that utility, and thus expected utility, are
bounded from below. When w = 1, wealth can be arbitrarily close to zero, so that utility is
unbounded from below. In that case, the lower tail of the predictive pdf does not shrink rapidly
enough as utility approaches —, and this property essentially reflects the leptokurtosis of the
Student ¢ distribution. The integral exists in the limit as 7' — o, in which case the predictive
Student ¢ pdf converges to its limiting normal distribution. In a similar vein, although the
moments of the simple rate of return R, ; = exp(r;,,) do not enter our analysis, the conditional
mean and variance of R, ; do not exist when T is finite, which follows from a similar observation
about the moment-generating function of the Student ¢ distribution, as noted in Kendall and
Stuart (1977, p. 63). The nonexistence of certain integrals under the Student ¢ distribution enters
more directly in earlier studies that use simple returns. Brown (1979), for example, encounters the
nonexistence of expected utility for any nonzero allocation to stocks when utility is specified as
negative exponential, so he defines expected utility in that case using a normal approximation to
the Student ¢ predictive pdf.

30 The numerical solution is obtained using Brent’s method with parabolic interpolation for the
maximization and an adaptive recursive Newton-Cotes eight-panel rule to evaluate the integral.
See Brent (1973), Forsythe, Malcolm, and Moler (1977), and Press et al. (1986).
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subject to the [0, 0.99] bounds. Equation (40) gives the exact solution when the
investor rebalances continuously, the instantaneous interest rate is a constant
ir+1, and the continuously compounded stock return over the discrete period
from T to T' + 1 has mean p; + iy, 1, variance o7, and is an infinitely divisible
normal random variable.3! If (40) is rewritten slightly as

ay _ O T T

w* = ——AU% , (41)
where oy = up + ¥%20% + ip, q, the expected instantaneous rate of return on the
stock, then ®* is seen as a familiar mean-variance result.

As will be discussed in a later subsection, we analyze optimal asset
allocations for a variety of samples that differ with respect to sample size
(T), number of predictive variables (N), and the regression R2. The remain-
ing sample quantities required to construct the predictive pdf are 7, &, iz,
(the riskless interest rate for month 7' + 1), B'(y, — ¥), and g = yr — )
V; Y(yr — ¥). The first three quantities, 7, &,, and ir4+1, are held constant
across all samples. We set 7 = 0.49 percent and &, = 5.60 percent, the
sample estimates for the 804-month period from January 1927 through
December 1993 using the continuously compounded monthly return on the
value-weighted portfolio of the New York Stock Exchange in excess of the
continuously compounded one-month T-bill rate, and we set ip,; = 0.235
percent, the continuously compounded monthly yield on the Treasury bill
with 27 days to maturity as of 12/31/93.32

For each specification of T, N, and R?, we wish to investigate the behavior of
the optimal stock allocation w* over a range of values for the vector of predic-
tive variables, y;. The value of y, enters g, as will be discussed below, but the
key role for y;, is in determining the one-step-ahead fitted value from the
regression, 7 + B'(yT — ¥). Thus, rather than specifying completely the vector
yr, we simply specify a value for B'(y; — ). This difference between the fitted
regression value and the sample average return can be stated in units of
the fitted values’ sample standard deviation. The series of in-sample fitted

regression values, 7 + B'(y, — ), ¢t =0, ..., T — 1, has sample standard
deviation equal to VR25,. We specify & such that
B'(yr—7) = 8 R%,. (42)

That is, the fitted value of r,,; based on y; is specified as being & sample
standard deviations of the fitted values away from the overall sample mean,
7. We compute the optimal allocation w* for five specifications of 8: —1.0, —0.5,

31 A random variable is “infinitely divisible” if, for all n, the random variable can be expressed
as a sum of n independent and identically distributed random variables. See Ingersoll (1987,
chapter 12). The derivation of (40) is a straightforward application of results contained in Merton
(1969), and an expression equivalent to (40) also arises as a solution to a special case of the
dynamic consumption-investment problem analyzed in that study.

32 The stock returns and T-bill rates are obtained from the CRSP files.
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0, 0.5, and 1.0. An alternative approach would he to consider a fixed range of
values for the fitted excess return, say 7 plus or minus 100 basis points, but
this approach gives a range of fitted values that is too modest when R? is high
and too extreme when R? is low. With R? = 0.15, for example, the in-sample
standard deviation of the fitted values is 217 basis points, so a fitted value for
rr..1 might easily lie well outside the 100-basis-point range. On the other hand,
when R? = 0.002, the standard deviation of the fitted values is only 25 basis
points, so it would be quite unlikely that a fitted value would differ from 7 by
as much as 100 basis points. The samples we consider in the subsequent
analysis include a broad range of R? values, so calibrating a range for the
current values of the predictive variables using & produces a plausible set of
one-step-ahead fitted predictions that might arise from a given regression.
The quantity ¢ = (y, — y)’V; Yy, — ¥) summarizes the “standardized”
differences between the current values of the predictive variables and their
sample means. We consider samples where the number of observations (7) and
the number of predictive variables (V) cover a wide range. Since our analyses
of these various cases do not employ actual data, our aim is to specify a
reasonable value of g for a given combination of 7' and N. If N = 1, then ¢ is
determined uniquely by the deviation of the fitted one-step-ahead regression
prediction from the overall mean. Specifically, if N = 1 then g = §%, where § is
defined as in (42). For N = 2, however, this simple correspondence between q
and the fitted regression prediction no longer exists. In general, for a given
value of 8, ¢ has a lower bound of 8 but no upper bound. We consider only
samples in which N = 2, so we simply specify, for a given T and N, a value of
q that is constant across different realizations of y,. If ¢ is held constant across
realizations of y;, then a larger value of ¢ produces smaller differences be-
tween optimal stock allocations at different one-step-ahead fitted regression
predictions. This effect can be seen most easily by noting that 0% appears in the
denominator of @* in (40), and o% is increasing in g (equation (34) or (38)).
Given this study’s orientation, we wish to be conservative in representing the
differences in optimal allocations arising from different realizations of the
fitted regression prediction, so we wish to select a value for g from the high end
of its plausible range. The sampling distribution for ¢ depends on the degree of
serial dependence in the elements of y,, with positive serial dependence lead-
ing to larger values for q.33 Here again we follow a conservative approach. For
each T and N, we take g as the 99th percentile of a Monte Carlo distribution
for 5000 samples generated with each element of y, following an AR(1) process
with normal disturbances and autocorrelation coefficient equal to 0.99.34

33 This statement is based on our Monte Carlo evidence. We are unaware of an analytic
finite-sample result in the presence of serial dependence.

34 We generate y, with a zero mean vector and a scalar variance-covariance matrix, but this is
without loss of generality, since, as. noted previously, g is invariant under nonsingular linear
transformations of y, The effect of autocorrelation on the sampling distribution of g can be
substantial. If y,,y;, . . ., yr are serially independent draws from a multivariate normal distribu-
tion, then (T — N)/(N(T + 1)) q is distributed as Fy r_y. See, for example, Anderson (1984,
chapters 5 and 7). In that i.i.d. case, the 99th percentiles of ¢ when T' = 804 are equal to 9.2 with
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Table I

Optimal Stock Allocations and Comparisons of Certainty
Equivalents with 804 Observations and 25 Variables

Optimal stock allocations and certainty equivalents are computed with respect to a Bayesian
investor’s predictive pdf based on regression evidence in which the (unadjusted) sample R-squared
is equal to R2. The fitted one-month-ahead regression prediction of the excess stock return, ry, 1,
is & sample standard deviations of the fitted values away from the sample average excess return
7. The investor’s relative risk aversion is equal to A. The “Comparison of Certainty Equivalents”
gives the difference in certainty equivalent monthly returns between the optimal allocation and
the allocation that would have been chosen for § = 0. The p-value is computed for the hypothesis
that the regression’s slope coefficients are jointly equal to zero. The no-predictability informative
prior is equivalent to a posterior that combines diffuse prior beliefs with a hypothetical 7\;-month
sample in which all estimated slopes are exactly zero. T, is specified such that the hypothetical
sample contains 50 data entries per parameter, which gives 7\, = 1950 when N = 25.

Comparison of Certainty

Optimal Stock Allocation Equivalents (basis pts.) for &
(percent) for § Equal to Equal to
R2 p-value A -1 -0.5 0 0.5 1 -1 -0.5 0.5 1.0

Panel A: Diffuse prior

0.025 0.75 1 0 57 99 99 99 38.6 6.0 0.0 0.0
0.025 0.75 2 0 28 61 93 99 28.5 7.2 7.2 24.0
0.025 0.75 5 0 11 24 37 50 114 2.9 2.9 11.5
0.055 0.01 1 0 25 99 929 99 80.8 18.1 0.2 0.3
0.055 0.01 2 0 12 62 99 99 55.8 16.3 15.3 39.9
0.055 0.01 5 0 5 25 45 65 22.2 6.5 6.5 26.1
Panel B: No-predictability informative prior
0.025 0.75 1 99 99 99 99 99 0.0 0.0 0.0 0.0
0.025 0.75 2 53 68 83 99 99 4.0 1.0 1.0 3.0
0.025 0.75 5 21 27 33 39 46 1.6 04 0.4 1.6
0.055 0.01 1 76 99 99 99 99 1.1 0.0 0.0 0.0
0.055 0.01 2 38 61 84 99 99 8.9 2.2 1.9 49
0.055 0.01 5 15 24 33 43 52 3.5 0.9 0.9 3.5

C. Results with T = 804 and N = 25

Table I reports optimal asset allocations in samples with 7' = 804 observa-
tions and N = 25 predictive variables. As noted in the introduction, although
this number of predictive variables is large by many standards, we analyze
this case in order to provide some perspective on the impact of potential
data-mining concerns. Results are presented for two different outcomes for the
unadjusted sample R%, 0.025 and 0.055. Under standard assumptions for a
regression model, these R? values produce p-values of 0.75 and 0.01. Each
p-value is the probability of observing a sample with an R? greater than the

N = 2 and 46.2 with N = 25. The 99th percentiles of the simulated distributions in these two cases
are 12.2 and 72.9.
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given value, computed using the result that, under the standard regression-

model assumptions,
P T-N-1 R?
- N 1 — RZ (43)

is distributed (central) F with N and T' — N — 1 degrees of freedom under the
null hypothesis that the true population R-squared is zero.3>

It is useful to note that the p-values reported in Table I, merely transfor-
mations of the R? values, need not represent the correct tail probabilities under
the null. In particular, the standard regression-model assumptions need not
hold in the presence of lagged stochastic regressors, as entertained in our
framework.36 (Both the sign and the magnitude of the error in the standard
p-value depend on the elements in the true B and =.) Therefore, we present the
standard p-value simply as a widely employed summary measure.

We begin with R%Z = 0.025 because, as noted in the introduction, studies
using data starting in 1927 typically report an R? of about that magnitude
when regressing a monthly stock return on the lagged return and only a few
other predictive variables. If the small set of predictive variables is obtained by
“mining” a larger set of 25 variables, then the sample R? produced by the larger
set must, by construction, be at least 0.025 and would most likely be consid-
erably larger. (Recall that R?, defined in (30), is the unadjusted R-squared.)
Thus, we suggest that the asset allocations reported for N = 25 when R? =
0.025 provide a conservative “worst-case” characterization of the importance of
the reported regression evidence to a Bayesian investor who includes all 25
variables in the regression model.

When R? = 0.025, the fitted regression values’ sample standard deviation,

R26,, is 89 basis points per month, so the one-step-ahead fitted regression
prediction for ., ; ranges from —40 basis points to 138 basis points as é ranges
from —1 to 1 (recall equation (42)). As reported in Table I, an investor with
relative risk aversion (A) equal to 2 and diffuse prior beliefs would choose a
stock allocation at the lower bound of 0 percent at § = —1, whereas that same
investor would allocate 61 percent to stocks when 8 = 0. If that investor’s prior
beliefs are given instead by the no-predictability informative prior, those
allocations are instead equal to 53 percent at § = —1 and 83 percent at 6 = 0.
Under both sets of prior beliefs, the investor would allocate the upper bound of
99 percent to stocks when § = 1. With the informative prior, the percentage
allocations change slightly less in absolute magnitude across values of 8, but
the stock allocations are higher in general. The latter effect is due to the lower
variance of the predictive distribution, o?p, that occurs with the informative
prior. In general, however, we see that even when the investor relies on a
model containing 25 possible predictive variables and the sample R? of that

35 See, for example, Judge et al. (1985).
36 See Stambaugh (1986) and Nelson and Kim (1993).
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regression is only 0.025, the optimal asset allocation depends strongly on the
current values of the predictive variables.

The sensitivity of the optimal asset allocation to the current values of the
predictive variables provides a metric by which to characterize the economic
significance of the sample regression evidence. That is, the sample evidence is
translated into implications about actions. Additional insight into the inves-
tor’s perceived importance of these actions is provided by a related metric,
introduced in Section I.B, that compares expected utilities associated with
optimal and suboptimal allocations. Let w® denote the optimal allocation
chosen by the investor when § = 0. When 8 # 0, we compare the investor’s
expected utility for the portfolio formed using the allocation w?®, which is then
suboptimal, to the investor’s expected utility for the portfolio formed using the
optimal allocation w*. The expected utilities for both portfolios are computed
under the same predictive pdf, i.e., based on the same given value for 8, and
each expected utility is converted to a certainty equivalent return (CER).

For each of the four nonzero values of §, Table I reports the “comparison of
certainty equivalents,” which is the CER for the portfolio formed using the
optimal w* minus the CER for the portfolio formed using »® In the case where
R? = 0.025, A = 2, and the prior is diffuse, for example, we see from Table I
that, when & = 1, the optimal allocation of 99 percent to stocks produces a CER
that is 24.1 basis points (per month) higher than an allocation of 61 percent to
stocks, the optimal allocation for § = 0. With the informative no-predictability
prior, again when & = 1, the CER for the optimal 99 percent stock allocation is
3.0 basis points higher than the CER for an 83 percent allocation, the optimal
allocation for 6 = 0.

In addition to the cases discussed above, in which A = 2 and R? = 0.025,
Table I also reports results for investors with other coefficients of relative risk
aversion (A = 1 and A = 5) and a regression with an R? value equal to 0.055.
Higher risk aversion is associated with lower stock allocations, less sensitivity
of the optimal allocations to the current value of the predictive variables, and
smaller values for the comparisons of certainty equivalents. The larger R2
value produces a p-value of about 0.01, which, in terms of standard statistical
characterizations, provides a contrast to the p-value of 0.75 when R? = 0.025.
When judged in terms of economic significance, however, the contrast between
the two regression outcomes is not as sharp. In both cases, the optimal asset
allocation is sensitive to the fitted regression values. A more extensive com-
parison of the economic and statistical significance of the regression evidence
is presented in the next subsection.

As discussed earlier, data mining is probably the principal motivation for
considering cases with large numbers of predictive variables. To consider only
such cases, however, would almost surely assign the data-mining issue undue
weight in our overall investigation of the role of sample regression evidence in
asset allocation. Far from clear is the extent to which published regression
results reflect the outcome of data mining, as either an intended perpetration
or, as more commonly suggested, an unintended outcome of conducting re-
search with some knowledge of the past successes and failures of other studies.



408 The Journal of Finance

Indeed, some of the early studies offer theoretical motivations, such as the
argument by Keim and Stambaugh (1986) that expected future returns should
be positively related to current values of variables that move inversely with
levels of asset prices. In order to analyze more thoroughly the potential role of
regression evidence in the asset-allocation decision, the next subsection con-
siders wide ranges for both the sample size (T) and the number of predictive
variables (V).

D. Economic Significance and Regression Statistics

We select a set of (T, N) combinations designed to include both small and
large values for each quantity. Specifically, we let T = 7, 60, and 804, N = 2,
10, 25, and 50, and we consider all seven of the (T, N) combinations in which
T > 2N.37 In the VAR framework, the lagged return always appears as one of
the predictive variables, so when N = 2 the predictive variables include the
lagged return and one additional variable. We include a sample size of T' = 7
when N = 2 because it is the smallest sample for which the predictive variance
0% in (34) exists when the prior is diffuse. A five-year sample of size T' = 60
would no doubt be considered quite small for an empirical study of stock-return
predictability, but we find that a sample of that size can still provide some
interesting contrasts between economic significance and various statistical
measures. As noted earlier, T' = 804 is the number of months in the period from
January 1927 through December 1993.

In the analysis here, rather than first specifying the statistical measures
summarizing a regression and then examining the implications of that regres-
sion evidence for asset allocation, we proceed in the opposite direction. Since
our ultimate interest centers on the economic significance of the sample
evidence, as characterized by the implications of that evidence for the asset-
allocation decision, we take a given degree of economic significance as a
starting point and then, for each (7', N) combination, we derive the statistical
measures for a sample that would produce that degree of economic signifi-
cance.

The degree of economic significance is specified in terms of the sensitivity of
the optimal asset allocation w* to the current values of the predictive variables.
Specifically, we return to the approximation in (40), which can be rewritten,
using (37), (38), and (42), as

_. 1
r+§0'T
w* = TG’% +'y§, (44)

37 This condition is imposed so that, when the prior is diffuse, the number of degrees of freedom
in the Student ¢ predictive pdf is greater than zero (equation (36)).
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where

yz( (7/7%) B? )(I_M

L 1 -
1—(T/T*)2R2 T )(Aa,[l+ﬁ(l+q)]) . (45b)

As defined earlier, T = T + T,, where T, = 75 - (N + 1) with the informative
no-predictability prior and T, = 0 with the diffuse prior. The first term on the
right-hand side of (44) does not depend on the current values of the predictive
variables, yr.38 Those values enter the second term, where y, which we inter-
pret as the degree of economic significance, measures the sensitivity of &* to
the current values of the predictive variables, summarized by & as in (42).
Specifically, y gives the (approximate) difference in optimal allocations when
the one-step-ahead fitted regression predictions differ by one sample standard
deviation of the fitted predictions (except when w is constrained by the [0, 0.99]
bounds).

Once T and N are specified, then R? is the only unknown quantity on the
right-hand side of (45). We specify a value for y and then solve (45) for R2. This
R? value can be used, along with T' and N, to compute an array of additional
statistics that might be used either in hypothesis testing and model selection
or in more general descriptions of the strength of the sample regression
evidence. From this array we simply choose two that, in some sense, illustrate
the diversity of such statistics. The first is the p-value for the F statistic in (43),
the same statistic reported in Table I. The second statistic is based on the
Schwarz criterion. Schwarz (1978) develops this model-selection criterion in a
large-sample setting, but, as shown by Klein and Brown (1984), the Schwarz
criterion can also be used for model-selection in a finite-sample Bayesian
setting. Brown and Klein derive a posterior odds ratio for the comparison of
two models when the prior for the parameters in each model is intended to be
noninformative.3® We use their result to construct the odds ratio that compares
the given regression model to a model in which returns are assumed to be i.i.d.
Specifically,

In(0*) = —% [T In(1 -R?®» - N 1n(T)], (46)

where O* gives the odds in favor of the regression model. That is, the odds ratio
favors the regression model if In(O*) > 0. The asset-allocation decision we
analyze does not involve model selection, as explained earlier, but we report

38 Even though y, appears in ¢ in equation (35), recall from the previous discussion that we
specify the same (high) value for ¢ across different values of y.

39 The model assumptions and noninformative prior specifications differ from those in the
Bayesian framework used here.
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In(O*) here simply to broaden our choices of statistics used in standard anal-
yses of regression evidence.4?

Table II reports results for y specified alternately as 20, 30, and 40 percent,
and where the investor has diffuse prior beliefs and relative risk aversion A =
2. As explained above, the value of vy, combined with T and N (columns 1 and
2), gives the R? (column 3) as well as the p-value and In(O*) (columns 4 and 5).
The R? is then used to compute the reported allocations and certainty-equiv-
alent comparisons by the numerical methods described earlier, using the
Student ¢ predictive pdf. The approximation in (40) is sufficiently accurate so
that, in most cases, the differences in allocations corresponding to unit differ-
ences in 8 are quite close to y (except, of course, when the [0, 0.99] range for w
is binding).

Given the above discussion, the three values T, N, and R? jointly determine
the statistical measures as well as the asset-allocation results reported in a
given row of Table II. This functional dependence essentially implies that
either the p-value or In(O¥*) could, in principle, be used along with T"and N to
compute the asset-allocation results. As we see, though, this mapping between
the statistical measures and the asset-allocation results produces no simple
pattern in Table II. Most of the p-values are large—generally greater than 0.5
and often nearly 1.0. Small p-values occur only in the case where T' = 60 and
N = 25. All of the values of In(O*) are negative, indicating that the odds ratio
favors the i.i.d. model over the regression model, and those values tend to
become more extreme as N increases relative to T.

It is interesting to compare the results when T' = 7 to those of the simple
two-state, two-outcome example in the previous section, where the number of
time-series observations is also small (sixteen). The specifications of the mod-
els are quite different, but in both cases a sample that produces a large p-value
(or odds favoring the i.i.d. model) contains sufficient evidence of predictability
to exert a substantial influence on the asset-allocation decision.

Also reported in Table II are results for 7' = «. Recall from the discussion
following equation (34) that, for any finite N, the predictive variance is then
equal to the limiting value (1 — R?)6®. In this case, where there exists no
estimation risk, values of y between 20 and 40 percent are obtained with R?
values that are small, ranging from 0.001 to 0.002. The results in this infinite-
sample case are similar to those obtained when T' = 804 and N = 2. In other
words, when the number of predictive variables is small, estimation risk
becomes relatively unimportant for a sample containing 804 observations.
Note that estimation risk still plays a nontrivial role when N = 2 and T' = 60.
The importance of estimation risk in this case is attributable primarily to our
conservative approach in specifying a large value for g in (34). If ¢ is instead set
to 82, its minimum value, then the results for 7 = 60 and N = 2 are also close

40 Gtatistics that can also be computed from 7, N, and R? include the adjusted R-squared, R? =
R2 — [N/T - N — D)/(T — N - 1)I(1.— R?), and statistics that compare the regression model
to the i.i.d. model using various other medel-selection criteria. See, for example, Sawa (1978) and
Amemiya (1980) for discussions of such criteria.
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Table II
Samples Providing Given Degrees of Economic Significance for an Investor with Diffuse
Prior Beliefs and Relative Risk Aversion Equal to 2
Optimal stock allocations and certainty equivalents are computed with respect to a Bayesian investor’s
predictive pdf based on regression evidence with an (unadjusted) sample R-squared equal to R% T
observations, and N predictive variables. The fitted one-month-ahead regression prediction of the excess
stock return, r.,, is 8 sample standard deviations of the fitted values away from the sample average
excess return 7. The value v, defined in equations (44) and (45) and interpreted as the degree of economic
significance, is the (approximate) difference in optimal allocations corresponding to a unit difference in
8. For each T'and N, we specify y, which then implies the remaining values in the table. The “Comparison
of Certainty Equivalents” gives the difference in certainty equivalent monthly returns between the
optimal allocation and the allocation that would have been chosen for § = 0. The p-value is computed for
the hypothesis that the regression’s slope coefficients are jointly equal to zero, and O* is an odds ratio,
defined in equation (46) in the text, that compares the regression model to a model with no predictability.

Comparison of Certainty
Optimal Stock Allocation Equivalents (basis pts.)
(percent) for § Equal to for 6 Equal to

T N R?*  p-value In O* -1 -05 0 05 1 -1 -05 05 1.0

y = 20 percent

7 2 0.063 0877 -1.72 10 21 33 44 56 163 4.2 4.1 16.6
60 2 0.001 0.968 —-4.06 57 67 77 87 97 19 0.5 0.5 1.9
60 10 0.033 0.998 -19.45 14 24 35 45 55 10.2 2.6 2.6 103
60 25 0.618 0.016 —22.29 7 17 27 37 47 423 107 112 452

804 2 0.001 0.804 -6.47 80 90 99 99 99 1.1 0.2 0.0 0.0
804 10 0.001 1.000 -33.02 58 68 78 88 98 1.8 0.5 0.5 1.8
804 25 0.002 1.000 —-82.62 40 50 60 70 80 28 0.7 0.7 2.8
804 50 0.007 1.000 -—164.39 26 36 46 56 66 4.7 1.2 1.2 4.7
By — 0.001 — — 83 93 99 99 99 0.8 0.1 0.0 0.0

vy = 30 percent

7 2 0125 0.766 —1.48 2 16 33 51 67 329 8.6 8.7 343
60 2 0.003 0.930 —4.02 47 62 77 92 99 4.2 1.1 1.1 3.9
60 10 0.070 0.955 -18.31 5 20 35 50 65 22.0 5.5 55 223
60 25 0.725 0.000 —12.50 0 13 28 43 59 684 174 183 1736

804 2 0.001 0.613 -6.20 70 8 99 99 99 27 0.6 0.0 0.0
804 10 0.002 0.997 —-32.48 49 64 79 94 99 4.1 1.0 1.0 3.7
804 25 0.006 1.000 -81.38 30 45 60 75 90 6.3 1.6 1.6 6.3
804 50 0.016 1.000 -160.90 16 31 46 61 76 105 2.6 2.6 10.6
o — 0.001 — — 73 88 99 99 99 21 0.4 0.0 0.0

v = 40 percent

7 2 0190 0.657 -1.21 0 11 34 57 76 504 140 142 550
60 2 0.004 0.880 -3.96 37 57 77 98 99 75 1.9 1.9 5.9
60 10 0.113 0.787 —16.89 0 15 35 55 76 36.8 9.4 94 379
60 25 0.785  0.000 -5.07 0 9 29 49 70 889 246 250 101.3

804 2 0.002 0.420 -5.82 60 80 99 99 99 49 1.1 0.0 0.0
804 10 0.004 0.970 -31.73 39 59 79 99 99 7.3 1.8 1.8 5.6
804 25 0.010 1.000 -79.66 20 40 60 80 99 111 2.8 2.8 11.1

804 50 0.027 1.000 -156.17 6 26 46 66 86 18.4 4.6 4.6 18.6
B — 0.002 — — 63 8 99 99 99 4.0 0.8 0.0 0.0
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to the infinite-sample results. The possibility that estimation risk can become
unimportant with such a modest sample size also appears in earlier results in
an i.i.d. setting. Although Brown (1979) characterizes his analysis for the i.i.d.
model as demonstrating a “measurable difference” between the optimal asset
allocations in finite and infinite samples, it can also be seen from his reported
results that, in samples of only 50 observations, the optimal stock allocation is
94 percent or more of the allocation chosen in an infinite sample.4!

Table III reports the same analysis as in Table II, except that the informa-
tive no-predictability prior replaces the diffuse prior. The table omits some of
the cases with 7' = 7 and all of the cases with 7' = 60 when N = 25. In the
omitted cases, the informative prior precludes those effectively small samples
from producing the given degree of economic significance (y), even with an
outcome of R? = 1. With the larger values of T, however, it is still the case that
the given degree of economic significance is often accompanied by large p-
values and large negative values of In(O*). Note also that, as vy increases, the
p-value can decrease considerably. For example, in the case of (T' = 804, N =
50), the p-value is 0.997 for y = 20 percent but 0.000 for y = 40 percent.
Similarly, when T' = 60 and N = 10, the p-value drops from 0.337 to 0.001 as
v increases from 20 to 30 percent. As in Table II, however, there appears to be
no simple correspondence between the statistical measures and the asset-
allocation results.

III. Conclusions

We view this study as an initial attempt to assess the economic significance
of empirical evidence about stock-return predictability by examining an inves-
tor’s conditional Bayesian portfolio decision. The specific choices we make here
in implementing this general approach, such as the forms of the prior distri-
bution and the likelihood function, are dictated in large part by tractability.
Extending the analysis to include richer specifications would be worthwhile,
although probably not without computational challenges.

The research conducted here can also be extended along a number of other
dimensions. We confine our attention to a single stock portfolio, but additional
risky assets could be introduced into the allocation decision as well.42 A recent
study by Lo and MacKinlay (1995) uses a cross-section of assets to construct a
portfolio that is “maximally predictable” by a given set of predictive variables,
and it would be interesting to investigate the desirability of such a portfolio
from the perspective of a Bayesian investor.

The regression framework we employ assumes that the regression distur-
bances are homoskedastic. A number of studies conclude, however, that stock
returns exhibit conditional heteroskedasticity (e.g., French, Schwert, and

41 See Brown (1976, p. 114 and table 8.1).

42 The effects of estimation risk on asset allocation have been analyzed empirically for multiple
risky assets in an i.i.d. setting (e.g., Bawa, Brown, and Klein (1979)), but we are unaware of
empirical studies that extend the problem to consider predictable returns.
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Table III

Samples Providing Given Degrees of Economic Significance for an Investor with

Informative No-Predictability Prior Beliefs and Relative Risk Aversion Equal to 2
Optimal stock allocations and certainty equivalents are computed with respect to a Bayesian investor’s
predictive pdf based on regression evidence with an (unadjusted) sample R-squared equal to R% T
observations, and N predictive variables. The fitted one-month-ahead regression prediction of the excess
stock return, r,, 4, is 8 sample standard deviations of the fitted values away from the sample average
excess return r. The value v, defined in equations (44) and (45) and interpreted as the degree of economic
significance, is the (approximate) difference in optimal allocations corresponding to a unit difference in
8. For each T'and N, we specify y, which then implies the remaining values in the table. The “Comparison
of Certainty Equivalents” gives the difference in certainty equivalent monthly returns between the
optimal allocation and the allocation that would have been chosen for § = 0. The p-value is computed for
the hypothesis that the regression’s slope coefficients are jointly equal to zero, and O* is an odds ratio,
defined in equation (46) in the text, that compares the regression model to a model with no predictability.
The no-predictability informative prior is equivalent to a posterior that combines diffuse prior beliefs
with a hypothetical T\-month sample in which all estimated slopes are exactly zero. T, is specified such
that the hypothetical sample contains 50 data entries per parameter, which, for N = 2, 10, 25, and 50,
gives values for T, of 225, 825, 1950, and 3825.

Comparison of
Certainty Equivalents
Optimal Stock Allocation (basis pts.) for §
(percent) for § Equal to Equal to

T N Rz’ p-value In O* -1 -05 0 05 1 -1 -05 05 10

v = 20 percent

7 2 0.605 0.156 1.31 80 90 9 99 99 12 03 00 00
60 2 0.014 0.677 -3.68 76 86 9 99 99 13 03 02 04
60 10 0.192 0.337 -14.07 64 74 84 94 99 17 04 04 15

804 2 0.001 0.705 -6.34 81 91 99 99 99 11 02 00 0.0
804 10 0.003 0.991 —-32.20 69 79 89 99 99 15 04 04 12
804 25 0.011 0.999 -79.34 63 73 8 93 99 17 04 04 16

804 50 0.034 0.997 —-153.34 60 70 80 90 99 18 04 04 18

0 — 0.001 83 93 99 99 99 0.8 0.1 0.0 0.0
v = 30 percent
60 2 0.031 0.413 -3.16 66 81 96 99 99 3.0 0.7 03 0.6
60 10 0431 0.001 -3.55 54 69 84 99 99 38 0.9 09 28
804 2 0.002 0.455 =590 71 86 99 99 99 25 0.5 0.0 0.0
804 10 0.007 0.852 -30.65 59 74 89 99 99 35 0.9 0.8 19
804 25 0.024 0.797 —-73.94 53 68 83 98 99 38 0.9 1.0 29
804 50 0.076 0.125 —-135.35 50 65 80 95 99 4.0 1.0 1.0 35
0 — 0.001 — — 73 88 99 99 99 21 0.4 0.0 0.0
v = 40 percent
60 2 0.054 0.204 -2.42 56 76 96 99 99 53 1.3 04 038
60 10 0.764 0.000 22.86 44 64 84 99 99 6.7 1.7 1.6 4.0
804 2 0.003 0.247 -5.29 61 81 99 99 99 4.6 1.0 0.0 0.0
804 10 0.012 0.453 —28.47 49 69 89 99 99 61 1.5 1.2 27
804 25 0.042 0.108 —66.30 43 63 83 99 99 6.7 1.7 1.6 4.3

804 50 0.135 0.000 —108.89 40 60 80 99 99 72 1.8 1.8 52
L — 0.002 — — 63 83 9 99 99 40 08 00 00
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Stambaugh (1987)). An interesting extension of our framework would be to
analyze the asset-allocation problem when conditional heteroskedasticity is
included in the regression model. Given the importance of the variance in the
asset-allocation decision, incorporating conditional heteroskedasticity into the
model could change the manner by which the current values of the predictive
variables influence the optimal allocation. For example, if both the conditional
mean and the conditional variance of the excess stock return are increasing in
the same predictive variable, then the influence of that predictive variable on
the optimal allocation may be less than when homoskedasticity is assumed. Of
course, incorporating conditional heteroskedasticity into the model could also
change the manner by which the current values of the predictive variables
influence the conditional mean and other properties of the predictive pdf.

A number of possible extensions involve the length of the investment hori-
zon. We essentially assume that, given a current amount to be invested, the
investor maximizes an iso-elastic derived utility of wealth over the next month.
We know, however, that in regressions of stock returns on dividend yields and
other predictive variables, the R-squared tends to rise with the return horizon.
This has been demonstrated empirically in long-horizon regressions (e.g.,
Fama and French (1988)), it arises as an implication of the joint time-series
properties of the monthly return and dividend-yield series when estimated in
a VAR (e.g., Kandel and Stambaugh (1987)), and it arises as a theoretical
implication in equilibrium models with time-varying moments of consumption
growth (e.g., Kandel and Stambaugh (1991)). It would be interesting to explore
the role of the investment horizon in a buy-and-hold asset-allocation problem.
Such an investigation might reveal whether the differences in R-squared
values between short and long horizons are economically meaningful.

Related to the issue of the investment horizon is the role of dynamic rebal-
ancing. One might, for example, allow the portfolio to be rebalanced each
month but assume that the utility function in (3) applies instead to wealth
realized at the end of twenty years. With logarithmic utility, one of the
preference specifications we consider, the solution to the one-month problem is
still correct in such a setting. With other specifications of preferences, however,
the problem becomes more complicated. This type of problem has been inves-
tigated empirically by Brennan, Schwartz, and Lagnado (1993), using a
monthly approximation to an analytic solution for continuous rebalancing, but
they do not include estimation risk in their analysis.*3 Addressing the latter
would require that each month the investor not only incorporate a new obser-
vation of the predictive variables into the conditional mean but also update his
beliefs about all parameters of the predictive distribution. Of course, transac-

43 Estimation risk in the case of continuous rebalancing has been addressed in a number of
theoretical studies. See, for example, Dothan and Feldman (1986), Gennotte (1986), Detemple
(1986), Feldman (1989, 1992), and Karatzas and Xue (1991). While completing the current
revision, we received a recent working paper by Barberis (1995), who extends the diffuse-prior
VAR model in Section II to investigate optimal asset allocations for multiperiod investment
horizons.
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tion costs would present an additional challenge to any modeling effort with
dynamic rebalancing.

Appendix
A. The Predictive Pdf

Although the VAR model in (21) employs assumptions different from those
in the traditional multivariate regression model (MVRM), the likelihood func-
tion in (24) is identical to that obtained in the MVRM. Hence, we can simply
follow the analysis of the MVRM provided by Zellner (1971, pp. 233-236), who
develops the predictive pdf using the same diffuse prior as in (31). As Zellner
shows, the predictive pdf for y;,, is in the multivariate Student ¢ form,

PYra| P [l + g(yrsy — x,Té)Sil(y,T-#l - x’Té)']f(TfN)m, (A1)

where
x7=(1yq), (A.2)
B=(X'X)"X'Y, (A.3)
S = (Y -XB)' (Y - XB), (A.4)
and
g=1—xp(X'X + xqch) Yxp. (A.5)

The predictive pdf in (A.1) can be rewritten as
®.) = v2T[(v + N)/2]|G|V?
p(yTﬂl 7) = (F(1/2))NF(V/2)
v+ O = x5B)G(y i — x7B) 172, (A.6)

where G = gvS™! and v = T — 2N. The predictive distribution of rp4q (the first
element of y;, ;) is a univariate Student ¢ (US ¢) pdf:44

F[(V N 1)/2] g 12 g s —(v+1)/2
p(rea|®r) = m( ) [ Su ) 2:|

Sy ’
(A7)
where S,;, the (1, 1) element of S, is given by
Su=(y — Xb)'(y — Xb). (A.8)

44 See Zellner (1971, p. 387).
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Let

_8v

h =—
Sll’

(A.9)

and substitute (A.9) into (A.7) to get the form of the US ¢ pdf as in Zellner
(1971, page 366),

—(v+1)/2

T[(v + 1)/2] [\ 2 ,
P(’”T+1|(I>T) = m( ;) [1 + > (ree1 — mp)
(A.10)

where
pr = E{re.|® = x7b. (A.11)
Substituting (A.2) and (29) into (A.11) yields (33). The second moment about
the mean of the US ¢ pdf is:
2 14
o5 = var{rp,|®} = CEE (A.12)

Using (A.12), we obtain
h 1

v (v—-2)o2

(A.13)

Substituting (A.11) and (A.13) into (A.10) yields (32). To obtain (34) we first
rewrite (A.12) using (A.9):

S
ok = (,,—_1;‘)5- (A.14)
Next, note that, since v = T' — 2N,
v—2=T-2(N+1). (A.15)
Using (A.8) and the definition of R? in (30), we get
To simplify the expression for g in (A.5), observe that+
1
g=1—-xpX'X +xpx7) xp= (A.17)

1+ x7X'X) g

45 See, for example, Zellner (1971, p. 73).
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Using (21), we get

Bl wlel e
T y OGy+Vyl ’
Inverting (A.18) yields
1[1+6'V,) -3V,
X'X) 1= " R . A.19

Using (A.17), (A.19), and (35), we obtain
1 . 1 e . 1
P 1+2pXX) " r=1+701+r =)'V, 0r—y)=1+70+q). (A20)

Substituting (A.15), (A.16), and (A.20) into (A.14) yields (34).
B. Informative Priors

The informative no-predictability prior is equivalent to the posterior distri-
bution obtained by combining the diffuse prior in (31) with a sample of size T,
in which a regression of the excess stock return on the N predictive variables
produces an R-squared of exactly zero. We wish to specify T, such that prior
beliefs about stock-return predictability are similar across various specifica-
tions of N. In summarizing those prior beliefs, we use a measure that offers
simple intuitive appeal. From the joint prior distribution for the parameter
matrices B and X, we compute a prior distribution for the “true” or population
R-squared value,

2

R=-1-% (B.1)
0_2’ .

r

where o2, defined previously, is the (1,1) element of =, and o7 is the uncondi-
tional variance of the excess stock return r,. (Recall from equation (30) that R?
denotes the regression outcome in the actual sample.) For some values of B and
S, the unconditional variance ¢ does not exist, so R? is then undefined.

Specifically, if we partition B as
B,
B=[&} (B.2)

where B, is 1 X N and B, is N X N, then a necessary and sufficient condition
for the existence of the unconditional variance-covariance matrix

V,=cov{y, yi} (B.3)
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is that the eigenvalues of B, lie inside the unit circle. In that case, V, is the
solution to

V,=B,V,By+3, (B.4)

and o7 is the (1, 1) element of V, .46

We examine the prior dlstrlbutlon of R? conditional on the existence of V,.
The general approach is as follows. The joint prior distribution for B, and = can
be obtained analytically, as discussed below, and we draw values of B, and =
repeatedly from that distribution. For each draw satisfying the condition that
the eigenvalues of B, lie inside the unit circle, we compute R? using (B.4) and
then (B.1). The frequency distribution of these R? values provides an approx-
imation to the prior distribution. The prior probability that V,, does not exist
can also be estimated in this process, and we report below the results of that
calculation as well.

The informative prior for B, and ¥ is determined by the following statistics
for the hypothetical prior sample of size T: Bz o> the N X N matrix of OLS
regression slopes for the VAR in (21), 20, the variance-covariance matrix of the
residuals of that VAR, and V, .0, the variance-covariance matrix of y, based on
observations 0 through T\, — 1. Given these statistics, the prior for B,, condi-
tional on 2, is given by a multivariate Normal distribution,

N 1.
p(vec(By)|3) ~N(Vec(Bz,0), T, Vy‘,3®2), (B.5)

where vec( ) denotes the vector formed by stacking the successive transposed
rows of the matrix, and the marginal prior for £ is an inverted Wishart,

p(S) ~IW(ToSe, To— N — 1). (B.6)

The informative no-predictability prior specifies that, in the hypothetical
prior sample, a regression of the excess stock return on the predictive variables
produces an R-squared of exactly zero. That is, all N elements in the first row
of Bz o are set to zero. The predictive pdf for r,,; does not depend on the other
N — 1 rows of 32 0, but the latter values do enter the prior distribution for B,
and =. As explalned in Section II, the (1, 1) element of Eo is set equal to &2, the
actual sample variance of excess stock returns. The other elements of 3, do not
enter the predictive pdf for r,. ;, but they do enter the prior for B, and =. We
assume, for simplicity, that

Vyo= ByoV, 0B + 2o, (B.7)
which will obtain, for example, if observation O is identical to observation 7.

Recall that the predictive pdf for r,,, is invariant under linear transforma-
tions of y, that preserve r, as the first element. It can also be verified, given the

48 See Wei (1990, pp. 339-341).
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joint prior distribution for B, and X in (B.5) and (B.6), that the marginal prior
for R? is also invariant under such transformations. Therefore, without loss of
generality, we set

A

Vy’(): 6'?11\7, (BS)

where I, is the N X N identity matrix. For this set of orthogonalized variables,
we specify

R 0 0
Bz’o = |:O pIN_1:|. (B.9)

In other words, returns are totally unpredictable in the hypothetical sample,
each of the other N-1 variables has sample autocorrelation equal to p, and all
sample cross autocorrelations are equal to zero. Combining (B.7), (B.8), and
(B.9) then gives

- Lol 1 0
EO = 0'3|:0 (1 _ pZ)IN—1:|. (BlO)

Although the predictive pdf for r,, , depends on &2, the prior for B? does not.
Therefore, the simplifications in (B.7) through (B.10) allow the marginal prior
distribution for R?, given T, and N, to be specified completely by the scalar
value p. We wish to specify T, such that this prior distribution is similar across
different values of N. It appears that such an objective is not accomplished
satisfactorily by holding T, fixed. For example, suppose that, for all N, we set
T, = 1200. That is, the prior is then equivalent to 100 years of hypothetical
data in which a regression of returns on the predictive variables produces a
sample R-squared of exactly zero. With T\, = 1200, we draw repeatedly from
the priors for B, and X in (B.5) and (B.6) and tabulate the frequency distribu-
tion of the resulting values of R2. This procedure is performed with four
different values of N (2, 10, 25, and 50) and with four different values of p (0,
0.5, 0.8, and 0.95). In each case, the draws of (B,, 3) continue until there are
2000 draws in which the eigenvalues of B, lie inside the unit circle, so that the
estimated prior for R, conditional on that value being defined, is based on a
frequency distribution of 2000 values. Figure 2 displays those marginal priors
for R The case in which N = 50 and p = 0.95 is omitted; this case proved
computationally infeasible, due to the apparently high frequency of draws in
which V, does not exist as well as the difficulty in solving (B.4) for many draws

Y
in which V, does exist. For each value of p, observe that the prior assigns

greater mags to higher values of R? as N increases. For example, with p = 0.8,
virtually all of the prior mass lies below R? = 0.01 with N = 2, whereas with
N = 25 or N = 50, virtually all of the prior mass lies above R? = 0.01.

The results in Figure 2 suggest that, in order to obtain similar priors across
different values of N, T\, must increase with N. With T, observations on each
of N variables, the hypothetical sample contains N - T, data entries. We follow

the simple approach of specifying T, so as to hold constant the number of data
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Figure 2. Prior distributions for B? with T, constant across N. Each graph plots, for a given
value of p, the cumulative prior distributions of B2 obtained for different values of N, the number
of predictive variables. The size of the hypothetical prior sample, Ty, is equal to 1200. The
parameter R? is the true R-squared in a regression of the excess stock return on the predictive
variables, and p is the sample autocorrelation of each of the N — 1 predictive variables (excluding

the return) as specified in the hypothetical prior sample.

entries per parameter. There are %2 N(NV + 1) distinct parameters in B and 2,
so a sample of size T, provides #3T /(N + 1) data entries per parameter. We set
T, = T5(N + 1), which gives 50 data entries per parameter. This choice
produces a prior for R? that lies between those for N = 10 and N = 25 in Figure
2. (Specifically, with T, = 75(N + 1), a value of T, = 1200 implies N = 15.)
Figure 3 displays the marginal priors for R? for the same combinations of N
and p used in Figure 2, and the case in which N = 50 and p = 0.95 is now
included as well. In Figure 3, as well as in Figure 2, it can be seen that the
priors assign more mass to higher values of R? as p increases, although this
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Figure 3. Prior distributions for R? with T, increasing in N. Each graph plots, for a given
value of p, the cumulative prior distributions of R? obtained for different values of N, the number
of predictive variables. The size of the hypothetical prior sample, T, is equal to 75(V + 1), which
is equivalent to 50 data entries per parameter. The parameter R? is the true R-squared in a
regression of the excess stock return on the predictive variables, and p is the sample autocorre-
lation of each of the N — 1 predictive variables (excluding the return) as specified in the
hypothetical prior sample.

effect is most evident in moving from p = 0.8 to p = 0.95. The priors for R? in
Figure 3, however, exhibit much less variation across N than do the priors in
Figure 2. In fact, it appears that the objective of increasing T\, with N so as to
obtain similar priors across different values of N is accomplished reasonably
well by holding constant the number of data entries per parameter.

As explained earlier, in constructing each frequency distribution of RZ, the
total number of draws of (B,, Z) is 2000 + m, where m is the number of draws
in which the eigenvalues of B, do not lie inside the unit circle. Thus, the prior
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Table IV
N T, = 1200 To=T75-(N+ 1)
2 0 0.0074
10 0 0.0109
25 0.1127 0.0005
50 ‘ - 0

probability that V,, does not exist can be estimated as m/(2000 + m). This
estimated probability equals zero (m = 0) for all cases with p equal to 0, 0.5,
and 0.8. For p = 0.95, this estimated probability is as in Table IV.
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